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a b s t r a c t

In order to better understand the three-dimensional non-Newtonian flow in an 180� curved duct of
square cross-section, simulations were carried out considering an incompressible viscoelastic fluid,
which follows the non-linear FENE-CR model, having constant shear viscosity. A fully implicit finite-vol-
ume method was used for the solution of the governing equations. Numerical simulations were per-
formed for different Reynolds and Weissenberg numbers, and by varying the model parameters,
namely the retardation ratio (b) and the extensibility (L2). The aim was to analyse the development
and distribution of velocity field in the cross-sections along the curved channel and as a consequence
to understand the variation of maximum velocity with these parameters. The results reveal complex
changes with increasing extensibility and decreasing retardation parameter, which are associated to tran-
sition from one to two pairs of vortices in the secondary flow. Comparison with the literature confirms
and reveals that the absence of shear-thinning delays this transition.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The flow of Newtonian and non-Newtonian fluids in curved
ducts has important applications in many industries and in medi-
cine [1,2]. Despite the fact that there are many studies published
on this topic, the mechanism for the onset and development of sec-
ondary flows in curved ducts is far from completely understood,
especially when the fluids are viscoelastic [1,2]. The interest on
flows in curved channels comes from the centrifugal induced sec-
ondary flows, first reported by Eustice in 1911 [3] and later theo-
retically analysed by Dean [4], whose name became associated
with curvature effects. The effects of secondary flow can be bene-
ficial, as in the improvement of heat and mass transfer or in the in-
crease of cross-section mixing and residence time of fluid particles,
among others [1,2], or inconvenient for the same purpose since the
flow tends to be more stable in what regards transition to turbu-
lence in comparison to the flow in a straight duct [1,5].

The secondary flow in curved ducts is induced by imbalanced
forces associated with centrifugal effects that create a radial pres-
sure gradient leading to flow from the inner wall to the outer wall
regions through the central part of the channel cross-section and
balanced by a return flow from the outer wall to the inner wall
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along the top and bottom channel walls. In the laminar regime
the secondary flow in a curved channel with square cross-section
is characterised by a pair of symmetrical vortices that occupy the
entire cross-section of the channel. The magnitude of this second-
ary flow is characterised by the Dean number (Dn) which is gener-
ally defined as the ratio of inertial or centrifugal forces to viscous
forces, and given by an expression of the type [6]:

Dn ¼ Reffiffiffiffiffi
Rc
p ð1Þ

where Re is the Reynolds number, Rc is the dimensionless curvature
ratio (here Rc = Rm/a, and Rm is the actual mean radius of curvature
and a is the side of the square cross-section of the channel). How-
ever, in some conditions (e.g. higher Reynolds number) the second-
ary flow becomes more complex, with the appearance of an
additional pair of counter rotating vortices near the outer wall
and possible flow unsteadiness. For Newtonian fluids the transition
from one to two pairs of vortices is described with some detail by
Bara et al. [6].

The same type of phenomenon was already observed for non-
Newtonian viscoelastic fluids although in this case as a conse-
quence of more complex and less understood effects. Fellouah
et al. [7] numerically and experimentally studied Dean instabilities
using power-law and Bingham fluids in a curved duct of rectangu-
lar cross-section. Independently, Iemoto et al. [8] and Das [9] ver-
ified that the secondary flow of a purely viscous fluid (following a
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Table 1
Reynolds and Dean number equivalents for the geometry considered.

ffiffiffiffiffiffiffiffiffiffiffiffi
Rm=a

p
¼

ffiffiffiffiffiffiffiffiffiffi
15:1
p

Re 486 532 583
Dn 125 137 150

Table 2
Mesh characteristics.

NX � NY � NZ fX fY fZ NCV

MESH 1 Block I 30 � 20 � 20 0.95212 1.00000 1.00000 88400
Block II 161 � 20 � 20 1.00000 1.00000 1.00000
Block III 30 � 20 � 20 1.05029 1.00000 1.00000

MESH 2 Block I 30 � 20 � 20 0.91772 1.00000 1.00000 152400
Block II 321 � 20 � 20 1.00000 1.00000 1.00000
Block III 30 � 20 � 20 1.08965 1.00000 1.00000

MESH 3 Block I 30 � 30 � 30 0.95118 1.00000 1.00000 198900
Block II 161 � 30 � 30 1.00000 1.00000 1.00000
Block III 30 � 30 � 30 1.05133 1.00000 1.00000
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power law [8] and a Bingham [9] model) is weaker than that of a
viscoelastic fluid (considering a White–Metzner model), in a
curved pipe. From a similarity solution for an Oldroyd-B fluid flow-
ing in the region between two circular concentric cylinders of large
radius, with radial injection of fluid at the outer cylinder wall,
Phan-Thien and Zheng [10] found that the flow kinematics was
very close to that for a Newtonian fluid under the same conditions.
In this problem, secondary flows were absent. More relevant to the
present work, in a series of studies of flows in annular spaces with
rectangular cross-section, Joo and Shaqfeh [11–13] reported a
purely elastic flow instability, which had not been studied before
and was found to be stationary in pressure driven Dean flow of
an Oldroyd-B fluid. In addition, they showed that this so-called
purely elastic Dean flow is destabilized by inertia. For the same
fluid model, Sarin [14] studied the effects of Deborah number on
the position of the maximum axial velocity and of the centre of
vortices, and verified an increase in the magnitude of secondary
flows, in curved pipe. The effects of rotation about z-axis (normal
to the flow direction axis) on secondary flow intensity, axial veloc-
ity and axial normal stress were investigated by Zahng et al. [15]
for an Oldroyd-B fluid flow in a curved duct of square cross-section.
They concluded that all the parameters they focused in are affected
by rotation, generating multiple pairs of vortices. Recently, Norouzi
et al. [16] focused on the effects of centrifugal force due to the cur-
vature of the rectangular cross-section duct and the opposite ef-
fects of the first and second normal stress differences on the flow
field, considering a second-order fluid. Their numerical results
showed that while the first normal stress difference favours the
transition from one to two pairs of vortices, the second normal
stress difference has the opposite effect. Also considering a sec-
ond-order fluid, but flowing in a curved pipe, Sharma and Prakash
[17] established that the first normal stress difference intensifies
the secondary flow. Also for a curved pipe, Fan et al. [18] subse-
quently confirmed the finding for the Oldroyd-3-constant fluid
model (which includes the Upper–Convective–Maxwell and Old-
royd-B models) and showed that the negative second normal stress
Fig. 1. Geometry of th
difference has the opposite effect, i.e., it decreases the intensity of
the secondary flow. Helin et al. [19] presented results on the devel-
opment of the flow in a curved duct with square cross-section con-
sidering two viscoelastic fluids, namely the Oldroyd-B model and a
modified version of the Phan–Thien–Tanner (PTT) model. For the
former, the magnitude and intensity of the secondary vortices in-
crease with elasticity, and for the later the onset of the second pair
of vortices in the secondary flow takes place at lower Reynolds
numbers as Deborah number increases. The later result was also
numerically verified by Boutabaa et al. [20], considering the same
geometry.

The present work is driven by the need to better understand vis-
coelastic fluid flow in curved ducts under inertial conditions and in
particular the changes in the flow characteristics due to the pres-
ence of fluid elasticity. More precisely, the aim is to analyse the
e curved channel.



0 0.5 1

1-Y

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1
U

MESH 3
MESH 2
MESH 1

0°
30°

150°

Fig. 2. Mesh refinement comparison for Re = 583, Wi = 0.5, L2 = 100 and b = 0.5.
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effects of the extensibility (L2) and the retardation (b) parameters of
the constant-viscosity viscoelastic fluid on the development of axial
velocity distribution across the section and along the curve, consid-
ering the three-dimensional curved channel represented in Fig. 1.
The geometry consists of an 180� curved duct, with internal radius
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Fig. 3. Comparison with the results of Bara et al. [6] (symbols) for the development of vel
(c) Re = 583 (Dn = 150).
R1 = 14.6a and external radius R2 = 15.6a, therefore defining a mean
radius of curvature of Rm ¼ 1

2 ðR1 þ R2Þ ¼ 15:1a, coupled to two
straight ducts, one at the entrance and the other at the exit, both
with lengths Le = 20a. All ducts have a square cross-section of width
a = 1. The geometry is the same as those of other authors [6,7,21].

2. Governing equations and non-dimensional parameters

In this work, the flow is assumed to be three-dimensional, iso-
thermal, laminar and steady. The fluids are incompressible and are
either Newtonian or follow the rheological FENE-CR model (Finitely
Extensible Non-linear Elastic formulated by Chilcott–Rallison [22]).
The governing equations are the mass conservation and momen-
tum equations:

ru ¼ 0 ð2Þ

q
@u
@t
þ qu � ru ¼ �rpþr � stot ð3Þ

where u is the velocity vector, r the gradient operator, q the fluid
density, t the time, p the pressure and stot the extra stress tensor.
The extra stress tensor is defined as stot = ss + s, where ss is the con-
tribution of the solvent, which follows the Newtonian constitutive
equation with viscosity gs, and s is the contribution of the polymer
molecules defined by the FENE-CR [22] model:
120 140 160 180 200

120 140 160 180 200

120 140 160 180 200

ocity profiles along the curved duct: (a) Re = 486 (Dn = 125); (b) Re = 532 (Dn = 137);
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sþ k
r

f ðsÞ s

0
@

1
A ¼ 2gpD ð4Þ

In this equation, the rate of strain tensor is D = 1/2(ru +ruT),
gp is the polymer viscosity parameter and k is the constant zero-
shear rate relaxation time.

The FENE-CR [22] model results from an empirical modification
of the original FENE model [23], which is based on the kinetic the-
ory of polymer molecules with finitely and non-linear elastic
extension, in order to describe a constant shear viscosity elastic
fluid (a Boger fluid having viscosity g = gs + gp). Therefore, this
model allows the study of elastic effects without the influence of
shear-thinning in shear viscosity [24]. Nevertheless, the FENE-CR
model exhibits shear-thinning in the first-normal stress difference
coefficient (W1), controlled by the extensibility function f(s), which
is given by:

f ðsÞ ¼
L2 þ k

gp

� �
trðsÞ

L2 � 3
ð5Þ

In the model, the maximum molecular stretch is measured by
the so-called extensibility parameter L2, defining the size of the
fully-extended dumbbell representing the polymer molecules in
relation to its equilibrium size.

For the flow of a fluid having viscosity g in a curved duct of
square cross-section with side a and mean averaged velocity Um

(Um = Q/a2, where Q is the flow rate), the relevant dimensionless
parameters are the Reynolds number:

Re ¼ qUma
g

ð6Þ
Fig. 4. Representation of the planes of data extraction: (a) at the cr
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Fig. 5. Fully developed flow at the entrance to the curve: (a) velocity profiles
representing the ratio of inertial to viscous forces, the Dean number
defined in Eq. (1), which is a modification of the Reynolds number
by the path curvature (Table 1 shows the equivalents for the geom-
etry considered), and the Weissenberg number:

Wi ¼ _ck ðwith characteristic shear rateð _c ¼ Um=aÞÞ ð7Þ

which measures the influence of the ratio of the elastic normal
forces to the polymeric contribution to the viscous shear forces.
Although FENE models do not allow a clear separation of the effects
of elasticity related to extensional influence (measured by L2) and
the effects of elasticity related to shear-induced normal-stress dif-
ferences (measured by b and Wi) these latter two parameters may
be combined. Hence, in addition to Wi we have also used a modified
Weissenberg number defined as Wimod = (1 � b)Wi which relates
the standard Weissenberg number Wi (Eq. (7)) with the retardation
parameter b, in order to make implicit the elastic influence of b. The
retardation parameter expresses the relation between the retarda-
tion time (kr) and the relaxation time (k), and is defined by:
b ¼ kr=k.
3. Numerical method

The set of governing Eqs. (2)–(4) was solved numerically by a
finite-volume method [25], which has already been described in
a number of previous studies [25–27] so the present explanation
can be kept concise. The scheme is fully implicit and it is formu-
lated on a general non-orthogonal coordinate system and a collo-
cated mesh arrangement. This method guarantees that mass is
conserved and momentum is balanced consistently with other
forces, over each individual control volume and over the whole
oss-section and (b) at different angular positions in the curve.
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extracted from the cross-section; and (b) 2D axial velocity distribution.
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Fig. 6. Variation of axial velocity U with Wi along the curve. Velocity profiles extracted at the middle plane Z = 0.5, for Re = 532, L2 = 100 and b = 0.5.
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domain, with all variables (velocities, pressure and stresses) calcu-
lated at the centre of the control-volumes, which are organised to
form a structured computational mesh. The discretization of the
governing equations is of second-order. The CUBISTA scheme
[26] was applied to approximate the advective terms, the central
differences method was applied to the diffusive and source terms,
and the three-time level method, explained by Oliveira [27] in the
context of viscoelastic simulations, was applied to the unsteady
terms (a steady flow solution is not assumed a priori and the final
flow may be unsteady). The solution algorithm ensures the cou-
pling of the velocity and pressure fields through an iterative pro-
cess of correcting pressure and velocity, so that continuity is
eventually verified, and was applied as in Oliveira [27], where a
complete description of the procedure is given.
The computational mesh was generated by blocks (represented
by different colours in Fig. 1) and the mesh is non-uniform along
the length of the inlet and outlet straight channels and uniform
along the curve and along the cross-section of the whole length
of the channel. The mesh used in the simulations was designed
after a mesh refinement study to ensure that the results were
not affected by mesh fineness. The characteristics of three different
meshes are in Table 2, where MESH 3 is the finest mesh, MESH 2 is
the mesh used to obtain the results presented here, and MESH 1 is
the less refined mesh. In order to analyse the effect of mesh refine-
ment, we carried out a set of simulations for the case Re = 583,
Wi = 0.5, L2 = 100 and b = 0.5, using the different meshes. Fig. 2 de-
picts the velocity profiles at different positions in the curve (h = 0�,
30� and 150�), and shows that the difference between MESH 2 and



Fig. 7. Secondary flow development in the first half of the curve. Velocity fields for Re = 532, Wi = 0.5, L2 = 100 and b = 0.5.
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MESH 3 is hardly noticeable, allowing us to conclude that MESH 2
provides adequate accuracy with less computational time.

No-slip boundary conditions are applied at the walls
(u = v = w = 0 at Z = Y = 0 and Z = Y = 1). A fully developed velocity
profile is imposed at the inlet to the entrance channel (X = 0),
which is followed by a sufficiently long straight channel
(Le = 20a) in order to guarantee that the flow is independent of inlet
conditions in the curved portion of the channel. For the FENE-CR
model, and since its shear viscosity is constant, the fully developed
velocity profile is the same of the Newtonian case for which there
is a well-known analytical solution. At the exit, a zero streamwise-
gradient condition was imposed for the velocity and for the pres-
sure gradient. The simulations were carried out using the entire
domain of the channel, to account for the possibility of asymmetric
flow [28]. The properties of the fluid are considered constant.

4. Results

In order to validate the code, we compare our results with the
experimental data of Bara et al. [6] in Fig. 3, where velocity profiles
extracted from the middle plane of the duct (Z = 0.5) at different
positions along the curve are presented. The solid lines represent
our results and the symbols pertain to the data of Bara et al. [6]
for three values of the Reynolds numbers (Re = 486, 532 and
583). Good agreement was obtained for all cases thus validating
the numerical method and confirming again the adequateness of
the mesh resolution.

Concerning the flow of the viscoelastic fluids described by the
FENE-CR model there are three independent dimensionless
numbers that need to be considered, in addition to the Reynolds
number and the radius of curvature. These are the flow elasticity
(via the Weissenberg number, Wi), the polymer extensibility (via
the maximum possible extension L2), and the retardation parame-
ter (b). One of the aims of this work is to analyse the distribution of
axial velocity and maximum axial velocity across and along the
channel as a function of L2 and b, under the presence of strong iner-
tial and elastic forces. To accomplish this, we have done numerical
simulations at the same three Reynolds numbers (Re = 486, 532
and 583), for Weissenberg numbers ranging from 0.1 to 1.0, for dif-
ferent L2 (50, 100 and 200) and b ranging from 0.9 to 0.1. To analyse
the effect of extensibility, b was fixed at 0.5, whereas to analyse the
effect of the retardation parameter, the extensibility was set to
L2 = 100. The results are presented for different positions along
the curve and across the duct square cross-section, through trans-
verse profiles and contour plots of the streamwise velocity (U), and
vector plots of the secondary flow, as well as through the variation
of maximum axial velocity (Umax) with the different controlling
parameters. The velocity profiles are extracted at specific values
of the Z coordinate of the cross-section, most at the mid-plane
Z = 0.5 (cf. Fig. 4a), and the velocity contours and vector plots of
the secondary flow are extracted at different angular positions
along the curve, as illustrated in Fig. 4b.

4.1. Viscoelastic simulations

As mentioned previously, at the inlet of the domain (x = 0, a dis-
tance of 20a upstream of the curve entrance) a fully developed flow
was imposed based on an analytical solution valid for both the
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Newtonian and the FENE-CR fluids. Fig. 5 shows the profiles of
streamwise velocity across the section at the entrance (h = 0�) to
the curve (Fig. 5a) and the corresponding contour plot (Fig. 5b).
The profiles are parabolic and perfectly symmetric about the mid-
dle Z = 0.5 plane (Fig. 5a), and the contour plot (Fig. 5b) shows the
maximum velocity right in the middle of the cross-section and that
the velocity profiles are symmetrically distributed across the sec-
tion. The case presented is for Re = 486, Wi = 0.1, L2 = 100 and
b = 0.5, but the same pattern was verified for all cases simulated.

Fig. 6 shows the variation of the axial velocity (U) along the
curve, with the curvature coordinate given by the angle h, at the
middle plane Z = 0.5 (cf. Fig. 4), as a function of Wi for Re = 532,
L2 = 100 and b = 0.5. It is noted that the present predictions for
the development of the axial velocity along the channel are rather
similar to those for the Newtonian fluid measured by Bara et al. [6].
In the initial part of the curve and up to h = 90� (Fig. 6a–c) the pro-
files are identical and independent of Wi. The flow runs against the
outer wall of the curve, exhibiting a sharp peak near this wall be-
cause of inertia. As a consequence of mass conservation the axial
velocity near the inner wall decreases and a secondary flow sets
in at the cross section of the duct, characterised by a pair of sym-
metrical counter rotating vortices, as shown in the vector plots of
Fig. 7. On moving downstream along the curve (Fig. 6a and b),
the peak velocity smoothes out and slightly moves toward the
channel centre and, as a consequence, the axial velocity near the
inner wall increases. This redistribution of velocity is a result of
the secondary flow transporting high momentum fluid from the
outer wall region to the inner wall region (Fig. 7). In addition,
Fig. 6 shows that for this level of inertia (Re = 532) elasticity only
affects the velocity distribution in the second half of the curve
(h > 90�, Fig. 6d and f), and that momentum transfer of axial veloc-
ity towards the centre of the channel increases with Wi.

The variation of maximum axial velocity (Umax), which is a con-
sequence of the formation and development of the secondary flow,
is depicted in Fig. 8, with variation of Wi and considering different
Re. For all cases simulated the variation of maximum velocity fol-
lows the same trend in the first half of the curve (up to h = 90�):
the maximum axial velocity has its highest value at the entrance
of the channel (h = 0�), decreasing around 20% along the curve up
to h = 60� as the secondary flow sets in and starts to distribute
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Fig. 11. Variation of the maximum axial velocity (Umax) with extensibility (L2) and Weissenberg number (Wi), for Re = 486 and b = 0.5, at different positions in the curve.
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momentum to the whole cross-section. Downstream of this posi-
tion, the velocity peak increases until the middle of the curve
(h = 90�), but the variations are now much smaller than at the
beginning. This pattern is observed for the various sets, all pertain-
ing to conditions of strong inertia (Reynolds numbers of 486, 532
and 583), but nevertheless the effects of elasticity are observed
from, approximately, h = 30�, where the reduction of velocity is
higher for smaller values of Wi. Such effects may be understood
by considering that elasticity tends to oppose inertial effects and
keep, for a longer distance on entering the curve, the initial velocity
conditions.

In the second half of the curved channel elastic effects accentu-
ate secondary flow formation, get stronger and become distinct for
each Re case considered. Downstream of h = 90�, at the lowest Rey-
nolds number of 486 (Fig. 8a), the maximum velocity tends to a
constant value for each Wi, so the effect of elasticity is minimum,
but as the Reynolds number is progressively increased (Fig. 8b
and c) we observe a second drop in the peak velocity at the end
of the curve, which is intensified by flow elasticity. This reduction
of Umax in the second portion of the curve is related to the onset
and growth of an additional pair of counter rotating vortices. The
vector plot of Fig. 9 depicts the appearance of this second pair of
vortices near the outer wall with increasing Wi at position
h = 150� for Re = 532, whereas the plot of the streamwise velocity
in Fig. 6e, taken at the mid-plane of the channel, shows the increas-
ing momentum transfer from the outer wall towards the centre of
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the channel with increasing Wi. For Wi = 0.1 the additional pair of
vortices is not formed, but at Wi = 0.3 it already appears (turning
point where Umax starts to decrease in the second part of the curve
in Fig. 8b, and the momentum transfer to the centre of the channel
is significant, Fig. 6e), although these vortices are still small in size.
Further increasing Wi the additional pair of vortices increases in
size (Fig. 9) leading to a higher decrease in Umax (Fig. 8b) and to a
higher transverse transfer of streamwise momentum towards the
centre of the curved channel (Fig. 6e).

A way of visualising the intensity of the centrifugally-generated
secondary flow is provided by the maximum value of the stream-
wise component of the vorticity, which is shown along the curve
in Fig. 10 for the Newtonian and two viscoelastic cases (with
Wi = 0.5 and 1.0, for b = 0.5 and L2 = 100). We note that for the pres-
ent three-dimensional developing flow it is not possible to define a
streamfunction in the cross-sectional plane that would indicate
more directly the amount of secondary flow.

There are two locations in the cross-section having xX = ±xmax,
which reside near the eye of each counter-rotating vorticity cell
formed symmetrically to the mid-plane Z = 0.5 as a consequence
of the spiraling motion induced by the curve. Elasticity is seen to
promote faster vorticity intensification initially (up to h = 20�, an
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history-like effect) and a faster (elastic) recovery up to the end of
the first part of the curve (40� 6 h 6 90�), although the differences
compared to the Newtonian evolution are not very significant.
Then, in the second part of the curve (90� 6 h 6 180�), the Newto-
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nian solution attains a fully-developed situation (xmax ffi Cte = 2.3)
while the viscoelastic starts decreasing after h � 120�, due to the
formation and intensification of the second pair of vortices, as dis-
cussed before (Fig. 9).

4.2. Effect of polymer extensibility

Parameter L2 quantifies the stretch of the polymer molecules
(via their simplified representation, the dumbbells) within the
fluid. As extensibility increases the polymer molecules tend to
reach a fully stretched state and in extreme cases, such as UCM
and Oldroyd-B fluid models, extensibility is L2 =1. Fig. 11 presents
the variation of maximum axial velocity (Umax) with Weissenberg
number and extensibility, for Re = 486 and at different angular
positions along the curve (h = 30�, 60�, 90�, 120� and 150�). It is
seen that the maximum axial velocity (Umax) increases with both
Wi and L2 as h grows and, after a reduction in the level of Umax be-
tween 30� and 60�, Umax still grows slightly with elasticity as one
progresses along the curved duct. Nevertheless, the effect of exten-
sibility is only evident for Wi > 0.5 and h > 60�. By increasing inertia
from Re = 486 to 532 the same behaviour is observed initially, but
then (Fig. 12), at position 120�, Umax slightly decreases for L2 = 200
and Wi > 0.6 (comparing with Fig. 11c for Re = 486 at the same po-
sition). This behaviour is prominent at the end of the curve
(h = 150�, Fig. 12b), where Umax decreases with extensibility, but
for Wi > 0.3. This is actually a consequence of the appearance and
growth of the second pair of counter rotating vortices near the out-
er wall, as is well illustrated in Fig. 13b. Here one must compare
these vector plots with those pertaining to the lower Re flows of
Fig. 13a, for which the peak velocity does not decrease (Fig. 11d)
and the second pair of counter rotating vortices does not exist.
Actually, looking closer to Fig. 13a, the additional pair of counter
rotating vortices is only incipient for the highest extensibility case
(L2 = 200), but it is not strong enough to reverse the variation of
Umax (Fig. 11d), as occurs at higher inertia in Fig. 12b. As inertia
increases the effect of L2 becomes more pronounced as seen in
Fig. 14 for Re = 583. Here the variation of the peak velocity with
L2 is larger than at lower Re and, for h > 90�, Umax decreases more
intensely with Wi than at lower Re. As explained above these vari-
ations are concomitant with the growth of the additional second
pair of vortices near the outer wall (Fig. 13c), promoted by
extensibility.

The velocity distribution in the cross-section proved to be al-
ways top–bottom symmetric (z direction) and the velocity distri-
bution and its development is like the one described and
illustrated in Fig. 6. In agreement with what was observed regard-
ing the variation of the velocity field with Wi, in the first half of the
curve the flow is not affected by the polymer extensibility, but fur-
ther downstream the transport of maximum momentum seen to
occur in the middle plane from the outer wall region towards the
centre of the channel increases with L2 (Fig. 15a, with Wi = 0.3).
The same features take place with increasing intensity for higher
elasticity (Fig. 15b, with Wi = 1.0). For Wi = 1.0 (Fig. 15b), the in-
crease in momentum transfer starts earlier in the curve (differ-
ences are clear from 120� onwards) as L2 is increased. The
momentum transfer in the middle plane is another consequence
of the changes in the secondary flow due to molecular extensibility
variations. The contours of axial velocity (Fig. 16) and the vector



Fig. 18. Axial velocity contours and secondary flow patterns as a function of b, for Re = 532, Wi = 1.0 and L2 = 100, at positions 120� and 150�.
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plots of the secondary flow in Fig. 13b show these changes in the
patterns for the cases in Fig. 15b, at position 150�. For Newtonian
flow there is a region of maximum velocity near the outer wall
(Fig. 16 left) and the secondary flow is characterised by a single
pair of counter rotating vortices (e.g. Fig. 9 at Wi = 0.1). On the
other hand, the flow of viscoelastic fluids, which have been shown
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(in Fig. 15) to enhance momentum transfer in the middle plane
even for low extensibility, exhibit an indentation in the contour
plot in the region of maximum velocity located near the outer wall
(Fig. 16, right) and a flow pattern with two pairs of counter rotating
vortices at that same location, all of which become more intense as
L2 is increased.
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4.3. Effect of retardation parameter

As defined previously, the retardation parameter is the relation
of two different times, the relaxation time (which is the time
needed by the polymer chains to relax to their equilibrium state
after the application of a stress has ceased) and the retardation
time (which is a fraction of the relaxation time dependent on sol-
vent viscosity ratio) [24]. Alternatively, the retardation parameter
can also be defined as a relation of viscosities, the ratio of the sol-
vent viscosity to the total viscosity (sum of solvent and polymer
viscosities), i.e., b is expressed as b ¼ gs=g ¼ kr=k. When b is 1 we
have the Newtonian case, but as b decreases elasticity effects be-
come stronger and flow development is expected to become simi-
lar to that observed when varying Wi and L2.

The distribution and development of the axial velocity along the
middle plane of the cross-section followed a similar general behav-
iour as that reported when describing the variation with Wi and L2,
in Figs. 6 and 15, respectively. In this case the momentum transfer
besides increasing with Re and Wi also increases with (1 � b), as
depicted in Fig. 17. Comparing with the cases of Fig. 15, which
dealt with the influence of L2, the effects associated with elasticity
start earlier along the curve and exhibit higher intensity, especially
at low b, than shown before while analysing the combined effect of
extensibility and Wi. Again and as previously discussed, this
momentum transfer is directly related to the formation of the addi-
tional pair of counter rotating vortices, which redistribute the axial
velocity across the section (Fig. 18). Fig. 18 illustrates the effect of
the retardation parameter on the distribution of axial velocity in
the cross section and also on the secondary flow pattern, at loca-
tions 120� and 150�. It shows that the maximum streamwise veloc-
ity is maintained near the outer wall of the curve (as in every case
simulated). Also, the momentum transfer, which occurs in the mid-
dle region of the cross-section and is higher with decreasing b
(Fig. 17), is the result of the development of the second pair of
counter rotating vortices near the outer wall, leading to the sepa-
ration of the region of maximum velocity near the outer wall
(Fig. 18). The second pair of vortices is visible for b < 0.75 and its
size increases downstream along the curve and also as the param-
eter b is reduced. It is remarked that the flow is always symmetric
with respect to the plane Z = 0.5.

Finally, the variation of the maximum axial velocity (Umax) with
b and with the modified Weissenberg number (Wimod) for various
Re is shown in Figs. 19–22. Similarly to what was seen in Fig. 11
while studying the influence of Wi and L2, here, when elasticity is
increased by decreasing the retardation parameter there is an in-
crease in the maximum velocity over the whole length of the chan-
nel (Fig. 19), except at 150�, where the maximum axial velocity for
b = 0.25 and 0.1 starts to decrease for Wimod > 0.6 (Fig. 19d). Previ-
ously, the same behaviour was observed in flows with higher iner-
tia (Re = 532 in Fig. 12), when the variation of extensibility was
investigated. Fig. 20 shows that for lower b (0.25 and 0.1), the addi-
tional pair of vortices appears at Re = 486, which corresponds to
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the decrease in Umax seen in Fig. 19d. At higher values of Re (Fig. 21,
with Re = 532), the decrease in Umax at position 150� takes place at
lower elasticity (Wimod = 0.2) compared to the Re = 486 case of
Fig. 19; in addition, for Re = 532 this reduction of Umax starts occur-
ring earlier in the curve (120�) for lower b. However, for Re = 583
(Fig. 22), after decreasing, the variation of maximum axial velocity
reverses and starts to increase for b < 0.5 at the end of the curve.

5. Conclusions

The FENE-CR allows the investigation of elastic effects in the ab-
sence of viscosity shear-thinning effects that often exist in real flu-
ids and in various other constitutive equations. Using this model,
this work investigates the effects of elasticity upon the flow in a
curved channel with a square cross-section under conditions of
non-negligible inertia. Specifically, the influence of Reynolds num-
ber in combination with polymer extensibility (L2), retardation
parameter (b) and flow elasticity (Wi) are analysed in detail for
Reynolds numbers on the range 486–583.

In the first half of the curve (up to 90�) the flow is inertia depen-
dent, and none of the parameters quantifying elasticity affected
flow development in the ranges investigated. Here, inertia together
with centrifugal forces are responsible for pushing and maintain-
ing maximum velocities near the outer wall generating an uneven
velocity distribution, which is tightly connected to the develop-
ment of the secondary flow in the cross section, characterised by
a pair of counter rotating vortices spanning the whole width of
the channel. In the second half of the curve, flow development is
affected by fluid elasticity and each relevant dimensionless num-
ber quantifying fluid elasticity has the same qualitative effect.
Increasing L2, increasing Wi or decreasing b all lead to the appear-
ance of an additional pair of counter rotating vortices near the out-
er wall at lower Re than in the absence of elasticity. This
phenomenon is responsible for the transfer of momentum from
the region of maximum momentum near the outer wall to the cen-
tre of the channel where momentum is lower, consequently reduc-
ing the magnitude of the maximum axial velocity magnitude.

The flow in curved channels is highly dependent on geometry,
and caution is necessary when comparisons are made between re-
sults. For the same geometry, the onset of the additional pair of
vortices was also verified by Helin et al. [19] to be dependent on
inertia and elasticity for a modified PTT model and an Oldroyd-B
fluid model with b = 1/9. The development of the additional pair
of vortices was observed for the modified PTT fluid at a Deborah
number of 0.4 for Re = 486, but for an Oldroyd-B fluid was only re-
ported to take place at Re = 583. Our results showed that for
Re = 486, the additional pair of vortices is observed for lower b
and Wi > 0.7. These results confirm findings by Helin et al. [19] in
allowing us to say that the presence of shear-thinning acts in the
same direction as fluid elasticity in that it also favours the transi-
tion from a secondary flow with one to two pairs of vortices, at
lower inertia.
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