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Main Ideia
What’s you plan for tomorrow?
What’s you plan for September 20?

Do you plan for tomorrow and for the next
month with different levels of detail?

Why not do it with MPC?

• Question
– Why should we use a fine mesh to compute the solution in
[tk, tk +T ] if we only implement the control in [tk, tk +δ ]?

• Idea
– To use a mesh that is finer in the left–end and coarser in

the right–end of [tk, tk +T ].

Proposed AMR - MPC strategy

Abstract
I We address through MPC constrained nonlinear plant de-

scribed by a continuous-time dynamical model: Sampled–
data MPC.

I The numerical solution of the optimal control problems
(OCP) involved must use, eventually, some form of discretiz-
ation. However, there are several advantages in maintaining
a continuous-time model until later stages.

I One advantage is that we can devise numerical procedures
which, by exploiting additional freedom in selecting the dis-
cretization points, are more efficient when continuous-time
models are used.

I In the numerical solution of nonlinear OCPs, the number of
discretization nodes is a major factor affecting the computa-
tional time. Also, the location of such nodes is a major factor
affecting the solution accuracy.

I The adaptive time–mesh refinement (AMR) algorithm iter-
atively finds an adequate time–mesh (selecting the number
and location of the mesh–nodes) that satisfies a pre–defined
bound on the error estimate of the obtained trajectories.

I Here, we discuss an extension to MPC of an AMR algorithm,
which has shown to be efficient in solving nonlinear optimal
control problems.

I We show how to guarantee that an MPC scheme using an
AMR algorithm preserves stability.

We acknowledge the support of FEDER/COMPETE2020/NORTE2020/POCI/PIDDAC/MCTES/FCT funds

through grants SFRH/BPD/126683/2016, UID/IEEA/00147/006933–SYSTEC, PTDC-EEI-AUT-2933-2014|-

16858–TOCCATA, and POCI-01-0145-FEDER-031447|FCT–UPWIND.

Optimal Control and AMR

The OCP starting from an initial state xk ∈ X0:

P (xk) :

Minimize
T∫

0

L(x(s),u(s))ds+G(x(T )) (1a)

subject to (1b)
ẋ(s) = f(x(s),u(s)) a.e. s ∈ [t0, t f ] , (1c)
x(0) = xk , (1d)
x(T ) ∈ X f , (1e)
x(s) ∈ X ∀s ∈ [t0, t f ] , (1f)
u(s) ∈ U a.e. s ∈ [t0, t f ] . (1g)

• We consider an initial optimization mesh π0= {si}i=0...N in
[t0, t f ] where the control functions can change value, contain-
ing all sampling instants in [t0, t f ].

• We solve the OCP with piecewise constant control, using
direct methods. The model is initially discretized in π0, tran-
scribed into an NLP, and solved with standard solvers.

• The efficiency and the accuracy of the numerical solution
strongly depends on the chosen time–mesh. The selection
of an adequate mesh is not known a priori; it is generated
via an iterative procedure: the AMR algorithm.

The AMR algorithm
• The adaptive mesh refinement procedure starts with a
coarse mesh used to solve the NLP problem associated to
the OCP to apprehend the main structure of the solution.

• Then, it adds new node points in the needed subintervals.
This procedure adds more node points to the intervals in
higher levels of refinement and it adds less node points to
those in lower refinement levels.

• The refinement process is repeated until a certain stopping
criterion is achieved.
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The multi–level AMR technique.

The Extended AMR Algorithm
The AMR algorithm is extended to allow time–dependent re-
finement levels εmax(s).

ε
max(s) =


ε1, s ∈ [tk, tk +β1T ]
ε2, s ∈ ]tk +β1T, tk +β2T ]
. . .

ε j, s ∈
]
tk +βJ−1T, tk +βJ T

]
where 0 < β1 < β2 < .. . < βJ < 1 are user–defined scalars.

It is expected the procedure to add more node points to in-
tervals that contain time instants close to the initial time of
[tk, tk +T ].

However, the user does not specify directly the number of
nodes to use in each interval, rather it specifies a threshold for
the local absolute error on the trajectory in each interval.
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The extended AMR strategy

MPC and AMR

Given a sampling step δ > 0, a prediction horizon T , and a
sequence of sampling instants {tk}k≥0 with tk+1 = tk +δ ,

The sampled–data MPC algorithm follows the procedure:
1. Measure state of the plant xtk;
2. Determine ū : [tk, tk +T ]→ Rm solution of OCP P(xtk).
3. Apply the control u∗(t) := ū(t) to the plant in the interval t ∈

[tk, tk +δ ], disregarding the remaining control ū(t), t > tk +δ ;
4. Repeat this procedure for the next sampling time instant

tk +δ .

In the AMR - MPC algorithm, step 2 is modified to:
2. (a) Select the intervals Sk, j to be refined according to the

time–dependent levels of refinement ε̄(t) and generate a
new time–mesh;

(b) Determine ū : [tk, tk +T ]→ Rm solution to the OCP P(xk),
in the new time–mesh;

Stability of AMR–MPC
The AMR-MPC startegy preserves stability, if the design para-
meters are selected to satisfy:
SC Sufficient condition for Stability. The design parameters

T,L,G and X f satisfy:
1. The set X f is a subset of X, is closed, and contains the

origin. The function G is Lipschitz continuous and positive
definite. The function L is continuous and there exists a
function M : Rn→ R+ which is continuous, positive defin-
ite and radially unbounded, such that L(x,u)≥M(x) for all
u ∈U .

2. The horizon T is such that X0 is contained in A0, when
controls from U (π0) are used.

3. There exists a control law k f : [0,δ ]×X f → Rm, with k f ∈
U (π0), such that for all x f ∈ X f ,

G(x(δ ;x f ,k f ))−G(x f )≤

−
∫

δ

0
L(x(t;x f ,k f ),k f )dt, (SCa)

x(δ ;x f ,k f ) ∈ X f ,

x(t;x f ,k f ) ∈ X , all t ∈ [0,δ ]. (SCb)

and

k f (t,x f ) ∈U, a.e. t ∈ [0,δ ], (SCc)

The Main Result
H1 Sets X, X0 and U are compact, contain the origin and f(0,0) = 0.
H2 The system is asymptotically controllable to the origin on X0.
H3 Function f is continuous, and x 7→ f(x,u) is Lipschitz.

Theorem Assume the system satisfies hypotheses H1–H3. If
the design parameters T,L,G and X f satisfy the stability con-
dition SC, then applying the AMR–MPC strategy starting
from any x0 ∈ X0 and with some initial mesh π0 ⊃ (Π∩ [t0, t f ])
we have:
1. all optimal control problems involved in the AMR-MPC

strategy, P(xk) for all k ≥ 0, are feasible and have a min-
imum.

2. the closed-loop trajectory x∗ is asymptotically attracted to
the origin, that is x∗(t)→ 0 as t→+∞.

Concluding remarks
Main advantages/features of AMR-MPC
• Obtains faster and/or more accurate solutions to the OCPs
than with equidistant-spaced meshes (e.g. when discrete-
time models are used).

• Can use continuous-time models of the plant directly. Dis-
cretization is automated and there is no need to choose a
priori the discretization time step.

• Even if the optimization procedure is interrupted at an early
stage (in real–time optimization) a solution (which might be
less accurate) might still be provided.
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