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1. Introduction

Operations control is one of the most important areas for an airline company. Through
operations control mechanisms an airline company monitors all the flights checking if they
follow the schedule that was previously defined by other areas of the company.
Unfortunately, some problems may arise during this stage (Clausen et al., 2005). Those
problems can be related with crewmembers, aircrafts and passengers. The Airline
Operations Control Centre (AOCC) includes teams of experts specialized in solving the
above problems under the supervision of an operation control manager. Each team has a
specific goal contributing to the common and general goal of having the airline operation
running under as few problems as possible. The process of solving these kinds of problems
is known as Disruption Management (Kohl et al., 2004) or Operations Recovery.

To select the best solution to a specific problem, it is necessary to include the actual costs in
the decision process. One can separate the costs in two categories: Direct Operational Costs
(easily quantifiable costs) and Quality Operational Costs (less easily quantifiable costs).
Direct operational costs are, for example, crew related costs (salaries, lodgement, extra-crew
travel, etc.) and aircraft/flights cost (fuel, approach and route taxes, handling services, line
maintenance, etc.). The quality operational costs that AOCC is interested in calculating are,
usually, related with passengers satisfaction. Specifically, we want to include in the decision
process the estimated cost of delaying or cancelling a flight from the passenger point of
view, that is, in terms of the importance that such a delay will have to the passenger.

In this chapter we present our intelligent agent-based approach to help the AOCC solving
the disruption management problem. It is organized as follows: In Section 2 we present
some related regarding operations recovery, a classification of current tools and systems in
use in some airline companies and a brief summary of the current use of software agents’
technology in other domains. Section 3 introduces the Airline Operations Control Centre
(AOCC), including typical organizations and problems, the current disruption management
(DM) process and a description of the main costs involved. Section 4 is the main section of
this chapter and presents our agent-based approach to this problem. This section presents:
(i) the reasons that made us adopt the software agents and multi-agent system (MAS)
paradigm; (ii) the MAS architecture including the specific agents, roles and protocols as well
as some relevant agent characteristics like autonomy and social-awareness; (iii) decision
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mechanisms, including costs criteria and negotiation protocols and (iv) examples of the
problem solving algorithms used. In Section 5 we present the experimental setup and, in
Section 6, we evaluate our approach, presenting and discussing the results. Finally, in
Section 7, we conclude and give some insights on the future work.

2. Related Work and Current Tools and Systems

The goal of this section is threefold. In Section 2.1 we present the related work regarding
operations recovery. Research in this area has been made, mainly, through Operations
Research (OR) techniques. Barnhart et al., (Barnhart et al., 2003) gives an overview of OR-
based applications in the air transport industry. In Section 2.2 we describe and classify the
current tools and systems in use at some worldwide airlines and in Section 2.3 we present
some interesting examples of how agents are used in other applications domains and
problems.

2.1 Related Work

We divided the bibliography we have analyzed in three main areas: aircraft recovery, crew
recovery and integrated recovery. For a more detailed explanation of those papers as well as
for older papers related with each of these subjects, please consult (Clausen et al., 2005).
Aircraft Recovery: In (Liu et al.,, 2008) the authors propose a “multi-objective genetic
algorithm to generate an efficient time-effective multi-fleet aircraft routing algorithm” in
response to disruption of flights. It uses a combination of a traditional genetic algorithm
with a multi-objective optimization method, attempting to optimize objective functions
involving flight connections, flight swaps, total flight delay time and ground turn-around
times. According to the authors “(...) the proposed method has demonstrated the ability to
solve the dynamic and complex problem of airline disruption management”. As in other
approaches, the authors do use the delay time in the objective functions but nothing is
included regarding passengers’ quality of services costs.

Mei Yang Ph.D. thesis (Yang, 2007) investigates the use of advanced tabu search
methodologies to solve the aircraft-grounding problem and the reduced station capacity
problem. The objective is to minimize the schedule recovery costs associated with flight
schedule modifications and deviations from the original route. Mei introduces cancellation
and delay costs in the objective function. For the delay costs, Mei uses a value of $20 if the
delay is less than 15 minutes and $20 each minute if the delay is greater or equal to 15
minutes. For flight cancellations it uses a combination of lost revenue, loss of passenger
goodwill and other negative effects, specific and predefined for each flight. The main
difference regarding our approach is that we allow the definition of profiles for passengers
of each flight (Mei and others, do not consider passengers’ profiles). Each one with an
associated cost formula, that reflects the delay costs from the passenger point of view.

In (Rosenberger et al., 2001) the authors formulate the problem as a Set Partitioning master
problem and a route generating procedure. The goal is to minimize the cost of cancellation
and retiming, and it is the responsibility of the controllers to define the parameters
accordingly. It is included in the paper a testing process using SimAir (Rosenberger et al.,
2002), simulating 500 days of operations for three fleets ranging in size from 32 to 96 aircraft
servicing 139-407 flights. Although the authors do try to minimize flight delays, nothing is
included regarding the importance of using quality costs.
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Crew Recovery: In (Abdelgahny et al., 2004) the flight crew recovery problem for an airline
with a hub-and-spoke network structure is addressed. The paper details and sub-divides the
recovery problem into four categories: misplacement problems, rest problems, duty
problems and unassigned problems. The proposed model is an assignment model with side
constraints. Due to the stepwise approach, the proposed solution is sub-optimal. Results are
presented for a situation involving a US airline taking into account 18 different problems.
This work also omits the use of quality costs for deriving an appropriate solution.

Integrated Recovery: In (Bratu & Barnhart, 2006) the author presents two models that
considers aircraft and crew recovery and through the objective function focuses on
passenger recovery. They include delay costs that capture relevant hotel costs and ticket
costs if passengers are recovered by other airlines. According to the authors, it is possible to
include, although hard to calculate, estimations of delay costs to passengers and potential
costs of loosing future ticket sales. To test those models an AOCC simulator was developed,
simulating domestic operations of a major US airline. It involves 302 aircrafts divided into 4
fleets, 74 airports and 3 hubs. Furthermore, 83869 passengers on 9925 different passengers’
itineraries per day are used. For all scenarios solutions are generated with reductions in
passenger delays and disruptions. The difference comparing with our approach is that we
propose a generic model to calculate the delay cost to passengers, based on their specific
profile and opinion (obtained through frequent surveys).

In (Kohl et al., 2004) the author reports on the experiences obtained during the research and
development of project DESCARTES (a large scale project supported by EU) on airline
disruption management. The current (almost manual) mode of dealing with recovery is
presented. They also present the results of the first prototype of a multiple resource decision
support system. Passenger delay costs are calculated regarding the delay at the destination
and not at departure (we include both in our proposal) and takes into consideration the
commercial value of the passenger based on the booked fare class and frequent flyer
information. The main difference regarding our proposal is that we use the opinion of the
passengers when calculating the importance of the delay.

Lettovsky’s Ph.D. thesis (Lettovsky, 1997) is the first presentation of a truly integrated
approach in the literature, although only parts of it are implemented. The thesis presents a
linear mixed-integer mathematical problem that maximizes total profit to the airline while
capturing availability of the three most important resources: aircraft, crew and passengers.
The formulation has three parts corresponding to each of the resources, that is, crew
assignment, aircraft routing and passenger flow. In a decomposition scheme these are three
parts of a master problem known as the Schedule Recovery Model. Although the author
takes into consideration the passenger, it does so concerning finding the best solution for the
disrupted passengers. The difference of our approach is that we use the opinion of the
passengers regarding the delay (expressed through a mathematical formula) to reach the
best possible solution concerning delaying the flight. We still do not approach (at least at
present time) the, also important, issue of finding the best itinerary for disrupted
passengers.

2.2 Current Tools and Systems
In previous work (Castro, 2008) we have classified the current tools (or systems that provide
those tools) in use at AOCCs in one of these three categories:
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1. Database Query Systems (DBQS)

2. Decision Support Systems (DSS)

3. Automatic or Semi-Automatic Systems (ASAS)
The DBQS - Database Query Systems (the most common situation at airlines) allows the
AOCC human operators to perform queries on the existing databases to monitor the airline
operation and to obtain other data essential for decision-making. For example, the aircraft
and/or crew roster, aircraft maintenance schedule, passenger reservations, and so on. These
systems are useful and relatively easy to implement and/or acquire but they have some
important disadvantages, for example, to find the best solution and to take the best decision
is completely dependent on the human operator. As we have explained in (Castro, 2008)
there are two problems when airline companies use only this type of systems: (1) the
solution quality is dependent on knowledge and experience of the human operator and, (2)
due to the usual difficulty of the human being in leading with large volumes of data
simultaneously, they do not use all the necessary information (variables) to take the best
decision.
The DSS - Decision Support Systems, besides having the same characteristics of the DBQS,
also include additional functionalities to support the human operators on the decision-
making. For example, after a request made by a human operator, these systems are able to
recommend the best solution to solve a problem related with a delayed aircraft. Some of
them may just recommend a flight re-scheduling but others are able to justify the candidate
solution as well as to present the solution cost. DSS systems eliminate some of the
disadvantages of the DBQS systems. Namely, they are able to analyze large volumes of data
and, because of that, propose solutions that take into consideration more information
(variables). The decision-making still is on the human operator side but, now, he is able to
take better decisions. Unfortunately, one of the big problems with airline companies is the
absence and/or complexity of the computerized information system keeping all the
operational information. These are of paramount importance for the success of the decision
support tools. This problem, referred in (Kohl et al., 2004) as the Data Quality and System
Accessibility Problem, gains more importance when we start to implement decision support
tools and/or automatic or semi-automatic systems.
The goal of the third type of systems, ASAS - Automatic or Semi-Automatic Systems, is to
automate as much as possible the AOCC, replacing the functional part by computerized
programs. Specifically, these systems try to automate the repetitive tasks and also the tasks
related with searching for the best solution (problem solving). In a totally automatic system,
decision-making is also taken by the system. In a semi-automatic system, the final decision
is taken by the human operator. In ASAS type of systems, the AOCC does not need as much
human operators as in the previous ones, to operate correctly. Usually, roles or functions
related with operation monitoring, searching for solutions related with aircraft, crew or
passenger problems and re-allocation of resources, are performed by specialists agents
(Castro & Oliveira, 2007) replacing the human specialists. The final decision regarding the
application of the solution found by these systems on the environment (for example, making
the necessary changes on the airline operational plan database) depends on the human
supervisor. According to (Wooldridge, 2009) and (Castro, 2007) the agent and multi-agent
systems paradigm is more appropriate to be used in this domain than any other paradigm.
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2.3 Other Application Domains

To the best of our knowledge, we were the first to propose an organization of agents to
represent all roles of an AOCC, including specialist agents that cooperate to achieve the
common overall goal of solving the unexpected problems arising during airline operations
(Castro, 2007), (Castro & Oliveira, 2007). However, agents and multi-agent systems have
been applied both to other problems in air transportation domain and in other application
domains. A brief and incomplete list of such applications follows. Tumer and Agogino
developed a multi-agent algorithm for traffic flow management (Tumer & Agogino, 2007).
Wolfe et al., use agents to compare routing selection strategies in collaborative traffic flow
management (Wolfe et al.,, 2007). For ATC Tower operations, Jonker et al., have also
proposed the use of multi-agent systems (Jonker et al., 2005). As a last example, a multi-
agent system for the integrated dynamic scheduling of steel production has been proposed
by Ouelhadj (Ouelhadj, 2003), (Cowling et al., 2003).

3. Airline Operations Control

In this section we introduce the airline operations control problem - AOCP (also known as
airline disruption management problem). To contextualize, we start by briefly introducing
the AOCP preceding problem known as the Airline Scheduling Problem (ASP). Then we
explain what an airline operational control centre (AOCC) is and we present some typical
AOCC organizations. The typical problems, the current disruption management process as
well as the main costs involved are also introduced.

3.1 Airline Scheduling Problem

According to (Kohl et al., 2004) the scheduling process of an airline company is composed
by the long and short-term phases presented in Figure 1. The scheduling process has three
main dimensions or views: (1) passenger view; (2) aircraft view and (3) crew view. The first
one represents the seats available to be sold to the airline customers. The other two views,
represents resources that will be allocated.

Fig. 1. The airline scheduling process
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Everything starts with publishing the flights timetable for a specific period of time (usually six
months). After publishing the timetable, the revenue management phase starts. Here the goal
is to maximize the revenue obtained selling tickets. At the same time, the scheduling of the
two most important resources starts: aircrafts and crew. Regarding the aircraft, the first step
is the fleet assignment. Here, the goal is to assign the aircraft type or aircraft fleet that will
perform the flights. It is an important step because the aircraft type/fleet will define the
number of available seats in each flight. Near to the day of operations, the assignment of the
specific aircraft to each flight is performed. This step is known as tail assignment. After the
fleet assignment step, it is possible to start to schedule the crew. The first step is the crew
pairing. The goal is to define the crew duty periods (pairings) that will be necessary to cover
all the flights of the airline for a specific period of time (typical one month). Having the
pairings, it is possible to start the crew rostering step that is, assign crewmembers to the
pairings. The output of this step is an individual crew roster that is distributed or published
in the crew web portal. Finally and until the day of operations, it is necessary to
change/updated the crew roster (roster maintenance), to include any changes that might
appear after publishing the roster. The airline scheduling problem (ASP) is composed of all
the previous phases and steps and ends some hours or days (depends on the airline policy)
before the day of operation. The global objective of the ASP is to maximize the airline
operating profit. For more detailed information please consult (Grosche, 2009) specially
Section 2.1 to Section 2.4.

3.2 AOCC Organization

The airline operations control problem (AOCP) starts where the airline scheduling problem
stops. In Figure 1 the AOCP is represented by the disruption management square. If
everything goes as planned the airline just needs to monitor the execution of the plan.
Unfortunately, several unexpected events appear during this phase that can disrupt the
plan. To monitor those events and solve the problems that arise from these disruptions and
return to the previous plan as soon as possible, it is necessary to define and follow a
disruption management process. Airline companies have an entity called Airline Operations
Control Centre (AOCC) that is responsible for the disruption management process. There
are three main AOCC organizations (Castro, 2008):

e Decision Centre: The aircraft controllers share the same physical space. The other
roles or support functions (crew control, maintenance service, etc.) are in a
different physical space. In this type of Collective Organization all roles need to
cooperate to achieve the common goal.

o [Integrated Centre: All roles share the same physical space and are hierarchically
dependent of a supervisor. For small companies we have a Simple Hierarchy
Organization. For bigger companies we have a Multidimensional Hierarchy
Organization. Figure 2 shows an example of this kind of AOCC organization.

e Hub Control Centre (HCC): Most of the roles are physically separated at the airports
where the airline companies operate a hub. In this case, if the aircraft controller role
stays physically outside the hub we have an organization called Decision Centre
with a hub. If the both the aircraft controller and crew controller roles are physically
outside the hub we have an organization called Integrated Centre with a hub. The
main advantage of this kind of organization is to have the roles that are related
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with airport operations (customer service, catering, cleaning, passengers transfer,
etc.) physically closer to the operation.

The organization adopted depends on several factors like airline size, airline network type
(for example, hub-and-spoke) and geographic distribution of the operation. In Figure 2 we
present the organization of a typical Integrated Operational Control Centre. It is important to
point out the role of the supervisor, a characteristic that makes this organization hierarchical
and, also, the operation time-window that marks the responsibility boundaries of the
AOCC. This operation time-window is different from airline to airline but, usually, ranges
from 72 to 24 hours before to 12 to 24 hours after the day of operation.

£ Passenger services EaMaintenance Services

B3 Aircraft Team

Supervisor £ Flight Dispatch

EaCrew Team

A/C Controller 1..*
Flight Dispatchers 1..*

Crew Controller 1..*

72 to 24 hours before 12 to 24 hours after

Day of Operation

Fig. 2. Integrated airline operational control centre

The roles or support functions more common in an AOCC, according to (Kohl et al., 2004)
and (Castro, 2008), are the following;:

Flight Dispatch: Prepares the flight plans and requests new flight slots to the Air
Traffic Control (ATC) entities (FAA in North America and EUROCONTROL in
Europe, for example).

Aircraft Control: Manages the resource aircraft. It is the central coordination role in
the operational control.

Crew Control: Manages the resource crew. Monitors the crew check-in and check-
out, updates and changes the crew roster according to the disruptions that might
appear during the operation.

Maintenance Services: Responsible for the unplanned maintenance services and for
short-term maintenance scheduling. Changes on aircraft rotations may impact the
short-term maintenance (maintenance cannot be done at all stations).

Passenger Services: Decisions taken on the AOCC will have an impact on the
passengers. The responsibility of this role is to consider and minimize the impact of
the decisions on passengers. Typical this role is performed on the airports and for
bigger companies is part of the HCC organization.
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3.3 Typical Problems

In the previous section we presented typical AOCC organizations and the roles that exist on
those organizations. Now, it is important to understand the typical problems that appear
during the execution of the airline operation. From our observations in a real AOCC, and
from (Kohl & Karisch, 2004), we found the typical problems presented in Figure 3. In this
diagram we have also included the impact that each problem might have on flight arrival or
departure delays as well as the relation that exist between them. The diagram also shows
that the problems might propagate due to the relation between them, and generate new
problems on different flights. This propagation characteristic makes the problem more
difficult to be solved optimally in a real time and dynamic environment, like the one we
have on the AOCC.

1
0.1-. L FlightArrivalDelay * L] FightDepartureDelay
* 1 * 1
1.* 1.*
H EnrouteairTrafficDelay = crewDelay = CrewNoShow
* 1.*

1. 1

Enrouteweather -

= - = LoadingDelay ] airTrafficControl

£l EnroutesircraftMalfunction 1%
ElPassengerDelay  1.* |, | = AircraftMalfunction
= FlightDiversion
] weatherConditions

Fig. 3. Typical AOCC problems and relations

As we can see in Figure 3 there is an obvious relation between Flight Arrival Delays and
Flight Departure Delays. Most of the flights are performed by aircrafts that are used in
previous flights. If we have an arrival delay and the aircraft turn-around time at the airport
is not enough, then, if the AOCC does not find an alternative solution, we will also have a
departure delay. From the diagram we can also see that the main reasons for flight arrival
delay (besides the delay on departure) are: En-route air traffic, en-route weather, en-route
aircraft malfunction and flight diversion. In the previous cases and to minimize the arrival
delay it is necessary a cooperation between the pilot, the AOCC and ATC. Regarding
departure delays, the main reasons are: crew delays, cargo/baggage loading delays and
passenger delays as a consequence of an arrival delay. Crewmembers that do not report for
duty, air traffic control reasons, aircraft malfunctions and weather conditions (at departure
or at arrival) are the other main reasons for departure delays.

3.4 Current Disruption Management Process

As we can see from the previous section, there are several problems that might cause flight
delays. AOCCs have a process to monitor the events and solve the problems, so that flight
delays are minimized with the minimum impact on passenger and, preferably, with the
minimum operational cost. In Figure 4 we present the current disruption management
process in use at most of the airlines. This process has five steps:
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Operation Monitoring: In this step the flights are monitored to see if anything is not
going according the plan. The same happens in relation with crewmembers,
passenger check-in and boarding, cargo and baggage loading, etc.
Take Action: If an event happens, like for example, a crewmember is delayed or an
aircraft malfunction, a quick assessment is performed to see if an action is required.
If not, the monitoring continues. If an action is necessary than we have a problem
that needs to be solved.
Generate and Evaluate Solutions: Having all the information regarding the problem
the AOCC needs to find and evaluate the candidate solutions. Although there are
several costs involved in this process, we found that the AOCC relies heavily on
the experience of their controllers and in some rules-of-thumb (a kind of hidden
knowledge) that exist on the AOCC.
Take Decision: Having the candidate solutions a decision needs to be taken.

Apply Decision: After the decision the final solution needs to be applied in the
environment, that is, the operational plan needs to be updated accordingly.

& Disruption Management Process

& Operation Maritaring

Evert
Mg & Apply Decision
@ Take Action?

es )
& Take Deckion

@ Generate and Evaluate Solutions

Fig. 4. AOCC disruption management process

In our opinion, this process can greatly benefit from an intelligent agent based approach to
the problem, as we will explain in Section 4.

3.5 Main Costs Involved

In the step Generate and Evaluate Solutions of the disruption management process on the
previous section, we should consider the main costs involved in generating and choosing
from candidate solutions. According to our observations these are the main costs involved
when generating and evaluating a solution for a specific disruption:

1.

2.

Crew Costs: the average or real salary costs of the crewmembers, additional work
hours and perdiem days to be paid, hotel costs and extra-crew travel costs.

Flight Costs: airport costs (approach and taxing taxes, for example), service costs
(cleaning services, handling services, line maintenance, etc.), and average
maintenance costs for the type of aircraft, ATC en-route charges and fuel
consumption.
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3. Passenger Costs: passenger airport meals, passenger hotel costs and passenger
compensations.

Finally, there is a less easily quantifiable cost that is also included: the cost of delaying or
cancelling a flight from the passenger point of view. Most airlines use some kind of rule-of-
thumb when they are evaluating the impact of the decisions on passengers. Others just
assign a monetary cost to each minute of delay and evaluate the solutions taking into
consideration this value. We propose a different way of calculating this cost component.

4. A MAS for Disruption Management in Airline Operations Control

In Section 3 we introduced the Airline Scheduling Problem and the Airline Operations
Control Problem (or Disruption Management Problem). We have described the AOCC
organization and roles as well as the typical problems that appear during the execution of
the operational plan. The disruption management process used by airlines was presented as
well as the main costs involved in generating and evaluating the solutions. In this section we
present our intelligent agent based approach to solve the Disruption Management Problem
in the airline domain. The MAS was developed using Javal! and JADE (Bellifemine et al.,
2004) as the development platform and as the run-time environment that provides the basic
services for agents to execute.

4.1 Why an Agent and Multi-Agent System Paradigm?

Considering the agent and multi-agent system characteristics as specified in (Wooldridge,
2009) and (Elamy, 2005), the following ones make us adopt this paradigm to the Airline
Operations Control Problem:

e Autonomy: MAS models problems in terms of autonomous interacting component-
agents, which are a more natural way of representing task allocation, team
planning, and user preferences, among others. In Figure 5 the PaxManager,
AircraftManager and CrewManager agents (among others) are agents that can choose
to respond or not to the requests according to their own objectives.

o Agents are a Natural Metaphor: The AOCC is naturally modelled as a society of
agents cooperating with each other to solve such a complex problem.

e  Reactivity: Agents are able to perceive and react to the changes in their
environment. The Monitor agent in Figure 5 is an example of such an agent.

e Distribution of resources: With a MAS we can distribute the computational resources
and capabilities across a network of interconnected agents avoiding problems
associated with centralized systems. Airline companies of some dimension have
different operational bases. We use a MAS for each operational base, taking
advantage of this important characteristic. Due to the social awareness characteristics
of some of our agents (for example, Monitoring agent in Figure 5) they are able to
distribute their tasks among other agents with similar behaviour.

e  Modularity and Scalability: A MAS is extensible, scalable, robust, maintainable,
flexible and promotes reuse. These characteristics are very important in systems of

1 http://www java.com
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this dimension and complexity. Our MAS is able to scale in terms of supporting
more operational bases as well as in supporting different algorithms to solve
specific problems.

e Concurrency/Parallelism: Agents are capable of reasoning and performing tasks in
parallel. This provides flexibility and speeds up computation. The CrewSimAnneal,
CrewCBR and CrewHillClimb agents in Figure 5, are examples of concurrent agents.
Additionally and according to (Stone & Veloso, 2000) “if control and
responsibilities are sufficiently shared among agents, the system can tolerate
failures by one or more agents”. Our MAS can be totally or partially replicated in
different computers. If one or more agents fail, the global objective is not affected.

e Legacy Systems: The AOCC needs information that exists in obsolete but functional
systems. We can wrap the legacy components in an agent layer, enabling them to
interact with other software components.

4.2 MAS Architecture

It is important to point out that we arrived to the architecture of our multi-agent system,
after performing an analysis and design using an agent-oriented software methodology
(Castro & Oliveira, 2008). The agent model and service model were the outputs of this
process and the base for this architecture.
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------- PaxManager — -
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N = E Learning
Reg A:t Sal
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| [ aircraftManager
1 Prop Sol AC B
1 | Req Crew Sol Characterizes Problem/Solution
RFP| AG = CrewManager - -
] acTabuSearch B E acHiliclimb Inf 5ol Choosed
N Prop Sol Crew
RFP|Crew
=/ AaccBr
[ crewSimAnneal ] CrewHillClimb
= CrewCBR

Fig. 5. MAS architecture

Figure 5 shows the architecture of our multi-agent system approach. The boxes represent
agents and the narrow black dash lines represent requests/proposals made. The larger
green lines represent the interaction between agents regarding negotiation and distributed
problem-solving process. The narrow gray lines represent interaction within a hierarchy of
agents and the normal black lines represent the interactions after a solution is found. It is
important to clarify that Figure 5 represents only one instance of the MAS. We can replicate
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almost all agents with the exception of the Supervisor agent because it is the one that
interacts with the human supervisor (an application domain restriction). Each one of the
agents Monitoring, PaxManager, AircraftManager, CrewManager and Supervisor has a specific
role in the AOCC. The Monitoring agent monitors the operational plan looking for events
that may represent any of the usual three problem dimensions, that is, aircraft, crew and/or
passenger problems. In case there are other instances of this agent, they recognize and
interact with each other, splitting the monitoring task. For example, if each instance
corresponds to an operational base, each one will monitor the corresponding operation plan.
This is one example of the social-awareness characteristic of our agents. The agent is
autonomous in the sense that it will consider an event as a problem only if the event has
certain characteristics.

The PaxManager agent has the responsibility to find solutions for passenger problems. The
AircraftManager and CrewManager agents have the responsibility for finding solutions for
aircraft and crew problems, respectively. These agents are autonomous in the sense that
they can choose not to respond to the information received from the Monitor agent, i.e., if the
problem is not related with their field of expertise or if they do not have local resources to
solve that problem. These agents have similar social-awareness characteristics of the Monitor
agent. Although not yet implemented, these agents may decide to participate with their
expertise in the integrated and distributed problem solving approach of the system.

The AircraftManager and CrewManager agents manage a team of specialized agents (Castro &
Oliveira, 2007). Each team should have several specialist agents, each one implementing a
different problem solving algorithm, making them heterogeneous regarding this
characteristic. The ACTabuSearch agent, ACCBR agent and ACHillClimb agent implements
algorithms dedicated to solve aircraft problems and present the candidate solutions they
find to the AircraftManager agent. The CrewSimAnneal agent, CrewHillClimb agent and
CrewCBR agent implements algorithms dedicated to solve crew problems and present the
candidate solutions to the CrewwManager.

The agent Supervisor and agent EventType are the only ones that interact with a human user
of the AOCC. The Supervisor agent presents the solutions to the human supervisor, ranked
according to the criteria in use by the airline (more information on the next section),
including details about the solution to help the human to decide. After getting approval
from the human supervisor, the Supervisor agent requests ApplySolution agent to apply it on
the environment.

All agents are able to act and observe the environment that is represented by the Operational
and MAS database, in our diagram. The operational database includes information
regarding the flight, aircraft and crew schedule as well as airport and company specific
information. The other database is related with the learning characteristics of our system
and is used, mainly, by the Learning agent. The learning characteristics of our system are not
yet implemented. In Section 7, the interested reader can find more information about the
way we expect to apply learning in our MAS. Finally, the protocols we use are the following
FIPA compliant ones:

e Fipa-Request: This protocol allows one agent to request another to perform some
action and the receiving agent to perform the action or reply, in some way, that it
cannot perform it. Fipa-request is used in interactions between the Monitor,
PaxManager, AircraftManager and CrewManager agents.
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e Fipa-Query: This protocol allows one agent to request to perform some kind of
action on another agent. It is used in the interactions that involve PaxManager,
AircraftManager, CrewManager and Supervisor agent; Supervisor, ApplySolution and
EventType agent and, finally, EventType and Monitoring agent.

o  Fipa-Contract.net: “In the contract net protocol, one agent (the Initiator) takes the
role of manager which wishes to have some task performed by one or more other
agents (the Participants) and further wishes to optimize a function that
characterizes the task”(Fipa, 2002). We use a simplified version of this protocol in
the interactions that entail the AircraftManager and its specialized agents, i.e.,
ACTabuSearch, ACCBR and ACHilIClimb; and CrewManager and its specialized
agents, i.e., CrewSimAnneal, CrewHillClimb and CrewCBR. More information about
how we use this protocol is presented in the next section.

4.3 Decision Mechanisms

Our system uses negotiation at two levels. The first level is the Manager Agents level, i.e.,
between PaxManager, CrewManager and AircraftManager agents. At this level the agents
cooperate so that an integrated solution can be found. We define an integrated solution as
one that considers the impact on the three dimensions of the problem, that is, aircraft, crew
and passengers. As of the writing of this paper, we do not have this negotiation protocol
completely implemented. Section 7 gives a glimpse of how we are implementing it. The
second level is the Specialist Agents or Team level, i.e., between each manager agent and the
specialist agents of the team. At this level we have used a simplified fipa-contract.net (Fipa,
2002) (Smith, 1980).

EllContract.Net: Crew Team Level

L crewManager:CrewManager L crewSimAnneak CrewsSimAnned
1t ch

[timesdeaine]
1: refuse
[refuse]

[propose] 1t propose
1.1 accept-proposal

1: failure:

[faure]

[success] 1 inforrr-resait

Fig. 6. Simplified contract net protocol

Figure 6 shows the simplified contract.net protocol applied to the CrewManager team (for
simplicity only the interaction between CrewManager and one of the specialist agents is
shown). After receiving a request from the Monitoring agent and case the CrewManager agent



120 Web Intelligence and Intelligent Agents

decides to reply, a Call for Proposal (cfp) is issued to initiate the negotiation process. Table 1
shows an example of a message sent in this step.

(cfp

:sender (agent-identifier :name CrewManager@masdima:1099/JADE
:addresses (sequence http:/ /masdima:7778/acc))

receiver (set (agent-identifier :name CrewSimAnneal@masdima:1099/JADE
:addresses (sequence http:/ /masdima:7778/acc)))

:X-JADE-Encoding Base64

:content "ABXN rO0AAAA eHB4h3CAAAAAsAAAAAeHB4"

:language fipa-sl

:conversation-id cfp_crew_solution)

Table 1. CFP message sent by CrewManager agent

Please note that the content of the FIPA-ACL message is a serialized Java object (see Table
2), that contains the event description, as well as the deadline for receiving an answer
(propose or refuse) and the deadline for receiving the candidate solution (i.e. the
CrewSimAnneal agent needs to send a candidate solution before a specific period of time).

import java.io.Serializable;
import java.util. ArrayList;
import java.util. GregorianCalendar;

public class CrewProblem implements Serializable {
private ArrayList<Event> events;
private int numSeconds;
private int maxCost;
private int numMinutesTimeWindow;
private GregorianCalendar bidDeadline;
private GregorianCalendar candSolutionDeadline;
public ArrayList<Event> getEvents() {return events;}
(o)
public int getMaxCost() {return maxCost;}
public void setMaxCost(int maxCost) {this.maxCost = maxCost;}
public GregorianCalendar getBidDeadline() {return bidDeadline;}
public void setBidDeadline(GregorianCalendar bidDeadline) {this.bidDeadline = bidDeadline;}
public GregorianCalendar getCandSolutionDeadline() {return candSolutionDeadline;}
public void setCandSolutionDeadline(GregorianCalendar candSolutionDeadline) {
this.candSolutionDeadline = candSolutionDeadline;}
public CrewProblem(ArrayList<Event> events, int numSeconds, int maxCost, int numMinutesTimeWindow,
GregorianCalendar bidDeadline, GregorianCalendar candSolutionDeadline)
{
this.maxCost = maxCost;
this.events = events;
this.numSeconds = numSeconds;
this.numMinutesTimeWindow = numMinutesTimeWindow;
this.bidDeadline = bidDeadline;
this.candSolutionDeadline = candSolutionDeadline;

}

}
Table 2. Partial example of a Serialized Java object included in the CFP message

The CrewSimAnneal agent may choose to answer refuse or propose. In our approach the
CrewSimAnneal propose performative only means that it will look for a candidate solution
according to the conditions of the cfp. The CrewManager agent will automatically answer
back with an accept-proposal. Here we simplified the contract.net protocol to speed-up the
communication between our agents. In our case, the answer we get from specialist agents is
a simple yes or no, because we want all available agents (i.e., that are not busy looking for
candidate-solutions for other requests) to work in parallel to find candidate solutions.
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Because of that we do not need to choose between all the answers received. If there is a
problem during the execution of the task, the CrewSimAnneal agent issues a failure
performative stating the reasons for the failure, in the serialized Java object included in the
message content. If the agent is able to perform the task with success, it will issue an inform-
result performative (Table 3) that includes the serialized object (Table 4) with the candidate
solution.

(inform

:sender (agent-identifier :name CrewSimAnneal @masdima:1099/JADE
:addresses (sequence http:/ /masdima:7778/acc))

:receiver (set (agent-identifier :name CrewManager@masdima:1099/JADE
:addresses (sequence http:/ /masdima:7778/acc)))

:X-JADE-Encoding Base64

:content "eHB4h3CAAAAAsAAAAAeHABXNrOOAAAAB4"

:language fipa-sl

:conversation-id cfp_crew_solution)

Table 3. Example of a Failure and Inform message

import java.io.Serializable;
import java.util. ArrayList;

public class CrewSolution implements Serializable {
private int cost;
private int initialCost;
private String description;
private ArrayList<Flight> solution;

public int getCost() {return cost;}
public void setCost(int cost) {this.cost = cost;}
public int getInitialCost() {return initialCost;}
public void setInitialCost(int initialCost) {this.initialCost = initialCost;}
public String getDescription() {return description;}
public void setDescription(String description) {this.description = description;}
public ArrayList<Flight> getSolution() {return solution;}
public void setSolution(ArrayList<Flight> solution) {this.solution = solution;}
public CrewSolution(ArrayList<Flight> solution, String description, int cost, int
initialCost)
{
setCost(cost);
setInitial Cost(initial Cost);
setDescription(description);
setSolution(solution);

}

}
Table 4. Serialized Java object included in the Inform Message

At the team level, the manager agent needs to select the best solution from the candidate
solutions that were found by the specialist agents. As of the writing of this paper, we use the
Total Operational Cost as the only criteria for the selection. Other criteria, like AOCC Global
Performance, are being tested but we do not have any results at this moment.

The Total Operational Cost (tc) of a specific solution includes Direct Operational Costs (dc) and
Quality Operational Costs (qc) and is given by Equation 1.

tc =dc + Bqc BERB=0 (1)

Coefficient 3 is used to define the weight of quality costs.
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Direct Operational Costs (dc) of a specific solution are costs that are easily quantifiable and are
related with the operation of the flights, namely, Crew Costs (cc), Flight Costs (fc) and
Passenger Costs (pc). It is given by Equation 2.

dc =cc+ fc+pc (2)

The Crew Cost (cc) for a specific flight includes the salary costs of all crew members (Salary),
additional work hours to be paid (Hour), additional perdiem days to be paid (Perdiem), hotel
costs (Hotel) and extra-crew travel costs (Dhc). The Crew Cost for a specific solution is given
by Equation 3.

IFl |c| 3)
cc = z Z(.S‘alary{i,j} + Houry; j + Perdiemy; j, + Hotely; iy + Dhey; jy)
i=1j=1
where
i € F;F = {all flights in solution}
j € C;C = {all crewmembers in flight}

The Flight Cost (fc) for a specific flight includes the airport costs (Airp), i.e., charges applied
by the airport operator like approaching and taxing; service costs (Service), i.e., flight
dispatch, line maintenance, cleaning services and other costs; average maintenance costs for
the type of aircraft that performs the flight (Maint); ATC en-route charges (Afc); and fuel
consumption (Fuel), i.e., fuel to go from the origin to the destination (trip fuel) plus any
additional extra fuel required. The Flight Cost for a specific solution is given by Equation 4.

IF| (4)
fc= Z(Airpi + Service; +Maint; + Atc; + Fuel;)

i=1
where
i € F; F = {all flights in solution}

The Passenger Cost (pc) of the delayed passengers for a specific flight includes airport meals
the airline has to support when a flight is delayed or cancelled (Meals), hotels costs (PHotel)
and any compensation to the passengers according to regulations (Comp). The Passenger Cost
of the delayed passengers for a specific solution is given by Equation 5.

|F| |D| ()
pc= z Z(Meals{d'i} + PHotelyy y + Comp{d'i})

i=1d=1
where
i € F; F = {all flights in solution}
d € D; D = {all delayed passengers in flight}

Quality Operational Costs (qc) of a specific solution are costs that are not easily quantifiable
and are related with passenger satisfaction. The quantification of this value is very
important to increase the quality level of an airline company when facing a disruption.
Equation 6 presents a generic expression that calculates this value according to (Castro &
Oliveira, 2009).



Disruption Management in Airline Operations Control — An Intelligent Agent-Based Approach 123

IF| 1PP| ©6)

gc = az Z(P{p.i} *Cipy)

i=1p=1
where
i € F;F = {all flights in solution}
p € PP; PP = {flight passengers profiles}
P = number of passengers of profilep
C = delay cost of each passenger on profilep
a = coef ficient to convert to monetary costs

Now that we know the main costs involved, it is time to understand how each manager
agent selects the best (or the best x candidate solutions). Once the participant agent has
completed the task (for example, agent CrewHillClimb in Figure 5), it sends a completion
message to the initiator (agent CrewManager in Figure 5) in the form of an inform-result
performative (Table 3), with the details of the candidate solution (Table 4) including the Total
Operational Cost. The manager agent sorts, in ascending order, all candidate solutions
received by total operational cost. The top three solutions are selected (Castro & Oliveira,
2007).

4.4 Problem Solving Algorithms

As it is possible to see in Figure 5 (Section 4.2), the aircraft and crew dimension have, each
one, a team of specialist agents. Each agent should implement a heterogeneous problem
solving algorithm on the team they belong to. Preliminary results show that a single
problem solving algorithm is not able to solve, dynamically and within the required time
restriction, all types of problems that we have identified during our observations (see
Section 3.3). Taking advantage of the modularity, scalability and distributed characteristics
of the MAS paradigm, we are able to add as many specialist agents as required, so that all
types of problems are covered. As we have seen in Section 4.2 and 4.3, the idea is to have all
specialist agents of a team looking for solutions concurrently.

In this section we are going to show how we have implemented one of the specialist agents
of the crew team, namely, CrewHillClimb. This agent implements a hill climb algorithm. For
more details regarding how we have implemented this and other specialist agents, please
read (Mota, 2007).

The hill climbing agent solves the problem iteratively by following the steps:

1. Obtains the flights that are in the time window of the problem. This time window
starts at the flight date, and ends at a customizable period in the future. This will be
the initial solution of the problem. The crew members’ exchanges are made
between flights that are inside the time window of the problem.

2. While some specific and customizable time has not yet passed, or a solution below
a specific and customizable cost has not been found, repeats steps 3 and 4.

3. Generates the successor of the initial solution (the way a successor is generated is
described below).

4. Evaluates the cost of the solution. If it is smaller than the cost of the current
solution, accepts the generated solution as the new current solution. Otherwise,
discards the generated solution. The way a solution is evaluated is described
below.
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5. Send the current solution to the CrewManager agent following the protocol as we
have seen in Section 4.3.

The generation of a new solution is made by finding a successor that distances itself to the
current solution by one unit, that is, the successor is obtained by one, and only one, of the
following operations:

* Swap two crewmembers between flights that belong to the flights that are in the
time window of the problem.

* Swap a crewmember of a flight that belongs to the flights that are in the time
window of the problem with a crewmember that isn’t on duty, but is on standby.

When choosing the first element to swap, there are two possibilities: (1) choose randomly or
(2) choose an element that is delayed. The choice is made based on the probability of
choosing an element that is late, which was given a value of 0.9, so that the algorithms can
proceed faster to good solutions (exchanges are highly penalized, so choosing an element
that is not late probably won’t reduce the cost, as a possible saving by choosing a less costly
element probably won’t compensate the penalization associated with the exchange).

If the decision is to exchange an element that is delayed, the list of flights will be examined
and the first delayed element is chosen. If the decision is to choose randomly, then a random
flight is picked, and a crewmember or the aircraft is chosen, depending on the probability of
choosing a crewmember, which was given a value of 0.85. When choosing the second
element that is going to swap with the first, there are two possibilities: (1) swap between
elements of flights or (2) swap between an element of a flight and an element that is not on
duty. The choice is made based on the probability of choosing a swap between elements of
flights, which was given a value of 0.5.

The evaluation of the solution is done by an objective function that measures the following
types of costs:

e The crew cost according to Equation 3;

e The penalization for exchanging elements;

e The penalization for delayed elements. The cost associated with this aspect is the
highest, because the goal is to have no delayed elements.

The Hill Climbing Objective Function (hc) is given by Equation 7.

he = cc + excW «nExc + delayW = nDelay )
where

cc = crew cost according to equation 3

excW = penalization for crew exchanges

nExc = the number of crew exchanges

delayW = penalization for delaying crewmembers

nDelay = the number of delayed crewmembers

Table 5 shows the implementation of the hill climbing algorithm in Java.
GregorianCalendar currentDate = new GregorianCalendar();

int secondsExecution = (int) ((currentDate.getTimeInMillis() - startDateResolution.getTimeInMillis()) / 1000);
while(!Shared.to(problem.getNumSeconds(), secondsExecution, problem.getMaxCost(), currentSolutionCost))

{

// get successor
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successor = Shared.generateSuccessor(Shared.copy ArrayList(currentSolution));
// checks if successor has an inferior solution cost
successorCost = Shared.calculateCost(successor, initialPlainSolution);
System.out.printIn("Successor Cost: " + successorCost + "\n");
if(sucessorCost < currentSolutionCost)
{
currentSolution = successor;
currentSolutionCost = successorCost;
}
currentDate = new GregorianCalendar();
secondsExecution = (int) ((currentDate.getTimeInMillis() - startDateResolution.getTimeInMillis()) / 1000);
}

Table 5. Implementation of the Hill-Climbing algorithm in Java

5. Experimental Setup

To evaluate our approach we have setup a scenario that includes 3 operational bases (A, B
and C). Each base includes their crewmembers each one with a specific roster. The data used
corresponds to a real airline operation of June 2006 of base A. We have simulated a situation
where 15 crewmembers, with different ranks, did not report for duty in base A. A
description of the information collected for each event is presented in Table 6.

Attribute Description

Event ID A number that represents the ID of the event. For tracking purposes only

Duty Date Time The start date and time of the duty in UTC for which the crew did not report.
Duty ID A string that represents the ID of the duty for which the crew did not report.

Flt Dly Flight delay in minutes

C Pax Number of passengers in business class

Y Pax Number of passengers in economy class

End Date Time The end date and time of the duty in UTC for which the crew did not report.
Ready Date Time The date and time at which the crew member is ready for another duty after this one.
Delay The delay of the crewmember. We have considered 10 minutes in our scenario.
Credit Minutes The minutes of this duty that will count for payroll.

Crew Group The crew group (Technical = 1; Cabin = 2) that the crewmember belongs to.

Crew Rank CPT = Captain; OPT = First Officer; CCB = Chief Purser; CAB = Purser.

Crew Number The employee number.

Crew Name The employee name.

Base ID The base where the event happened. We considered all events in base A.

Open Positions The number of missing crews for this duty and rank. We used a fixed number of 1.

Table 6. Description of the information collected for each event

The events did not happen at the same day and each one corresponds to a crewmember that
did not report for a specific duty in a specific day. Table 7 shows the data for each of the
events created. As you can see we have omitted the information regarding Delay, Base ID
and Open Positions because we have used fixed values as indicated in Table 6. For example,
the event 10 corresponds to the following situation: Crew Peter B, with number 32 and rank
CPT (captain) belonging to the crew group 1 (technical crew), did not report for the duty
with ID 1ZRH12X with briefing time (duty date time) at 15:25 in 15-06-2006. This flight did
not delay on departure and has 5 passengers in business class and 115 in economy class. The
event was created after a 10 minutes delay of the crewmember in reporting for duty and
happened at base A. It is necessary to find another crewmember to be assigned to this duty.
The duty ends at 09:30 on 17-06-2006 and the crewmember assigned to this duty will be
ready for another one at 21:30 in 17-06-2006. The duty will contribute with 1318 minutes
(21h58) for the payroll. The new crewmember must belong to the same rank and group.
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After setting-up the scenario we found the solutions for each crew event using three

methods.
Duty DutyID Flt C Y End Ready Cred | Crew Rnk | Crw | Crew
DateTime Dly | Pax Pax DateTime DateTime Min | Grp Nr Name
1| 05-0607:25 | TORY149S 0 7 123 | 05-06 13:35 06-06 01:35 370 2 CAB [ 80 [JohnA
2 | 05-0607:25 | TORY149S 10 11 114 | 05-06 13:35 06-06 01:35 370 2 CAB | 45 | Mary A
3 | 05-0607:25 | TORY85P 0 10 112 | 05-06 13:35 06-06 01:35 370 1 CPT 35 | Anthony
4| 15-0604:10 | 2LIS24X 30 0 90 | 16-0616:15 17-06 04:15 1757 2 CAB [ 99 [PaulM
5| 15-0604:10 | 3LIS25X 25 3 77 | 15-06 09:20 15-06 21:20 632 2 CAB [ 56 [JohnB
6 | 15-0612:50 | 2LHR63P 5 25 85 | 16-06 20:45 17-06 08:45 1549 1 CPT 57 | PaulS
7 | 15-0612:50 | 2LHR63P 0 20 95 | 16-06 20:45 17-06 08:45 1549 1 OPT 53 | Mary S
8 | 15-0614:15 | 1TLHR31P 0 23 52 | 15-06 20:55 16-06 08:55 843 2 CCB 23 | Sophie
9 | 15-0615:25 | 2LHR19P 10 27 105 | 16-06 20:45 17-06 08:45 1341 2 CCB 34 | Angel
10 | 15-0615:25 | 1ZRH12X 0 5 115 | 17-06 09:30 17-06 21:30 1318 1 CPT 32 | Peter B
11 | 25-06 05:20 | 1LIS16S 20 3 97 | 25-06 15:05 26-06 03:05 585 2 CAB 20 | Paul G
12 | 25-06 05:20 | 1LIS16S 5 2 108 | 25-06 15:05 26-06 03:05 585 2 CAB 10 | Alice
13 | 25-06 05:20 [ 1LIS158T 0 4 92 | 25-0615:05 26-06 03:05 585 2 CAB | 15 | Daniel
14 | 25-0606:15 | 3LIS174S 0 1 129 | 27-06 16:15 28-06 04:15 1258 2 CAB | 71 [ George
15 | 25-0614:20 | 4LIS50A 0 2 83 | 28-0619:40 29-06 07:40 219 1 OPT 65 | Allan

Table 7. Events data used for testing

In the first method we used one of the best users from the AOCC, with current tools
available, to find the solutions. The user uses software that shows the roster of each
crewmember in a Gantt chart for a specific period. The user can scroll down the information,
filter according to the crew rank and base, and sort the information by name, month duty,
etc. Each user has a specific way of trying to find the solutions. However, we have observed
that, in general, they follow these steps:

1.

6.

Open the roster for a one month period, starting two days before the current day.
For example, let’s suppose that the current day is 7th of June of 2006, they open the
roster from the 5th of June until the 4th of July.
Filter the roster by crew rank and base, where the base is equal to the base where
the crew event happened and crew rank is equal to the crewmember rank that did
not report for duty.
Order the information by month duty, in an ascendant order and by seniority in a
descendent order.
Visually, they scroll down the information until they found a crewmember with an
open space for the period of time that corresponds to the duty to be assigned. This
period of time takes into consideration the start and end time of the duty and also
the time required for resting (ready date time).
If they do not found a crewmember in the base specified, they try to find it in
another base, filtering the information accordingly.

They assign the duty to the crewmember with less credit hours.

The data collected using this method is presented in Table 8. We point out that the data in
columns marked with an asterisk where calculated manually, according to the equations
presented in chapter 4.3. The reason for this is that the information system that is available
for the users does not include information related with any kind of costs.

Duty ID | Base | Crew | Rank | Hour Pay (*) Perdiem Quality Op. Cost
1D Grp Pay (*) Op. Cost (*)

10RY149S A 2 CAB 0,00 72,00 0 72,00
10RY149S B 2 CAB 0,00 72,00 0 86,40

[

N
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3 | IORY85P A 1 CPT 942,90 106,00 0 1048,90
4 | 2LIS24X A 2 CAB 939,00 144,00 0 1083,00
5 | 3LIS25X B 2 CAB 0,00 72,00 0 86,40
6 | 2LHR63P B 1 CPT 777,00 212,00 0 1186,80
7 | 2LHR63P B 1 OorT 0,00 148,00 0 177,60
8 | ILHR31P A 2 CCB 687,65 72,00 0 759,65
9 [ 2LHR19P B 2 CCB 0,00 144,00 0 172,80
10 [ 1ZRH12X C 1 CPT 0,00 212,00 0 296,80
11 [ 1LIS16S A 2 CAB 0,00 72,00 0 72,00
12 [ 1LIS16S C 2 CAB 0,00 72,00 0 100,80
13 [ 1LIS158T B 2 CAB 0,00 72,00 0 86,40
14 | 3LIS174S A 2 CAB 1051,60 216,00 0 1267,60
15 | 4LIS50A A 1 OPT 246,40 296,00 0 542,40
Totals 4644,55 1982,00 0 7039,55

Table 8. Data collected (partial) after using method 1 (human user)

In the second method we have used our approach as indicated in Section 4 but with f=0 in
Equation 1 (Total Operational Cost), i.e., although we calculate the Quality Operational Cost as
indicated in Equation 6 we did not considered this value in resolution as well as in the
decision process. The data collected is presented in Table 9.

Duty ID | Base | Crew Rank Hour Pay Perdiem Quality Direct Op.
ID Grp Pay Op. Cost Cost

1 | 10RY149S A 2 CAB 0,00 72,00 0 72,00
2 | 10RY149S B 2 CAB 0,00 72,00 501,31 86,40
3 | 10RY85P B 1 CPT 0,00 106,00 0 127,20
4 | 2LIS24X C 2 CAB 563,40 62,00 1561,76 875,56
5 | 3LIS25X B 2 CAB 0,00 72,00 1877,73 86,40
6 | 2LHR63P C 1 CPT 0,00 212,00 658 296,80
7 | 2LHR63P A 1 OPT 0,00 144,00 687,62 144,00
8 | 1LHR31P B 2 CCB 229,17 72,00 0 361,40
9 | 2LHR19P B 2 CCB 0,00 144,00 788,78 172,80
10 | 1ZRH12X C 1 CPT 0,00 212,00 0 296,80
11 [ 1LIS16S A 2 CAB 0,00 72,00 961,95 72,00
12 | 1LIS16S C 2 CAB 0,00 72,00 301,48 100,80
13 | 1LIS158T B 2 CAB 0,00 72,00 0 86,40
14 | 3LIS174S C 2 CAB 411,00 93,00 0 705,60
15 | 4LIS50A B 1 OPT 0,00 296,00 449,84 355,20
Totals 120357 | 1773,00 7788,47 3839,36

Table 9. Data collected (partial) after using method 2 (No Quality Costs)

In the third method we have used our approach as indicated in Section 4 but with p=1 in
Equation 1, i.e., considering the Quality Operational Cost in the resolution as well as in the
decision process. The Quality Operational Cost was calculated using two passenger profiles
(business and economy classes) and with a=0,1. Equation 9 and Equation 10 are the
formulas used to calculate the delay cost of each passenger in business and economy profile,
respectively. For more information about how we reached these equations, please read
(Castro & Oliveira, 2009).

Chusiness = 0.16 * x2 + 1.38 * x x = minutes of flight delay, x >=0 )

Ceconomy = 1.20 * x x = minutes of flight delay, x >=0 (10)
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The data collected is presented in Table 10.

Duty ID | Base Crew Rank Hour Pay Perdiem Quality Direct Op.
ID Grp Pay Op. Cost Cost

1 | 10RY149S A 2 CAB 0,00 72,00 0 72,00
2 | 10RY149S B 2 CAB 0,00 72,00 501,31 86,40
3 | 1ORY85P B 1 CPT 0,00 106,00 0 127,20
4 | 2LIS24X C 2 CAB 503,50 144,00 1060,92 906,50
5 | 3LIS25X C 2 CAB 0,00 72,00 1420,78 100,80
6 | 2LHR63P B 1 CPT 102,90 212,00 272,10 377,88
7 | 2LHR63P B 1 OPT 37,22 144,00 0 217,46
8 | 1ILHR31P B 2 CCB 229,17 72,00 0 361,40
9 | 2LHR19P B 2 CCB 0,00 144,00 788,78 172,80
10 [ 1ZRH12X C 1 CPT 0,00 212,00 0 296,80
11 [ 1LIS16S A 2 CAB 0,00 80,00 593,30 80,00
12 [ 1LIS16S C 2 CAB 0,00 80,00 144,34 112,00
13 | 1LIS158T B 2 CAB 0,00 72,00 0 86,40
14 | 3LIS174S C 2 CAB 411,00 93,00 0 705,60
15 | 4LIS50A A 1 OPT 138,83 288,00 0 426,83
Totals 1422,62 1863,00 4781,53 4130,07

Table 10. Data collected (partial) after using method 3 (Quality Costs)

6. Results and Discussion

Table 11 shows a comparison of the results obtained through the above methods. We point
out that in method 1 (human) we did not calculate the quality costs, and in method 2 (agent-
no-quality) we did calculate the quality costs but they were not used to find the best solution,
although we use that value for comparison purposes. From the results obtained we can see
that on average, method 3 (agent-quality) produced solutions that decreased flight delays in
aprox. 36%. Agent-quality is, on average 3% slower than agent-no-quality in finding a solution
and produces solutions that represent a decrease of 23% on the total operational costs, when
compared with agent-no-quality.

From the results (Table 11) we can see that our approach obtains valid solutions faster and
with fewer direct operational costs when compared with the current method used in a real
airline company (human). Agent-no-quality represents a decrease of aprox. 45,5% and agent-
quality a decrease of aprox. 41%. Agent-quality has a higher direct operational cost than agent-
no-quality because it uses the quality operational cost in the decision process. If we read this
number without any other consideration, we have to say that the goal of having less direct
operational costs was not achieved. An 8% increased on direct operational costs can
represent a lot of money. However, we should read this number together with the flight
delay figure. As we can see, although agent-quality has increased the direct operational costs
(when compared with agent-no-quality) in 8% it was able to choose solutions that decrease, in
average, 36% of the flight delays. This means that, when there are multiple solutions to the
same problem, agent-quality is able to choose the one with less operational cost, less quality
costs (hence, better passenger satisfaction) and, because of the relation between quality costs
and flight delays, the solution that produces shorter flight delays.

Human (M1) Agent-no-Quality (M2) | Agent-Quality (M3)
Total % Total % Total %

Base of the solution:
- From the crew event base (A) 7 47% 3 20%
- From base B 6 40% 7 47%

@

20%
47%

~
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- From base C 2 13% 5 33% 5 33%
Time to Find Solution (avr sec) 101 100,00% 25 24,75% 26 | 25,74%
Flight Delays (avr min): 11 100,00% 7 | 63,64%
- Base A (avr) 14 40% 7 30%
- Base B (avr) 9 26% 4 17%
- Base C (avr) 12 34% 12 52%
Total Direct Operational Costs: 7039,60 | 100,00% 3839,36 54,54% 4130,07 | 58,67%
Total by Base:

- Base A 4845,55 92,42% 288,00 11,23% 578,83 | 14,02%
- Base B 1796,40 | 34,26% 1275,80 49,77% 1429,54 | 34,61%
- Base C 397,60 7,58% 2275,56 88,77% 2121,70 | 51,37%
Total Quality Operational Cost: 7788,47 100% 4781,53 | 61,39%
Total by Base:

- Base A 1649,57 21,18% 593,30 | 12,41%
- Base B 3617,66 46,45% 1562,19 | 32,67%
- Base C 2521,24 32,37% 2626,04 | 54,92%
Total Operational Costs: 11628,01 165% 8911,60 | 126,6%
Total by Base:

- Base A 1937,57 16,66% 1172,13 | 13,15%
- Base B 4088,42 35,16% 2991,73 | 33,57%
- Base C 4796,80 41,25% 4747,74 | 53,28%

Table 11. Summary of the results obtained by each method

From this conclusion, one can argue that if we just include the direct operational costs and
the expected flight delay, minimizing both values, the same results could be achieved
having all passengers happy. In general, this assumption might be true. However, when we
have to choose between two solutions with the same direct operational cost and delay time,
which one should we choose? In our opinion, the answer depends on the profile of the
passengers of each flight and on the importance they give to the delays (quality operational
cost), and not only in minimizing the flight delays and direct operational cost. Agent-quality
takes into consideration this important information when making decisions. This is the
reason why we think that one of the main contributions of our work is the generic approach
to quantify the passenger satisfaction regarding delaying a flight, from the passenger point
of view. It is fair to say that we cannot conclude that our MAS will always have this
behaviour. For that we need to evaluate a higher number of scenarios, at different times of
the year (we might have seasonal behaviours) and, then, find an average value.
Additionally, we found that the cooperation between different operational bases has
increased with our approach, because we evaluate all the solutions found (including the
ones from different operational bases where the event happened) and we select the one with
less cost. In human, they choose the first one they find with less credit hours, usually from
the same base where the event was triggered. This cooperation is also possible to be inferred
from the costs by base. In Table 11 is possible to see that the direct operational costs of base
C using human represents only 7,58% of the costs of all bases, whilst in agent-no-quality and
agent-quality it represents 88,77% and 51,73%, respectively. The same is possible to be
inferred from the other bases (although with different figures). This means that our MAS
uses more resources from other bases than the base where the problem happened (base A).
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7. Conclusion and Future Works

In this chapter we have introduced the Airline Operations Control Problem as well as the
Airline Operations Control Centre (AOCC), including typical organizations and problems,
the current disruption management (DM) process and a description of the main costs
involved. We described our agent-based approach to this problem, including the reasons
that make us adopt an agent and multi-agent system (MAS) paradigm; the MAS architecture
with agents, roles and protocols as well as some agent characteristics like autonomy and
social-awareness; the decision mechanisms, including the costs criteria and negotiation
protocols used and examples of the problem solving algorithms. Using data from a real
airline company, we tested our approach and discussed the results obtained by three
different methods. We have shown that our approach is able to select solutions that
contribute to a better passenger satisfaction and that produce shorter flight delays when
compared with methods that only minimize direct operational costs.

We are working on several improvements. Some of them are already implemented.
However, we did not perform, yet, enough tests to have meaningful results. These are our
goals:

- Improve autonomy and learning characteristics of the Monitor agent, so that he is
able to consider new events (or change existing ones) according to the experience
he gets from monitoring the operation, without relying exclusively on the
definition of events created by the human operator.

- Working on a protocol at the Manager Agent team level that allows a better
coordination and improves the distributed problem solving characteristics of our
approach. For example, including in each team, knowledge provided by other
teams to improve the objective function of each specialist agent, with parameters of
the other dimensions (aircraft, crew and passenger).

- Solving problems learning by example, applying Case-Based Reasoning (CBR).

- Increase robustness of future schedules by applying the knowledge gathered from
learning by example.

- Study the behaviour and compare the results, of several problem solving
algorithms, including the ones that implement heuristics to specific problems. The
idea is to classify the algorithms according to their success rate in solving specific
types of problems in this domain.
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