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ABSTRACT 

In this paper, Nusselt numbers for a power-law fluid in a fully developed laminar flow between parallel plates with constant, and different, wall heat 
fluxes in the presence of dissipation effects are presented. The Nusselt numbers values were obtained following two different approaches. One is the 
“classical” approach, based on a single bulk temperature, and this approach is used in this work to obtain for the first time generic analytical 
expressions for Nusselt numbers. In the new approach, different bulk temperatures are used for each Nu′ determination, one bulk temperature for 
each side of the location of the temperature profile where the derivative ∂T/∂y=0. 
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1. INTRODUCTION 

An analytic study regarding heat transfer in a fully developed laminar 
flow between parallel plates of a power-law fluid with constant, but 
different, wall heat fluxes, in the presence of viscous dissipation, is 
presented in this work. As it is explained in detail below, the same 
subject has been partially addressed in the literature previously but not 
in the precise manner undertaken here which, as we will show, may be 
advantageous.  

In the review article of Hartnett and Kostic (1989), restricted to the 
hydrodynamics and heat transfer aspects of non-Newtonian flow in 
rectangular duct geometries, the analytical solution to this problem 
presented by the authors was due to Skelland (1967), which is only 
valid for constant and equal heat fluxes at the walls in the absence of 
viscous dissipation. In the review work of Lawal and Mujumdar (1987) 
where an overview of laminar duct flow and heat transfer regarding 
purely viscous non-Newtonian fluids taking into account viscous 
dissipation and the effect of variables properties is presented, again just 
the particular case of constant and symmetric wall heat fluxes is 
discussed. Etemad and Majumdar (1994) carried out a numerical study 
regarding the simultaneously developing laminar flow and heat transfer 
of a power-law fluid flowing between two parallel plates. Several 
different thermal boundary conditions were examined. They showed 
that the Nusselt number is significantly affected by the variation of the 
fluid viscosity with temperature, viscous dissipation, the power-law 
index value as well as the fluid Prandtl number and thermal boundary 
conditions. 

Only recently was the asymmetric wall heat fluxes case addressed 
analytically in the literature by Tso et al. (2010). In this work the 
authors present analytical solutions for the temperature profiles and 
Nusselt numbers, Nu, but, because they use only one coordinate system 
in the mathematical development, the general result is, as admitted to 
by the authors themselves, too complex. Simpler expressions for four 
specific values of the power-law index, n, namely 0.25, 0.5, 1 and 2, are 
then presented by the authors in order to revel the heat transfer 

characteristics, but the only verification done was via results from the 
literature for n=1. For the particular case of equal heat fluxes at the 
walls in the absence of viscous dissipation, the Nu values given by 
those simpler expressions, based on the hydraulic diameter, for n=0.25, 
n=0.5 and n=2, are 8.0, 6.9 and 6.3, respectively. Those values are 
different from the corresponding ones in the literature, Skelland (1967) 
and Baptista et al. (2013), that for the same power-law index values are 
of 9.5, 8.8 and 7.9, respectively, which may indicate a problem in this 
analytical solution. Also, by not using the generalized Brinkman 
number definition, Br*, Coelho and Pinho (2009), the Nusselt number 
values rapidly decrease with an increase of the Brinkman number, 
something that, as shown in Coelho and Faria (2011), hinders the 
graphical representations of Nu. 

Considering all of the studies discussed above, it is fair to state there 
is currently no simple and generic analytical solution for the Nusselt 
numbers, Nu, i.e., valid for any values of the power index, n, wall heat 
flux ratio, w,1 w,2q qΦ =   , and generalized Brinkman number. Such an 

analytical solution and the underlying mathematical approach, is one of 
the main contributions of the present work. 

The current study starts by showing the calculation procedure that 
leads to the analytical expressions of the Nusselt numbers at the duct 
walls. Figure 1 shows schematically the plane walls 1 and 2 of the duct, 
spaced apart by a distance of 2H, with the wall heat fluxes applied, 

w,1q  and w,2q , respectively. The coordinate systems used and an 

asymmetric temperature profile are also shown. By using two 
coordinate systems, Iy  and IIy , cf. Fig. 1, the y variable in the velocity 

profile remains always positive, allowing an easy integration of the 
differential equations for any value of n and giving rise to simpler 
mathematical expressions. As far as the authors are aware, the use of 
two coordinate systems in this type of problems is also new to the 
literature and here we demonstrate its utility to such problems. The wall 
temperatures, w,1T  and w,2T , represented in Fig. 1, are naturally a 

function of the longitudinal coordinate x.  
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Fig. 1 Schematic representation of the parallel plates duct, the 
boundary conditions and of the coordinate systems. A 
temperature profile is also shown, which is divided by the point 
where ∂T/∂y=0. 

 
For the analytical expressions of the Nusselt numbers at the walls 1 

and 2, Nu1 and Nu2 respectively, the “classical” approach was used, i.e., 
a single bulk temperature was considered for the entire duct cross-
section. When the temperature profile is asymmetric, this approach may 
lead to negative Nusselt number values and discontinuities in the Nu 
curves and, as will be seen in section 3, even to a case where Nu=4 
regardless the values of n or the heat flux ratio, w,1 w,2q qΦ =   . 

In order to obtain Nusselt number values free of the above mention 
anomalies, what we will term “Nu' ”, and therefore comparable with 
the existing values in the literature for cases where a symmetric 
temperature profile exists, e.g. pipe flow, it is necessary to use two 

different bulk temperatures, 1T and 2T , cf. Fig. 1, to calculate the two 

Nusselt numbers, 1Nu′  and 2Nu′ respectively. In section 3.1, the results 

of the Nusselt numbers obtained with this new approach, where a bulk 
temperature is calculated for each side of the location of the 
temperature profile where ∂T/∂y=0, 0T yy y∂ ∂ ==  are shown and 

discussed. This location, 0T yy y∂ ∂ == , effectively divides the duct 

cross-section in two independent zones, each one with a temperature 
profile, named Profile 1 and Profile 2 in Fig. 1, since there is no heat 
transfer between the two zones. The use of this new approach in the 
flow between parallel plates is an additional contribution of the present 
work. 

In a flow with a symmetrical temperature profile, the proposed 
approach reproduces Nu′ values equal to the ones obtained using the 
“classical” approach. Therefore, it can be stated that in situations with 
asymmetric temperature profiles, the Nusselt numbers obtained using 
the new approach are also comparable with the Nu values of the 
literature cases where the temperature profile is symmetric.  

Generally, this new approach can be used whenever the temperature 
profile is asymmetric, e.g. in annular flow, where the flow between 
parallel plates is a limiting case, as explained in the work of Coelho and 
Poole (2017). 

2. CALCULATION PROCEDURE 

In a fully developed laminar flow between parallel plates of a power-
law fluid, the dimensionless velocity profile is given by the following 
equation, 
 

1
* *2 1

1
1

n

nu n
u y

nU

+ += = − +  
 (1) 

 

where u is the local velocity, U  is the bulk velocity and *y y H=  is 

the transversal coordinate in dimensionless form, Fig. 1. 
The differential form of the energy conservation equation in 

Cartesian coordinates, for a fully developed flow between parallel 
plates in the presence of viscous dissipation, is shown in Eq. (2), 
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where T is the temperature, x the longitudinal coordinate, Fig. 1, ρ, c 
and k are density, specific heat and conductivity of the fluid, 

respectively, and yxτ  is the absolute value of the local shear stress. 

Using a similar method to the one shown in Çengel and Turner 
(2005) for a constant wall heat flux in a pipe, but considering the 
presence of viscous dissipation, it can also be shown that, 
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where T  is the bulk temperature, wq  is the average wall heat flux, 

( )w w,1 w,2 2q q q= +   , and τw is the wall shear stress. 

Replacing T x∂ ∂  by dT dx  in equation (2) leads to the following 
dimensionless equation, 
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where ( ) ( )*
0 h wT T T k D q= −   is the dimensionless temperature (T0 is a 

reference bulk temperature and h 4D H=  the hydraulic diameter), τ* is 

the dimensionless local shear stress * *
wyx y H yτ τ τ= = = , Br* is the 

generalized Brinkman number, *
w wBr (8 )U qτ=   (Coelho and Pinho, 

2009), Pe is the Péclet number, hPe Re Pr UD c kρ= ⋅ =  and x* is the 

dimensionless longitudinal coordinate, *
hx x D= . 

The dimensionless form of Eq. (3), 
( )* * *1 8Br 4 PedT dx = +

, is 
replaced in Eq. (4), and knowing that

* *yτ = , yields the following 
expression for the differential form of the energy conservation equation, 
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By replacing the expressions of u* and du*/dy* in Eq. (5), the final 

form of the energy equation is obtained, Eq. (6), where 
( )*2Br 2 1n nα = + , ( ) ( )*(1 8Br ) 2 1 4 4n nβ = + + +  and 

( )1n nε = +  are used in order to simplify the expressions. 
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Since *y  is raised to the power ( )1n n+ , it must be always positive 

in order to make the integration of Eq. (6) possible. To assure this, two 
coordinate systems are used. The x-axis is the same while the y-axis are 
distinct, yI and yII axis, one for each region I and II, separated by the 
duct symmetry plane as shown in Fig. 1. Equation (6) is then integrated 
in both regions I and II, subject to the following boundary conditions, 
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The boundary conditions given by Eqs. (7) and (8), on one hand, and 

the boundary conditions given by Eqs. (9) and (10) on the other, allow 
the temperature profile equations in the regions I and II, respectively, to 
be obtained. The boundary condition (11) was used to validate the 
resulting expressions for * *dT dy . 

3. RESULTS 

The integration of Eq. (6) in the regions I and II, cf. Fig. 1, leads to the 
following expressions for the temperature profiles, 
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with ( ) ( )1σ α βε ε= − +  and ( ) ( )1η α β ε= + + . By defining 

*
II 1y =  in Eq. (13), the following expression for the wall 2 temperature, 
*

w,2T , is obtained, 
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1
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T T
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Φ
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Although *
w,1T   is unknown and a function of x*, which requires the 

use of a temperature difference in a graphical representation of the 
temperature profiles, for example * *

w,1T T− , this does not affect the 

Nusselt number calculations, since these are based on a temperature 
difference that is always independent of the wall temperatures, as will 
be demosntrated below.  

The derivative of the temperature profile in the duct axis is given 
by the following expression, 

 
 

Fig. 2 Dimensionless temperature profiles for three different values of 
n, Br*=0.125 and Φ=0.4. The vertical line represents the duct 
axis. 

( )*I
I

*

*

0

1 1

4 2 1)
y

T

y Φ
=

∂ = −
∂ +

 (15) 

 
as it can be observed, the expression is independent of n and Br*, since 
these two variables have a symmetrical effect on the temperature 
profile. The temperature at the duct axis is generally a function of the 
variables n, Br* and  Φ, except for the case where the heat supplied at 
the duct walls equals the heat generated by viscous dissipation, i.e., 
Br*=0.125. In this case this temperature is given by the following 
expression, 
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being in this particular case also independent of n. 

Figure 2 shows three temperature profiles for three representative 
power-law index values, (0, 1 and ∞), Br*=0.125 and Φ=0.4 which 
illustrate these points. 

To calculate the Nusselt numbers, 1 1 hNu h D k=  and 

2 2 hNu h D k= , where hi is the convection coefficient, the expressions 

(17) and (18) were used, respectively. They arise via rendering 

dimensionless the equation w, w,( )i i iq h T T= −  for each wall. 
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The bulk temperature, T , used in the Nusselt numbers calculation 
was obtained through the following integral, 
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where b is the duct spanwise length. The analytical expression for this 
bulk temperature is given by Eq. (20). 
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The mathematical expressions for the Nusselt numbers at both walls, 

Nu1 and Nu2, are given by Eqs. (21) and (22), respectively. 
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The validation of Eqs. (21) and (22), was carried out as it follows: by 
making Φ=1 both equations reduce to the same expression of the 
Nusselt number, that is equal to the expression presented in Baptista et 
al. (2013), their Eq. (38); imposing Φ=1 and Br*=0, on the Nusselt 
number equations, the obtained expression is equal to the Nu equation 
presented in Skelland (1967); by making Br*=0 and n=1 in Eqs. (21) 
and (22) the following expressions are obtained, 
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( )1Nu 140 26 9Φ Φ= −  and ( )2Nu 140 26 9Φ= − , respectively, in 

accordance with the expressions provided in Shah and London (1978); 
finally, if in one of the previous equations, Eq. (21) or Eq. (22), the 
variable Φ is replaced by 1/Φ, the other equation, Eq. (22) or Eq. (21) 
respectively, is obtained, something that is expected in a 
hydrodynamically symmetrical flow. It is also because of this 
particularity that in the present work the variable Φ varies between zero 
and one, since both expressions of Nu1 and Nu2, together, show the 
effect of Φ in the range between zero and infinity  

Figures 3, 4 and 5 show plots of Nusselt numbers, Nu1 and Nu2, 
versus the independent variables n, Φ and Br*, respectively. Fig. 3 
shows the typical behaviour of Nu1 and Nu2 with the power law index, 
n, for different Brinkman numbers when Φ is kept constant, in this case 
Φ=0.4. For low values of Br*, when n decreases, the velocity profile 
approaches a plug profile, with higher velocities near the walls, while 
the Nusselt numbers increase. For higher values of Br* however, the 
viscous dissipation effect, which occurs closer to the walls with the 
decrease of n, surpasses the effect of the increased velocity near the 
walls and Nu decreases. In the case of Nu1 and Br*=0, Fig. 3a), with the 
decrease of the value of n, the wall temperature, *

w,1T , becomes higher 

than the “classical” bulk temperature, *T , causing a discontinuity in the 
Nu1 curve and negative values of this Nusselt number. 

 

(a) Nu1 

(b) Nu2 
Fig. 3 Nusselt numbers versus the power-law index, n, for Φ=0.4 and 

different values of the Brinkman number, Br*. Data obtained 
using the “classical” approach for the bulk temperature 
calculation. 

 

Figure 4 shows the variation of Nu1 and Nu2 with Φ for different 
values of Br* and n=0.5. For wall heat flux ratios, Φ, in the range 

0<Φ<1, Nu2 is always positive, since *
w,2T > *T , see Fig. 4b). For both 

walls, it is clear that an increase of Br* results in a reduction of the 
Nusselt numbers. 

When Φ decreases, meaning that w,1q  decreases in relation to w,2q , 

the wall temperature *
w,1T  also decreases, becoming equal to, and then 

lower than, the bulk temperature, *T , this leads to infinite and negative 
values of Nu1, Eq. (17), cf. Fig. 4a). For higher values of the Brinkman 
number, this discontinuity in Nu1 occurs at lower values of Φ. The 

value of Φ for which *
w,1T = *T , * *

w,1T T
Φ

= , is given by Equation (23). 
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Φ
=
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 (23) 

 
Equation (23) shows that regardless of the value of n, for Br*>0.25 

the wall temperature *
w,1T  is always higher than the bulk temperature, 

*T , regardless of the positive value of Φ. 
The variation of Nu1 and Nu2 with Br* for different values of Φ and 

n=0.5 is shown in Fig. 5. In general, it can be seen, once again, that an 
increase in the Brinkman number values leads to a reduction in the 
Nusselt numbers and for wall heat flux ratios between 0<Φ<0.5, 
according to Eq. (23), the Nu1 values may become infinity and 
negative. 

 

(a) Nu1 

(b) Nu2 
Fig. 4 Nusselt numbers versus the wall heat flux ratio, Φ, for n=0.5 and 

different values of the Brinkman number, Br*. Data obtained 
using the “classical” approach for the bulk temperature 
calculation. 
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An interesting fact noted when analyzing Fig. 3, 4, and, 5, is that for 

Br*=0.25, i.e., visc dissip w 2q q =  , both Nusselt numbers are equal, 

Nu1=Nu2 regardless of the values of n or Φ. In fact, when replacing Br* 
by 0.25 in Eqs. (21) or (22) the result is Nu1=Nu2=4. The use of a single 
bulk temperature for the entire duct cross-section is responsible for this 
outcome and again shows that the heat transfer coefficients thus 
obtained are far from the real value. Essentially, if correct, this would 
mean the “real” convection coefficient is simultaneously independent of 
velocity and temperature profiles as varied when n and Φ vary between 
zero to infinity, i.e., a velocity profile varying between plug flow and 
almost triangular. 

 (a) Nu1 

(b) Nu2 
Fig. 5 Nusselt numbers versus the Brinkman number, Br*, for n=0.5 

and different values of the wall heat flux ratio, Φ. Data obtained 
using the “classical” approach for the bulk temperature 
calculation. 

 
The results presented in Figs 3-5 show that the “classical” approach, 

i.e., the use of a single bulk temperature for the whole duct cross-
section, while useful from a practical standpoint, since this temperature 
is easily determined, experimentally and mathematically, sometimes 
yields Nusselt numbers that deviate from the values and behaviours of 
the expected heat transfer coefficient. By correctly relating the wall 
temperature with the bulk temperature, which, obviously, is the most 
relevant in practice, the “classical” approach is an important tool and it 
will continue to be used. 

The next section presents a different approach for the Nusselt 
numbers calculation that eliminates the singularities referred to above, 
while allowing a direct comparison between the Nu′ values thus 
obtained, regardless of the temperature profile shape, with those in the 
literature for the cases where the temperature profile is symmetrical. 

3.1 1Nu′  and 2Nu′  Calculated Using Two Bulk Temperatures 

In this new approach for the Nusselt number calculation, two bulk 
temperatures are considered, one for each side of the location of the 
temperature profile where ∂T/∂y=0, 0T yy y∂ ∂ == , cf. Fig. 1. In the case 

of a symmetrical temperature profile, both approaches produce the 
same values for the Nusselt numbers. 

Equations (24) and (25) are the expressions of the bulk temperatures 
for the two temperature profiles, cf. Fig. 1, *

w,1T  e *
w,2T , respectively, 

since in the present case 0< Φ <1 the coordinate * *
*

0dT dy
y

=  is always in 

region I. 
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The new Nusselt numbers are calculated using Eqs. (17) and (18), 

with *T  being replaced by *
1T  and *

2T , respectively. 

The coordinate * *

*

I, 0dT dy
y

=  was calculated as the root of Eq. (26) that 

only has analytical solutions for n=0, n=0.5 and n=1, while for other n 
values a numerical solution was used. 
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I
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1 1

dT y
y
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ε

α β α βεβ ϕΦ
ε ε

+

+ −= − + + +
+ +
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The relationship between both convection coefficients, given by the 
“classical” and the new approach, is shown in Equation (27), also valid 
for the Nusselt numbers. This equation was deduced knowing that the 

wall heat flux, w,iq
, is the same regardless of the approach used. 

 

( ) ( )
w,

( approach) w, (classical approacunconventional , h) w

i

i i i

q

h T T h T T

=

′ − = −


 (27) 

 
Equation (27) shows that both approaches allow correct calculations 

of the wall temperature, w,iT , given the corresponding Nusselt number 

and bulk temperature, iT  or T . The advantage of the new approach, as 

previously mentioned, is that it allows more realistic heat transfer 
coefficients to be obtained, comparable with the existing values in the 
literature for flows inside ducts when the temperature profile is 
symmetrical. Although the new bulk temperatures have these 
advantages, their calculation is not straightforward potentially hindering 
its use. 

Figures 6, 7 and 10, show the results already presented in figures 3 to 
5 but now obtained through the use of the new approach, i.e., using 
different bulk temperatures for calculating the Nusselt number on each 
wall. 

Figure 6 shows the variation of the Nusselt numbers, 1Nu′  and 2Nu′ , 

with the power law index n, for different values of Brinkman number 
and Φ=0.4. Nusselt numbers show a variation similar to the one 

observed in Fig. 3, but now the 1Nu′  curves do not display 

discontinuities and negative values. For higher values of Br*, the 
Nusselt numbers depend very little of n, with viscous dissipation 
overlapping the effect of the large velocity profile variation with n. The 
behavior of the Nusselt numbers for other values of Φ  is similar to the 
one presented here. 
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(a) Nu1 

(b) Nu2 
Fig. 6 Nusselt numbers versus the power-law index, n, for Φ=0.4 and 

different values of the Brinkman number, Br*. Data obtained 
using two bulk temperatures, the new approach. 

 

Figure 7 shows the variation of 1Nu′  and 2Nu′  with Φ for different 

values of the Brinkman number, Br*, and n=0.5. For other values of n 
the plots are very similar to the one presented here. With an increase of 

Φ, w,1 w,2q qΦ =   , the coordinate * *

*

I, 0dT dy
y

=  moves away from the wall 

1, the temperature difference * *
w,1 1T T−  increases and 1Nu′  decreases. 

On wall 2 the opposite phenomenon occurs and 2Nu′  increases. In the 

absence of viscous dissipation, when Φ  tends to zero, i.e., very low 

values of w,1q , the coordinate * *
*

I, 0dT dy
y

=  approaches wall 1, the value of 

*
w,1T  tends to the value of the bulk temperature, *

1T , and Nu1 tends to 

infinity. 

For Φ<0.2, when the coordinate * *
*

I, 0dT dy
y

=  approaches wall 1, the 

temperature profile 1 is also closer to that wall and to the zone where 
the heat generated by viscous dissipation occurs, cf. Fig. 1. Because of 
that, the Nusselt number, 1Nu′ , also starts to depend strongly on the 

Brinkman number, Br*, as shown in Fig. 7a). In the “classical” 
approach, this dependence goes unnoticed, cf. Fig. 4a). 

For higher values of the Brinkman number, the value of 1Nu′  

decreases monotonically with a reduction of Φ, i.e., an increase of 

* *
*

I, 0dT dy
y

= . For small values of the Brinkman number, Br* <0.125 for 

n=0 or Br*<0.131 for n=2 for example, the viscous dissipation effect 
only surpasses the effect of a decrease in Φ, and the corresponding 

approximation of *
w,1T  to *

1T , for very low values of Φ, Φ<0.05. This 

leads to a local maximum of the Nusselt number, for a given value of 

Φ, or * *

*

I, 0dT dy
y

= , as it can be seen in Fig. 7a) for Br*=0.0125. 

Figure 8 shows the variation of 1Nu′  and 2Nu′  with Br* for different 

values of Φ and n=0.5. For other values of n the behaviour is similar. 
As expected, it is clear that the heat transfer coefficient decreases when 
the Brinkman number increases, since the heat generated by viscous 
dissipation hinders the heat transfer. 

Once again, it can be seen in Fig. 8a), by contrast with Fig. 8b), that 

for small values of Φ, i.e., when * *
*

I, 0dT dy
y

=  is close to the wall 1, the 

corresponding Nusselt number, 1Nu′ , is very sensitive to variations in 

the Brinkman number. The higher values of the Nusselt numbers are 
attained with simultaneously lower values of Φ and Br*. As expected, 

for Φ=1 the variations of 1Nu′  and 2Nu′  with Br* are the same. 

 

(a) Nu1 

(b) Nu2 
Fig. 7 Nusselt numbers versus the wall heat flux ratio, Φ, for n=0.5 and 

different values of the Brinkman number, Br*. Data obtained 
using two bulk temperatures, the new approach. 

 
Both approaches produce Nu values at a given wall that are more 

similar to each other the further away from that wall the coordinate 

* *
*

0dT dyy =  is, as seen in Fig. 9 where the variation of Nu1 and 1Nu′  

with the coordinate of the corresponding location of the temperature 

profile where 
0T y∂ ∂ =

, * *
*

I, 0dT y
y

= , is shown. As expected, when 

* *

*

I, 0
0

dT y
y

=
=  the two approaches have the same result since in this 
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case the temperature profiles are symmetrical. The further away from 

the wall 1 the coordinate * *

*

I, 0dT y
y

=  is, the closer to each other are the 

values of the bulk temperatures given by the new approach, *
1T , and by 

the “classical” approach, *T , thus the Nu values given by both 
approaches also become closer to each other. 

 

 (a) Nu1 

(b) Nu2 
Fig. 8 Nusselt numbers versus the Brinkman number, Br*, for n=0.5 

and different values of the wall heat flux ratio, Φ. Data obtained 
using two bulk temperatures, the new approach. 

 

In section 3 it was found that for Br*=0.25, both Nusselt numbers 
were constant, Nu1=Nu2=4, and simultaneously independent of Φ and 
n. This singular case is inherent to the “classical” approach and does not 
occur in this new and more realistic approach. 

4. CONCLUSIONS 

In this work, analytical expressions for the Nusselt number in a laminar 
flow of a power-law fluid between parallel plates were obtained. These 
results are valid for a fully developed flow, with constant and different 
heat fluxes at the walls in the presence of viscous dissipation. In these 
analytical solutions the “classical” approach was used, i.e., both Nusselt 
numbers are, as usual, based in the same bulk temperature calculated 
for the entire duct cross-section. This approach occasionally leads to 
negative values and discontinuities in the Nusselt number plots, and for 
the particular case of the Brinkman number, Br*, equal to 0.25 
( visc dissip w 2q q =  ) a singular result is obtained, i.e., Nu1=Nu2=4 

regardless of the wall heat flux ratios, Φ, and the power-law index, n, 
values. 

 
Fig. 9 Nusselt number, Nu1, versus the corresponding coordinate of the 

location of the temperature profile where ∂T/∂y=0, * *

*

I, 0dT y
y

= , 

for different values of the Brinkman number, Br*, and n=0. 
Lines: Grey lines – “classical” approach, black lines - new 
approach, the vertical line marks the duct axis coordinate.. 

 
It was found that the temperature profile derivative at the duct axis 

only depends of Φ, being independent of the values of n or Br* since the 
heat transfer across the duct cross-section is symmetrically affected by 
these two variables. In the particular case in which the heat supplied at 
the duct walls is equal the heat generated by viscous dissipation, i.e., 
Br*=0.125, the temperature value, T*, at the duct axis is independent of  
the power law index, n 

Generally, for low values of Br*, the decrease in the value of n leads 
the velocity profile to become closer to the plug profile, i.e., greater 
velocities near the walls, and the Nusselt number increases. For higher 
values of Br*, the heat generated by viscous dissipation, that approaches 
the walls when n decreases, surpasses the effect of the increased 
velocity near the walls and Nu decreases. 

The Nusselt numbers obtained using the traditional approach do not 
always reflect the anticipated behaviour of the real heat transfer 
coefficient. In order to obtain Nu′ values that are closer to the real ones, 
and comparable with the literature values for the many other cases 
where the temperature profile is symmetric, an new approach for the 
Nusselt numbers determination was also undertaken. The calculation is 

made using two different bulk temperatures, 1T  and 2T , one for each 

side of the temperature profile where ∂T/∂y=0, with the transverse 
coordinate 0T yy y∂ ∂ == , avoiding the anomalies discussed above. 

Both approaches allow the correct calculation of the wall temperature, 
once known the corresponding Nusselt number and bulk temperature of 
each approach. The advantage of this new approach is that it also allows 
the calculation of a more realistic heat transfer coefficient, comparable 
with the current values in the literature for flows inside ducts having 
symmetrical temperature profiles, although at the expense of a bulk 
temperature calculation that is not as straightforward which may hinder 
its practical implementation.  

The Nusselt number plots, obtained using the new approach, do not 
show discontinuities or negative values. Also from a didactic point of 
view, it is relevant to show that negative values of Nusselt numbers and 
discontinuations in the curves that reflect their behavior are not 
inevitable and that there are ways to avoid this apparently unrealistic 
behavior. 

Another thing that this new approach revealed was the strong 
variation of the Nusselt numbers with the Brinkman number, at the wall 
with lower heat flux, for Φ values smaller than about 0.2. Finally the 
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two different approaches produce Nu values in a given wall much more 
similar to each other the further away from that wall the coordinate 

* **
0dT dyy =  is.  
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NOMENCLATURE 

b duct spanwise length (m) 

Br* generalized de Brinkman, *
w wBr (8 )U qτ=    

c specific heat of the fluid (J/m3·K) 
Dh duct hydraulic diameter, Dh = 4 H (m) 
h convective heat transfer coefficient (W/m2·K) 
H half distance between parallel plates (m) 
k  thermal conductivity of the fluid (W/m·K) 
n power law index 

Nu Nusselt number, hNu hD k=   

Nu′ Nusselt number, new approach 

Pe Péclet number, hPe UD c kρ=   

wq  Average wall heat flux, ( )w w,1 w,2 2q q q= +    (W/m2) 

wq  heat flux at the wall (W/m2) 

T* nondimensional temperature, ( ) ( )*
0 h wT T T k D q= −   

T  bulk temperature K 
T local temperature K 
T0 reference bulk temperature K 

U  bulk velocity (m/s) 
*u  nondimensional local velocity, *u u U=  

x longitudinal coordinate (m) 

x* nondimensional longitudinal coordinate, *
hx x D=  

y coordinate normal to the parallel plates (m) 

0dT dyy =  coordinate of the point where ∂T/∂y=0 (m) 

y* nondimensional coordinate normal to the wall, *y y H=   

 
Greek Symbols  
α compacting constant, ( )*2Br 2 1n nα = +  

β compacting constant, ( ) ( )*(1 8Br ) 2 1 4 4n nβ = + + +  

ε compacting constant, ( )1n nε = +  

ϕ compacting constant, ( )1 2 1ϕ Φ=  +    

σ compacting constant, ( ) ( )1σ α βε ε= − +  

η compacting constant, ( ) ( )1η α β ε= + +  

ρ density of the fluid (kg/m3) 
Φ wall heat flux ratio, w,1 w,2q qΦ =    

τ* nondimensional shear stress, * *
wyx yτ τ τ= =  

τw wall shear stress, absolute value (Pa) 
τyx local shear stress, absolute value (Pa) 
 
Subscripts  
1 relative to wall 1, cf. Fig. 1 
2 relative to wall 2, cf. Fig. 1 
I relative to region I, cf. Fig. 1 
II relative to region II, cf. Fig. 1 
w wall 
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