Saltar para:
Logótipo
Você está em: Início > Publicações > Visualização > Fusing heterogeneous tri-dimensional information for reconstructing submerged structures in harsh sub-sea environments

Fusing heterogeneous tri-dimensional information for reconstructing submerged structures in harsh sub-sea environments

Título
Fusing heterogeneous tri-dimensional information for reconstructing submerged structures in harsh sub-sea environments
Tipo
Artigo em Revista Científica Internacional
Ano
2024
Autores
Leite, PN
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Pinto, AM
(Autor)
FEUP
Revista
Título: Information FusionImportada do Authenticus Pesquisar Publicações da Revista
Vol. 103
ISSN: 1566-2535
Editora: Elsevier
Outras Informações
ID Authenticus: P-00Z-C18
Abstract (EN): Exploiting stronger winds at offshore farms leads to a cyclical need for maintenance due to the harsh maritime conditions. While autonomous vehicles are the prone solution for O&M procedures, sub-sea phenomena induce severe data degradation that hinders the vessel's 3D perception. This article demonstrates a hybrid underwater imaging system that is capable of retrieving tri-dimensional information: dense and textured Photogrammetric Stereo (PS) point clouds and multiple accurate sets of points through Light Stripe Ranging (LSR), that are combined into a single dense and accurate representation. Two novel fusion algorithms are introduced in this manuscript. A Joint Masked Regression (JMR) methodology propagates sparse LSR information towards the PS point cloud, exploiting homogeneous regions around each beam projection. Regression curves then correlate depth readings from both inputs to correct the stereo-based information. On the other hand, the learning-based solution (RHEA) follows an early-fusion approach where features are conjointly learned from a coupled representation of both 3D inputs. A synthetic-to-real training scheme is employed to bypass domain-adaptation stages, enabling direct deployment in underwater contexts. Evaluation is conducted through extensive trials in simulation, controlled underwater environments, and within a real application at the ATLANTIS Coastal Testbed. Both methods estimate improved output point clouds, with RHEA achieving an average RMSE of 0.0097 m -a 52.45% improvement when compared to the PS input. Performance with real underwater information proves that RHEA is robust in dealing with degraded input information; JMR is more affected by missing information, excelling when the LSR data provides a complete representation of the scenario, and struggling otherwise.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 16
Documentos
Não foi encontrado nenhum documento associado à publicação.
Publicações Relacionadas

Dos mesmos autores

Hybrid underwater imaging for the tri-dimensional inspection of critical structural elements in offshore platforms (2024)
Artigo em Revista Científica Internacional
Leite, PN; Pereira, PN; Dionisío, JMM; Pinto, AM
Advancing Autonomous Surface Vehicles: A 3D Perception System for the Recognition and Assessment of Docking-Based Structures (2021)
Artigo em Revista Científica Internacional
Pereira, MI; Claro, RM; Leite, PN; Pinto, AM
A 3-D Lightweight Convolutional Neural Network for Detecting Docking Structures in Cluttered Environments (2021)
Artigo em Revista Científica Internacional
Pereira, MI; Leite, PN; Pinto, AM

Ver todas (8)

Da mesma revista

SWINN: Efficient nearest neighbor search in sliding windows using graphs (2024)
Artigo em Revista Científica Internacional
Mastelini, SM; Veloso, B; Halford, M; de Carvalho, ACPDF; João Gama
Second FRCSyn-onGoing: Winning solutions and post-challenge analysis to improve face recognition with synthetic data (2025)
Artigo em Revista Científica Internacional
Huang, YG; Mi, YX; Ding, SH; Zhou, SG; He, S; Fu, LZ; Cong, H; Zhang, RY; Xiao, ZH; Smirnov, E; Pimenov, A; Grigorev, A; Timoshenko, D; Asfaw, KM; Low, CY; Liu, H; Wang, CY; Zuo, Q; He, ZX; Shahreza, HO...(mais 39 autores)
Preference rules for label ranking: Mining patterns in multi-target relations (2018)
Artigo em Revista Científica Internacional
Cláudio Rebelo de Sá; Paulo Azevedo; Carlos Soares; Alípio Mário Jorge; Arno Knobbe
Multimodal inverse perspective mapping (2014)
Artigo em Revista Científica Internacional
Oliveira, M; Santos, V; Sappa, AD

Ver todas (11)

Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Medicina Dentária da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-11-02 às 08:55:34 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico