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Simultaneous analysis and design were considered
in the optimization of reinforced concrete frames. Frame
elements had rectangular cross sections with double steel
reinforcement. Design variables were the section
dimensions, the area of steel reinforcement and the
structure global displacements. Equality constraints were
the equilibrium equations and inequality constraints were
generated by element reliability requirements, code
reinforcement ratios and section dimension bounds.
Ooptimization strategies were based on the Augmented
Lagrangian formulation and on the Generalized Reducea
Gradient method.

Reliability of the frames was considered at the element

and system level. An element failure function was defined

using moment forces and flexural strength. The random
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variables considered were flexural strength of concrete and
external loads. System reliability was evaluated at the
meéhanism level using combinations of the elementary failure
mechanisms.

Optimization of the frames considering material
nonlinear behavior was also investigated. 1Inclusion of this
property was performed using a one-component model for the
reinforced concrete element. 1Inelastic rotational springs
were added to the ends of the linear elastic element. The
element matrix was obtained by condensation of element
elastic stiffness and secant spring stiffness.

Three frames were researched. Respective results using
linear material behavior were discussed. 1In these three
cases the optimal solutions were found. Element reliability
constraints were active and system reliability was
satisfied. The integrated formulation was‘validated in the
linear behavior range. The nonlinear material behavior

results were presented for the smaller frame.
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CHAPTER 1

STRUCTURAL OPTIMIZATION

Introduction

Optimization is a state of mind that is always
implicitly present in the structural engineering process.
From experience engineers learn to recognize good initial
dimension ratios so that their preliminary designs demand
small changes through the iterative process and that
elements are not overdesigned. The motivation behind this
attitude is to create a structure that for given purposes is
simultaneously useful and economic.

Structural optimization theory tries to rationalize
this methodology for several reasons. The main one is to
reduce the design time, specially for repetitive projects.
It provides a systematized logical design procedure and
yields some design improvement over conventional methods.
It tries to avoid bias due to engineering intuition and
experience. It also increases the possibility of obtaining
improved designs and requires a minimal amount of human-

machine interaction.



There are, however, some limitations and disadvantages
when using design optimization techniques. The first one is
the increase in computational time when the number of design
variables becomes large. Another disadvantage is that the
applicability of the specific analysis program that results
from the optimization formulation is generally limited to
the particular purpose to which it was developed. A common
inconvenience is that conceptual errors and incomplete
formulations are frequent. Another drawback is that most
optimization algorithms have difficulty in dealing with
nonlinear and discontinuous functions and, hence, caution
must be exercised when formulating the design problem.
Another factor of concern is that the optimization algorithm
does not guarantee convergence.to the global optimum design,
yielding on most occasions local optimum points. These
facts lead to the conclusion that optimization results may
often be misleading and, therefore, should always be
examined.

Therefore, some authors suggest that the word
"optimization" in structural design should be replaced by
"design improvement" as a better expression to materialize
the root and outcome of this structural design activity (1).
Nevertheless, there is an increasing recognition that it is
a convenient and valuable tool to improve structural designs

has been increasing among the designers community.



Historical Background

Throughout time there have been various attempts to
address structural optimization. The earliest ideas of
optimum design can be found in Galileo's works concerning
the bending strength of beams. Other eminent scientists
like Bernouilli, Lagrange, Young, worked on structural
optimum design based on applied mechanics concepts (2).
These pioneefing attempts were based on a close relation to
the thoughts and accomplishments of structural mechanics.
They started with hypotheses of stress distribution in
flexural elements and ended with material fatigue laws.

The accepted first work in structural optimization
discusses layout theory, or structural topology. The paper
focused on the grouping of truss bars that createé the
minimum weight structure for a given set of locads and
materials. The author of this primary achievement was
Maxwell, in 1854, and Michell developed and publicized these
concepts in 1904 (3). The practical application of these
theorems was never accomplished since significant
constraints were not included in the original works.

Some procedures widely used by structural designers are
nothing more than techniques of structural optimization. A
well known example is the so-called Magnel's diagram (4).
It is used to find the optihal eccentricity of the cable
that leads to the smallest prestressing force without

exceeding the limits imposed on the stresses in prestressed



concrete beams with excess capacity. This is a typical
maximization problem in a linear design space, where the
design variables are the eccentricity and the inverse of the
cable prestressing force. The objective function is the
value of the inverse of the cable prestressing force, and is
to be maximized. The constraints represent the allowable
stresses in tension and compression at the top and bottom of
the cross-section. The problem is solved using a graphic
representation of the problem, as shown in Figure 1.1, but
could be solved numerically using the Simplex method.
Numerical optimization methods and techniques have been
widely researched and used in the operations research area,
commonly known as Mathematical Programming. The practical
application of these theories has been carried out in
several areas for some decades like management, econcomic
analysis, warfare, and industrial production. Lucien Schmit
was the first to use nonlinear programming techniques in
structural engineering design (5). The main purpose of
structural optimization methods was to supply an automated
tool to help‘the designer distribute scanty resources.
Presently, anyone who wants to consider optimum structural
design must become familiar with recent synthesis approaches

as well as with accepted analysis procedures.



Magnel's Oiagram
Optimum Pair P-e

‘optimum

V@

P - Initial prestressing force:

e - Eccentricity of cable:

* ' ' ,
e - maximum cable eccentricity:

a).b) - minimum 1/P;
c).d) - maximum |/P.

Figure 1.1 Implicit optimization.



Methods

In the last twenty years researchers have made
considerable advances in developing techniques of optimum
design. Research and exploration of these methods were
mainly developed in the aeronautical and mechanical
industries, where the need for more economical and efficient
final products was extremely important. More recently, with
the availability of increasing computer capabilities, civil
engineering researchers and designers have increased their
participation in structural optimization following the lines
defined by the other engineering disciplines. Optimization
methods are, nevertheless, common to these different
engineering design areas and are mainly divided in two
groups. These are commonly known by the names Optimality
Criteria and Mathematical Programming (6). Another areé in
structural optimization researched by a few scientists is
based on duality theory concepts, and is an attempt to unify
the two basic methodologies (7).

Optimality Criteria methods are based on an iterative
approach where the conditions for an optimum solution are
previously defined. The concept can be used as the basis
for the selection of a structure with minimum volume. - This
methodology derives from the extreme principles of
structural mechanics and has been limited to simple
structural forms and loading conditions. The formulation

can be mathematically expressed as follows:



¥k+l = (;(_k,gk‘*'l)
where x is the vector of design variables, uk*tl is an
estimative of lagrangian multipliers and ¢ is an adequate
recurrence relation. Estimation of the lagrangian
nultipliers is made using the active constraints, those
inequality or equality constraints with value close to zero.
Recurrence relation v and lagrangian multipliers represent
the necessary conditions for optimality known as Kuhn-Tucker
conditions.

On the other hand, the Mathematical Programming
approach establishes an iterative method that updates the
search direction. It seeks the maximum or minimum of
multivariable function subject to limitations expressed by
constraint functions. The iterative procedure‘may be

defined as follows:

where oK is the step size and dK is the search direction.
The search direction is obtained through an analysis of the
optimization problem and the step size depends on the one-
dimensional search along that direction. Methods of the
second class may be divided in two areas. These areas are
transformation methods, like penalty functions, barrier
functions and method of multipliers, and primal methods,

such as sequential linear and quadratic programming,



gradient projection method, generalized reduced gradient and

method of feasible directions.

Typical Applications

In structural optimal design applications there are
several types of problems. They address different targets in
structural design such as the best configuration for a truss
or the cross sections of a prestressed concrete beam. There
are four main properties of any structure that may be
focused by structural optimization. These are mechanical or
physical properties of the material, topology of the
structure, geometric layout of the structure and cross-
sectional dimensions. Main types of applications are
optimization of elements, truss bars, flexural systems,
continuum systems, geometry and topology (8).

In the case dealing with element optimization, the
search is done with a reduced number of variables and the
use of code provisions transformed adequately to the
optimization formulation. Element forces are found, element
cross section is optimized, updated element forces are
computed and the process is repeated until there is
convergence. For instance, the optimal design of steel wide
flange sections may have as design variableé the width and
thickness of the web and flanges. Constraints may be
obtained in an explicit form, as the evaluation of the

objective and constraint functions does not require matrix



structural analysis. The'minimization technique may be
chosen as any one of the available direct search methods
(9). Examples of design variables in element optimization
are presented in Figure 1.2.

Optimization of truss bar sections has been thoroughly
studied due to the simplicity of truss structural
optimization problems. There is a decline of interest since
they are now rarely used in present structural engineering.
Each bar is represented by one variable and the global
stiffness matrix terms are linear functions of these
variables. Of the various improvement techniques one is
based on variable linking, consequently reducing the size of
the problem. Another technique to decrease the size is
based on constraint deletion, where inactive constraints are
temporarily kept out of the optimization process. There are
various formulations for the analysis model based on plastic
analysis, force or displacement method (10). An example of
the formulation used for truss optimization is presented in
Figure 1.3.

The problem of system optimization is commonly
addressed using design sensitivity analysis and explicit
approximations of constraint functions. The intent is to
improve the performance of the chosen algorithm. 'Design
sensitivity analysis is the calculation of the analytical
derivatives of the objective and constraint functions with
respect to the design variables. This information about the

change in the value of a constraint related to the changes
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STEEL SECTION

NN\ DESIGN VARIABLES

Flange width
Flange thickness
Web height

Web thickness
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Figure 1.2. Element optimization.
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Minimize ¥ LiAl
subject to

Fi < Fc
Fi < Ft

vhere

Li - length of truss bar i

A - area of truss bar i

Fi - stress in truss bar 1

Fc - allowable compressive stress
Ft - allowasble tensile stress

Figure 1.3. Truss optimization.
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in the design variables, contributes to the reduction of the
exact analyses required during the optimization process. |
Explicit approximations of the constraint functions using a
first order Taylor series expansion are widely used in
Optimality Criteria and Mathematical Programming methods.

In large and continuum systems some other techniques are
used. For example, the sequential optimization of
substructures or decomposition using model coordination
techniques are used to improve the performance (11). An
example of a type of system optimizaﬁion is illustrated in
Figure 1.4.

Geometric and topologic optimization creates geometric
design variables that are, for instance, the coordinates of
nodes in a finite element mesh or the pier location for a
continuous bridge. 1In certain cases where the areas of the
elements have zero as lower bounds, the unnecessary elements
can be eliminated by the optimization algorithm. Sometimes
the concept of separate design spaces, one for joint
coordinates and the other for cross sectional eiement sizes,
is used when trying to reduce the size of the design space
considered at any stage (12). An example of optimal |
configuration is presented in Figure 1.5.

In large optimization problems it is usual to use
multilevel optimization techniques where the structural
designer has to coordinate and optimize at several levels of
the design process. This technique is also useful when the

main goal is to find the optimum geometry besides optimizing
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Optimization of a Two span prestressed beam

X1
X2
" X3
l IXS
Xb
X10 q:"
\_4_4 X8

X! to XB - Section geometry

X7 to X9 - Eccentricities of draped cable
X10 - Prestressing force

Figure 1.4. System optimization.
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OPTIMIZATION
OF

TRUSS GEOMETRY

Load

Initial Configuration

Load

Optimal Configuration

Figure 1.5. Geometry optimization.
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the structural elements. Design variables that control the
geometry are often handled better when considered separately

from the set of sizing variables (13).

Study Obijectives

The main objectives of the present work are to combine
adequately optimization and reliability concepts and to test
the performance of the integrated approach to reinforced
concrete frames. Reliability requirements are imposed at
the element and the system level. At element level a
maximum probability of failure is imposed for each element
and at the system level a minimum reliability index is
imposed for the failure mechanisms.

The material behavior of the reinforced concrete
elements is separated in two phases. The first considers
linear material behavior and the second includes the
concrete and steel nonlinear behavior.

Structural frame optimization problems have usually
been formulated based on the cycling between two distinct
phases, analysis and optimal design. This methodology is
the classical approach in structural optimization. The
first phase consists in an initial sizing or structure
definition. 1In the second phase, a structural analysis is
performed and in the third phase, the structure is resized

or redefined using Mathematical Programming or Optimality
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Criteria methods. The cycling between phases two and three
is interrupted when the termination criteria are met.
| The research option summarized here combines phases two
and three into one only stage. This is accomplished by the
addition of the global displaceﬁents to the set of design
variables. This addition implies that the equilibrium
equations, solved explicitly in the cycling approach, are
added to the set of constraints as equality constraints.
These new equality constraints will be solved iteratively
while in the cycling approach the solution is obtained using
a Gauss type decomposition. The main objective behind the
adoption of this strategy was to experiment this formulation
where the variables related with element stiffness
definitiéﬁ and the displacement variables are in the same
design space. For that reason the simultaneous
optimization and iterative solution of equilibrium equations
could be more efficient than the classical nested approabh.
The application of this formulation was initially
performed with elastic linear frames subjected to static
loading. The constraints consisted of limiting the global
displacements and the element stresses, besides the
additional set of equalities representing the equilibrium
constraints. The optimization method used consisted of
unconstrained minimization of an augmented lagrangian
function of the initial objective function and the equality

and inequality constraints (14).
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sSummary

Results obtained with the integrated approach were
sncouraging and proved that the method was acceptable for
slastic design purposes with displacement and stress
constraints. Despite the fact that optimum values were
obtained there was however an increase in the size of the
problem. This modification of the problem size was due to
the fact that the number of variables and the set of
constraints augmented.

The final type of optimization problem considered in
this work was the minimization of the total cost of a
reinforced concrete plane frame submitted to static loading
considering the actual stress-strain diagram for concrete
and the elastic-plastic behaviof of the reinforcing steel.

A typical element had a constant rectangular section and
doubly reinforced with equal amount of flexural steel on
both sides. Width and height of the cross sections had
prescribed lower bounds, representing practical requirements
and an adequate ratio between the height and the width. The
amount of steel was limited by lower and upper bounds |
dictated by the minimum and maximum reinforcing steel ratios
requested by the Building Code Requirements for Reinforced
Concrete, commonly known as ACI 318-83.

Inequality constraints considered included maximum
values for the global displacements and a minimum

reliability index for the element flexural failure function.
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Displacements allowed were based on serviceability
requirements like cracking and relative story drift. The
reliability indices were based on usual values of
probability of failure used in design codes. Only the
flexural behavior of the frames was analyzed since it is the
most important for usual structures and the members were
modeled as beam elements.

Inelastic behavior of the structure due to the material
nonlinearities imposes a change of the global stiffness
terms independently of those dictated by the alterations of
the dimensions during the optimizatioh search. For that
reason, the reinforced concrete element was modeled as a
linear elastic beam with honlinear rotational springs at
each end. Rotational spring stiffness was considered
infinite when the moment was below the yielding moment.
Above that value the element stiffness was inverted to its
flexibility and the inverse of the secant spring stiffness
value was added to the corresponding diagonal terms. Spring
stiffness was calculated using the secant value of the
bilinear moment-rotation diagram corresponding to the
current global rotation. Values of the yielding and
ultimate moments were obtained by integrating the actual
stress-strain diagram for the compressive force in the
concrete. The corresponding rotation at a hinge was
calculated by integrating the curvature diagram along the

element.
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Element reliability was evaluated using a Level 2
method, i.e., an approximation to the evaluation of the
exact probability of failure. The statistical variables
considered were those assumed to have greater influence on
the final result. These were the compressive strength of
concrete and the external loads, assumed as normal
distributed variables. The corresponding reliability index
was calculated for constraint evaluation using the ultimate
moment obtained from the integration of the respective
strain diagram.

Optimization techniques tested were based on the
Augmented Lagrangian and the Generalized Reduced Gradient
methods. The optimization problem was run, and after
termination, the structure probability of failure was
compared with the assigned value. If the result was not
éatisfactory, the process was restarted with updated values
of the element reliability indices for the members involved
in the most probable collapse mechanism.

Evaluation of the system reliability was divided in two
phases. First phase consisted of the identification of the
elementary collapse mechanisms. In the second phase these
elementary mechanisms were linearly combined to generate all
significant mechanisms. System reliability was calculated
considering the frame as a series system where each element
is one of these mechanisms with higher probability of

failure.
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Generation of the fundamental collapse mechanisms was
made using Watwood's method (15). The automatic procedure
consisted of using the geometric configuration of the frame
and external loading to find all the one degree of freedom
failure mechanisms. The reliabilities of these mechanisms
was calculated using the corresponding failure functions

System reliability was evaluated using the Beta
unzipping method (16). The elementary mechanisms were
linearly combined to obtain other failure mechanisms. The
corresponding failure functions were created and the
associated reliability indices calculated. 1In each set of
combinations only those in the closeness of the minimum were

considered for the next combination (17).




CHAPTER 2

INTEGRATED OPTIMIZATION OF LINEAR FRAMES

Original Research

Integrated formulations for structural optimization
problems has received little attention in the published
literature. The works of L. Schmit and R. L. Fox are
considered the pioneering work as applied to integrated
structural optimization (18). The concept of this
structural synthesis problem is to combine the design
variables with the behavioral variables.

The immediate consequences of this concept are that the
problem has a larger number of design variables and the
traditional nested analysis-optimization process is avoided.
This approach has not been popular since past performance
was not comparablé to the iterative techniques based on
Optimality Criteria and Mathematical Programming concepts.
In the integrated formulation the equilibrium constraints
generate a large additional number of equality constraints.

Several researchers have recently adopted the
- integrated approach with encouraging results. These recent
attempts have been motivated by new solution procedures

21
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considered more adequate for this type of formulation and by
computer hardware development. An example is the
optimization of elements with stiffness and strength
properties proportional to the transverse size of the
elements with linearization of the displacement constraints
(19) . Another algorithm uses the incremental load approach
and conjugate gradient methods to optimize a structure
subjected to nonlinear collapse constraints (20). 1In this
case the stiffness matrix is approximated using the element-
by-element technique (21). A more recent work uses a new
solution technicque based on Geometric Programming theory
(22). In this formulation the equilibrium constraints are
the sum of geometric térms that are function of the design
variables.

This chapter describes research that was conducted to
study the integrated analysis approach for portal frames
with linear behavior and static loading (23-26). The
initial phase addressed only constraints on the
displacements. Stress constraints were added on a second
phase. Throughout this part of the study the frame elements

had continuous prismatic rectangular cross section.

Augmented Lagrangian Function
The optimization technique of cycling unconstrained

minimizations of a penalty function, based on an pseudo-‘

objective augmented lagrangian function, was chosen as the
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solution scheme (27). The design variables were the areas
and inertias of each element and the global displacements.
Since it is a planar frame there are three degrees of
freedom for each joint in the structure.

The merit function used was the volume of the
structure. In frames made with one material, volume is
generally considered to be proportional to the structure
cost. This value was calculated as the sum, for all
elements, of the product of the element area times the
respective length. The set of inequality constraints was
generated by the structure physical behavior and material
properties. Limits were imposed on the global displacements
and, in the final stage, the element stresses were also
bounded.

The compatibility and equilibrium requirements were
guaranteed by the ;dditional group of equality constraints.
This set was given by the product of the stiffness matrix
and the vectof of global displacements from which the vector
of external global loads was subtracted.

A brief description of the problem variables and
respective formulation for a typical planar frame is the

following:
Structural parameters

- n structural elements;

- m number of global degrees of freedom;
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- R vector of static external loads:

- D vector of bounds of m;

Design variables

Xk, k=1,3,...,2n-1 --- area of element (k+1)/2;
X5, j=2,4,...,2n --- inertia of element j/2:
Xj, i=2n+1,2n+2,...,2n+m --- global displacements;

Objective Function

f(x) =2 1pxk, p=1,n
where

lp - length of element p;
Equality Constraints

H(x) = K x* - R
where

K - global stiffness matrix:;

x* - displacement vector;

Inequality Constraints
G(x) =x*-DR=<oO

Augmented Lagrangian Function
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L(x,u,v) = £(x) + u
where

U, v - lagrangian multipliers;

P - penalty factor;

G' - maximum of (G, -v/2P}.

The optimization procedure consists of several cycles
of unconstrained minimization of the pseudo-objective
function. The values of the lagrangian multipliers are kept
constant during each cycle of the unconstrained
minimization. At the end of an unconsgrained minimization
cycle, the multipliers are updated using an appropriate rule
(12). The proéedure is repeated for successive cycles until
there is no significant change of the objective function.

At this point the primal and dual optima have been found and

the algorithm stops.

Unconstrained Minimization Techniques

Initially the technique used for the unconstrained
minimization of the augmented lagrangian function was a zero
order method referred to as the Hooke and Jeeves method or
Pattern Search. The classification as a zero order. method
means that it does not utilize any information about the
form or shape of the function. After the phase when stress
constraints were added, a first order method, Steepest

Descent, was tested as an improvement in the algorithm's
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performance (27). The technique is based on the gradient of
the function that indicates the direction with the highest
slope at a given point; Second order methods were
determined inappropriate because the pseudo inequality
constraints, g', have discontiﬁuous second derivatives.

Hooke and Jeeves method is an iterative précedure where
each step may involve two kinds of moves. The first type of
moves explores the local configuration of the pseudo-
objective function along the directions of the design
variables. The investigation is done within a prescribed
step size from the current temporary design point. Each
variable is investigated one at a time. The value of the
step size is ipcreased or decreased with success or failure
in the ekploration. This search along the coordinate
directions will evéntually lead to a smaller value of the
‘pseudo-objective function. Otherwise the optimum has been
reached and the exploration stops.

Once all variables have been searched, a pattern move
is attempted. The pattern direction is defined by the
starting and final points of the variable search and a move
is made along that direction. The process of exploration
and pattern moves is repeated until there is no significant
improvement of the pseudo-objective function. .A graphic
example is presented in Figure 2.1. The initial point of
the variable search, 1, and the final point of that cycle,
4, define a pattern direction that yields a better design

point, 5.
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HOOKE and JEEVES

| - Initial Point 4/5 - Pattern Move
6 - Final Point
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Figure 2.1. Pattern Search.
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A éomputer program was written in accordance with the
previous statements and discussions. The structure of the
program was conceived by taking into account future
inclusions of other types of constraints, changes in the
minimization techniques, element replacements and extension
to nonlinear and dynamic problems. Hence the program was
divided into separate subprograms for the independent tasks

(26) .

Final Results

The performance and accuracy of the formulation
described above was evaluated. Test examples for that
purpose were structures with an explicit optimal
configuration or simple frames. In the isostatic examples
the optimal explicit solutions could be obtained and
compared to the computer results. For the other structures,
several runs were made with different initial design points
and the optimal configuration was determined.

Minimum values were imposed for the dimensions of the
cross sections, represented by lower bounds of the areas and
moments of inertia. The optimization results show the final
values of the displacement variables as the exact solutions
for the equilibrium equations. The final area and moment of
inertia are also the expected optimal values. Results of a

cantilever beam are presented in Figure 2.2.
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X3
X4
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Xl - area of bean

X2 - inertia of bean

X3 - horizontal tip displacenent
X4 - vertical tip displacenent
X3 - tip rotation

VARIABLE | INITIAL | FINAL

XItin)| 1.0 6.65
X2 (i) | 1.0 78625

X3 (in)| 0.4 0.500
X4 (in)| 0.4 0.353
XS (rad)| 0.4 0.006

Figure 2.2. Cantilever beam.
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Penalty factors used in these runs were of an order of
maghitude greater than that of the objective function and
constraints. They were kept constant during each
optimization cycle. Scaling was also mandatory since the
various terms of augmented lagrangian function have
different orders of magnitude. The adopted scaling method
consisted of using the inverse of the initial value of the
expressions concerned. Initial guesses for the design
variables were also important for the algorithm performance.
The closer these initial designs were to the optimum, the
faster the convergence rate.

An updated version of this algorithm was created with
the addition of stress constraints. The results of the
structures used to test this addition illustrated the
adequacy of the method for this type of problems. Again,
for the cantilever beam with the explicit solution, the
optimum results were obtained. For the frame, the final
answer corresponded to what was expected and converdgence was
obtained. Final mass distribution resembles'that previously
attained just with displacement constraints. The geometry
and related values are presented in Figure 2.3.

A tapered cantilever loaded at the tip was compared
with the results obtained using a recursive relation between
the dimensions and displacements (12) . The two sets of
results, those from the reference and those from the program

run, are very close. The maximum absolute difference
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L000K /\ e
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ELEMENT INITIAL| FINAL
Ares (in2) 1.0 25.4
1 Inertis (ind) 1.0 120224
. Ares (in2) 1.0 179
Inartis (ind) 1.0 3912
Ares (in2) 1.0 35.1
3 Inertis (ind) 1.0 17058

Figure 2.3. One bay frame.
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between the correspondent section dimensions is less than

five percent.

Further Improvements

In subsequent developments, some other improvements
were added to the algorithm that used the augmented
lagrangian formulation. The first consisted of eliminating
from the search those constraints that were inactive. Those
constraints whose value did not show a change when the line
search was along one of the design variable, were skipped
from recalculation. This savings in computational effort
allowed a reduction of forty per cent of the total run-time.
This feature was discarded when the gradient search method
was implemented. With this technique the changes in the
design variables were done simultaneously, all constraints
were altered and selective recalculation was no longer
Possible,

Another significant improvement was achieved by
starting the solution with feasible displacements. The
displacement variables were calculated at the beginning of
the Program corresponding to the initial loading and frame
dimensions. This led to the situation where the equality
Constraints were exactly satisfied at the start of the
iteration prdcedure. This addition was kept in the version
using the gradient search. Work was also done on selecting

~the initial cross section dimensions. Rules of thumb were
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found to expedite calculations to obtain acceptable initial
values.

The method of steepest descent makes use of the
gradient of the pseudo-objective function. The gradient
vector represents the line along which there is the highest
variation of the pseudo-objective function at the actual
design point. Moving in the direction defined by the
negative of the gradient vector is expected to decrease the
value of the pseudo-objective function. This direction is
called the steepest descent. A graphical'representation of
the method is displayed in Figure 2.4. Since the explicit
formulation of the gradient of the pseudo-objective function
was not practical to obtain, the gradient vector was
obtained using a finite difference techniqﬁe. To obtain the
minimum point along the gradient direction another design
point along that line is found such that it has a higher
pseudo-objective function value. Then, the optimum value
should lie in this interval and a line search is performed
using the golden sectidn method.

The gradient vector was normalized to avoid numerical
ill-conditioning. For the same reason, constraints and the
design §ariab1es were also scaled. Numerical difficulties
are predictable if just one of the constraint function, or
the objective function, is of different magnitude than the
rest of the terms or its rate of change is considerably
different from the others. Scaling factors for each

constraint were evaluated as the ratio between the gradient
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Figure 2.4. Gradient method.
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of the objective function and the gradient of that
constraint. Scaling of the design variables wasbalso tried.
The normalization of the design variables consisted of
applying scaling factors that reduced them to a single order
of magnitude.

The results obtained with this unconstrained
minimization technique were inferior to those using the
Hooke and Jeeves method. The apparent reason was the shape
of the surface generated by the augmented lagrangian
function. Around a relative local optimal point, where the
equality constraints are satisfied, the variation of the
augmented lagrangian function was very abrupt.

Consequently, any line search performed starting at a
relative optimal point would invariably return to the same
initial point.

When using a set of design variables that was not a
relative local optimum, the gradient search would still not
converge. The reason for this lack of cdnvergence was the
numerical error created by the steep slope of the function.
This fact could not be avoided despite the several
combinations of the constraint and variable scalings aimed
at smoothing the shape of the augmented lagrangian function.

Another phase of researcﬁ consisted in using a mixed'
method for the search. In a first phase, Hooke and Jeeves
was dsed to obtain a better second point than the starting
'design point. This second point was then used to apply ﬁhe

gradient search. The procedure‘was repeated with the
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consequent updates of the lagrangian multipliers. This
mixed method did not present any improvement over the Hooke
and Jeeves method. The important conclusion from the
results of this mixed strategy was that convergence could
only be obtained when enough iterations of the Hooke and
Jeeves phase were completed. Consequently, the adopted
unconstrained minimization method for the optimization of
the augmented lagrangian function in the linear static

formulation was the Hooke and Jeeves method.



CHAPTER 3

NONLINEAR REINFORCED CONCRETE ELEMENT

Introduction

Reinforced concrete elements are made of two different
materials,'concrete and steel. Concrete is the massive
component, has a high compressive strength and fails easily
when submitted to tension. Steel is embedded whenever
tensile strength is required. For that reason the
additional steel bars are commonly designated as reinforcing
steel.

Adequate combination of these two materials originates
a symbiotic composite material that has been widely used
(28) . These elements are designed with bending, compression
and torsion requirements for code and safety compliance. 1In
Some cases tension is also allowed.

Concrete and steel have nonlinear stress-strain
diagrams. Consequently, when material nonlinearities are
included, modeling of the behavior of any composite element
is very difficult (29-30). When loads produce a tensile
Stress greater than the maximum allowable value for the
Concrete cracking results. When reinforcing steel stress

37
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reaches the yielding value there is a large strain and
section curvature increase. Geometric nonlinearities are
then created by extra rotations of flexural elements fro=x
the cracking and steel yielding.

A basic assumption in nonlinear analysis of reinforced
concrete frames is that the element rotations with relation
to the line defined by the nodes, chord rotations, are small
and the theory for straight elements may be applied with
some adaptations. The most popular analysis techniques are
based on incremental loadings of the structure and are known
by the initial stiffness and tangent stiffness methods. A
techrnique based on the application of the entire locad at a
single step is known by the secant stiffness method. This
last technique was chosen for the analysis of the structure

sirce it is more adequate to the optimization formulation.

Element Modeling Survey

In the last three decades there have been many atte=pts
to create a simplified beam mcdel of the inelastic
reinforced concrete element (31-33). The main objective for
this research has been to advance a solution providing
Precise results within reasonable computational and memory
storage limits. The study has a significant importance for
the analysis of reinforced concrete structures submitted to
dynamic loads (34-35). In these examples the moments at the

ends are close to the ultimate allowable values. This
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closeness implies that the concrete and steel stresses are
in the nonlinear intervals of the stress-strain diagrams;
The frame behaves as if inelastic plastic hinges have formed
due to concrete cracking and steel yielding.

Initial studies in this area addressed simple
structures with moment-rotation relationship conditioned by
the moments at the beam extremities. This produced the one-
component model with nonlinear rotational springs at the
ends. Later, another theory assumed a bilinear moment
resistance with two parallel elements, one to simulate
vielding and the other to represent strain hardening.
Several variations of these two theories have been developed
and experimentally tested (36).

Recent improvements in computer software led to
sophisticated modeling of reinforced concrete elements using
nontraditional finite element techniques. A simple approach
to this type of problem is based on the theory of damage
mechanics (37). Thé beam element is modeled as a
macroelement divided in models with explicit and accurate
behavior. The behavior of the whole structure is then
extrapolated from the small elements.

These types of models have been tested thoroughly to
ascertain its reliability and accuracy (38). These
evaluations, made mostly by comparison of computer program
results with experimental test data, provided a great deal
of information for further enhancements and refinements.

The option for this study had to fall on a element model
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that is a compromise between the accuracy required and the
cyclic nature of the optimization process (39). Repeated
evaluation of the element stiffness due to the changes of
the physical properties of the elements is required. For
this reason it is highly desirable to choose a model with

low computational requirements.

Beam Element with Inelastic Hinges

Giveh the available sblutions for the model of the
reinforced concrete element, the one-component model was
chosen as shown in Figure 3.1. It is a simple idealization
that doesn't increase the total number of elements of the
structure. This model has shown to accurately model the
nonlinear behavior of reinforced concrete, even for dynamic
loadings (40). Some basic assumptions and simplifications
were made for the definition of the model. For example, the
fact that concrete cracks under tensile loading, causing
local nonlinear behavior, was not accounted for. Time
dependent properties of the concrete were not considered.
Shear effects were not included in this formulation. The'
loads were considered applied at the nodes and elements with
loads in the span can be approximated by a discrete number
of elements with nodal loads.

The unique element internal action considered was
flexure. vYielding of the reinforcing steel may only take

Place in the hinges at the element ends. Strain hardening
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Une-Companent Model

Reinforced Concrete Element

Linear Elastic Element

L= 9
opring with Secant Stiffness

Figure 3.1. Element model.
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;and related altered element stiffness are simulated by the
flinear element with nonlinear rotational springs at the

5 extremities. Inelastic rotations of reinforced concrete

? hinges at the element ends are determined as a function of

j the respective moment-curvature relationship for each
element. These curves are redefined every time any element
sectional properties changes during the optimization process
since the ultimate and yielding moments also change.

A typical moment-curvature diagram for reinforced
concrete elements is bilinear. It is obtained assuming
material stress-strain curves that are parabolic-linear for
the concrete and bilinear for the reinforcing steel as shown
in Figure 3.2 (28). The stress in the concrete is
designated by fo and the stress in the steel reinforcement
is represented by f5. The algorithm used to compute the
moment corresponding to a certain strain diagram is an
iterative Newton based iteration that determines the depth
of the neutral axis guaranteeing equilibrium of the internal
forces. Then, after determining the internal coupled forces
the related moment is computed.

All reinforced concrete elements are doubly reinforced
_ with equal areas of steel on both sides. This assumption is
valid for columns andlacéeptable for beams since in
Conﬁinuous frames theré are moments of different sign along
the beams. Evaluation of the moments for each reinforced
concrete section was based on the exact internal equilibrium

equations as follows:
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Figure 3.2. Material behavior.
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Cc + Cg = Tg
where

Cc - compressive force in the concrete and is equal to
the area under stress-strain curve corresponding
to concrete strain eg;

Cs - compressive force in the steel area Ag
corresponding to steel strain ecg;

Tg - tensile force in the steel area Ag corresponding

to steel strain eg (eg < €y).

Typical element mdments necessary to define the
bilinear moment-curvature diagram were the yielding and
ultimate values. These characteristic values were
determined considering the corresponding sectioh strain
distribution, the stress-strain diagrams for concrete and
Steel, the location of neutral axis and the moment of the
internal forces as shown in Figure 3.3. The compressive

force of the concrete is given at any time by

Cc = a fep b kd

where

€ca
@ = fo fc/(fcm€caldec:
fem - maximum flexural concrete stress;
€ca - concrete strain at the top compression fiber;
b - element cross section base;

kd - distance of neutral axis from top compressed fiber.
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SECTION CHARACTERISTICS
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Figure 3.3. Reinforced concrete section.
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The force in the compressed steel is given by

Cg = Ag fcs
where
Ag - steel area;

fcg - stress in compressed steel.
The force in the steel under tension is determined by

Ts = AS fy
where

fy - yvielding steel stress.

For instance, the internal ultimate moment is given by
the moments of these three internal forces about the top
compressed fiber. For that reason a parameter 1, that
defines the centroid of the concrete compressive stress

diagram, is introduced as

€ca

€ca
Q=1 - Ec fc dec /(eca fc dec)

0 0
These parameters, a and 1, when the ultimate concrete

strain is defined as e¢c = 0.004, become

3/8 (region AB)

R
"

2/3 (region AB) 9]
0.51851 (region BC)

R
il

0.9 (region BC) n

where the regions AB and BC are defined in Figure 3.2. The

section flexural strength, Mj, may be defined as
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where
d’- distance of Cg to top compressed fiber;

d - distance of Tg to top compressed fiber.

Element curvatures corresponding.to these yielding and
ultimate moments are obtained assuming that plane sections
remain plane after deformation and there is no strain
hardening of the reinforcing steel. These formulas are as

follows:

By

Pu = (€sa *+ €cu)/d

(GY + €Ca)/d

where
yielding curvature;
Eg / fy:

Eg - 29x106 psi;

e
<
[}

fy - yielding stress of reinforcing steel;
€ca - maximum concrete compressive strain;
$y - ultimate curvature;

€sa - actual tensile strain of steel;

€cy - ultimate compressive strain of concrete.

These section characteristics define section diagrams
as shown on Fiqgure 3.4. The value of the ultimate rotation
was given by the integration of the curvature along the

element. Two types of curvature diagrams were considered
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Figure 3.4. Element deformation diagrams.
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for integration. The first one was when moments at element
ends had the same rotational direction and the second when
the rotational directions were opposite. In both cases a
simplified method was used to integrate the curvature along
the element to find the corresponding rotation since the
moments at the other end were kept constant. Yielding
rotation for any node of the element was calculated assuming
the yielding moment at that node and keeping the other
moment unchanged. The same method was applied for the
calculation of the ultimate rotation where a modified
curvature diagram was used as schematically exemplified in

Figure 3.5.

Beam Element Stiffness

The elastic element chosen has a stiffness derived in
classical terms. End rotational springs had variable
stiffness depending on element moments at the nodes. A
large value was assigned to the secant spring stiffness when
moments were below the yielding value assured a linear
‘behavior. The secant stiffness value obtained from the
moment rotation diagram was used for moment values above
yielding. The strain hardening ratio of the linearized
moment rotation diagram was computed as the difference
between_ultimate and yielding moments divided by the

difference between the ultimate and yielding rotations. A
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MOMENT DTAGRAM

Mi - Moment at node i
Mj - Moment at nade |
My - Yielding monent

- CURVATURE DIAGRAM

. ¢ )
%JQ\ | y p
i P '

Lo ‘i

/qu - Ultinate curvature

§ng - Yielding curvature
ﬁ] - Curvature at node |

Figure 3.5. Curvature integration.
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graphical description of these definitions is presented in
Figure 3.6.

The element modified stiffness was derived from the
condensation of elastic stiffness matrices of the linear
elastic element and the rotational spring elements. To
condense the two matrices the first step consisted of
inverting the sum of the corresponding flexibility matrices
concerning the independent element rotational degrees of
freedom. The next step was the expansion of this element
stiffness to include the axial displacements, uncoupled from
the spring rotations, and the other dependent element

degrees of freedom. The main steps of this step are the

following:
- 1 -1
_ -1
1/Kgi 0 1/3  -1/6
[ Ks ] = + 3EI/L
0 1/Ks -1/6 1/3
-1 0 0 1 0o o0
fa]=]0 1/L 1 0 =-1/L O
0o 1/L 0 0 =-1/L 1
L . J
vhere [ Kmog 1 = [ a]® [ Ks* 1 [a]

Kg - secant stiffness matrix with element rotations;

Ks* - expanded secant stiffness matrix with
uncoupled axial stiffness;

Ksi - stiffness of spring at node i;

Ksj - stiffness of spring at node j;
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Mu - Ultinate moment
My - Yielding moment
Kl - 10e30

KD = (Mg - . Ksec - Spring stiffness for
2 - (Mu - My)(Bu - dy) s

Figure 3.6. Secant spring stiffness.
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element modulus of elasticity;
element moment of inertia;
element length;

expansion matrix;

Kpod - modified element matrix.

After evaluating the modified element stiffness

matrix

it was transformed from the local coordinates to the global

coordinates by the use of the corresponding rotation matrix.

The values of the terms of this element stiffness matrix

were then used to compute the corresponding updated equality

constraint values.

The process was similar to assembling a

structure global matrix using a location matrix relating the

element degrees of freedom with the structure global degrees

of freedom.



CHAPTER 4

STRUCTURAL ELEMENT RELIXBILITY

Introduction

Design and checking of structures ih the field of Civil
€ngineering has been traditionally bas=d on deterministic
ahalysis. Adequate dimensions, materizl properties and
loads are assumed and an analysis is carried out to obtain
the required evaluation. Nevertheless, variations of all
these parameters and questions related to the structural
model may impose a different behavior =han expected (41).

It must be emphasized that if there were no uncertainties
related to the prediction of loads, materials and structure
modeling, then the respective safety wzuld be more easily
guaranteed.

For these reasons the use of protzbilistic principles
and methodologies in structural desigm has been increasing.
Design for safety and performance should consider the
conflict between safety and risk. The objective of
Probability concepts aﬁd methods is tc develop a framework
where the effects of these uncertaintiss are considered.
Structural reliability has received tzz attention of several

54
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researchers and, consequently, it is introduced into almost
all recent structural codes worldwide.

It is a relatively young structural science that
' evolved in the same way as other new areas where theoretical
studies dictate the general principles for systematic
tfeatment of problems. There are however practical
difficulties in obtaining enough statistical data and
handling the sophistication of the probabilistic methods.
For these reasons the analytical processes involved in the
determination of structural reliability were grouped in
different working levels (42). These working levels depend
on the problem considered and the-desired accuracy for the
reliability evaluation. There are three basic levels and
the classification increases with the sophistication of the
method used and the amount of statistical data that is
manipulated.

Level 1 uses a methodology that provides a structural
member with an adequate structural reliability by the
specification of partial safety factors and characteristic
values of design variables. This is the method currently
used in structural design codes (43). Level 2 includes all
methods that control the probability of failure at certain
points on the failure boundary defined by a limit state
equation (44). Level 3 groups all techniqﬁes that perform a
Complete and exact analysis of the structure taking into
account the joint probability function of all the variables

involved (45) .
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In this chapter, the technique used to analyze the
structural reliability of each reinforced concrete beam
element is described. Due to the nature of the problemn,
where optimization and reliability evaluation are performed
simultaneously at the element level, a Level 2 method was
‘chosen. Since the concepts of limit state design and
probability of failure are intimately connected with
structural reliability, a brief description is also
included.

Concept of limit state may be described as that state
beyond which a structure,_or part of it, can no longer
fulfill the functions or satisfy the conditions for which it
was designed. Namely, the structure is said to reach a
limit state when a specific response parameter attains a
threshold value. Examples‘of ultimate limit states are the
loss of equilibrium of a part or the whole of the structure
considered as a rigid body, failure or excessive plasticity
of critical sections due to static actions, transformation
of the structure into a mechanism, buckling due to elastic
or plastic instability, fatigue, excessive deflections and
abundant cracking.

Modern codes divide limit states into two main groups.
Ultimate limit states, corresponding to the maximum load-
carrying capacity, and serviceability limit states, related
to the criteria governing normal use and durability (46).

For each of these groups the importance of damage is
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different and is represented by the adopted respective
probability of failure.

For instance, in reinforced and preétreséed concrete,
code checks for the ultimate limit states are based on
element forces, except in the plastic analysis where»the
design variables are the loads. In cases where fatigue is
involved, stresses are alsé the control variables. The
service limit states are the cracking limit state and the
deformation limit state. 1In this work only the ultimate
‘flexural limit state and the global deformation limit state
are-addressed since they are the more relevant for the
optimization study.

Acceptable risks of failure for any structure are
affected by the nature of fhe structure itself and its
expected application. These are dependent on social and
“local variations. It is common for structural engineers to
balance the contradiction between the economy and safety of
the structure. This particular aspect is the main reason
why it is so appealing to combine reliability and
optimization in structural design.

Probabilities of failure used in limit state designs
vary with the risk of loss of human lives, the number of
lives affected and economic consequences. 1In ultimate limit
states the range of probability of failure adopted is
betﬁéen 104 and 10~7 over a 50 year expected design life.
In serviceability limit states the probability of failure

varies between 10-1 and 10-3.
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A criterion proposed is as follows (41):

pg =105UT/ L
where
U~-0.005 ........ Places of public assembly, dams;
0.05 .vev0..... Domestic, office, industry, tfavel;
0.5 veeeses0ss.. Bridges;
5 tteveeseess. TOWers, masts, offshbre structures;
T - life period of the structure(years):

L - number of people involved.

These values must be interpreted carefully. For
example, the value of 1073 means theoretically that, on the
average, out of 1000 nominally identical buildings, one will
crack or deform excessively. It is evident that in civil
engineering 1000 identical buildings rarely occur, even
neglecting the fact that a statistically significant number
require samples at least 10 to 20 times larger.

' Moreover, the determination of these low probabilities
requires extrapolations of statistical properties that are
experimentally known only around the mean values of the
random quantities. For these reasons, the probabilities of
failure in civil engineering have no real statistical
Significance and they must be considered not as
deterministic quantities but just as conventional

Comparative values.
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In consequence of the above considerations, the
differences between the methods used in each of the three
levels are rather operational than conceptual. Thefe are no
rigid boundaries between them. They are used in accordance
with the required accuracy and the nature of the problem to
be studied.

Level 3 methods require a complete analysis of the
problem and also the integration of the joint distribution
density of the random variables extended over the safety
domain. They remain in the field of research and are used
to check the validity of approximations, idealizations and
simplifications performed in the other two levels.

Level 2 methods use random variables characterized by
their known or assumed distribution functions, defined in
terms of important parameters as means and variances. This
avoids the multidimensional integration of the previous
method. These methods may be used by engineers to solve
problems of special technical and economical importance.
Code committees engaged in drafting and revising standard
codes of practice use them to evaluate the partial safety
factors. It is possible that computational developments in
the near future will allow for such methods to be more
commonly used by the practicing engineer. The probabilistic
aspect of the problem in the Level 1 methods is represented
by characteristic values of the random variables involved.
With these characteristic values partial safety factors are

derived using Level 2 methods. They are used by most
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engineers where reliability theory and probabilistic methods
are the basis of their code provisions.

These Level 1 methods could be replaced by the Level 2
methods if an agreement was obtained in the following
jssues: selection of basic random variables for each
specific problem, their distribution types and relative
statistical parameters; form of the various limit state
equations and choice of models; operational reliability
levels to be adopted in different design situations.

It must be emphasized that the advantage of Level 1
schemes over Level 2 are their great operational simplicity
due to the use of fixed and constant partial safety factors
for a given class of design situations. The main
disadvantage of Level 1 is the selection of partial safety
factdrs for a given structural class in such a way that the
efficiency of the method proposed is satisfactory. It must
assure that the deviation of the reliability of a design
made on the basis of the adopted coefficients from the
desired reliability level laid down in the code is

acceptable.

Two Dimensional Space Example

Let R and S be two random variables, where R defines
~Strength and S the load. Then the limit state function z

shown in Figure 4.1 is defined as
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Figure 4.1. Design safety region.
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where
r - resistance function:;

s - load function.

The domain D (2z>0) is the safe domain and D’(2<0) is
the failure domain. The probability of failure, pf, is the
probability that a point (R,S) belongs to D’; Once the
statistical distributions of the random variables R and S
are known, the numerical solution of the corresponding
equation will determine pg. Assuming that both variables R
and S have a Gaussian distribution, and further defining r®
and s™ as the mean values, and or and ¢g as standard
deviations of R and S, réspectively, the random variable 2
will also be normal and its statistical parameters are

defined as

ZzM = pM - gm
0, = (o2g + 02g5)%
where
zm - mean value function;

o, - standard deviation function.

Defining F, as the cumulative normal distribution

function, the probability of failure may be calculated as

pg = P{2<0}) = Fz(0)
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A graphic representation'of these functions is
presented in Figure 4.2. Introducing the standardized

variable u and the reliability index as

us=(z-2" / oz

3=2Mm /g, = (r® - sM) / (a2r + 02g) %
then the probability of failure may be expressed as
pg = Fu(-2M / 0z) = Fu(-8)

An important concept widely used in structural safety
when considering random variables is the Central Safety
Factor. It relates the mean values and coefficients of
variation of R and S to determine a probabilistic safety
factor (44). It is a simplistic way of establishing some
‘influence on the design variables of the respective random
characteristics.

To consider a more detailed study a Level 2 method is
applied in the element reliability evaluation. 1In this
method safety checks are made at a finite number of points
of the failure boundary. A graphic representation in a two
dimensional space is presented in Figure 4.3. In the case
where this check is made at only one point, the parameter to
be determined is the minimum distance between the origin of
the system of the standardized variables to the boundary of

the safety domain.
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It is possible to associate thié distance with a precise
meaning in terms of reliability. A technique derived from
this concept is the Lind-Hasofer Minimum Distance method
illustrated in Figure 4.3 (47).

Let X (X7, X2,.-., Xn) be the vector of the basic
random variables of a given structural problem that may be
assumed to be statistically uncorrelated, involved in a
given structural problem. Let 2 = g(X1, X2,++++s ¥n}= 0 be
the boundary of the safety domain. The values of X

belonging to the failure domain will satisfy the inequality

z=9g(x) < O

The method consists in projecting the function z in the

space of standardized variables defined as
uj = (xi = x™j) / oxj

Measuring, in this space, the minimum distance B of the
transformed surface g (uy, uz,...., up) from the origin of
the axes. A design is regarded reliable if B8 > B*, where 8%
is prescribed by an appropriate code provision.

In geometrical terms, the hypersphere having radius B*
and with center at the origin of the axes uj is required to
lie within the transformed safety domain. The justification
fof such a method is that most of the joint probability

density of the variables involved will be concentrated in

|
!
!
1
!



Ul

[=0

66

2 (U2) >0

7 (U1u2) <

V

U2

Figure 4.3. safety checks.
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the hypersphere having radius B*, and that consequently it
will be associated with values of vector X belonging to the
safety domain. Mathematically, the problem to be solved 1is

to find
B = min (T uj)*

In a great number of cases the safety boundary domain

is linear, and one can write an expression for z as follows:
2 =g (X1, X2/++++¢ Xn) = b + Z ajXj
Then, B can be immediately determined as follows
g (u, uUz,..+, Up) =b + % ajxMj + T ajoxjuj =0
and the distance of this hyperplane to the origin is
g =3 (aj.xMy + b) / (3 a2jox2i)%

Expressing in terms of the standardized variables is
equivalent to replacing the hypersurface by the hyperplane
passing through P*, the point of minimum distance between
the two geometric elements. A graphical illustration of

this approximation in a two dimensional space is presented

in Figure 4.4. Finally, the probability of failure, pgf, and
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the reliability index, B, are within certain approximatiors

related by
pg = 1 - 9(B)

where ¢ is the function of standardized cumulative normal

distribution.

Reinforced Concrete Element Reliability

The element actions considered in analysis are only the
moments at the member ends. These are the points of maximum
value since only concentrated nodal loading is considered.

The failure function z is then defined as

where
Mj - ultimate internal resisting moment;

Mg - maximum external element moment.

The external moment at the section is obtained from the
element displacements using the condensed element stiffness
matrix defined in the previous chapter. The expressions to
obtain the value of Mj were defined in the previous chapter.
The random values chosen in this study were the
characteristic strength of the concrete, f’c, and the

maximum external moment in the element, Me. All other
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variables of the expression defining Mj could be taken as
random but concrete strength was chosen due to the high
coefficient of variation. Thus, the flexural failure
function is linear and the respective reliability of failure
can be easily calculated.

Compressive strength of concrete is influenced by a
large number of factors grouped in three main categories,
namely materials, production and testing. Material
variability depend on the cement quality, moisture content,
mineral composition, physical properties and particle shape
of aggregates. The production factors involve the type of
batching, transportation procedure and workmanship. Testing
includes sampling techniques, test methodology, specimen
preparation and curing (48).

It is difficult to evaluate correctly the importance of
these three groups of factors. Their importance is certain
to vary for different regions and construction projects. It
has been found that the distribution of concrete compressive
strengths can be approximated by the normal (Gaussian)
distribution (49-50). Characteristic concrete compressive
strengths obtained from a sampling of test data leads to a
conclusion that for strength levels between 3,000 and 4,000
psi, the coefficient of variation is constant. For
strengths beyond that range the standard deviation is
constant (51). Since the values in reinforced concrete
frames used are generally within the first interval the

statistical value considered was the variance of f'c. The
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average standard variation for 68 a good quality control.
testing at the construction site is 550 psi. Using a 3500
psi specified compressive strength of concrete, f'c, the
required average compressive strength of concrete is the

larger of the following (51):

flor = f'c + 1.34%% 3500 + 1.34 * 550 = 4237 psi

or

flar = £'c + 2.33*f - 500 3500 + 2.33*%550 - 500 = 4282 psi
The coefficient of variation of f'; for this range of

characteristic compressive strength is then given by

V = f/f'c = 550/4282 = 0.128

and consequently the coefficient of variation of the
concrete compressive flexural strength'was adopted to be 0.15.
External loads have different coefficients of variation
for the different types of loads (52-53). For most design
and construction in the United States a good estimate for
the coefficient of variation of dead loads is 0.10. For the
live loads the coefficient of variations are very high and
range from 0.39 to 1.04. For that reason and since the
building codes prescribe large values for live loads that
exceed the mean value a single coefficient of variation of
0.15 was adopted for the combination of dead loads plus live

loads.
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Basic variables considered, fs and Mg, are assumed to
have a probability function with normal distribution. This
assumption is correct for the characteristic compressive
strength of concrete but it does not hold for all external
loads that create Mg. In the case where a statistical
refinement of the basic variable Mg is required, there are
techniques available to address the problem (47).

Since flexural failure function, 2z, is linear the
reliability index B of each element can be calculated for
any given external moment, section and mate;ial properties.
Denoting the basic variables fo as x;, and Mg as X, énd
eliminating the other parameters involved in the equation,

the flexural failure function takes the form

zZ =aj X3 + az x2 +b
where

a Qb (kd)2;

az
a = =1;

b = As fcs d’- As fy d.

Standardizing the variables x; and x; leads to a

replacement of the basic variables

(x1 = B1)/01

ux

u) (X2 = B2)/02
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where
ki1 - mean value of fer
4y - mean value of Mg:
01 - standard deviation of f¢;

05 - standard deviation of Me.

Replacing the standard normal variables in the flexural

failure function the expression assumes the following form:
z = ajojuy + axopup + ajp] t+ azwy + Db
Then the reliability index for each element is given by

the distance from the standardized failure function to the

origin of the standardized basic variables as follows:

B = (aju; + agpwp + b) /(ajop + azoz)%



CHAPTER 5

SYSTEM RELIABILITY

Introduction

Optimum structural design techniqueé are mainly based
on deterministic assumptions. There is no doubt that some
of the design variables should be considered including their
random nature (54-55). Of course system reliability
problems are more complicated than element reliability
problems. This is evident since it must consider all
multiple element failure functions, the several failure
modes and, in some cases, the correspondent statistical
correlation.

Another reason for including reliability considerations
in structural optimization procedures is that, in some
instances, the optimal solutions found have less redundancy
and smaller ultimate load reserve than those solutions
obtained with traditional design techniques (56-57).

There is no doubt that the combination of optimum
design‘techniques and reliability-based design procedures
creates a powerful tool to obtain a practical optimized
solution. The objective is to find a balanced design

74
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between all those that satisfy the optimization constraints
and at the same time will have the lowest allowable
probability of failure (58).

" The strategy employed to evaluate the system
reliability is described in the rest of the chapter. The
elementary failure mechanisms of the structure are
determined using Watwood's method. Then the system
reliability is approximated using the Beta unzipping method,
which consists of determining the relevant collapse
mechanisms through linear combinations with fundamental
mechanisms. The theory related with these techniqués is

tentatively described.

System Reliability and Optimiéation

A possible inclusion of the system probability of
failure is to attribute a cost to system failure. This
option originated a formulation based on the minimization of
the total cost with the traditional optimization constraints

(59). The objective function is as follows:

Minimize C¢ = Co + Cg Pg
where

cost of the structure;

Ct

initial cost of the structure;

0
(o]
|

Cg¢ - cost of failure;

Pe probability of structure failure.
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This option is not commonly used for inhabited
structures since it is difficult to evaluate the economic
value of a structural failure where human life losses are
expected. A more popular alternative is to include an
additional constraint representing the maximum probability
of féilure allowed for the structure (60). The constraint

for the system reliability will be of the type

P£(X) £ Pp
where
Pf - probability of system failure;
X - vector of design variables;

Pp - allowable probability of system failure.

When performing structural optimization one may
consider serviceability and ultimate limit states. This
possibility leads to another type of formulation where the
objective function and constraints for these limit states
are considered simultaneously (61). This type of problems
are called reliability-based optimization and can be

summarized as follows:

Minimize Cg
subject to
Gi(X) £ O, i=l.m
Py £ Pyo

Pg £ Pgo
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where
Gj - optimization constraints;
m - number of behavior constraints;
Py - probébility of ultimate system failure;
Pyo - maximum probability of ultimate system failure;
Pg - probability of serviceabilitx failure;

Pgo - maximum probability of serviceability Zzailure.

The option adopted consisted of adding a constraint on
the system failure. The value of the system failure =zt the
end of the optimization cycle is compared with the target
value. If it is not satisfactory the element requirements

are modified and the optimization is restarted.
Methods

In determinate structures the collapse of any m=mber
will lead to system failure. The probability of syszTem
failure can be obtained as the probability of the urion of
member probability failures (16). These types of sTructural
systems are called series systéms or weakest-link sirstems.
Redundant structures will fail only if al{ redundan= members
collapse. If this condition does not arise, whenevs>r a
member fails there will be a redistribution of load= in the

system. These types of structures are called paralZel

systems. Graphic examples are presented in Figure 3.1.
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Series systems with n elements have n failure modes.
Parallel systems with n elements have zore than n failure
modes. These failure modes in parallel systems are
dependent on whether the failure type of the elements is
brittle or ductile (62-63). For redundant brittle systems
the failure of an element and consequent redistribution of
the loads will provoke the system failure. In these cases
the system behavior may be considered tb be generally
identical to that of as a series systen.

Probability of failure of a series system can be
considered as the union of the elements probability of

failure

Pfs = P(Uji(Zj< 0)[i=1,n)
where
U - union of events;
Prg - probability of system failure;

Z2j - failure function of element i.

If the element failure functions are not correlated
then the evaluation of Pgg is relatively easy and may be

assumed as

Pfg = 1 - mj=11(1 - P(ej=0))
where
T - product;

ej = 0 if element is in a failure state,
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ej = 1 if element i is in a non-failure state;

P(ej=0) - probability of failure of element i.

When there is correlation betweeﬁ element failure
functions then the calculations become more complicated and
time consuming. To avoid the exact evaluation,
approximation and bound techniques have been developed (64-
65). The best known is the simple bounds. In this approach -
the upper bound for the probability of system failure
assumes that all element failure functions are uncorrelated
and the lowér bound is obtained assuming full dependence
between the element failure functions. If a more
sophisticated bounding technique is necessary the Ditlevesen
bounds may be used (17). The drawback is that this
sophistication implies the calculation of event joint
probabilities. A similar simplified approach to that used
in series systems may be adopted to find the simple bounds
for the failure of a parallel system.

In the case of parallel systems the lower bound
corresponds to the case where there is no deperdence between
the elements failure and the upper bound correspondslto full
dependence between all elements failure (66). Exact
evaluation of the probability of system failure is very
difficult to obtain if the system has more than three
elements. To solve a general problenm, approxi:ation or

bounding techniques are used. For instance, for redundant
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.To exemplify the determination of all possible failure
modes the initial step is to build a directed network, or
directed graph, with all possible events involving element
failures that will lead to a collapse. Each node represents
a stable configuration and each branch corresponds to a
element failure. Each path is a set of branches connecting
the initial and final nodes. A cut of the graph is a set of
branches containing only one branch from every path. A
simple example is presented in Figure 5.2.

Methods based on the determination of fundamental
failure mechanisms using practical simplifications from
graph theory have been implemented (69). The Beta unzipping
method and tbe brgncp and bound method are two examples.

The principal advantages are that they are precise and easy
‘to use. The Beta unzipping method finds the significant
collapse mechanisms using combinations of fundamental
mechanisms and rejecting those combinations that are outside
a prescribed interval. The branch and bound method selects
all failurevpaths that have high probabilities of
occurrence. Although less exact, the Beta unzipping method

was chosen due to its simplicity and performance.

Generation of Failure Modes

To define all failure mechanisms, the first step
consists of determining the set through manipulation of

elementary failure mechanisms. To obtain these, the method
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adopted was conceived by Watwood (15). It is an automatic
tool to generate all failure mechanisms with one degree of
freedom, or elementary failure mechanisms, of a given frame.
The set of these mechanisms and all their linear
combinations constitute all possible collapse configurations
(70) . The technique is relatively simple to use since the
input data for this method is the same for traditional
elastic analysis like joint and element information.

Elementary failure mechanisms are dictated by the
geometry of the structure and potential hinge locations
created by the external load configuration. Hinge locations
are considered at the end of each member. 1In the case where
there are loads in the middle of the element, they are also
considered at the points of concentrated or discretized
loads. The element axial collapse is not considered in this
formulation although it was included in the original
version.

Element global displacements of a planar frame form a
vector with six variables, (S}. Using a cartesian
referential set of axes x and y the displacements, S1 to Sg,
may be represented as in Figure 5.3. Element deformation

parameters may be defined by three independent quantities

S'; = displacement about node i;
S'2 = rotation of node i;

S'3 = rotation of node j.
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When a mechanism is formed each element moves as a
rigid body. The rigid body motion of an element of a planar
frame can be defined by three parameters. They can be

expressed in terms of the global coordinates X,y as

S’4 - translation in the x direction:;
S’s = " translation in the y direction;

S’¢ - rotation about node i.

Two sets of three independent displacements, rigid body
parameters and element deformations, create the transformed
coordinate vector, (S’}. A relation can be established
between local global coordinates and transformed coordinate

vector represented by a linear transformation [T].

{S} = [T] (8"}

where

(T] =

OOHOOO'
OCOoOOrOO
POOOOO
OOKrROOK
OrOOKrRO
PO OO

L -~ element length.

For any elementary failure mechanism the element
deformations, S’;, S’,, S’3, must be zero. This is only for
elements that do not have plastic hinges. To materialize

this condition, a matrix Ck is introduced for each element
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k. This matrix is created with the first three rows of
matrix T-! for the kth element. The global condition
matrix, C, is a block diagonal matrix consisting of the Ck

matrices as follows:

-1 0 0 1 0 0

Cx = 0O -1/L 1 o 1/L. O
0-1/L 0 0 1/L 1

C1 0 i ieieienen 0

0 Co terrnnnnnnn 0

C = . .
0 S Cn

Using the previous matrices and vectors the following

relation now holds

C {8) = {8'q)

where
S - first element
S - second element
(8) = -
S ] - nth element
and r .
S’y .
Sy - first element
S’
{8'q) = -——-
s’y
S’s - nth element
S’3 ]
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Compatibility between the element displacements, (S)
and the structure global degrees of freedom ({r} can be

established

{S} = [Q] [A] (&}
where
[Q] - rotation matrix;

(A] - compatibility matrix.
From previous equations the following expression holds

(€] [Q] [A] (r}) = {8'q}
or

[B] {r} = {S'q}

An elementary mechanism of the structure is a solution

of the homogeneous systenm
(B] {r} =0

If the structure configuration is not a mechanism there
is no solution for the system except the trivial solution.
To obtain a mechanism, releases of the global degrees of
freedom must be introduced. Two releases per element are
added corresponding to the hinges at the ends or points of

application of concentrated or discretized loads. Each
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release corresponds to an addition of an external global
degree of freedom.

Addition of external degrees of freedom is done by
replacing a row in matrix [Q] ([A] with zeros. The changed
rows correspond to the element degrees of freedom S3 and Sg,
the node rotations. For each row that is replaced, a unit
column vector is added to the matrix [Q] [A] with a 1 in the
row that has been replaced. The dimensionality of (r) is
increased by the number of rows replaced in [Q] [A]. The
total is a set of extra columns with a dimension that is
twice the number of elements. The homogeneous'system

. becomes

[C] ([Q) [A)1)™ {ra) = [B'] {ra) = O
where
([Q] [A])* - matrix with extra 2n columns;

{ra) - vector of increased global degrees of freedom.

Matrix [B'] is not square and has a greater number of
columns than the number of rows. The solution of the system
of homogeneous equations above may be obtained using a
technique similar to that when solving for redundant
unknowns in the force method. Difference between number of
rows and number of columns is the number of independent
solutions, that coincides with the number of elementary
mechanisms. Suppose the rank of [B']‘is the number of

columns, m, and that the number of columns is p. 1In this



90

case one can find a matrix [D], nonsingular with dimensions

p by p such that

(B'] (D] = [T | O]
where
[I] - identity matrix, m by m;

[0] - null matrix, m by (p-m).

Last columns of (D] are independent solutions of the
homogeneous system of equations since they are orthogonal to
the rows of [B']. To obtain (D], a reduction is performed
on the columns of [B'] that is conceptually identical to a
Gauss-Jordan reduction (15). The solution of such a system
of equations is illustrated in Figure 5.4, where all
elementary failure mechanisms for a two story frame are

presented.

Beta Unzipping Method

Advantages of the Beta unzipping method, as stated
before, are important. It can be used for reliability
estimation of planar and spatial trusses and frames made
with ductile or brittle elements. The probability of
failure can be evaluated with different levels of accuracy.
It is also a method that can be easily implemented for

automated calculations.
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At Level 0 the estimation of the system reliability is
based on the failure of a single structural element. 1In
this case the system reliability is equal to the reliability
of the element with the higher probability of failure.

Level 1 gives more acceptable results. The concept is
that the structural system is modelled as a series system.
The system probability of failure is estimated as a function
of element probabilities of failure. The calculation of
this system probability can be made with acceptable accuracy
using only those elements with a low reliability index. The
interval where these significant or critical elements are
located is defined by (Apin, Apin + SA], where 3A is chosen
adequately.

At Level 2, failure elements are grouped in pairs as
parallel systems. These significant pairs of failure
elements are obtained assuming failure of the significant
elements as defined in Level 1. For element i, the locad-
carrying capacity is added as fictitious loads if the
element is ductile. If the element is brittle, no
fictitious loads are added. Then new element reliability
indices of the modified structure are calculated and the
critical pairs are formed with element i and the new
significant elements.

The process can be analogously repeated for levels
greater than 2 creating critical groups of 3, 4, or more
elements. It is considered that above Level 3 there is no

practical benefit from the extra calculations. The method
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could be used for ductile structures with the formation of
all collapse mechanisms but the computational effort of the
reanalysis is too great. It is preferable instead to use
the fundamental mechanisms and their linear combinations.

A structure with an elasto-plastic behavior and a given
static load configuration has a certain number of
fundamental failure mechanisms that can be determined using
the Watwood’s method. Since they are one degree of freedom
mechanisms the failure function zj for mechanism. i can be

evaluated as follows:

zi = I |ajj] Ry - = bjk Px
where
ajj - rotation at hinge j in mechanism i;
bjx - displacement of load k in mechanism i;
Ry - strength of element j;

Px - load number k.

Total number of collapse mechanisms is generally too
high and a significant portion of these have a low
probability of failure. For this reason, the Beta unzipping
method is used as it only considers the most critical
failure modes. The value found is a lower bound for the
exact probability of failure, since some mechanisms are
discarded. Once the identification of the fundamental
mechanisms and respective reliability indices are obtained,

the next step is to choose the elementary mechanisms that
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will be the starting points. Ordering the reliability

indices as follows:

where

Bij - reliability obtained using zj.

A control value €; is selected and added to Bj;. This
value and B; define an interval [B;, B; + €1]. All
mechanisms outside this interval are discarded for future
combinations. The linear combinations to generate new
failure mechanisms are obtained through combinatorial
matching. First, elementary mechanism 1 is combined with
the mechanisms in the interval and their reliability indices
are evaluated. The same process is repeated for the rest of
elementary mechanisms with those in the interval. The
mechanisms are ordered in accordance with their reliability
indices, a new interval is defined and a new generation of
failure mechanisms is originated. The procedure is repeated
until a sufficient number of generations is accomplished.
Figure 5.5 exemplifies the failure tree creation.

To define the failure function zjj for the combinations

of the pair of mechanisms i and j can determined as

2ij = = |ajr * ajr| Rr = = (bjs * bys)Ps,
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where the sign + or - is chosen to give the smallest
reliability index. A graphical illustration of these

combinations is shown in Figure 5.5.
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CHAPTER 6

PROCEDURE IMPLEMENTATION

Introduction

The optimizatibn problem was tentatively solved using
two strategies. These were an Augmented Lagrangian method,
abridged by the class of penalty functions, and the
Generalized Reduced Gradient method, classified .in the group
of gradient type techniques. The unconstrained minimization
techniques experimented with the Augmented Lagrangian
formulation are reported and performance is analyzed. Two
final versions for these two options are di;cussed, with
emphasis on the problems and decisions taken. Subroutines
are described and their essential characteristics
underlined.

Procedures for element and system reliability
evaluations are detailed. Subroutines involved in the
element reliability calculation are listed and their
specific task described. The system reliability
determination at the mechanism level is outlined with a
summarized description of the Beta unzipping method.
Particular problems, and respective solutions that arose

97
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during the implementation and testing are presented and

discussed,

Augmented Lagrangian Formulation

The set of design variables is divided in two main
groups. These are the dimensions and steel area, defining
each element cross section, and the global displacements.
The objective function is the cost of the structure as a
function of the the volume of concrete and steel. Equality
constraints are defined by the global equilibrium equations.
Inequality constraints include the bounds on global
displacements and the minimum element reliability.

In a reinforced concrete portal frame the set of design
variables x having n elements and m global degrees of

freedom is partitioned as follows:

Xj, i=1,4,...,3n-2 - base of rectangular element section;
X4, 3J=2,5,...,3n-1 - height of rectangular element section; -
Xk, k=3,6,..., 3n - area of steel on one side of section:
X1, 1=3n+l1l, ..., 3n+m - global displacements.

The objective function used in this formulation was
defined using the average costs of cast in place concrete
for reinforced concrete frames and main reinforcing steel

(71). Combined relative cost function was obtained dividing
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both unitary costs by the cost of concrete and the result is

as follows:

f(x) = (x1 * X3 + Xk * 10) * Lp
where

Lp - length of element p, p = 1,m.

Equality constraints, one for each global degree of

freedom, are defined as

hq = Er (qu * X3n+r) - Rq, q=l,..,m, r=1,...,m
where

Kqr - global stiffness coefficient;

X3n+r - 9global displacement r;

Rq - external force (q.

Inequality constraints that control the maximum global
displacements and impose a minimum element reliability are

as follows

gi = X3p+r -~ dr < 0, i=1,...,m
gj = rely - betaj, <0 j=1,...n
where
dr - maximum absolute value of global displacement r;
rely - reliability index of element j;
betaj ~ minimum reliability index prescribed for

element j.
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The minimization problem stated previcusly is highly
nonlinear. Consequently the adoption of tnhe optimization
strategy was crucial and its characteristics played a big
role in the decision process. The Augmented Lagrangian
Multiplier method, or Augmented Lagrangian formulation, was
the first choice. It allows for an adaptazion of the search
technique to the shape of the design surface since the dual
variables, or lagrangian multipliers, are updated at the end
of each minimization cycle in function of the constraints

violations.

The constrained problem is thus transformed into an
unconstrained function using the Augmented ZLagrangian
formulation with the addition of dual variables u and v and

becomes

L(x,u,v) = £(x) + ut.h(x) + P.h%(x).h(x) +
vt.g*(x) + P.gt*(x).a*(x)
where
g*(x) = max {g(x), =v/(2P)}:

P - penalty factor.

Pseudo-objective function L is minimized with fixed
values of u and v and these are updated using the following

rules (72)

uk+l

uk + 2Ph(x)

vk+l = vk 4+ 2pg*(x)
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The minimization cycle is repeated until there is no
significant improvement of the objective function f(x).
Penalty parameters, P, contribute significantly to the
effiéiency of the minimization procedure. 1Initially, there
was only one penalty parameter for equality and inequality
parameters alike. Since these two types of constraints have
different sensitivities to changes of the design variables,
different penalty parameters were introduced for the group
of equality constraints and the group of inequality
constraints. These starting values, and consequent updates,
were tuned to the optimization performance to improve the
procedure efficiency. Penalty parameters were obtained from
a set of experimental trials and assessment of the results.

séaling of the constraints and variables also played an
important role in the optimization. The equality
constraints and objective function were scaled to the same
order of magnitude as the inequality constraints. This was
an attempt to regularize the magnitude of the different
functions composing the augmented lagrangian function with
the intent of smoothing the design surface.

Two methods were tested for the unconstrained
minimization of the augmented lagrangian function. These
were the Conjugate Gradient method, or Fletcher-Reeves, and
the Hooke and Jeeves method. The former one is a variation
of the Steepest Descent method, or Gradient method, and is
classified as a first order method since it is based on the

gradient of the function. The latter is defined as a zero
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order method because it does not rely on information about

the shape of the function obtained from derivatives.

Methods based on the second derivatives were discarded since

the problem was highly nonlinear and inequality constraints

had discontinuous second derivatives.

Conjugate Gradient is based on obtaining consecutive

directions that are linearly independent, thus accelerating

the search.

follows

Step

Step

Step

Step

Step

Step

The algorithm for the method is summarized as

Calculate grad f(xK);

dK = -grad f(x):

Find oK so that f(xK + aK.dkK) = min;
KK+l = xK + oK.xK

Check convergence. If converged, stop.

: gk+l = gk + [grad f(gk+1)2/grad f(xk)Z].dk

Go to 3.

Conjugate Gradient method proved to be unsuitable for

the type of function presented. Progress in the

minimization was minimal due to the ridge-type shape of the

function.

Whenever the process started at any point where
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the equality constraints were satisfied, the gradient method
was unable to progress to a better point. This happened
because any violation of the constraints created a high
increase of the augmented lagrangian function and the point
behaved as a local minimum. Otherwise, if the point did not
satisfy the equality constraints then the accuracy of the
derivatives obtained through forward difference, was not
good enough to converge to a better design point. As an
example of this abruptness the augmented lagrangian function
is represented as a function of displacements x, and x3 of
the cantilever shown in Figure 6.1.

Several techniques were implemented to smooth the shape
of the augmented lagrangian to no avail. Scaling of the
variables, objective function and of the constraints were
performed. The displacements were scaled by the
multiplication of a constant regularizing the magnitude of
the set of variables. The scaling of the constraints and
objective function were already referred to as well as
another technique based on the evenness of the rate of
change of the constraints and objective function in terms of
the design Qariables (12).

These reasons justified the final Adoption for
unconstrained minimization of the Hooke and Jeeves method.
This technique had provided acceptable results and
performances in the linear elastic formulation. The main

algorithm may be summarized as follows
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Step 1: x;K = x;Kk-1lx(1 - q)
1 1

Step 2: If L(xK) < L(xKk~-1), a = a*inc;

Otherwise, a = a*dec;
Step 3: i = i+1; go to 1 if i < n;:
Step 4: Try pattern move x* = xK + g(xK - xk-1y;

Step 5: Verify termination criteria. If not met, go
to 1. Otherwise, stop.
where
inc - increase factor:;
dec - decrease factor:;

B - stepsize parameter.

Flowchart of the final group of subroutines is
presented in Figure 6.2. The main program PRINCI, reads the
main input data, initializes the correct displacement
values, when solving the equilibrium equations, for the
starting dimensions, calls the optimizer subroutine and
writes the final results. Subroutine OPTIMI controls the
optimization process by verifying if the convergence
criteria is met, updating the lagrangian multipliers and
verifies the system reliability at the end of the

optimization cycle. Subroutine HOOJEE conducts the Hooke
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Figure 6.2. Augmented Lagrangian version flowchart.
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and Jeeves minimization operation. Subroutine LAGFUN
calculates the value of_fhe augmented lagrangian function.
Subroutine DATINI initializes the values of the scaling
factors and lagrangian multiplie;s. ASSEMB is the
subroutine that creates the initial global stiffness matrix
with the starting values of the elements. Subroutine GLOSTI
solves the initial equilibrium equation system to obtain
good initial displacement values. INPUTD is the subroutine
that reads all the data concerning the definition of the
structure. CONSTR is the subroutine that reads the values
of the constraints. PARAME is the subroutine that inputs
all optimization parameters. Subroutine MECSYS defines all
elementary failure mechanisms of the structure and MULTI is
a related subroutine that multiplies matrices. SYSREL is
the subroutine that calculates the element reliability.
Subroutine LIM controls the maximum and minimum values of
the design variables excluding displacements. SOLCON is the
subroutine that obtains the global displacements with the
nonlinear global stiffness formulation. Subroutine EQUCON
evaluates equality constraints values, INECON calculates
inequality constraint values and VALOBF obtains the
objective function value. ELEY is the subroutine that
recovers the element forces with the current displacement
and element stiffness values. Subroutine MODSTI assembles
the nonlinear stiffness values using the actgal spring
secant stiffness values. MUMY is the subroutine that

evaluates the ultimate and yielding values calling,
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respectively, subroutines VALMU and COMCON. The coding of
the main subroutines is presented in Appendix A.

This method didn't provide acceptable performance for
the nonlinear material behavior. The convergence of the
method concerning the equality constraints was impossible to
obtain, probably because the variations of the equality
constraint 'values were severe whenever there was any change
of the design variables. For this reason, a mixed method of
integrated and cycling formulations was implemented. The
approxihate displacements were obtained using only once a
Gauss type solution method of the equilibrium equations at
the end of each optimization cycle. The Hooke and Jeeves
search did not include the set Qf displacements although the
group of equality constraints remained in the augmented
lagrangian function definition. The main goal of this
modification was to improve the convergence for the equality
constraints while performing an optimization that would

remain in the vicinity of the previous design point.

Generalized Reduced Gradient

The optimization strategy is based on the iterative
solution of a system of nonlinear equalities. The method
was initially implemented as an extension of the
decomposition for linear programming problems (73). Several

variations and enhancements of this initial formulation
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followed this work (74-76) but the general formulation of

the problen is

Minimize f(x)
subject to hj(x) =0 i=1,...,m
x1 < x<x% xof R, m<n
Inequality constraints aré handled as pseudo equality
constraints with the addition of slack variables. This
increase of the size of the variable set is balanced by the
implicit variable elimination generated by the following

relation between changes of design variables

dgb = -g-1 ¢ dKnb
where

xP - vector of basic variables;

xNP - vector of nonbasic variables;

J-1 - columns of jacobian matrix of equality
constraints corresponding to basic variables
[dh/dxP];

C - other columns of jacobian matrix corresponding

to the nonbasic variables [dh/dxMP].

Nonbasic variables are thus calculated as a function of
the basic variables and eliminated from the gradient
calculation. The gradient is calculated whenever a feasible

point is obtained and a line search along that direction
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tends to provide a better design point while maintaining
feasibility. The values of the nonbasic variables are -
consequently evaluated and the procesé is restarted. If any
of the basic variables is at any bound, a search is performed
on the set of nonbasic variables to find a suitable
replacement. The method creates basically a succession of
feasible solutions x0, xI1, ..., xP, each one corresponding
to an imprévement of the objective function from the
previous deéign point. The iteration is terminated whenever
the convergence criteria is satisfied or the maximum
prescribed number of iterations is exceeded.

The essence of this optimization technique seemed
adequate for the integrated optimization with nonlinear
constraints and nonlinear material behavior with a
considerable number of equality constraints. The number of
slack variables is not large, and as long as the initial
point is feasible, convergence éhould be quicker than in the
previous version. |

To illustrate and assess the performance of the
generalized reduced gradient method, an example of a
cantilever beam with linear material behavior,.submitted to
displacement and stress constraints, was solved. This
example is presented in Appendix B together with a flowchart
of the general algorithm. These preliﬁinary results were
very promising and the following step was to extend the
method to the formulatioﬁ previously tested with the

augmented lagrangian function.
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The procedure was developed in two phases. First, a
linear material behavior was assumed followed by the
inclusion of material nonlinear behavior was included.  The
computer program versions were created combining a public
domain software package and some subroutines already used in
the prior formulation (76). The coded version of the
Generalized Reduced Gradient method is a general purpose
program for constrained optimization and was changed
slightly when adapting to the present case.

Main modifications actually introduced in the software
were to increase the maximum number of variables and
constraints, the extension of the maximum number of Newton
iterations, and the modification of the number of times the
stepsize could be reduced when performing the line search.
The size of the problems tested caused the first alteration.
Although the authors had not tested the program with
examples as large as those described in the next chapter,
the computer code performed with no problems. The variation
of the maximum number of iterations was required due to the
material nonlinear behavior, which imposed a slower
Eomputation of the basic variables when iteratively solving
the set of nonlinear equalities. The need for smaller step
sizes was due to the fact that the order of magnitude of the
change of variables in the vicinity of the design point is
very small compared to the corresponding changes of the

equilibrium equality constraints.
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As specified before, some subroutines were directly
used from the Augmented Lagrangian formulation while others
had to be adapted or created. Since the data transfer
between subroutines in the Generalized Reduced Gradient
program was made through common data blocks, the same
methodology was used for most of the added subroutines. The
flowchart of this package is presented in Fiqure 6.3. An
example of the input data files and the listing of the new
or modified subroutines is presented in Appendix C. The
unmodified subroutines perform the same tasks as described
before.

Essential structure of this program is the same as
presented by the authors of the optimization package. There
is a program, OPTIMI, that calls the main subroutines
PRINCI, DATAIN, GRG and OUTRES. PRINCI reads the initial
data from file DATAl that is not abridged by the typical
input data of the optimization package, which is read in
subroutine DATAIN. The subroutine GRG performs the problem
optimization calling other subroutines. The only subroutine
written for this implementation was GCOMP that computes the
~values of the equality constraints, the inequality
constraints, and the objective function. The system
reliability was evaluated and the process was restarted if
the results were unsatisfactory. Subroutine OUTRES writes
the final results of each optimization run to a file RESULT.

This subroutine was also modified to include the relevant
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Figure 6.3. Generalized Reduced Gradient version flowchart.
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results of this type of problems, and to modify the output
format of the optimization informétion.

The particular structure of the optimization package
created some conceptual alterations in the group of
subroutines that evaluate the constraints and control the
variables bounds. For instance, the changes in the design
points are made simultaneously for all design variables.
Therefore the limits of the areas of reinforcement had to be
imposed as variable bounds instead of beipg controlled by a
specific subroutine.

On the other hand the limits imposed on the
displacements could be considered as upper and lower bounds
of the correspondent design variables, and consequently, the
total nuﬁber of inequality constraints was substantially
reduced. The only scaling introduced in the problem was the
division of the equality constraints by the order of the

magnitude of the maximum external force.

Reliability

The only statistical parameters considered for the
probability of failure evaluation were the strength of the
concrete and the external loads. For that reason thé
failure function is a linear function of these two basic
variables and the reliability index is calculatedvusing the
formula referred in Chapter 4. Whenever there was a change

of the design variables the value of the ultimate moment for
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each element was calculated in the subroutine VAILMU, the
maximum element moment was evaluated in subroutine ELEY and
the element reliability index is determined.

Subroutine VAIMU calculates the ultimate moment and
ultimate curvature for each configuration of the element
cross section using the assumptions and correspondent
formulas presented in Chapter 3. The ultimate curvature is
limited to a maximum of four times the yielding curvature
due to serviceability reasons. The curvatures of sections
beyond this point are so high that the corresponding
deformations will transform any regqgular frame to an
unserviceable structure. Furthermore for curvatures above
these values the strain hardening of high strength steel
would have to be considered. This upper bound for the
ultimate curvature is also a common value used in design of
structures with dynamic loads.

Recovery of the element moments at both ends is
performed in the subroutine ELEY as a function of the global
displacements and the current spring characteristics of the
element. The element stiffness matrix considered in this
evaluation results from the condensation of the element
elastic stiffness matrix and the spring stiffness. During
the optimization process the stiffness characteristics,
including the secant spring stiffness, are those defined in
the previous iteration.

All fundamental mechanisms of the initial structure are

determined in subroutine MECSYS at the beginning of the
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optimization process using the methodology described in
Chapter 5. The sets of relative displacements
corresponding to the fundamental elasto-plastic mechanisms
are divided into two parts. The first one corresponds to
the virtual displacements of the external loads and the
second one to the added global degrees of freedom. Since
the first set corresponds to global displacements, the joint
mechanisms have to be transformed into element rotations.
Since usually there are no concentrated moments applied at
the nodes these mechanisms do not occur by themselves, they
are active in the linear combination with the fundameﬁtal
failure mechanisms that lead to the mechanisms with lower
reliability indices.

After the optimization process is finished, subroutine
SYSREL performs the evaluation of the system reliability at
the mechanism level. For that purpose the material behavior
is assumed plastic after the element rotation exceeds the
ultimate value as illustrated in Figure 6.4. The
combination with the elementary mechanisms is made in a
combinatorial type process. The first mechanism is linearly
combined with the remaining ones, the second mechanism with
the following mechanisms and so forth until ﬁhe penultimate
is combined with the last one. The new mechanisms are
ordered in terms of the reliability index and those that
fall outside an acceptable interval are skipped from future
combinations. The process is repeated until all possible

combinations with fundamental mechanisms is performed. To
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Figure 6.4. Bilinear elastic-plastic diagram.
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avoid possible precocious eliminations the fundamental
mechanisms are ordered such that those that involve external
work are placed before joint mechanisms. To facilitate the
combination of the mechanisms all virtual displacements are
scaled so that all hinge rotations are unitary. At the end,
if the mechanism with lower reliability index is not
acceptable, the elements with hinges that belong to this
failure mechanism have their required element reliability
indices increased. The optimization process is restarted
with these indices modified by the same percentage of the

system reliability violation.



CHAPTER 7

EXAMPLES

Introduction

Examples used to test the program versions are
déscribed and the conditions for the tests are presented.
one bay frame was used to debug the program during its
‘development and enhancement. For result comparison, an
available study in literature of a frame optimized using
limit equilibrium theory was used to compare results
obtained from the versions of the present optimization
program. The program was finally tested with a realistic
frame and loading configuration corresponding to an average
building frame.

Three versions of the element stiffness were
implemented and tested. The first one considered the
material behavior as elastic and that provides a high value
for the stiffness of the rotation springs. The second
formulation provided a spring stiffness equal to the ratio
between the element yielding moment and the yielding
rotation. The last version used the secant spring
stiffness. The final version was implemented both with the

119
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Hooke and Jeeves and the Generalized Reduced Gradient
methods. The relevant results of these examples are

presented in Tables 7.1 through 7.8.

Result Verification

Validation of results from the three types of frames
described above was accomplished with a common strategy
implemented at three levels. These were element
reliability, compatibility with element moment rotation
diagram, and global structure equilibrium and compatibility.
Control of results was extensively performed for the debug
frame and carefully administered in the other two cases.

To evaluate the element reliability and the
compatibility of the moment rotation diagram at the end or
during the optimization process, a group of two programs was

"used. These computer programs called YIEL and ELTES are
listed in Appendix C. The input data is composed of the
dimensions of the cross sectioh, the steel area
reinforcement, the values of the secant stiffness of the
springs, the length of the element and the global
displacements of the element nodes. The output includes the
element moments at the ends, the yielding and ultimate
moments, the yielding and ultimate rotations, and the

element reliability. These values are compared with those

reported by the program results.
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Global structural equilibrium and compatibility was
verified using the program SSTAN (77). The brogram is
prepared to handle linear elastic analysis. To verify the
nonlinear results some extra elements were added to the
initial structure simulating the nonlinear behavior. These
additional elements placed at the hinge locations normal to
the plane of the frame had a torsional rigidity equal to the
spring secant stiffness. An éxample of a transformed
structure used to test the accuracy of the displacements of

a debug frame output is presented in Figure 7.1.

Debug Frame

The struéture used to verify and evaluate the
performance of the different versions of the program was a
one bay rectangular frame subjected to a horizontal and a
vertical load at the middle of the span. The material
properties, geometric layout, initial dimensions, loads,
reliability indices and other characteristics were
arbitrarily selected, with no intent of creating a practical
design. The global features of this frame are presented in
Figure 7.2.

Results of the optimization performed using the
Generalized Reduced Gradient and assuming linear behavior
are presented in Table 7.1. Performance and final results

were acceptable and satisfied the Kuhn-Tucker conditions.
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Figure 7.1. Displacement verification.
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Table 7.1. Debug frame (GRG): linear version results.

Element Initial ‘ Final Reliability
Section Index
Base Height Area Base Height Area
(in) (in) (inZ2) (in) (in) (in2)
1 5.0 10.0 1.0 2.0*% 6.0 0.20 2.0%
2 5.0 10.0 1l.0 2.0% 6,0% 0.23 2.0%
3 5.0 10.0 1.0 2.0% 11.1 0.73 2.0%
4 5.0 10.0 1.0 2.0% 12.4 0.81 2,0%*

* - lower bounds.

Total Initial CoSt.iieeeeessessereonneasssneanseassss 18,000

Total Final COSt'.IQ.l...l...............l....".l. 6’890

Global Displacements
1 2 3 4 5 6 7 8 9
(in) (in) (rad) (in) (in) (rad) (in) (in) (rad)
Initial .50 .06 0.0 .90 .81 .07 .94 0.0 =-.09

Final .54 0.0 -.005 .53 -.087 .003 .53 0.0 -.003
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The displacements satisfied the global equilibrium equations
and all the constraints were satisfied.

The optimization problem with material nonlinear
behavior was solved using two minimization techniques
described in Chapter 6. Results of the version using Hooke
and Jeeves method are listed in Table 7.2. However,
evaluation of element moments did not correspond to the
location of the hinges, i.e., the element moment values in
some hinges were below the yielding moment value. There was
no force equilibrium in some of the nodes. An extensive set
of initial design points and optimization parameters were
tested with negative results. For that reason the
optimization technique was tentatively replaced by the
Generalized Reduced Gradient.

First attempt to optimize with the Generalized Reduced
Gradient assuming nonlinear material behavior, was with a
secant spring stiffness equal to the ratio between the
yielding moment and the yielding rotation. The option of
using this spring stiffness had the advantage of avoiding
the oscillation of the spring stiffness between the rigid
and lower values. The implementation resulting from this
choice was named yielding stiffness. Although providing
incorrect displacements as the spring stiffness values did
not represent the true material behavior, the yielding
stiffness would model a situation somewhere between the
linear and the nonlinear material behavior. The results are

presented in Table 7.3. After adequate analysis it was
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Table 7.2. Debug frame: Augmented Lagrangian version.

Element Initial Final Reliability
Section Index
Base Height Area Base Height Area
(in)  (in) (in2?) (in) (in) (in2)
1 5.0 10.0 l.Q 2.0 6,0% 0.06%* 4.4
2 5.0 10.0 1.0 2.0 6.8 0.07* 4.3
3 5.0 10.0 1.0 2.1* 8.4 0.09%* 5.2
4 5.0 10.0 1.0 2.0 9.4 0.09% 5.7

* - lower bounds.

Total Initial costl"......Q..'...'..l.......... 18'000

Total Final COSt......-..-.....-.-..-..-...--..-- 4,872

Global Displacements
1l 2 3 4 5 6 7 8 9
(in) (in) (rad) (in) (in) (rad) (in) (in) (rad)
Initial .23 0.0 -.002 .23 -,041 0.0 .23 -.003 0.0

Final 1.1% 0.0 -.009 1.1* -,126 .004 1l.1* -.008 -.006

Secant Spring Stiffness
(1b.in/rad)

Hinge Number 1, 3, 4, 5, 6, 7, 8 2

Spring Stiffness 10x1030 6.7x108
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Table 7.3.Debug frame (GRG): yielding stiffness results.

Element Initial Final Reliability
Section ' Index
Base Height Area Base Height Area
(in) (in) (in?)  (in) (in) (in?)
1 2.0 6.0 0.41 2.0 6,0 0.21 O0.1%*
2 2.0 6.0 0.41 2.0 6.0% 0.21 0.1%
3 2.0 9.74 0.64 2.0 9,75 0.64 0.1*
4 _ 2.0 10.9 0.71 2.0 10.9 0.71 0.1%

* - lower bounds.

Total Initial COSt.ceeeecrancreeccarasorconancs 6,599

Total Final COSE s e e eesaesnsesessnnanasanseess 6,296

Global Displacements

1 2 3 4 5 6 7 8 9
(in) (in) (rad) (in) (in) (rad) (in) (in) (rad)
Initial .77 0.0 -.008 .77 -.115 .004 .76 -.007 -.004

Final .82 0.0 -.008 .81 -.118 .004 .81 -.006 -.004

Yielding Spring Stiffness

(1b.in/rad)
Hinge Number 1 2 3 4 5 6 7 8
Spring Stiffness 6.9 6.9 49 49 83 83 43 43

(x107)
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verified that the equilibrium of the moments at the nodes
and the compliance with the moment rotation diagrams were
satisfied. While this solution converged in some cases, it
did not in others. There seemed to be no general pattern to
the problem.

The next step was to test the formulation using the
secant stiffness spring values obtained from the element
moment rotation diagram. The results of one of these
problems are presented in Table 7.4. In this case, a
situation similar to the Hooke and Jeeves minimization was
encountered. The node equilibrium and the element moment
rotation diagram were not in accordance with the final
values. To illustrate these discrepancies of the final
results, the values of the yielding moments, ultimate
moments, and moments at the nodes recovered using the
condensed stiffness matrix are shown in Table 7.5.

To improve the performance of the optimization with a
nonlinear material behavior, the use of better estimates of
starting design points was tried. For that purpose the
frame was optimized in the linear version having the
ultimate moment set as the yielding moment, i.e, no element
was allowed to yield. These solutions of the linear
behavior would theoretically provide the best starting
points. The optimization problem was thus transformed to a
two stage process: a linear solution with the elements close
to the yielding situation follpwed by a nonlinear

optimization having as starting values the results of the
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Table 7.4. Debug frame (GRG): secant stiffness results.

Element ~ Initial Final Reliability
Section Index
Base Height Area Base Height Area
(in) (in) (in2) (in) (in) (in2?)
1 2.0 6.0 0.41 2.0% 6.0 0,38 O.1%*
2 2.0 6.0 0.41 2.0% 6.0*% 0,25 0.7
3 2.0 9.74 0.64 2.0% 9.81 0.64 0.1*
4 2.0 10.9 0.71 2.0% 10.9 0.72 0.1%*

* - lower bounds.

Total Initial Cost....... tesecesctessssssces 6,599

Total Final Cost...ivivviereneececannneees 6,504

Global Displacements
1 2 3 4 5 6 7 8 9
(in) (in) (rad) (in) (in) (rad) (in) (in) (rad)
Initial .77 0.0 ~-.008 .77 -.115 .004 .76 =-.007 =-.004

Final .88 0.0 -.007 .87 ~-.152 .005 .87 -.007 -.004

Secant Spring Stiffness
(1b.in/rad)

Hinge number 1 2 3 4 5 6 7 8

Spring Stiffness 0.9 0.9 29 29 84 84 58 58
(x107)
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Table 7.5. Debug frame: element moments.

Element Yielding ' Ultimate
(1b.in) (1b.in)

1l 3.43e4 6.27e4

2 2.00e4 4.28e4

3 14.9e4 20.3e4

4 22.5e4 28.5e4
Element Node 1i Node j
(1b.1in) (1b,in)

1 -4.15e4 -5.46e4

2 l.21e4 3.27e4

3 -3.05e4 . 20.3e4

4 21.5e4 26.2e4
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first stage. The results were, however, similar to those
attained before.

Compared Frame

To complement the program testing with the one bay
frame and evaluate the capacity of the program to obtain
accurate and exact optimal solutions, a frame that was
optimized using the theory of the Optimal Limit Design was
also tested (78). This published example had the advantage
of considering the nonlinear behavior of reinforced concrete
elements at ultimate capacity. The resulting moment
redistribution at the nodes was limited to values assuring a
certain serviceability. The definition of the frame and
respective loads are presented in Figure 7.3.

Thié choice presented some disadvantages. Optimization
was carried out with the design variables as the steel
reinforcement areas, the elements in the reference were
singly reinforced, there were no reliability limits imposed,
and the moment redistribution was limited to a maximum of
30%. It follows a similar approach to the system
reliability in obtaining the optimal redistributed moment
diagram when evaluating the performance of the several
ultimate failure mechanisms. The failure mechanism with
lower external work is defined and in Table 7.6 the moment
redistribution coefficients, factored external moments and
redistributed moments are presented. The steel

reinforcement areas for the redistributed moments, or
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Table 7.6. Compared frame: initial steel area reinforcement.

Section 5 My (k.ft) cq My Steel Comparison
1.8M) + 1.5Mg (g.ft) Area (in?2) with
elements
1l 1.0 114 114
2 1.0 61 61 1
or
3 0.7 55 39 lO
4 0.9 136 122 2.6
5 0.7 55 39 2
' or
6 0.9 136 122 2.6 9
7 1.0 196 196 3.5 2 or 3
or
8 0.7 25 18 8 or 9
9 0.7 33 23 3
or
10 1.0 203 203 3.7 8
11 0.7 44 ) 31 4
or
12 0.7 51 36 0.7 7
13 0.7 11 8
14 1.0 173 173 3.1 5
or
15 1.0 169 169 6
16 0.7 8 6
Legend:

------ - indicates separation of groups of element
sections in the original study comparable with
element sections in present research frame:

Cy - redistribution coefficient;

My - ultimate section moment;

M) - live load moment;

dead load moment.

=
o
t
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optimal final moment diagram, are also presented in Table
7.6 and were calculated in accordance with ACI 318-63. This
code was used in the original published work to define
factored loads and ultimate section capacities.

The frame was initially tested assuming the linear
material behavior and the final results are presented in
Table 7.7. To simulate the same requirements the frame was
optimized using an equivalent set of loads. This set
resulted from the multiplication of the service loads by the
correspondent load factors and by the inverse of the
strength reducing factors prescribed in ACI 318-63. Final
values are very close»to those obtained with the Optimal
Limit Design results and with a total lower cost.

Solution was then attempted with the yielding stiffness
and the secant stiffness versions. Results fell in two
unacceptable categories. The first category included the
results with some optimization but no convergence of the
equilibrium constraints. The other had very slight decrease
of objective function and verification of equality and
inequality constraints. Several starting points were tried,
including the design points obtained from the linear
solution, but no practical results were obtained.

Convergence and oscillation were again the key problems.
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Table 7.7. Compared frame results.

Element 1l 2 - 3 4 5
Steel Area
(in2)
Initial 3.0 3.0 3.0 3.0 3.0
Final 0.8 2.9 3.0 0.6 2.5
Reliability
Index 0.0%* 0.0%* 0.0% 0.0%* 0.0%

* - lower bounds.

Element 6 7 8 9 10
Steel Area
(in?)
Initial 3.0 3.0 3.0 3.0 3.0
Final 2.4 0.3 2.5 2.5 2.5
Reliability
Index 0.0* 0.0* 0.0%* 0.0%* 0.0%*

* - lower bounds.

Initial Steel CoOSt...cceeaseensssssssaessees 86,400
Final Steel COoSt.v.eeersosoessccsncsceessaass 54,720

OLDsteel COSt...-....-....-o-....--.--.--.. 63’360
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Building Frame

To evaluate the performance of the program for a common
practical design a typical rectangular building frame with
two spans and three stories high was defined. Lateral and
vertical loads were calculated using the Standard Building
Code. Definition of the frame geometry, horizontal loads,
vertical loads, material properties and floor plan are
presented in Figure 7.4.

Vertical loads were applied at the midspan of each
beam. Values were equivalent to the distributed loads along
the adjacent slabs since this formulation does not handle
loading along the element. The pattern chosen for the
distribution of the vertical loads aims to create maximum
moments in the elements. For this reason the loading
combination includes the wind loads.

The major frame was analyzed using the linear version
of the Generalized Reduced Gradient method and the results
are summarized in Table 7.8. Kuhn-Tucker conditions were
verified and the final dimensions of the cross sections
corresponded to the lower bounds. The exception to this
last conclusion happened whenever the steel reinforcement
attained the upper limit. Testing of the nonlinear
versions, both with the yielding and the secant spring
stiffness formulations, provided no acceptable results in a
similar manner to that observed when testing the compared.

frame.
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Table 7.8. Building frame results.

Element 1l 2 3 4 5 6 7 8 9

Base
(in)
Initial 10 10 10 10 10 10 10 10 10
Final 8* 8* 8* 8 * 8% 8* 8% 8% 8%
Height
(in)
Initial 25 25 25 30 30 30 25 25 25
Final 12% 12* 25 le* 16*% 20 12* 12% 12%
Area
(in2)
Initial 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Final 1.7 1.6 5.5 1.8 1.6 4.3 1.2 2.7 1.2
Reliability
_ Index 3.0% 3,0% 3.0% 3,0% 3.0*% 3.0*% 3.0% 3,0% 3.0%
Element 10 11 12 13 14 15 16 17 18
Base
(in)
Initial 10 10 10 10 10 10 10 10 10
Final 8* 8% 8% 8* 8% 8% 8% 8% 8=*
Height
(in)
Initial 25 25 25 30 30 30 25 25 25
Final 16* 16% 16*% 12*% 12*% 12*% 16*% 16% 16%*
Area
(in2)
Initial 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Final 1.7 2.2 1.1 .57 1.2 1.1 .69 .71 e 77
Reliability
Index 3.0%* 3.0% 3,0% 3,0% 3.0% 3.0 3.0*% 3.0% 3,0%*

* - lower bounds.

Total Initial Cost.ceevecveseanscssssasrsss 515,400

Total Final CosSt.ccveresasssscseacccsecocsss 401,274



CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

Linear Material Behavior

This optimization approach with reliability constraints
proved to be a valuable formulation for reinforced concrete
frames with linear material behavior and static loading.

The formulation addresses a universal procedure for
obtaining optimal solutions independently of the local code
restrictions. The choices for the element and system
reliability indices are made by the user and may be chosen
as a function of the particular problem conditions.

The approach depends on initial choices and these have
a significant effect on final results. These effects can be
overcome by careful evaluation and planning by the designer.
Most relevant aspects are the choice of adequate element and
system reliability indices, the definition of the material
and of the load statistical values and the displacement
limits. Solutions provided by the current approach are not
definitive designs, since important aspects like axial

forces and shear forces are not included.

139
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The results presented showed a perfect convergence,
even when the initial displacements were not those
corfesponding to the stérting physical properties. The
Kuhn-Tucker conditions were always verified unless the lower
bounds were active, as in the cése of the building frame.
This implied that at least a local optimum was obtained.

For instance, a good indication of the quality of the
program performance was that in each case, the variables
representing the element bases always converged to the lower
bound. Another particular aspect of the program
capabilities was that at the end of the optimization the
displacement variables were always in the set of basic
variables of the Generalized Reduced Gradient method. This
meant thaﬁ no improvement could be extracted from the
objective function, except iterating on the equilibrium
equations.

Integration of displacements in the set of design
variables was a valid option for optimization with
reliability considerations. Element reliability constraints
were always active unless there were conflicting lower
bounds. A good compromise was established between the
optimization and safety requirements. System reliability
was also satisfied every time required probabilities of
failure for the elements and the system were of the same
order of magnitude. The method proved to be adequate for

_optimal predesign without code limitations.
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Nonlinear Material Behavior

Tests performed with material nonlinear behavior were
not completely successful. The results of the debug frame
showed optimized solutions, mainly if the two stage
procedure was followed. However, as shown in Table 7.6
there was no complete node equilibrium. For the other types
of frames, independent of the technique and initial values
chosen, the results showed that simultaneous equilibrium
convergence and optimization did not occur. In certain
cases with these types of frames, there was satisfaction of
the constraints and little improvement of the objective
function. In other cases, the opposite results were
obtained.

The most probable reason for these failures is
attributed to the errors in the evaluation of the secant
spring stiffness. The element forces and the global
displacements are related to these values. On the other
hand, the changes in the element properties during the
optimization process create severe oscillations of the
secant spring stiffness values. The values of the spring
stiffness parameters oscillate abruptly petween 1030 to
1010, approximately, when the moment exceeds the yielding
threshold. Also, after yielding, the spring stiffness
values oséillate petween values of different order of
magnitude: the yielding stiffness and the ultimate

stiffness. The nonlinear analysis is a path dependent event
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and using a secant approach relies upon the fact the exact
secant spring stiffness value is obtained. There are
certain approximations in the determination of the yielding
and ultimate rotations, that definevthe moment rotatioh
diagram from which the secant stiffness is evaluated. All
these instabilities and approximations may create the lack

of convergence that the results have shown.

Future Work

A good approach to improve the adequacy of the
-formulation assuming linear material behavior would be the
determination of the proper values for the mean and standard
deviation values of the external loads and concrete
strength. Presently, there is a lack of information to
allow a practical choice of these parameters for each
particular design situation. More research should be done
to examine the influence of including other statistical
parameters such as the cross section dimensions, position of
reinforcing steel, steel strength and load characteristics.

Addition of other element effects will transform this
formulation into a more complete optimization package. The
main element force to be considered is the axial force that
is decisive for column deéign. This will transform the
system reliability evaluation and the element reliability
constraints. Fundamental failure mechanisms will include

axial failures coupled with flexural failures and there will
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be additional element degrees of freedom in failure
mechanism sets. At the element level, the element failure
constraint would be replaced by a set of constraints
concerning also the axial failure and the interaction of
flexural and axial forces. Shear failure, important in
reinforced concrete elements, could also be added in a
similar fashion.

In the problem involving nonlinear material behavior
some alterations could provide a better performance in the
nonlinear optimization. These include the use of a mixed
approach of the integrated and the cycling formulation,
similar to that used in the Hooke and Jeeves version. A
possible improvement is the inclusion of an intermediate
stage where the solution for the exact displacements would
be calculated whenever the absolute violation of the
equality constraints exceeds an upper limit. This mixed
approach could improve the efficiency of this approach since
good displacements are essential for the definition of the
correct global and element nonlinear behavior.

Another possible improvement is the use of a different
model for the nonlinear reinforced concrete element. The
substitution of the one-~component model by a model of an
element partitioned in several discrete elements. These
discrete elements, each with linear stiffness
characteristics, defined by the global element nonlinear
properties, would provide better accuracy for the element

- behavior. This solution has the disadvantage of increasing
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substantially the size of the problem. However, the benefits
of this change could be significant.

Changing the nonlinear analysis method from secant
stiffness approach to a tangent stiffness approach could be
another solution to the lack of convergence. In this case a
two stage process would be adopted. The first would consist
of a linear optimization up to the formation of a hinge
followed by a phase with a sequence of incremental loading

and optimization procedures until convergence was obtained.



APPENDIX A

" AUGMENTED LAGRANGIAN SUBROUTINES



program princi

implicit double precision (a-h,o-z)

character*40 title

dimension x(100),r(60),cl(60),cosl(60),cos2(60),x%x01(100),
clah(80),clag(80),1lm(6,50),vag(100),vah(80),
ch(80),cg(80),xo(lOO),nol(80),n02(80),jm(6,80),alp(80),
xc(80) ,yc(80),3dir(3),9lk(80,80),d(1000),vinv(100),
vahk(80),grad(100),xu(lOO),xl(lOO),xl(lOO),x2(100),vaho(80),
vago(80),a(80,80),b(80,80),vahold(100),vjac(100,100),
c(80),cm(80,80),qa(80,80),q(80,80),am(80,80),bl(80,80),
theta(loo,so),rv(80,100),beta(BO),vmu(so),cvmu(80),
cvload(80),become(lOO),lc(lOO),thesum(80),thesum1(80),
dispsum(60),ni(60),nucomb(60),lct(100),bfal(lOO,lOO)
common /parr/ decfc, fcinc,cv,alpl,ec,rp, fc,es,ecn,relind
common /pari/ iter,numcy,niter,ga,iqh, iqg,n,ntot, iggn
common /esq/ u(6),ck(6,6),vksi(100),vksj(100)

open ( 8,file='finres', form='formatted' )

rewind 8

open ( 9,file='data', form="'formatted' )

rewind 9
c***********************************************************

c name of problem
c************************************************************

read ( 9,191 ) title
C************************************************************

c # elements and ¢ joints
c************************************************************

read (9,*) n, nj
C************************************************************

c nodes per element
C*************************************************************
do 100 i = 1,n
read (9,*) nol(i), no2(i)
100 continue ‘
C*************************************************************
c initialize jm matrix
C************************************************************
do 200 kk = 1,nj

* 4 * ¥ F X * * %

jm ( 1,kk ) = 1
jm ( 2,kk ) = 2
jm ( 3,kk ) = 3

200 continue
C*************************************************************

c support conditions and coordinates
Chhhhh kAR A A KRR KRR AR R AR IR R AR AR AR R AR AR A Ak hkkkkkhkdkkk k&
do 300 j = 1,nj . .
read ( 9,* ) jdir(l),jdir(2),jdir(3),xc(j),yc(3)
do 350 i =1,3
if (jdir(i).gt.0) then
jm (1,3) =0
endif
350 continue

300 continue
CRARA AR AR R AR AR AR A AR R A RRRAARAKRA R AR R A AR AARAAARA AR AR A AR Rk ke kkk k&
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c global degrees of freedom
Chkhkhhkkhkhhkhhhkhkhkkhkkhkhkhhhkhhhdhrhhhkhhrhhhhhhhhkhhkhhkhhkhkhhdrhbhhkhhtxk
igh=0
do 500 j=1,nj
do 500 1 =1,3
if (jm(l,3j).ne.0) then
igh=igh+1
jm (1,3)=igh
endif
500 continue
iggn = igh+n
igqg = igh
ntot = iggn+2*n
Chhkhkhhkkhkhkhkdkhkhkbhkkhhdhhbdhhhhhhkhhhhhkhhhhhkhhhhhkhkhkhkhkkhkhkhkhhhhhhith

c input data
Chhhkhkhkhkhdhhhhhkhhkhkhhhhkhhkhhhkhkhhhhhhhkhhkhhhkkdhhhhhkhhhththhrhhhkhhkhi

call inputd (cl,cosl,cos2,igh, jdir,jm,1lm,n,nj,nol,

* no2,r,xc,yc)
Chkhkhkhkhkhkhkkhkkhhkdhhkhhkhhkhkhkhkhkhkhkkdhkkhkhkhhrhhkhhhhhhhkhkhhrhkrhkkhkrhhih
c reinforced concrete

Chhhkhkhkhkdkhkkhkhhhkhhkhkhkkhhkhkhkhhkhkhkhkbkhhhkhkhkkhkhkhkhkhkhhkkhkkhkhkkhrkkkhkkkhk

read(9,*)fc,fy,co

ec=57000*sqrt(fc)

vn=29e6/ec

epsy=fy/29e6

do 987 ijh=1,n

vksi(ijh)=10e30

vksj(ijh)=10e30
987 continue

read(9,*)es,ecm
ChhkhkhkhdhhhkhkdhhkhkrhhkrkhkhkhhkrhrhhAhrhhhhhhhkhkhkhkhhhkhkhkhhhhhkhkkkhhkki
c reinforcing steel guess
Chhhkhkhkhkhkkdhhkhkhkhhhkhkhkhkhkrbhkhhhdhbhhhkhhhhhrhthhhhhbhkhkhrhhkhdhhhhxk

n3=n*3

read(9,*)(x(1i),i=3,n3,3)
Chhhkhkhhdkhkhhkhhkhkhkkkhhhkhkhkkhkhkkhkhkkhhkrhkhhhkhkhhrrkkkhkhkhkhrhrhkrhhhkhkhkkthikk

c constraint values
Chhkhkhkkkhkhkhkhhkhkhhkhkhkhhrhkhkhkhbhbhkhkhkhkhkhhhhkhhkhkhhbhkhrhkhrkhohkhkhkhkhkhkhkkhkrhhkhkkik

call constr (iqg,d)
Chhhkhkhkhkkhkkhkhkhkhkkhkhkhkhkkhhkhhkhkhrhkhhkhkhrhkhhbhkhkdthkhkkhhhkhhkhhhhhhhrhrhkhhhd

c determine bandwidth
ChhkhkhkhkhkhhhkhhAhhkhhkhhhkhhkhrAAhkhrhkAr kbt hkrhkhrhhkkhhkhbhkhhhhhkhkkhkkik
mband = 0
do 450 k = 1,n .
do 450 1 = 1,6

if ( lm(i,k).eq.0) go to 450
do 440 j = 1,6
if (1m(j,k).eq.0) go to 440
max = abs(lm(i,k) - lm(j,k)) + 1
if (max.gt.mband) mband=max
440 continue

450 continue
ChhkhkhkhkhkhkhkhhhhhhkhhkhhkrhhhbhkhhhhhhhrhkhkhkrAhhrhrd bk hkhbhkhhkrhhkkdkd

c - optimization parameters and initial guesses
ChhkkhkhkhkhkhkhkhhkAhkrAAAhkAhkrrrhkhkrhkhhhhkhkhhkhhkhrhkrhkhhkrhkhhkhkhhkkhkrhhrrhkkhih

call parame(toll,x,n2l,glk,mband,cl,cosl,cos2,1lmn,
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* r,delta,alpha, numec, rph)
c**************************************************************
c elementary mechanisms

Chikkkkhhhhkhhhhhhhhkkhhkhhkhkkkhh Rk kkhhhhhkhkkhkhhkhhkkhhkkkkkkkkk
call mecsys(n,iqh,cl,cosl,cosz,lm,numec,rv,theta,rv)
ChRAkhhAIRhRAhhhhkkhhkk Rk ARk k Ak kA khhhhkhkkhkkkhkkkhkhkdhhkkkdkkkk

c coefficients of variation
ChRhRkhhhkhhhhhhkhh kR kkh Rk khkhkkhkkhkhhhhkhkRkkhkhhhhkhkhkkrhkhhk
do 156 i=1,n
read(9,*)cvmu(i)
156 continue
do 157 i=1,iqgh
read(9, *)cvload (i)
157 continue
c************************************************************

c lower bounds
c************************************************************
romin=200./fy
read(9,*)x11,x12
c***********************************************************
c interval for generation of mechanisms
c***********************************************************
read (9, *)epsilo
C************************************************************
c write input data
C*************************************************************
write (8,190) title
write (8,110)
write (8,130) n
write (8,140) igh
write (8,150) iqg
write (8,170) fc,fy
write (8,240)
do 501 k = 1,iqgh
write (8,250) k, r(k)
501 continue
write (8,260)
do 601 k = 1,iqg
write (8,270) k, d(k)
601 continue
write (8,351)
do 701 k = 1,n
na 3 * k
ne = na -1
no = ne -1
write (8,360) k, cl(k), x(na), x(no), x(ne)
701 continue
write (8,650) rp
write (8,760) ga
write (8,860)
do 900 i=n21,ntot
k=i=-3*n
write (8,870)k,x(1i)
900 continue
C**************************************************************

c data initialization



149

Chhkkdkkdkkhkhhhhkhhhhhhhhkhhhddddkhhhhhhkkhdhhhhhhhhkhhkkdkdhhhhdkkkkkkik

call datini (clah,clag,ch,cq)
Chhkkhkkhhkkhkhkhhkhhkhkhhkhkhkhhhkhkhhkhhkhkhhdhkhhkrhkhhhhkhhrhkhhkhkhhhhhkrdhkkhkkkk

c subroutine optimization
Chkikhkkhhhhkhhkhhhkhhhhkhkhkhhkhhkhhkhhkhkhhhkhkkhkhhhhkhkrkkkkhhkhhkhhhhhkhkkkkdkhkk
call optimi (vlag,r,x,cl,cosl,cos2,1lnm,d,clah,xol,
vag,toll,claqg,vah,ch,cqg,x0,vahk,grad, xu, xl,x1,x2,
delta,alpha,alp,vaho,vago,vn,co,epsy, fy,ast,beta, theta,
numec, vmu,cvmu, rv,cvload,become, 1c, thesum, thesuml,
dispsum,ni,nucomb,lct,x11,x12,romin, rph,grad, vahold,

* vjac,vinv,bfal,epsilo)
Chkhkhhkhhkhkhhkhhhhkhhkhkhkkhkkhdkkkhkhrhrhhkhhkhhkkrhkrkkhkhkdhkrhhhkhhhkhhhkhhkhhkdkirk
c write final data
c*****************************************************************

write (8,880)
write (8,890) iter
write (8,910) vlag
write (8,840)
do 1000 k = 1,n

* % * *

na =3 * X%
ne = na - 1
no = ne - 1

write (8,851) k, x(no), x(ne), x(na)
1000 continue
write (8,960)
do 1151 k = n2l1, ntot
i =Xk - 3*%n
write (8,970) i, x(k)
1151 continue
write (8,920)
do 1101 k = 1,igh
write (8,930) k, vah(k)
1101 continue
: write (8,940)
do 1200 k =1,iqg
write (8,950) k, vag(k)
1200 continue
write (8,944)
do 1211 k=igg+l,iqgn
write(8,946)k-igh,beta (k-igh)
1211 continue ‘
write(8,945)
do 1241 k=1,n
write(8,947)k,vksi(k),vksj (k)
1241 continue
write(8, *)
write(8,*)! LAGRANGIAN MULTIPLIERS EQUALITIES'!
write(8,*)
do 1277 i=1,iqgh
write(8,966)clah(i)
1277 continue
write(8,*)
write(8,*)! LAGRANGIAN MULTIPLIERS INEQUALITIES!
write(8,*)
do 1278 i=1,iqh+n
write(8,966)clag(i)
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1278 continue
C************************************************************
c output format

c************************************************************
110 format ( //,10x,' ******%x initial values ***x*xx' / )

(
120 format ( a25 )
130 format ( /,10x, 'number of elements = !,i3 )
140 format ( /,10x%,'number of equality constraints = ',i3 )
150 format ( /,10x, 'number of inequality constraints = ',i3 )
160 format ( /,10x,'number of iterations per cycle = ',i5 )
170 format ( /,10x,'fconcrete = ',el4.8,4x, 'fsteel =',e14.8)
(

180 format /10, 'number of global degrees of freedom
% = ',iz

190 format ( //,10x,a25,// )

191 format (a) -

240 format(//,10x, 'global degree of freedom',10x,
* 'external force!')

250 format ( /,20x,i2,22x,e14.8 )

260 format ( //,10x,'global degree of freedom',5x,
* 'displacement constraint!' )

270  format ( /,20x,i3,19x,el4.8 )

351 format ( //,'element',8x, 'length’',10x, 'steel',12x,
* 'base',12x, 'height!')

353 format ( 18x,i3,6x,el4.8,/)

360 format ( /+13,6%,e14.8,3x,e14.8,4x,e14.8,4x%,el14.8 )

370 format ( /,10x,i3,14x,314,3%x,314 )

380 format(//,10x%,'location matrix for global degrees

* of freedom ')
390 format ( /,10x,' element ',10x,' node i',10x,'node j' )
640 format ( /,10%, 'maximum number of cycles = ',i3 )
650 format ( /,10x,'penalty factor = ',el4.8 )
730 format ( /,10x,'factor of increase = ',el4.8 )
740 format ( /,10x,'factor of decrease = ',el4.8 )
760 format ( /,10x,'penalty factor multiplier = ',el4.8 )
840 format ( /,12%,'element’',11x, 'base',17x, 'height', 10x,
* 'steel!')

851 format /+15%,12,8x,e14.8,8%,el14.8,5%x,e14.8)
860 format /+10x,'global degree of freedom!,5x,
* 'initial guess' )

870 format /,20%x,12,18x,e14.8 )
880 format //// 10X, "hkkkkkk final values *kkkkkk' /// )
890 format /+10x%, 'number of iterations = ',i3 )
910 format /,10x%, 'value of lagrangian function = ',el4.8 )
920 format /+10x, 'equality',17x, 'final value!' )
930 format /,12%x,13,17x,e14.8 )
940 format /+10x, 'inequality',13x, 'final value')
944 format /5%, 'element reliability',9x,'final value')
945 format (/,5x,'element',5x, 'spring i',5x, 'spring j')
946 format ( /,11x,i4,17x,e14.8)
947 format (/,8x,i5,8x,el4.8,3x,el4.8)
950 format ( /,12x,1i3,17x,e14.8 )
960 format ( /,10x,'displacement',l4x,'final value' )
966 format (/,el4.8)
970 format ( /,12x,i3,17x,el4.8 )

stop

end

—~—~
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subroutine comcon(aste,fy,es,d,b,co,epsy,ecn, fc,vmy,phiy)
implicit double precision (a-h,o0-2z)

kll=0

node=0

epso=0.002
Ok de ok de K ke ke d e ek o ek ok e de e ek e g de ke e e de e e ek de ke ke ek ke ke ek ke ke ke e ke ke ke ke ek ke ok e ke ke ke ek ke

c

C EXC - CONCRETE STRAIN

c EPCS - COMPRESSIVE STEEL STRAIN
c EPSY - YIELD STRAIN
c
c
c

FIRST VALUE FOR A

% % % Je & Je Je de Jo kK Je g K e e ok de e de vk de K ke ok gk de ke e de de ek de e ke ok ke ke kg ke de ok gk e ok ke gk e ke ok gk ke e ok ok ke ok ok ok koK

al=d/2.

exc=al*epsy/(d-al)

epcs=exc*(al-co)/al

t=fy*aste

cs=epcs*es

eces=exc/epso

alpha=eces-eces*eces/3.

cc=alpha*fc*b*al

resl=cc+cs-t
ChhhkhkkhhkhhhhhhhdkhrkrrR AR Ak kR AR AR R Ak kk kAR khh A kdhkkhhk kAR kR kkhkhhkhk

c SECOND VALUE FOR A
ChhkkhkhAk R AR RRAI XA IR KK R RR AR R KRA R KRR RAR R AR IR R AR A AR R KAk ko kkhkhkhhk
a2=0.25*d
exc=a2*epsy/(d-a2)
epcs=exc*(a2-co) /a2
cc=fc*a2*alpha*b
eces=exc/epso
cs=epcs*es
res2=cc+cs-t
Chk ok kAR R AR AR R AR AR AR RRR R AR AR RRRRR IR R ARk Ak AR R Ak Ak kA XA Rk kkkkkkk

c NEWTON ITERATION
Chhkhkk kA A A AR R AR AR RRARR AR KA RR R AR A RRRARRA AR A AR R R kAR kAR hhkkkk
100 a=a2-res2*(a2-al)/(res2-resl)
exc=a*epsy/ (d-a)
if (exc.gt.epso) go to 200
ChhkkkhhkhhhhhhkhAhrrhkhhhhkhhhkkhhhkhkkhkhhhdhddhhhddkkikhkkdkkkhkkhkikkk

c PARABOLIC SHAPE
ChhkkkhhhhhhhhrrAhkhkRkkkhhkhhhhhhkkhkhkhkhhhhhhhhhhhhhhhkhhkhkhrkhkdkhkhk
epcs=exc*(a-co)/a
eces=exc/epso
alpha=eces-eces*eces/3.
cc=fc*alpha*b*a
cs=epcs*es
res=cc+cs-t
control=0.0001*b*d*fc
if (abs(res).gt.control) then
al=a2
az=a
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resl=res2

res2=res

kll=kl1l+1

if(kll.gt.100)then

stop

endif

go to 100
endif
gama=1l.-(8.*epso-3.*exc)/(12.*epso-4.*exc)
arm=d-gama*a
vmy=cc*arm+epcs*es*aste* (d-co)
phiy=epsy/(d-a)
return

Chhkhkkkhhkhhhhhkhkdhhhhkhkhhhhhhhhhhhkhkhkhhhhhhhhhhhhhhhhhhhhekhdhhhhhkk

C

CONCRETE STRAIN > EPSO

Chhhhkhkhkhkhhhhkhhhkhhkhhhhkhhhhhhhhhkhkhhhkhhhhhhhhhkhhkkhkhrhrhhkthhhhkk

/]
i

200 if(exc.gt.0.004) exc=0.004

Xl=epso*a/exc

ccl=fc*x1*2./3.%*b

gama=3,6*exc*exc-200. *exc*exc*exc-0.0000128
gama=gama/ ( (exc-epso) *(7.2*exc-300*exc*exc-0.0132))-1.
alpha=exc-50.*exc*exc+100.*exc*epso-0.0022
alpha=alpha/ (exc-epso)
cc2=alpha*fc*(a-x1l) *b

epcs=exc* (d-co)/a

t=fy*aste

cs=epcs*es

cc=ccl+cc?

res=cc+cs-t

control=0.0001*b*d*fc

if (abs(res).gt.control) then

al=az2
a2=a
resl=res2
res2=res
kll=kll+1l
if(kll.gt.100) then
stop
endif
go to 100
endif

arml=d-a+2./3.*x1

arm2=d-gama* (a-x1)
vmy=ccl*arnl+epcs*es* (d-co) *aste+cc2*arm2
phiy=epsy/(d-a)

return

end

subroutine eley(ec,tinert,cl,vki,vkj,u2,u3,u5,u6,£fo3,fo6)
implicit double precision(a-h,o0-2)

ei=ec*tinert

w=cl/(3.%ei)+1./vki



153

y=c1/(3.*ei)+1./vkj

z:
de

-cl/(6.*ei)
t=wky-2%*2

a=y/det

b=

-z/det

c=b
d=w/det

fo
fo
re
en

3=(a+b)/cl*u2+a*u3-(a+b)/cl*u5+b*u6
6=(c+d)/cl*u2+c*u3-(c+d)/cl*u5+d*u6
turn

d

c

150

subroutine equcon (x,n,cl,lm,cosl,cosz,fc,ec,vn,co,epsy,
fy,ntot,iqh,vah,r,vahk,es,ecm,beta,cvmu,cvload,kl,
vmu)
implicit double precision (a-h,0-2)

dimension 1m(6,n),cosl(n),cosZ(n),vmu(n)
dimension cl(n),x(ntot),vah(iqh),r(iqh)’
dimension vahk(iqh),beta(n),cvmu(n),cvload(iqh)
common /esq/ u(6),ck(6,6),vksi(lOO),vksj(lOO)
do 150 k = 1,igh

vahk(k)=0.0

continue
C****************************************************************

GLOBAL DISPLACEMENTS PER ELEMENT

C****************************************************************
n3=n+n+n

123

200

do 100 kel =
do 123 ipo=1,

l,n
6

u(ipo)=0.0
continue
sigma2=0.0

do 200 i = 1,6
m=1m(i, kel)
if (m.eq.0) go to 200

if(cvload(m).gt.51gma2)sigma2=cvload(m)

1l = n3+m
u(i) = x(1)
continue

sigmal=cvmu(kel)
cl=cosl (kel) ’
c2=cos2 (kel)
d2=-c2*u(l)+cl*u(2)
d3=u(3)
ds=-c2*u(4)+cl*u(5)
dé=u(6)

C*****************************************************************

C

ELEMENT FORCES

C****************************************************************
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c = cl(kel)
45 continue
base = x(3*kel-2)
height = x(3*kel-1)
aste = x(3*kel)
area = base * height
tinert = area*height*height/12.0
al = ec*tinert/(c*c*c)
fo3 = al*(6.0*c*(d2-d5) + 2.0*c*c*(2.0%*d3+d6))
fo6 = al*(6.0*c*(d2-d5) + 2.0%c*c*(d3+2.0*d6))
C****************************************************************
c ULTIMATE AND YIELD MOMENTS .
C****************************************************************
call mumy(base,height,aste,vn,co,epsy,ec,fc,fy,
* vksi(kel),vksj(kel),c,fo3,f06,es,ecm,betak,
* sigmal,sigmaz,tinert,kl,vmuk,vmy,ijflag)
if(vksi(kel).lt.lOezo.or.vksj(kel).lt.lOeZO)then
call eley(ec,tinert,c,vksi(kel),vksj(kel),

* d2,d43,d5,d6,fo3, fo6)
call mumy(base,height,aste,vn,co,epsy,ec,fc,fy,
* vksi(kel),vksj(kel),c,fo3,f06,es,ecm,betak,
* sigmal,sigmaz,tinert,kl,vmuk,vmy,ijflag)
endif

beta(kel)=betak
vmu (kel) =vmuk
C****************************************************************
c GLOBAL MODIFIED STIFFNESS
C****************************************************************
call modsti(area,ec,vksi(kel),vksj(kel),c,tinert,cl,cZ)
do 3001 1,6
3j Im (1,kel)
if (j.eq.0) go to 300
do 400 11 = 1,6
m = 1lm (11, kel)
if (m.eq.0) go to 400
jj = n3+m
vahk(j)=vahk(j)+ck(1l,11)*x(j75)
400 continue
300 continue
100 continue
C**********************************************************

c SUBTRACTION OF EXTERNAL GLOBAL FORCES
C***********************************************************
rmax=0.01
do 510 ilj=1,igh
if(abs(r(ilj)) .gt.rmax)rmax=abs(r(ilj))
510 continue
do 500 kpj = 1,igh
if(abs(r(kpj)).1t.0.0001)then
vah (kpj)=vahk(kpj)/rmax
go to 500
endif
vah(kpj) = (vahk(kpj) - r(kpj))/rmax
500 continue
return
end



subroutine hoojee(tvah,vlag,r,vah,vag,x,cl,cosl,cosz,

* lm,d,clah,clag,ch,cg,alp,xol,vahk,toll,vn,co,
* epsy,fy,ast,beta,cvmu,cvload,xll,xlz,romin,vmu,rph,
* grad,vahold,vjac,vinv,bfal)

implicit double precision (a-h,o-z)

dimension x(ntot),cl(n),cosl(n),cos2(n),1lm(6,n),vahk(iqh),
d(iqg),clah(igh),clag(iqggn),r(igh),vah(iqgh),vag(iqgn),
ch(igh),cg(iqggn),alp(ntot),xol (ntot), beta(n),
cvmu(n) ,cvload(igh),vmu(n),grad(ntot),vahold(igh),
vjac(igh,iqh),vinv(igh),bfal(iqgh, iqh)

common /parr/ decfc,fcinc,cv,alpl,ec,rp, fc,es,ecnm,relind

common /pari/ iter,numcy,niter,ga,igh,iqgg,n,ntot,iqgn

common /esq/ u(6),ck(6,6),vksi(100),vksj(100)

Chhkhkhh kR hh kXA AR IR AR AR R RKR kAR h R R Ak hk kR Ak kkkkhhhkhkkhhrkdhhkkk

* * ¥

C INITIALIZE LAGRANGIAN FUNCTION
Chkkkdkhhkhkhhhhhhhhdhhhhhhhhkkhhkhhhhrhhhhkkkhhkhhhhhhhhhhkkkhhkkhk
k=0
kkl=0

n3 = n+n+n
romax=0.85*0.85*fc*87000./(fy*(87000.+£fy))
call lagfun (vlag,tvah,r,x,cl,cosl,cos2,1n,
* d,clah,vag,clag,vah,ch,cg,vof,vahk,vn,co,epsy,fy,beta,
* cvmu, cvload, k,vmu, rph) : '
vlago = vlag
C****************************************************************
c LOOP ON VARIABLE # K FOR THE SPECIFIED # OF ITERATIONS
Chhhhhhh kR h A h R AR AR AR R R R A AR AR AR R AR A RAR AR AR AR KRR AR AR RN R AR Ak
do 200 Kkl1j = 1,niter
do 450 k = 1,ntot

450 alp(k) = alpl
do 150 k = 1,ntot
150 xol (k) = x(k)
do 100 Xk = 1,n3
xopt = x(k)
600 continue
kkl=kkl+1
C***************************************************************
C VALUE OF LAGRANGIAN FUNCTION FOR INITIAL VALUES

C****************************************************************
500 continue
x (k)= xopt+alp(k) *xopt
if (k.le.n3) call lim(x,n,ntot,xl1,

* : x12,k,romin, romax) \
C****************************************************************
c NEW VALUE OF LAG. FUNCTION

C****************************************************************
call lagfun (vlag,tvah,r,x,cl,cosl,cos2,1lm,
* d,clah,vag,clag,vah,ch,cg,vof,vahk,vn,co,epsy, fy, beta,
* cvmu,cvload, k,vmu, rph)
if (vlago.gt.vlag) then
C***************************************************************



156

C VARIABLE INCREASE
Chhkhhhhhhkhkhhhhkhhhkhhkkhhhhhkkhhkhkhhkhhkhhhkhhhkhkhhkkhkhhkkhrkkhkrhkkk

alp(k)=alp(k)*fcinc

vlago=vlag
xopt=x(k)
go to 500
else
ChRRA IR AR I KRR A I AR KRR A RRRR AR RRRRE AR R R AR Ak hk ko kdkkkdhkkkhkk
c DIRECTION REVERSED

Chhhhhhkkhhhkhhdhhkhkhhhhhkhhhkhhkhhkhhkhkhhkhhkhhkkhhhhkhhkhkhkhkhhkhkhkhkrhkhkkhkhkk
alp(k)=-alp(k)
x (k) =xopt+alp (k) *xopt
endif
if (k.le.n3) call lim(x,n,ntot,xll,
* x12,k, romin, romax)
call lagfun (vlag,tvah,r,x,cl,cosl,cos2,1n,

* d,clah,vag,clag,vah,ch,cqg,vof,vahk,vn,co,epsy, fy,beta,

* cvmu,cvlocad,k,vmu, rph)
Chhhhhhkhkhhhkhhhhkhhhhkhkhkhkhbhhkhkhhkhhhhkhhhkhkhhkhhhkhkhhhhhhhhhkhkrhkhhkhhkkhkdk
Cc VARIABLE INCREASE
Chhhkhkkkhkhhhhkhhdhhhkhhkhhkhhkhhkhhkhkhkhhhhkhhhkhkhkrhkhhkhkhhkhkhkhhkhhkhkhhkhkkhhkhh

if (vlago.gt.vlag) then
alp(k)=alp(k)*fcinc

vlago=vlag
xopt=x(k)
go to 500
else
ChhkhkkhhkhkhkhAArARAXARAXARARARAR AR AR A AR ARRRR AR AR A AR ARk A Ak ki hhik
o) VARIABLE DECREASE

Chhkhhkhhkhkhhkhkhhkhhkhkhkhkkkhhhhkhhkhkhhhhhkhkhkhkhhhhhhhhkhkhhkkhhkhhhkhhhkhhkkkkkik
alp(k)=alp(k) *decfc

x (k) =xopt
endif
if(kkl.1t.200)go to 600
100 continue
ChhkhRhkrAAXAAXARKRRARRRRKAARKIXAARARRARRAR R A A ARk Ak kR hkhkhkhkhkhhkhhkhkrhkkkkk
C ) PATTERN MOVE

Chhkhhkhkhhkhkhkhhhkhhkhhkhkhhhkhkhkkhhhkhhkhkhhhkhhkkkhhkhkkhhkhhkkkhhkhkhhkhhhkhkhk

do 250 kp = 1,ntot
X(kp) = 1.01*x(kp) - 0.01*xol(kp)
if (kp.le.n3) call lim(x,n,ntot,xl1,
* x12,kp, romin, romax)
250 continue
call lagfun (vlag,tvah,r,x,cl,cosl,cos2,1n,
* d,clah,vag,clag,vah,ch,cqg,vof,vahk,vn,co,epsy, fy,beta,
* cvmu,cvload, kp,vmu, rph)
if (vlago.gt.vlag) then
vlago = vlag

else
do 300 kp = 1,ntot
x(kp) = (x(kp)+0.01*x0l(kp))/1.01
300 continue
endif
ChRAkA KRR KRKRARRRRRRKREAKRRRRRRAAKRRARARRIRRRARARRA AR RA AR RRAARR AKX
c SOLUTION OF EQUALITIES

Chhhhhhhhhkhhhhhhhhhhkhhhhrhhkrhhhkhhhhkhhkhhhkhhhhhhhhkhhhhhkhkhhhkhk
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call jacequ(x,n,cl,1lm,cosl,cos2,fc,ec,vn,co,epsy,
* fy,ntot, igh,vah, r,vahk, es, ecm,beta, cvmu, cvload,k,
* vmu,vjac)
call sol(igh,vjac,r,vinv)
do 5890 jgo=1l,igh
x(jgo+n3)=vinv(jgo)
5890 continue
200 continue
Chhkkhkkkkkhhkkhkhkhhkhhkhkhkhhkhkkhhhkhkhkhkhkkhkhkhkhkhhhkrhkkhkhkhkkkkkkkkkkk

c REINITIALIZE VALUES
ChhkhkhkhkkhkhhhhhkhkhkhkhkhkhkhhkhhkkhkhkhkhhkhrRhkhkhhkhhkhkhkhhkkkthhrhkhkhkhkhhkihik
k=0
call lagfun (vlag,tvah,r,x,cl,cosl,cos2,1ln,
* d,clah,vag,clag,vah,ch,cqg,vof,vahk,vn,co,epsy, £y, beta,
* cvmu, cvload, k,vmu, rph)
return
end

subroutine lagfun (vlag,tvah,r,x,cl,cosl,cos2,1lm,
* d,clah,vag,clag,vah,ch,cqg,vof,vahk,vn,co,epsy, fy,beta,
* cvmu,cvload,kl,vmu, rph)
implicit double precision (a-h,o0-2)
dimension x(ntot),cl(n),cosl(n),cos2(n),1lm(6,n),d(iqqg),
* clah(iqh), clag(iqgn), vag(iqgn), r(iqh), vah(igh),
* ch(igh), cg(iqggn), vahk(igh), beta(n),
* cvmu(n), cvload(igh),vmu(n)
common /parr/ decfc,fcinc,cv,alpl,ec,rp, fc,es,ecn,relind
common /pari/ iter,numcy,niter,ga,igh,iqg,n,ntot,iqgn
common /esq/ u(6),ck(6,6),vksi(100),vksj(100)
tvah = 0.0
tvag = 0.0
rp2 = 2.0*rp
Chhhkhhkhhkhkhkhkhkkkhhkhkhkhkhkhkhkhhhhhhhbhkhhhkhkhhrrhkhhkrkhkhkhkhkkhhkhkhkkkhkkhhkkk
C EQUALITY CONSTRAINTS
ChhkrkhkAkhkAkhARRAAAXEARKARRRKRERKARKARKRRKRAKRARKR AR IR AR A kA hkhkhhkhkhhkkkkhkhkkx
call equcon (x,n,cl,1lm,cosl,cos2, fc,ec,vn,co,epsy,
* fy,ntot,iqh,vah,r,vahk,es,ecm,beta,cvmu,cvload,kl,vmu)
do 100 k=1,iqgh
ve=vah (k) *ch (k)
tvah=tvah+clah (k) *ve+rph*vc*ve
100 continue
ChhhkhhkhhkhkhhhkhhhhkhkkrkhhkhhkhhhhhhhkhhhkhhkhhhkhhhkhkhkhhkAhkhkkrkAhkhkhhhrhkhrhkhhh

C DISPLACEMENT CONSTRAINTS
Chhhkhrhkhhhhhhhhhhhhhkhkhkhhhhkkk ke hkkrkhrhkhhhhhkhhhkdkhkhkdhk
call inecon (igg,n,ntot,vag,x,d,relind,beta)
do 200 k=1,iqgn
v=vag (k) *cg (k)
z=-clag(k)/rp2
psi=max(v, z)
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tvag=tvag+clag (k) *psi+psi*psi*rp
200 continue
Chhkhkhkhkhkhhhhhhhkhhhhhkhhhhhkhdhhhkhhhhrkhhhhrkhrkkdokkhkkhkkrhkkdkxk

C . VALUE OF LAGRANGIAN FUNCTION
C***************************************************************
call valobf (n,ntot,vof,x,cl)
avof = cv#*vof
vliag = avof+tvah+tvag
return
end

subroutine modsti(area,ec,vki,vkj,cl,tinert,cosl,cos2)
implicit double precision (a-h,o-2)
common /esq/ u(6),ck(6,6),vksi(100),vksj(100)
Chhhdkhhkhkhkhkhkhhhhkhkhkhkhkkhkkhkhhhkkkhkkhkhkkhkkhkhhhkhkhkhkhkhkhkhkhkhkhhhhkhkhhkkikhkn
Cc FLEXIBILITY MATRIX (2x2)
Chhkdekdhkkhkkhkkhkhhhkhhhhhbhdkhhkkdhhdhhhhhkhkhhkhhhkhkhkhkhhhhhkhhhhhkhkhkhkhkhkk
do 10 i=1,6
do 20 j=1,6
ck(i,j)=0.0
20 continue
10 continue
x=cl/(3*ec*tinert)+1l./vki
y=cl/ (3*ec*tinert)+1./vkj
z=-cl/ (6*ec*tinert)
C g d de & & Jde ke o de Fe de Je e dede e e ok e ek ko e ke e e ve ok b e dk de vk Jk de ok e e ok b ok e ke Tk o e ok sk g e de e ok e e e de bk ke ke ok

c INVERSION OF MATRIX
Chhkhhkhhkhkhhkkhkhhhhhhhhhhhhhhhhhhhhkhhhhhhhhkhdhhhkhkhhhhhhrhrhkrhhhk

det=x*y-z*2z

a=y/det

b=-z/det

c=b

d=x/det
Chhkhhhhhhkhhkhhkhhhkhhkhkkhkkhhkhkhhkhhhhhhhbhhkkhhkkhkhhhhkhhkhhhhkkhikhkkxk
C EXPANDED MATRIX (6x6)

Chkhhkhhkhkhkhhkhhhkhkhhhkkkkhkhkhkhkhkhkhkhhkhkhkhkhhkkhhkhkkhhkhhhhkhhkhhkhhhkhkkhk

ckll=ec*area/cl
ckl4=-ckll
ck4l=-ckll
ck44d=ckll
ck22=(a+b+c+d)/(cl*cl)
ck25=-ck22
ck52=ck25
ck55=ck22
ck23=(a+c)/cl
ck53=-ck23
ck26=(b+d) /cl
ck56==-ck26
ck33=a
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ck36=b

ck63=¢c

cké66=d

ck32=(a+b)/cl

ck35=-ck32

cké62=(c+d)/cl

ck65=-ck62 :
Chhkkkhkkhkhhkhhhkhkhkhhkkhkhhkhhhkhhhhhhhhhhkhkhhkhhhhkhkhkhkkkhkhhkkhkhhkhkhkhkhkkkhk

c ROTATED MATRIX

Chikkhkhkhhkhhkhkkhkhkkhkhkhkhkkhkkkhkhkkhkkhkhhkhkhhhhhkrhkhkhkhhkkkhkhkhkhhkkkkkhkhkkk
c2=cosl*cosl
s2=Cc0s2*cos2
cs=cosl*cos?2
ck(1l,l)=ckll*c2+ck22*s2
ck(1l,2)=ckll*cs=-ck22*cs
ck(l,3)==ck23*cos2
ck(l,4)==-ckll*c2-ck22*s2
ck(l,5)=-ckll*cs+ck22*cs
ck(l,6)=-ck26*cos2
ck(2,1)=ckll*cs-ck22*cs
ck(2,2)=ckll*s2+ck22*c2
ck(2,3)=ck23*cosl
ck(2,4)=-ckll*cs+ck22*cs
ck(2,5)=-ckll*s2-ck22*c2
ck(2,6)=ck26*cosl
ck(3,1)==-ck32*cos2
ck(3,2)=ck32*cosl
ck(3,3)=ck33
ck(3,4)=-ck(3,1)
ck(3,5)==ck(3,2)
ck(3,6)=ck36
ck(4,1)==-ck(1,1)
ck(4,2)=-ckll*cs+ck22*cs
ck(4,3)=ck23*cos?2
ck(4,4)=ckll*c2+ck22*s2
ck(4,5)=ck(2,1)
ck(4,6)=ck26*cos2
ck(5,1)=ck(2,4)
ck(5,2)=ck(2,5)
ck(5,3)=-ck(2,3)
ck(5,4)=-ck(2,4)
ck(5,5)=~ck(2,5)
ck(5,6)=-ck26*cosl
ck(6,1)==-cké62*cos2
ck(6,2)=ck62*cosl
ck(6,3)=ck36
ck(6,4)==-ck(6,1)
ck(6,5)=-ck(6,2)
ck(6,6)=ck66
return
end
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subroutine mumy(b,h,aste,vn,co,epsy,ec, fc, fy,
* vki,vkj,clk,fo3, fo6,es,ecm,betak,sigmal,sigmaz,
* tinert,kl,vmuk,vmy,ijflaq)

implicit double precision (a-h,o0-z)

nodel=0

node2=0

ijflag=0

d=h-co
C*************************************************************
C EVALUATION OF YIELDING MOMENT

C*************************************************************
call comcon(aste,fy,es,d,b,co,epsy,ecm,fc,vmy,phiy)
afo3=abs(fo3)
afo6=abs(fo6)
vki=10e30
vkj=10e30
vm=max(afo3,afoé)

C**********************************************************

C IDENTIFICATION OF HINGE NODE
C**********************************************************

if (afo3.gt.vmy) nodel=l

if (afo6.gt.vmy) node2=1
C*************************************************************

c ULTIMATE MOMENT AND RELIABILITY
Chhkkhhhhhhhkhhkhhrhhrhkkrhkrhkhkkhhhhhrhhhhhhrkkhhhhhrhrhhhhhik

call valmu(aste,b,betak,co,d,es,epsy,fc,fy,

* phiu,sigmal,sigma2,vm, vmuk, vmy,phiy)
C***************************************************************
C INTEGRATION OF CURVATURE

C***************************************************************

if(nodel.gt.0.0or.node2.gt.0)then

if((fo3*fo6).gt.0) then
if(afo3.gt.afoé)then
zero=0.000001*afo3
if(abs(afo3~-afo6).1lt.zero)then
vlip=clk
go to 145

endif

vlip=(afo3-vmy)/(afo3-afoé) *clk

endif
if(afo3.lt.afo6)then
zero=0.000001*afo6
if (abs(afo3-afo6).lt.zero)then
vlp=clk
go to 145

endif

vlp=(afo6-vmy)/(afo6-afo3) *clk

endif

145 continue

tetay = phiy*clk*0.5

tetau (phiu-phiy) *v1p*0.5+phiy*clk

endif

if((fo3*fo6).1t.0) then

vlp=(vmuk=-vmy) *clk/vmuk

tetay=clk*phiy*0.25

tetau=phiy*clk*0.25+ (phiu-phiy)*vlp
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endif
vksp= (vmuk-vmy) / (tetau-tetay)

c****************************************************************

C

SPRING VALUES

C****************************************************************

if(nodel.eq.1l) then
vki=vksp
vkj=10.0e20%*ec
endif
if(node2.eq.l) then
vki=10.0e20%*ec

vkj=vksp
endif
if (nodel.eqg.l.and.node2.eq.1l) then
vki=vksp
vkj=vksp
endif
endif
return
end

* % * * *

* ¥ % ¥ ¥ ¥ * *

subroutine optimi(vlag,r,x,cl,cosl,cosz,lm,d,clah,xol,

vag,toll,clag,vah,ch,cg,xo,vahk,grad,xu,xl,xl,xz,
delta,alpha,alp,vahc,vago,vn,co,epsy,fy,ast,beta,theta,
numec,vmu,cvmu,rv,cvload,become,lc,thesum,thesuml,
dispsum,ni,nucomb,lct,xll,xlz,romin,rph,grad,vahold,

vjac,vinv,bfal,epsilo)

implicit double precision (a=h,o0-2)

dimension r(iqh),x(ntot),cl(n),cosl(n),cosZ(n),d(iqg),
alp(ntot), clag(iggn), 1m(6,n), vag(iqgn), vah(igh),
ch(iqh),xo(ntot),clah(iqh),cg(iqgn),beta(n),
bfal(iqh,iqh),vahk(iqh),grad(ntot),xu(ntot),xl(ntot),
xl(ntot),x2(ntot),xol(ntot),vaho(iqh),vago(iqgn),
ast(n),theta(z*n,numec),vmu(n),cvmu(n),rv(iqh,numec),
cvload(iqh),become(lOO),1c(100),thesum(n),thesuml(n),
dispsum(iqh),ni(ZO),nucomb(20),lct(100),vahold(iqh),
vjac(igh,igh),vinv(igh)

common /parr/ decfc,fcinc,cv,alpl,ec,rp,fc,es,ecm,relind
common /pari/ iter,numcy,niter,ga,iqh,iqg,n,ntot,iqgn
common /esq/ u(6),ck(6,6),vksi(lOO),vksj(lOO)

iter = 0

C***************************************************************

c

initializing for scaling

C***************************************************************.

*
*

call lagfun (vlag,tvah,r,x,cl,cosl,cosz,lm,d,clah,vag,
clag,vah,ch,cg,vof,vahk,vn,co,epsy,fy,beta,
cvmu, cvload, kl,vmu, rph)

c***************************************************************
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c scaling objective function

c***************************************************************
cv = 5./vof

c***************************************************************

c hooke & jeeves
c***************************************************************
444 call hoojee (tvah,vlag,r,vah,vag,x,cl,cosl,cos2,ln,

* d,clah,clag,ch,cg,alp,xol,vahk,toll,vn,co,epsy,fy,ast,
* beta,cvmu,cvload,xll,x12,romin,vmu, rph,grad,vahold,
* vjac,vinv,bfal)
iter=iter+l
write (8,1500)iter
1500 format ('end of loop =',i3)
c***************************************************************

c control of maximum number of iterations
c***************************************************************

if (iter.gt.numcy) go to 99

rp2 = rp+rp
C****************************************************************
c updating lagrangian mult. equal.cons.
c****************************************************************

do 100 k = 1,igh

clah(k)=clah(k)+rp2*vah(k) *ch (k)
102 continue

c*************************************************************

c updating lagrangian mult. ineg. cons.
c*************************************************************
do 200 k=1,iqgn

v=vag (k) *cg (k)

z=-clag(k)/rp2

psi=max(v,2)

clag(k)=clag(k)+rp2*psi.

200 continue

c***t*********************************************************

c updating penalty factor
c***t*********************************************************

rp=ga*rp2

rph=ga*ga*rph
C***t*********************************************************
c system reliability evaluation
C*************************************************************

jflag=0 :

call sysrel(n,numec,iqgh,theta,rv,vmu,cvmu,r,

* cvload, jflagqg)

if(jflag.gt.0)go to 444

return

end

subroutine sol(n,a,b,c)
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implicit double precision(a-h,o0-2)
dimension a(n,n),b(n),c(n)
do 50 ik=1l,n
c(ik)=b(ik)

50 continue
do 100 k=1,n
vmax=abs(a(k,k))
krow=k
do 120 kj=k+1,n
if(abs(a(kj,k)).gt.vmax)then
vmax=abs (a(kj,k))
krow=kj
endif

120 continue
if (krow.gt.k)then
do 140 jj=k,n
temp=a(krow,3jj)
a(krow,jj)=a(k,3j)
a(k,jj)=temp

140 continue
temp=c (krow)
c(krow)=c(k)
c(k)=temp
akk=a(k, k)
endif
do 200 i=k+1l,n
w=a(i,k)/akk
do 300 j=k+1,n
a(i,j)=a(i,j)-a(k,j)*w

300 continue
c(i)=c(i)-c(k)*w

200 continue

100 continue
do 400 k=1,n
i=n-k+1
do 600 j=i+l,n
c(i)=c(i)-a(i,j)*c(3)

600 continue
c(i)=c(i)/a(i,i)

500 continue

400 continue
return
end

subroutine valmu(aste,b,betak,co,d,es,epsy, fc, fy,
* phiu,sigmal,sigma2,vm,vmul,vmy,phiy)
implicit double precision (a-h,o0-2z)
C**************************************************************
c NEUTRAL AXIS
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Chhkhkhkkkkhhhhkkhhhhkdhhhdhkhhkhkhhkdhkhkhkddhdhdddodddkdkdodkdedddoed ok ok kdek k k&
x=47./60.*b*xfc
y=0.004*es*aste-aste*fy
2=-0.004*es*co*aste
if((y*y).1t.(4.*x*2))then
y=sqrt(4.*x*z)
endif
vkd=(~-y+sqrt(y*y-4.*x*z2)) /(2. *x)
epcs=0.004*(vkd-co) /vkd
if (epcs.ge.epsy)then

epcs=epsy

endif
Chkhkhkhkhkhkhhhhkhkhkhkhkkhkkhkkdkhkhkhhkhhhkhkhkkhkhhhkhhhkhkhkhhkhkhkhkrahkhkhkhhkhhkhrhkhkhhkkkik
o] CONCRETE FORCE IN REGION AB

Chkhkhkkhkkhkhkhkhkhhhhhhkhkhhkhkkkhkhkkhkhhhkhkhkhkkrhkrhkhkkkrhkkrk kAR hkkhkhhkhkhx
alphal=2./3.
ccab=alphal*b*0,5*vkd*fc
Chkhkhkhkhkhhhkkhkhhhhkhhkhhhrhkhkhkhhhkkhkhhkhkkhkkhhkhkkkhkkhkhkhkhhhikhkkkkk

c CONCRETE FORCE IN REGION BC
Chkikkkhkhkhkhhkkhhkhhkkhkkhkkhkrhkhkhhkhkhhhkhkhkhhkhkrhkhkhkhkhkhkkhkhkkhrhkhkhdhkkhkhihkihk
alpha2=0.9

ccbc=alpha2*b*0.5*vkd*fc
Chkhkhkhkhkhhhkhhhkhhhhkhkhhhdhhkhkhkhkhhhhkhhkkkhkhhhkhkkkkkkhhkkrrkrhhrhhkhhkkk

c DISTANCE OF CENTROID TO TOP IN AB
Chhhhkkhhhhkkkhkhdk Ak hhhhhkhkhhkhhhhhhkhhk ok khhhhkkhkhkkdkhhhdsk

gamal=0.875*vkd :
Chkhkhkhkhkhkhhkhhkkhhhhkkhhhhkkhhkhhhkhhkhhhkhkhhdkhhkhkhhhhkkhkkkhkhkhkhkhkkhkkkkkk

c DISTANCE OF CENTROID TO TOP IN BC
Chhhkkhdhhhhhkhhkkhkhhkhhkhhkhhhhhkhhhkhhkhhhhdhhhhkhkhdhhhhhhkhhhhhdhd -

gamaz2=0.259255*vkd
ChhhhkdkhhhhkhhkhkhkhkhhkhkhkhrAhhrr kA hkhhkhhhkhbhkhkhrkhkkhkkhkhhhkhkkk

C COEFFICIENTS FOR FAILURE FUNCTION
Chhhhkhhkhhhkhkhkhhhhkkkhkhhhhhhkhkhhkhhkkhhhdhkhhkhhkkhkhkhkhkhhhrhkrrhrhhkkik

al=(ccab#*(dd-gamal)+ccbc* (dd-gama2))/fc

azz=-1.
Chkhkhkhhhkhhhkhkkhhkhkhhhkkkhhhkhhkhhhhkhkhhkhkhhhhhkhbhkhkhhkkhkhkhhkhhkhkhhkhikhkhh
o] COSINE DIRECTORS
ChkhkhkhkdhkhkhhkhkhhkhkhkhkkrkhkhhhkhkhhkrhkRAhkkhhkkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkikkhkxk

tetal=al*sigmal*fc

teta2=a2*sigmaz2*vm
Chkhkhhhkhkhkhkhkhhkhhkkhkhkhkhkhbhkhhhhkhhkhkhhhhkhhhkkhhhhhhhkhhkhhkhkkhkkkkhdhkh
c INDEPENDENT TERM
Chkhkkhkkhkhhkhkhkhhhkhkkhkhkhkkhhkhkhkrhkhkhkhhkhkhhkhhrhkhhhkhkhkhhkkhhhkhhhkhhkhkkkik

fps=0.004*es* (vkd-co) /vkd

bi=aste*fps* (dd-co)
Chkhkhkhhkhkkhkkhkkhkhkhhkkkhkhkhkhkkhkhhhkhhkhdkhkhkhhkhhhhkhkhhkkkikhkkkkkkkkkkk

c RELIABILITY INDEX
o T S TS SSLY

beta(kel)=(al*fc+a2*vm+bi)/sqrt(tetal*tetal+teta2*teta2)
Chhkkhkhkhhkhhhhkhkhkhhrthkhkhhhkhkhhkhkhhkhhkhhhhkhkhhkhhkhrhhhkhhhkhkhhkhkhhhhkhhkkikhk

c ULTIMATE MOMENT AND ROTATION
32X 222222 2222222222222 R X3RS R0 2 2 X3 YRR X Y XY
vmu(kel)=al*fc+bi
phiu=0.004/vkd
if((4.*phiy).lt.phiu)then
vmu (kel)=(vau(kel) -vmy)/ (phiu-phiy) *3. *phiy+vmy
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phiu=4.*phiy
endif .
return

end

subroutine assemb (e,igh,n,ntot,x,cl,cosl,cos2,
* ilm,glk)
implicit double precision (a-h,o0-2)
dimension x(ntot),cl(n),cosl(n),cos2(n)
dimension 1lm(6,n),glk(iqgh, igh)
common /esq/ u(6),ck(6,6),vksi(100),vks](100)
do 100 k = 1,igh
do 150 j 1l,iqgh
150 glk (j,k) = 0.0
100 continue
c**********************************************************
c global stiffness evaluation
Chkhkhkhhkhhhhkhhkhhkhhkhkhhhhkhkhhhhhkhhhhhkhkhkhhhkhkhhhhhhhhkhhhhhhhhkkk
do 700 3j = 1,n
call glosti (e,j,n,ntot,cl,x,cosl,cos2)
do 300 1 =1,6
k = 1m (1,3)
if (k.eq.0) go to 300 .
do 200 11 = 1,6
m=1m (11,j) -k + 1
if (m.le.0) go to 200
glk(k,m)=ck(1l,11)+glk(k,m)

200 continue
300 continue
700 continue

return

end

subroutine constr (iqg,d)

implicit double precision (a-h,0-2)

dimension d(iqg)
ChhhkhhdkhkhhhhRkAARRARAKRAR AR KRR AR AR RRRARRRRAR KA Rk AR h ke hhhk
c displacement constraints
c*****************t****************************************

do 201 k =1,iqg

read ( 9,* ) d(Xk)
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201 continue
return
end

subroutine datini (clah,clag,ch,cq)

implicit double precision ( a-h,o-z )

dimension clah(igh), clag(iqg), ch(igh), cg(igqg)

common /parr/ decfc,fcinc,cv,alpl,ec,rp, fc,es,ecn,

* relind

common /pari/ iter,numcy,niter,ga,igh,igg,n,ntot,iggn
c************************************************************
c lag. mult. of equality c.
Chkhkhkhhkkhkhhkhkhkhkhhkkkhhhhhhkhhhkhhhkhkbhhhhhhkhhhhkhhhkhkhhkhrhkhkhhhkhk

do 100 k = 1,igh

100 clah(k) = 0.0

Chkhkkhkhkhkhkhhkkhhkkhkhkhkhhkhhkhhhkhkkhkhhbhhhkhhkhhkhkkhhkhhkhkhhhhhhhkhhhkhk

c lag. mult. of inequality c.
Chkhkhkkkkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhhhkhhkhhhkhhkhkhkhhkhkhhkhdhhhkhhkhkhhhkhik
do 200 k = 1,iggn
clag(k) = 0.0

200 continue
c***********************************************************

c scaling factors of equ. c.
c***********************************************************
do 300 k = 1,iqh
300 ch(k) = 1.0
c***********************************************************

o] scaling factors of ineq. c.
Chhkhkhkhkhkkhkhkhkhkhkhkkhkhkhhkhhhkhkhhhhkkhkhhhhhkhhhkhhkhhhhkhhhkhkhhhdhhhkhrd
do 400 Xk = 1,iggn

400 cg(k) = 1.0
c**********************************************************

c scaling factor of objective fun.
c**********************************************************
cv = 1.0
return
end

subroutine glosti (e, j, n, ntot, cl, x, cosl, cos2)
implicit double precision ( a-h,o0-2z )
dimension cl(n), x(ntot), cosl(n), cos2(n)
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common /esq/ u(6),ck(6,6),vksi(100),vks]j(100)
cl = cosl(3)

c2 cos2(])

cl2 =cl * cl1

c22 = c2 * c2

area = X(j*3-1)*x(3*j-2)

tinert = area*x(3*j-1)*x(3*j-1)/12.
cll = cl(j)

cl2 = cll*cll

cl3 = cl2*cll

a = e*xtinert/cl3

b = area*cl2/tinert

gl = a*(b*cl2+12.%*c22)
g2 = a*cl*c2*(b-12.)
g3 = a*(b*c22+12.*cl2)
g4 = -a*6.*cll*c2
g5 = a*6.*cll*cl
g7 = a*2.*cl2

g6 = g7 + g7
ck(1,1) = gl
ck(2,1) = g2
ck(3,1) = g4
ck(4,1) = - gl
ck(5,1) = - g2
ck(6,1) = g4
ck(1l,2) = g2
ck(2,2) = g3
ck(3,2) = g5
ck(4,2) = - g2
ck(5,2) = - g3
ck(6,2) = g5
ck(1l,3) = g4
ck(2,3) = g5
ck(3,3) = g6
ck(4,3) = - g4
ck(5,3) = - g5
ck(6,3) = g7
ck(l,4) = - g1
ck(2,4) = - g2
ck(3,4) = - g4
ck(4,4) = gl
ck(5,4) = g2
ck(6,4) = - g4
ck(1,5) = - g2
ck(2,5) = - g3
ck(3,5) = - g5
ck(4,5) = g2
ck(5,5) = g3
ck(6,5) = - g5
ck(l,6) = g4
ck(2,6) = g5
ck(3,6) = g7
ck(4,6) = =~ g4
ck(5,6) = - g5
ck(6,6) = gé

return
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end

subroutine inecon (iqg,n,ntot,vaqg,x,d,relind,beta)
implicit double precision (a-h,o0-2)
dimension vag(iqg+n),x(ntot),d(iqg),h beta(n)
nel3=3+*n
c**********************************************************
c displacements
c**********************************************************
do 100 k = 1,1iqg
j = nel3 + k
vag(k) = abs(x(j)) / d(k) - 1.

100 continue
C**********************************************************

c reliability
Chkhkkkhkhkkhkhhkhkhkkrhhkhkkhhhkhkhhkhhhkhhkhkhhkkkhkhkhhkhkkhhkhkhhkkhhkhhhhkhk
iqgpl=iqg+1l
iggn=igg+n
do 200 k=iggpl,iqgn
vag(k) = relind/beta(k-iqg)-1.
200 continue
return
end

subroutine inputd (cl,cosl,cos2,igh,jdir,jm,1lm,n,nj,
* nol,no2,r,xc,yc)

implicit double precision (a-h,o0-z)

dimension nol(n),no2(n),jdir(3),xc(nj),yc(nj),

* jm(6,nj),1lm(6,n),cl(n),cosl(n),cos2(n),r(igh)
ChAkkhARRRRRRAA A AR KRR RRAR KRR A ARA R RAARAR AR hhkhhhhkkhdkhkkhkkhkd
c filling 1lm matrix

ChRAk kA AkRRARRARRKRRAKRKRI A AR AR A ARk kkhkhhhhhkhkkhkhkhkkkkhhhhix
do 600 i = 1,n

j = nol(i)

k = no2(i)

do 6001 = 1,3
Im(1l,i) = jm(1,3)
Im(l+3,1i) = jm(l,Kk)

600 continue
C**********************************************************

c geometric characteristics
ChRhkhkkhhhhhrkrhkrkARkAAAA R kA Ak hhARkkhkhhhkkhrhkhkdkhhhhhkhhhhkhkihkkhk

do 800 ii = 1,n
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3 nol(ii)
k = no2(ii)
ell = xc(k) - xc(3)
el2 = yc(k) - yc(3J)
cl(ii) = sqrt(ell*ell+el2*el2)
cosl(ii) ell/cl (ii)
cos2(ii) el2/cl (ii)
800 continue
c**********************************************************

c initialization of global forces
c**********************************************************
do 850 k=1,igh
r(k) = 0.0
850 continue
C**********************************************************

c global forces
C**********************************************************
300 read (9, *)jnum,jdire, force
if(jnum.ne.0)then
k=jm(jdire, jnum)
r(k)=force
go to 3800

endif
return
end

subroutine lim(x,n,ntot,x11,x12,k,romin, romax)
implicit double precision (a-h,o0-z)
dimension x(ntot)

n3=3*n

do 10 i=1,n3,3

1l1=i

12=i+1

13=i+2

astma=romax*x(1l1l) *x(12)
astm=romin*x(1ll) *x(12)
if(k.eq.1ll)then
if(x(k).1lt.x11)x(k)=x11
basemin=x(13)/(romax*x(12))
if(x(k).lt.basemin)x(k)=basemin
basemax=x(13)/(romin*x(12))
if(x(k).gt.basemax) x(k)=basemax
i=n3

go to 10

endif

if(k.eq.1l2)then

if(x(k).1t.x12) x(k)=x12
heightmin=x(13)/ (romax*x(11))
if(x(k).lt.heightmin)x(k)=heightmin
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heightmax=x(13)/(romin*x(11l))
if(x(k).gt.heightmax)x(k)=heightmax
i=n3
go to 10
endif
if(k.eq.13)then
if(x(k).gt.astma) x(k)=astma
if(x(k).lt.astm) x(k)=astm
i=n3
endif

10 continue
return
end

subroutine parame (toll,x,n2l1,glk,mband,cl,

* cosl,cos2,1lm,r,delta,alpha,numec, rph)
implicit double precision (a-h,o-2z)
dimension x(ntot),glk(igh,igh),cl(n),cosl(n),

* cos2(n), 1lm(6,n), r(igh)
common /parr/ decfc,fcinc,cv,alpl,ec,rp, fc,es,ecn,
* relind

common /pari/ iter,numcy,niter,ga,igh,iqg,n,ntot,iqgn
common /esq/ u(é6),ck(6,6),vksi(100),vks]j(100)
ChkhkhkhkhkhkhhkhkkhkhkhkhkhkhkhkhhhkhhhkhkhhkhkhhkhkhkhkhhkhkkrAkkhhhkkhkhkkhkhkhkhkhhkkhkih
C penalty factor
Chhkkkhkhkhhkhhkhkhkhkhkhkhhkhkhkhdhkhkhdhkhkhhkhkhhkhkhhhhhhhhkhhhhkhkhhhkhkhkhkdhkihdi
read (9,*) rp,rph,alpl
Chhhkhkkhhkhkkhkhhkkhhhhkhkhkhhkhhkhkhkhhkhhhhhhhhhkhkhrhkhhkhhkhrkhkhhhhhkhhkhkhkhkh
c gamma,# of iterations, # of cycles
Chhkhkhhkhkhkhhhhkhhkhkhkhkhkkhhhhkhkhkhkhhkhhkhkdkhkhkhkdhkhhkhkhhhkhhhkhhkhkhhhkhkd
read (9,*) ga,niter,numcy
Chhkkkhkhkhkhhkhkhhkhhkhkkkrkhhhkhkhhkhhhhhkhhhhhhkhkhhhhkhkhkhkhhkhkhhkhhkkkkk

c decrease and increase factors
C e gk d ke ko de e e o d ke gk e ok ok Sk de o ok de de ok ke de e g de ok ke ke e e ok e vk e ke gk ke ok e ke ke ke ke e b ek ke ok ek ke ke

read (9,*) decfc,fcinc
Chhhhkhhkkkkkhhrkhhhkkhhhhkhhhhhhkhhhhkhhhhhkhkhkhhhkhdkdhhhhhkhkhkk
o] control tollerance
CRRR AR IR ARIRR AR AR AR AR R AR IR A ARk kAR A Ak kkkkhhkkkkkkhkhkhkk

read ( 9,* ) toll
Chhhhhhkhkhhhhhhkrhkhkhkkkhhhhkhhhkkhhkkkhkkdkkhkkkkkkkkkskdkkkk

c initial guesses of dimensions
Chkhkhkhkhkhkhkhhkhkhhhkhhrrhhkhhkrhkhkrhhhkhhhhhkhhhhhkhkhkrhhhhrhhkhkhkhrhkhhhik
n3=n+n+n
n2l=n3+1

read (9,%*) (x(i),x(i+l),i=1,n3,3)
ChkhhkhkkhhhkhhAhhkkhkrhkhkhkkkAhhkhhhkkkhkkhkkhhhhhhkhkhhhhkhhkhhhkhkhhhkhihkk

c increment for slope evaluation
CAR A AR RRRAR R AR AR AR KRR ARRA KRR A RRRA IR AR RN A R kA ARk hhhkkk k&
read (9, *)delta,alpha

Chhkhkkkkhkhkhhhhhrdrhhhkhkhhhhhhkhkhhhkhhkhkhkhhhkhhkhhhhkhhhhkhhhhhhhhhkhhk
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c element reliability
Chkhkkkhkhkkkhhkkhhkkhkkhkkkhhkhkhkkkhkkhkhhkkkkkhkhkhkhkhkkkkkkhkhhkkhkhkhhkkhkkkkk

read(9,*)relind
Chhkhhhhhhkhhkhkhkhkhkhhhhkhkhkhhkhhhkhkhhhkhkhhdkhkhkhhkhkhhkhkhkhkkhkkkkkkk
c number of elementary mechanisms
C % K e ke ke de g ko de de de g gk de gk ek de ok ek ke ke ok e e e ke e ek ok ok e e ek de ke vk ke ok ke ke ke ek vk e ok ok ek ke

read (9, *) numec

Chhkhkdhhkhhhkhhhkhkhkhkkhkhkhhhkhhhkhhhkhdkhkkhhhkhkhkhhkhkhhhkhhkhkhkkhhkkhhhkkkkk
c generation of global stiffness
Chhkkhkhkhkkkhkkhhhkkkkkhkhhkkhhkkkkhkkhkhhkhhkhhkhkkkhhhkhkkkhkhkkkhkkkkkhik

call assemb(ec,iqgh,n,ntot,x,cl,cosl,cos2,1m,glk)
Chkhkhkdhkhkhhkhkhhkhhhkhhkhkkhhkhkkhhhkhkhkdkhkhhhkhkhkhhkhkhhkhkhhkhkdhhkkhkhkhhkhkhkkkkkx
c initial displacements
Chhkkhkhhkhkhhkhhhhkhkhhkhkhkhhhkhhkhkhhkhkhhhkhhhhkhhkhkhkhkkhkhhkhkhkhkhhhkhhhkhkhkkhhik

call symsol(glk,r,x(n2l),igh,mband)

return

end

subroutine valobf (n,ntot,vof,x,cl)
implicit double precision (a-h,o0-2)
dimension x(ntot), cl(n)

vof = 0.0

do 100 k = 1,n
base = x(3*k=-2)
height = x(3*k-1)

steel = x(3*k)
area = base * height
vof=vof+(area+steel*10) *cl (k)
100 continue
return
end

(1

subroutine sysrel (nel,numec,ndof, theta,r,vmu,cvmu,p,

* cvload, jflaqg) '
implicit double precision (a-h,o0-2)

dimension theta(200,100),p(100),rb(200,100),

* become(500) ,1c(300) ,thesum(100) ,temp(100,100),

* locmec(100) ,thesul (100) ,dispsu(100),ni(100),

* nucomb(100) ,1ct(300) ,elerel (100),cvmu(100),

* r(l1o0),vmu(100),cvlioad(100)

Chkhhhhkhhhhkhhkhhhrhhhhkhhhhkhhhhhhhhhhhhhhkhkhhhkhhhhhhrhhhhhhhhkhkk

c form fundamental mechanisms
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c***************************************************************

ndof=igh
do 20 j=1,ndof
CTp(d)=r(d)
20 continue
C***************************************************************
c ordering theta and r matrices

c***************************************************************

do 710 k=1,numec-1l
jflag=0
do 720 i=1,ndof
if(abs(rb(i,k)).gt.0.0)jflag=1
720 continue
if (jflag.eqg.0)then
do 730 l=k+1,numec
do 740 1li=1,ndof
if(abs(rb(li,1)).gt.0.0)then
do 750 1j=1,ndof
temp(lj,1)=rb(1j,1)
rb(1lj,1)=rb(1j,Jjflag)
rb(1j,jflag)=temp(1j,1)
750 continue
do 760 1j=1,2*nel
temp(1lj,1l)=theta(l3,1)
theta(lj,1l)=theta(lj,jflaqg)
theta(lj,jflag)=temp(lj,1)

760 continue
go to 733

endif
740 continue
733 continue
730 continue

endif

710 continue
c**************************************************************
c normalizing theta and r vectors

c**************************************************************

do 810 i=1,numec
do 820 j=1,2*nel
if(abs(theta(j,i)).ne.l.0.and.
* theta(j,i).ne.0.0)then
fact=abs(l./theta(j,1i))
do 830 jj=1,2*nel
theta(jj,i)=theta(jj,i)*fact
830 continue '
do 840 jj=1,ndof
rb(jj,i)=rb(jj,1)*fact

840 continue
' go to 734
endif
820 continue
734 continue
810 continue
c**************************************************************
c transpose theta and r matrices

c**************************************************************
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do 25 j=1,numec
do 91 i=nel
temp(i,j)=theta(i,])
91 continue
25 continue
do 56 i=1,numec
do 55 j=1,2*nel
theta(i,j)=temp(j,1i)
55 continue
56 continue
do 28 j=1,numec
do 27 i=1l,ndof
temp(i,j)=rb(i,j)
27 continue
28 continue
do 66 i=1,numec
do 65 j=1,ndof
rb(i,j)=temp(j, i)

65 continue

66 continue
c**************************************************************
c reliability of fundamental mechanisms

c**************************************************************

do 102 i=1l,numec
vmeanr=0.0
stdevr=0.0
do 202 k=1,nel
j=2*k-1
theji=abs(theta(i,]))
thejil=abs(theta(i,j+1))
if(theji.1lt.0.0001l.and.thejil.lt.
* 0.0001)goto 202
term2=(theji+thejil) *cvmu (k) *vmu (k)
stdevr=stdevr+term2*term2
vmeanr=term2/cvmu (k) +vmeanr
202 continue
vmeanl=0.0
stdevl=0.0
do 302 k=1,ndof
if(abs(p(k)).1t.0.001)go to 302
term=p (k) *rb(i, k)
vmeanl=vmeanl+term
stdevl=stdevl+term*term* (cvload (k)
* *vload(k))
302 continue
vmean=vmeanr-vmeanl
stdev=stdevr+stdevl
become (i) =vmean/sqrt (stdev)
lnumbe=lnunbe+l
102 continue
B T s TR T T AR R R S L R A SRR LA bbb b b bbbl
c . reliability of combined mechanisms
c (internal work)
c**************************************************************
do 50 1=1,numec
lc(l)=1
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lct(1l)=1
50 continue
lp=numec
ltemp=numec
ni(l)=1
numax=6
nucome=1
nucomb (1) =numec
lpt=numec
lpti=numec+1l
111 continue
Chikkkhkhkhhkhkhkhkhkhkhkhkdhhkhhkhkhhdkhhhhkhkhkdhkhhkhhkkhkhhrhhhhhhkhhkhhhkhhhhkhk

c loop over mechanisms in location vector
Chhkhhkhkhhhhhhhhhhkhhk kAR khkhkAhkhhkrhkhhkhkkhrhhhhhhhhdhkrkrkk k&
do 699 kmo=1,nel
thesul (kmo)=0.0
thesum(kme)=0.0
699 continue
do 698 klp=1,ndof
dispsu(klp)=0.0
698 continue
kmu=1
nic=ni (nucome)
nif=nic+nucomb (nucome) *nucome-1
nucomb (nucome+1) =0
ChAARAKhRRRARRARRAR IR AR AR ARk AR AR R hhhkkkhkk ko khhkhhkhhhdhrkdk ik

c define acceptable interval
Chhkkhhhhhkhhhhhk Rk hhkkhhhkhhkhhhhhhhhhhRhkdkrhhhkkkhhkkhhkhkhkhkk
if (nucome.gt.l)then
nifbet=1pti-1
nicbet=1pti-nucomb (nucome)
do 5544 ia=nicbet+l,nifbet
betaal=become(nicbet)+epsilo
if (become(ia).gt.betaal)then
do 5545 ib=ia,nifbet
become (ib)=1000.

5545 continue

go to 5541

endif
5544 continue
5541 continue
niccon=nicbet
endif

ChhhhhhhhhhhhAhrArhkAhrhkhhkhkhrhrthhhhhrhkkrhrhhhkrdrrhhhrkdhhnk
c ’ reliability of combined mechanisms
c (internal work)

Chhhkkhhkhhhhhhhkhhhhhhkkkhrhkhhhhhhhhhkhdkhhrhkrkkkhkkhkhkrkkhhkk
do 200 j=nic,nif,nucome

icontr=0

if (nucome.gt.1l)then
if(become(niccon).gt.100.)icontr=1
niccon=niccon+1
if (icontr.eqg.l)go to 5564

endif

do 300 1=1,nucome
lj=1lc(j+1-1)
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if(1j.1t.~0.1)then
kmu=-1
lj=abs(1j)
endif
do 400 Kkk=1,nel
kkj=2*kk-1
thesum(kk)=thesum(kk)+theta(1lj,kkj) *kmu
thesul (kk)=thesul (kk)+theta(1lj,kkj+1) *kmu

400 continue '
kmu=1
300 continue
C % % % ek de de de ok ok ke vk ke de ko dk e e e de kg ke ok ke ko kg K e ok ke e e e g ok gk K e ke ok e ok e ok ok ke e e Sk ke ok ok ke ok
c reliability of combined mechanisms
c (external work)

Chkhkhkhkkhhkhkhkhhkhkhkkhhhdkhhkhhkkhhkhkhkhhhkhkhhhhkhhkhhhkhkhdkhhdkhdhkhkhkhiihkkkkkkk
do 372 1=1,nucome
lel=1lc(j+1-1)
if(lcl.lt.-0.1)then

kmu=-1
lcl=abs(1lcl)
endif

do 472 kk=1,ndof
if (abs(p(kk)).1t.0.001)go to 472
dispsu(kk)=dispsu(kk)+rb(lcl, kk) *kmu

472 continue

kmu=1
372 continue
5564 continue
Chkhkkkkhkkhhkkhkhhdkhkhhhhhkhhkkhkhhkhkhkhkhhhhkhhkhhhkhkkhkhhhhhhkhhkhkhkkkkhkhkhik
c combination with fundamental mechanisms
c (internal work)

Chkhkhkkhhkhkhhhkhhkhkhhkhkhhkhhhkhkhkhkhkhhkhhkhhhkkhkhkhkhkhkhhhkhhhrhhkhkhhhhkhkhkhhhhkkk

do 100 k=1,numec

vmeanr=0.0

vmeanl=0.0

stdevr=0.0

stdevl=0.0

vmanrm=0.0

vmanlm=0.0

stdvrm=0.0

stdvlim=0.0

do 499 11ll=j,j+nucome-1

if(abs(lc(11l1l)).ge.k)go to 100
499 continue
if (nucome.gt.1l)then
if (icontr.eq.1l)then
becomi=400.
becopl=500.
go to 5574
endif

endif

thesu=0.0

thesu2=0.0

thesui=0.0

theslm=0.0

do 600 kk=1,nel
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kkj=2*kk-1
thesu=thesum(kk) +theta (k,kkj)
thesu2=thesul (kk) +theta (k, kkj+1)
term=(abs (thesu)+abs (thesu2)) *cvmu (kk)
* *vmu (kk)
vmeanr=term/cvmu (kk)+vmeanr
stdevr=stdevr+term*term
thesui=thesum(kk) ~theta (k, kkj)
theslm=thesul (kk) -theta (k,kkj+1)
termm=(abs (thesui) +abs(theslm)) *cvmu (kk)
* *vmu (kk)
vmanrm=termm/cvmu (KK)+vmanrm
stdvrm=stdvrm+termm*termn

600 continue
i 222222222 2222222222 2222 2 2 X 222 2 X2 22 X 2 X XXX XYL Y TR
c combination with fundamental mechanisms
c ' (external work)

Chhkhkkkhkhkhkhkhkhhhhkhkkhhhhhhhkhhhhhhkhhhhhhhhhhhhhhkhhhhhkhrhhkhhkhkhkhhkhi

do 672 kk=1,ndof
if(abs(p(kk)).1t.0.001)go to 672
dispkk=(dispsu(kk)+rb(k,kk)) *p (kKk)
vmeanl=vmeanl+dispkk
stdevl=stdevl+dispkk*cvload (kk) *dispkk
* *cvload (kk)
dispkm=(dispsu(kk)-rb(k,kk)) *p(kk)
vmanlm=vmanlm+dispkn
stdvlm=stdvlm+dispkm*cvload (kk) *dispkm
* *cvload (kk)
672 continue
becopl=(vmeanr-vmeanl) /sqrt(stdevr+stdevl)
becomi=(vmanrm-vmanlm)/sqrt (stdvrm+stdvim)
5574 continue
if (becomi.lt.becopl) then
do 138 1k=1,nucome
ltemp=ltemp+1
lc(ltemp)=1lc(j+1k-1)
138 continue
ltemp=ltemp+1
lc(ltemp)=-k
lctlp=-k
becote=becomi
else
do 139 1lk=1,nucome
ltemp=ltemp+l
lc(ltemp)=1lc(j+1k-1)
139 continue
lctlp=k
ltemp=ltemp+1
lc(ltemp)=k
becote=becopl

endif

lpt=1pt+l

iflag=0
CRRARRRA IR KA RRRRKRRRK AR KRR AR R AR R KA AR AR IR AR AR Rk kR kR kkkhhkKk
c ordering the combined beta values in the same row

ChhkXkkkkhkhkhkhkhkhkhhhhkhhkhkhhhkhhhhhkhhkhkhkxhkhhkhhhhhhhkhhhhhhhhhkhhkhhhkkkhk
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if (lpti.gt.lpt-1l)then
do 524 1lk=1,nucome
lp=1p+1
let(lp)=1lc(j+1k-1)
524 continue
lp=1p+1
lect(1p)=lctlp
become(lpt)=becote
else
do 510 jkj=1pti,lpt-1
if(become(jkj) .gt.becote) then
iflag=-1
do 511 kjk=jkj,lpt-1
itemp=1lpt-1+jkj-kjk
become (itemp+1)=become (itemp)
511 continue
become (jkj)=becote
becote=become (1pt)
ChkhkkhkhhkkhhhkdhhkhhkhhkhhkhhhhkhhhhhbhhhhkhrkhkhkhkhAkhkhkhkkkhkkhhhkhhkrhkhhhkhk

c moving lc array
ChRAR I IR XA KRR AR AR AR RRRR AR R R AR R AR R AR AR ARk kR kR ARk AR AR ARk ke khhkk

movini=nic+nucomb (nucome) *nucome+

* (Jkj-1lpti) * (nucome+1)
movfin=(lpt-1pti) * (nucome+1l)+nic+
* nucomb (hucome) *nucome-1

do 512 1lmn=movini,movfin
lcou=movini+movfin-lmn
nucl=nucome+1l
lct(lcou+nucl)=1ct(lcou)
512 continue
do 513 n=movini,movini+nucome-1
lptaa=n-movini+l
lct(n)=1lc(j+1lptaa~-1)
513 continue
lct (movini+nucome)=1ctlp
endif
510 continue
if(iflag.eq.0)then
do 124 lk=1,nucome
lp=1lp+1
let(1lp)=1lc(j+1k=-1)
124 continue
lp=1p+1
lct(1lp)=1lctlp
become (1lpt)=becote
else
lp=lp+nucome+1l
endif
endif
nucomb (nucome+1) =nucomb (nucome+1) +1
lnumbe=lnumbe+1
100 continue
do 6991 kmo=1,nel
thesul (kmo)=0.0
thesum(kmo)=0.0
6991 continue
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do 6981 klp=1,ndof
dispsu(klp)=0.0
6981 continue
200 continue
c*************************************************************

c control of maximum number of tree rows
c*************************************************************

lpti=lpti+nucomb (nucome+1)

nucome=nucome+1l

ni(nucome)=ni (nucome-1)+(nucome-1) *nucomb (nucome-1)

if (nucome.lt. (numax))go to 111
c*************************************************************

c find minimum beta wvalue
Chhhhhhkrhhhhhhhhhhrhhh kR RRRARAIRARARIARARRI Ik hdohkhkhhhRrxhhhd
betmin=100
do 7890 i=1,lnumbe
if(become(i) .1lt.betmin)then
betmin=become (i)
itab=i
endif

7890 continue
C*************************************************************

c _ find mechanisms involved
c*************************************************************
mecoun=0
mcomb=1
do 7891 j=1,nucome-1
do 7895 jk=1,nucomb(j)
mecoun=l+mecoun
if(itab.eqg.mecoun)then
nistar=mcomb
do 7893 1=1,3
locmec(l)=1lct(nistar+1-1)

7893 continue
nummec=j
go to 7894
endif
mcomb=Jj+mcomb
7895 continue
7891 continue
7894 continue
C*************************************************************
c find elements involved
C*************************************************************
nk=1 '
numele=0

do 8000 m=1,nel
do 8001 k=1,numec
do 8002 1l=1,nummec
if (abs(locmec(1l)).eq.k)then

ml=2*m-1

m2=2#*m
if(abs(theta(ml,k)).gt.0.0.

* or.abs(theta(m2,k)).gt.0.0)then
if(nk.gt.1l)then
do 8003 1lmi=1l,nk
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if(invmec(1lmi) .eq.m)
* go to 8004
8003 continue
endif
nk=nk+1
numele=numele+l
invmec(n)=m

go to 8000

8004 continue
endif
endif

8002 continue
8001 continue
8000 continue
Chhhkhhkhhhhhhhhhkhhhhhhhhhhhhhkkhhhhhhhhkhkhhkhhhhhkkrkhkhrhhkhhhkrhk
c control of system reliability

Chkhkhkkhkhkkhkkhkhhkkkhhhkhkhhhkhkhkhkhkhkhkhkhkhhhhhhkkhkhkhhkkhkhkkkkhkkkhkkkkkkhhhkk
" write(8,*)
write(8,*) 'BETA MINIMAL FOR THE SYSTEM = ', betmin
write(8,*)
jflag=0
if(betmin.lt.relind)then
delta=(relind-betmin)/relind
do 3891 i=1,nel
do 3892 j=1,numele
if(invmec(j).eq.i)then
elerel(i)=(l.+delta)*elerel (i)

endif
3892 continue
3891 continue
jflag=1
endif
return
end

subroutine mecsys(n,iqh,cl,cost,sint,1lm, numec, r,theta)
implicit double precision (a-h,o-2) '
dimension a(100,100) ,b(100,100),c(100),cm(100,100),

* cost(n),qa(100,100),sint(n),cl(n),q(100,100),

* 1m(6,n),am(100,100),b1(100,100),theta(200,100),

* r(igh,100)
c**************************************************************
c Constraint matrix for the structure

c**************************************************************
do 300 i=1,3*n
do 400 j=1,6*n
cm(i,?)

400 continue
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300 continue
do 60 k=1,n

i=3+%k
j=6%*k
at=1.0/cl (k)
im2=i-2
iml=i-1
jml=j-1
jm2=j-2
jm3=j=-3
jm4=j-4
jm5=j-5
cm(im2,jm5)
cm(im2,jm2)
cm(iml,jm3)
cm(i,j)=1l.0
cm(iml,jm4)=-at
cm(iml,jml)=at
cm(i,jm4)=-at
cm(i,jml)=at

-1
1.
1.

0

0
0

60 continue
C % % Je dk de ok d de g de Je de de ok de d g g e o g kg ok gk Kk de o ok e %k de ke ek ke ok ok ke de Kk ko de ok ok ok % Y e I de ok ok ok ok ok ke ke ke

c Coordinate trnsformation matrix
C % Je % de de Kk g e ok d g de e e ok ke ok e gk de de ok de de ek ke de e Je Je Je de e ke de de e de de de ke de Kk ke ok k ok ke ke ok ke koK ke ke ok ok ok ok
do 70 k=1,n
co=cost (k)
si=sint (k)
j=6*k
do 80 i=1,2
jum=j-3*i+1
jdois=j-3*i+2
jtres=j-3%i+3
g(jum, jum)=co
- g(jum,jdois)=si
q(jdois, jum)=-si
g(jdois, jdois)=co
g(jtres,jtres)=1.0
80 continue
70 continue
Chkhkkhkhkhkkkhkhhhkhhhhhkhkkhkhkrhdhhkhhkhhhkdbhkhkhkhhkhhhhhhhhkhhkhhhkkkhkhkhkhkhhkhkhx

c Compatibilibity matrix from IM matrix
Chkhhhhhhhhhkhkhhhhhhrhkhhhhkhhhhhkhbhhhhhhhhhhkhhhhhkkrhkhkhhhhkhhhhhhk
né=6*n
do 500 i=1,n6
do 510 k=1,igh
am(i,k)=0.0
510 continue
500 continue
do 520 i=1,6
do 530 k=1,n
iflag=1lm(i, k)
if (iflag.gt.0) am(6*(k-1)+i,iflag)=1.0
530 continue
520 continue
C**************************************************************

c Rotation of basic compatibility matrix
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C % e de de ek d e de de g de e ke de e de g de ke ok e de e e g de ok ke de e e ke e e e e ke de ok e e e e ke e e de ok ke e e ok ke ok e e ok ke ok ok
mm=80 :
call multi(q,am,ga,n6,igh,n6,mnm)
c**************************************************************
c Expansion of QA matrix
c**************************************************************
do 585 i=1,n
i6=6%1i
i3=i6-3
do 595 j=1,iqh
ga(i3,j)=0.0
ga(ié,j)=0.0
595 continue
i2=2+*]
ga(i3,igh+i2-1)=1.0
ga(i6,iqgh+i2)=1.0
585 continue
Chkhkkkhkhkhkkkhhhkhhkhhkhhkhhhkhkhkhkhhhhhhhhhkhhhdkhhkhhhkhhkhhkhhkhkhhkhkkk

c Matrix A = C * QA (transformed)
c**************************************************************
m=3*n
nt=igh+2*n

call multi(cm,qa,a,m,nt,n6,mm)
CRARAR AR RRA IR AR R AR IR IR AR IR AR AR KRR R AR AR ARk khkhhhhkkhkdkk
c Solution for virtual displacements
Chhhkhkhhhhhhhhkhhkrhkhhrh Ak hrkhhhRhkhhkhhkkhkhkkhhhkhhhkkh ok hdhkhk
do 150 k=1,nt
do 175 1l=1,nt
b(k,1)=0.0
175 continue
~ 150 continue
do 160 k=1,nt
b(k,k)=1.0
160 continue
do 200 i=1l,m
amax=0.0
iflag=0
do 250 j=i,nt
if (abs(a(i,3j)) .gt.amax)then
iflag=j
amax=abs(a(i,j))
endif
250 continue
do 305 k=1,m
c(k)=a(k,iflaqg)
a(k,iflag)=a(k,1i)
a(k,1i)=c(k)
305 continue
do 310 k=1,nt
c(k)=b(k,iflaqg)
b(k,iflag)=b(k, 1)
b(k,1i)=c(k)
310 continue
do 280 j=i+1,nt
if (abs(a(i,j)).gt.0.00001) then
fact=-a(i,j)/a(i, i)
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do 290 Kkk=1,m
a(kk,j)=a(kk,j)+a(kk,i)*fact
290 continue
do 291 kk=1,nt
b(kk,j)=b(kk,j)+b(kk,i)*fact
291 continue
endif
280 continue
200 continue
numec=nt-3*n
Chkkkdkhhhhhhhhhkohhhhhhhrhhhhhhhhhhdhhhdhhhhhhddhhhhhdddkkhhhhhhkk
c Forming bl
Chkhkkhkhhhhhhrhrhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhkhrkkhkhkkdkhhkhkrk
lcount=nt-numec+l
ki=1
do 800 i=lcount,nt
do 810 j=1,nt
bl(j,ki)=b(j,1)
810 continue
ki=ki+1l
800 continue
ChrRAI AR AK AR RARRRRRKKKRRARRRI KRR IR AR I AR ARRR R Rk kAR Rk kkhhhk

c Creating Theta matrix
c*************************************************************
do 156 j=1,numec
do 157 i=1,2*n
k=igh+i
theta(i,j)=bl(k,3J)

157 continue

156 continue
Chhkhhkhhhhhhhhrkhhhkhkhhhrhrhhhhhhhkhhhdkhkhkhhhkhhrkhkkkkhhkkhhhk
c Creating virtual displacements

c**************************************************************

do 169 j=1,numec
do 158 i=1,igh
. r(i,3)=bl(i,3)
158 continue
c************************************************************

c Adding joint mechanisms
c**************************************************************
do 161 i=3,iqgh,3
if (abs(r(i,3j)).gt.0.000001)then
r(i,j)=0.0
do 162 k=1,n
if(1m(3,k).eq.i)then

1po=2*k-1
theta(lpo,j)=1
endif
if(lm(6,k).eq.i)then
lpo=2%*k
theta(lpo,j)=1
endif
162 continue
endif
161 continue

169 continue
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return
end

subroutine multi(aa,bb,cc,1l,m,n, k)
implicit double precision (a-h,o0-2)
dimension aa(l,n),bb(n,m),cc(l,n)

do 10 i=1,1
do 20 j=1,m
d=0.0

do 30 kk=1,n
d=d+aa (i, kk)*bb(kk,J)

30 continue
cc(i,j)=d
20 continue
10 continue
return
end

subroutine jacequ (x,n,cl,lm,cosl,cos2,fc,ec,vn,co,epsy,
* fy,ntot, igh,vah,r,vahk, es, ecn,beta,cvmu,cvload, ki,
* vmu,vjac)
implicit double precision (a-h,o0-2)
dimension 1lm(6,n),cosl(n),cos2(n),vmu(n),viac(igh, igh)
dimension cl(n),x(ntot),vah(iqgh),r(igh)
dimension vahk(igh),beta(n),cvmu(n),cvlocad(igh)
common /esq/ u(6),ck(6,6),vksi(100),vks](100)
do 150 kme = 1,igh
do 160 kmo=1,igh
vjac (kmo, kme)=0.0
160 continue
150 continue
do 100 k=1,n
cl=cosl (k)
c2=cos2 (k)
c = cl(k)
base = x(3*k-2)
height = x(3*k-1)
aste = x(3%*k)
area = base * height
tinert = area*height*height/12.0
C**************************************************************

c GLOBAL MODIFIED STIFFNESS
Chuhhhkhhhhhhhkhohhrhrrhhhhhdhhhkhhhdhhhhhhkhhhrrrhhhrkhhhdhhhhhkk

call equcon (x,n,cl,lm,cosl,cos2,fc,ec,vn,co,epsy, fy,
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* ntot, igh,vah, r,vahk, es,ecm,beta,cvmu,cvload, kl, vmu)
call modsti(area,ec,vksi(k),vksj(k),c,tinert,cl,c2)
do 300 1=1,6

j=1m(1,k)

if (j.eq.0) go.to 300

do 400 11 = 1,6
m=lm(1ll, k)
if (m.eq.0) go to 400
viac(j,m)=vjac(j,m)+ck(l,11)

400 continue
300 continue
100 continue

return

end
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User's Manual

Augmented Lagrangian Formulation

Example: Debug Frame

Input File: DATA

Line 1
Problem title.

Line 2
Number of elements, number of nodes.

Line 3 to line 6
Node i, node j of element 1 through 4.

Line 7 to line 11
Boundary conditions of displacement in the horizontal
direction, vertical direction, in-plane rotation,
horizontal coordinate, vertical coordinate.

Line 12 and line 13

Node where force is applied, direction of locad and
magnitude of load.

Line 14
Termination of force information.
Line 15

Flexural strength of concrete, yielding stress of steel
and reinforcement cover.

Line 16

Steel modulus of elasticity and concrete ultimate
strain.

Line 17 to line 20

Initial steel reinforcement areas.
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Line 21 to 29
Displacement limits.
Line 30
Penalty factor, equality penalty factor and stepsize.

Line 31

Factor of penalty increase, maximum number of
iterations and maximum number of cycles.

Line 32

Decrease factor and increase factor.
Line 33

Convergenée tollerance.
Line 34

Element and system reliability index.
Line 35

Number of elementary mechanisms.
Line 36 to line 39

Coefficient of variation of concrete strength.
Line 40 to line 48

Coefficient of variation of external loads.
Line 49

Lower bounds of cross section dimensions.
Line 50

value of interval gap in the Beta unzipping method.



APPENDIX B

GENERALIZED REDUCED GRADIENT EXAMPLE



The example and correspondent optimization conditions
chosen to illustrate the performance of the Generalized
Reduced Gradient method using the integrated formulation are
presented in Figure B.l1. The maximum flexural stress,
compression or tension, is 1,000 psi. The problem is solved
in separate steps presented below.

Step A - Problem Formulation

Objective Function

Minimize f(x) = 10x1xy

Equality Constraints

hy(X) = 0.03x3x33x3 - 0.015x1X53%x4 + 1 = 0

hs(X%) -0.15)(1)(23)(3 + xlX23 =0

Inequality Constraints
h3(X) = 60/(x1%22) -~ 1 + X5 = 0
where x5 - slack variable;
Variable bounds
X1 > 0.5 in
X2 2 0.5 in
| x3 | £ 0.5 in

| x4 | < 0.5 rad

Step B - Explicit Derivatives

df/dx, = 10x3 df/dxy = 10x; df/dx3 = .... = 0;

x23(0.03x3 - 0.15x4);

dhj /dx;
dhj /dxy = x1%23(0.09%3 - 0.45x4);
dhj/dx3 = 0.03x1x%53;
dhy/dxg = -0.15%1%53;
dhj/dxs = 0;

190
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Figure B.l. Integrated optimization example.
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dhy/dx) = %33(-0.15%3 + Xg4);
dhy/dxy = X1x%22(-0.45%3 + 3%4);
dhy/dx3 = -0.15%]1X3;
~dhy/dxg = x1%23;

dhy/dxs = 0;

dhj3/dx; = dh3/dxy = dh3/dxg4 = 0;
dh3/dx3 = -0.45x3;

dhj/dxg = 1;

Step € - Initial Design Point and Initial Values

Dependent variables - dgqt {X1,%X2,X3}:
Independent variables - djt = (x4,x5):
dgt = (1,10,-0.1333) djt = (-0.02,0.4)
grad fqt = (100,10,0) grad £it = (0,0}
where grad f is gradient of f;

H=[J]| c]

where H is Hessian matrix of the equalities:

-1 -0.3 30
J = 0 0 -150

-0.6 -0.12 O

[ -150 0
C = 1000 0
0 1

L J

Step D - Recurrence Formulas
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dik+l = - grad £;K + (Jg-1lc) grad fgX;

]

k+l = - g-1c qjk+1;

dq

Step E - Iterations
First iteration:
x0t = (1 10 -0.133 -0.02 0.4);
dlt = (-501667 2505556 33333 5000 -333);
al = 10-6, because x; > 0.5;

xlt = (0.5 12.506 -0.1 -0.015 0.3997};

Second iteration:

Change of variables - x4 replaces x; that is at a
lower bound;

d2t = (0 -332.09 -7.9664 -1.195 40.75};
a2 = 0.3997/40.75, because o < 1000;
x2t = (0.5 9.249 -0.178 -0.0267 0};

Independent variables, (xj, Xs5) are at their lower
bounds;

Iteration is performed on the set of dependent
variables (x3, X3, Xg):
Third iteration:
-3-1 n(x2)t = (1.3228 -0.082 -0.0124};
x3t = (10.58 -0.26 -0.0391};
d
Fourth iteration:
-J-1 h(x3)t = (0.358 0.061 0.009};
x3t = (10.935 -0.199 -0.0301);
d
Fifth iteration:

-J-1 n(x4)t = (0.019 -0.004 -0.003};
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x3t = (10.954 -0.203 -0.0304);
Stop.

Optimum design

g*t = (0.5 10.954 -0.203 -0.304 O}.
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program optim
call datain
call grg

call outres
stop

end

subroutine gcomp(g,x)

implicit real*8 (a-h,o-2)

dimension g(1),x(1)

common /vgeom/ cl(100),cosl(100),cos2(100),1m(6,100),

* cvmu (100)
common /vload/ r(100),cvload(100),jm(6,100),nol(100),
* no2(100)

common /xcord/ xc(100),yc(100),d(100),3jdir(3)
common /parr/ cv,ec,rp,fc,es,ecm,relind,co, fy,epsy
common /pari/ igh,iqg,nel,ntot,iqgn
common /inequa/ vag(100),beta(100),u(6),vahk(100),ck(6,6)
common /equal/ vah(100),vmu(100)
call equcon(x)
call inecon(x)
call valobf(x,vof)
do 100 i=1,igh
g(i)=vah(i)
100 continue
c***************************************************************

c ELEMENT RELIABILITY LIMITS
c***************************************************************
do 200 i=igh+l,igh+nel
g(i)=-vag(i-igh)
200 continue
c***************************************************************

c REINFORCEMENT LIMITS
c***************************************************************
do 300 i=igh+nel+l,igh+2#*nel
kj=i-igh-nel
g(i)=1000.*x(3%k3)/ (x(3*kj-2) *x(3*kj-1))
300 "continue
g(igh+2*nel+l)=vof
return
end

subroutine princi
implicit double precision (a-h,o0-2)
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common /vgeom/ cl1(100),cos1(100),cos2(100),1m(6,100),

* cvmu (100)
common /vload/ r(100),cvload(100),jm(6,100),n0l(100),
* no2 (100)

common /xcord/ xc(100),yc(100),d(100),]jdir(3)

common /parr/ cv,ec,rp, fc,es,ecm,relind,co, fy, epsy

common /pari/ igh,iqg,nel,ntot,iggn

open ( 9,file='data', form='formatted' )

rewind 9
c****************************************************************

c # ELEMENTS AND # JOINTS
Chhkhkkhrhhhkhhrhhhhhkhhhhhhhhhhhhhhhhkrhhhrhhhhhohhorhhhhrdhhdhk
read (9,*)nel,nj
c***************************************************************
c NODES PER ELEMENT
Chkkhhhkhhhhhhhhharhhhhhhhhhhhdhhnrkhrdhhrdrhhhhrhrhhhhhhkdhhhihs
do 100 i=1,nel
read(9,*)nol(i),no2 (i)
100 continue
Chkdhkhhhhhhhhhhhhdhhhhhdhhhhhhhkhhhhhhhhhhkhkhhdhhhohhhhkhhkddhhs

c : JM MATRIX
c***************************************************************
do 200 kk=1,nj
jm(1l,kk)=1
jm(2,kk)=2
m(3,kk)=3
200 continue
c***************************************************************

c SUPPORT CONDITIONS AND COORDINATES
c***************************************************************
do 300 3j=1,nj
read(9,*)jdir(1l),jdir(2),3jdir(3),xc(3),yc(d)
do 350 1 =1,3
if (jdir(i).gt.0) then
Jm (l,J) =0
endif
350 continue
300 continue
c***************************************************************

c GLOBAL DEGREES OF FREEDOM
C***************************************************************
igh=0
do 510 j=1,nj
do 500 1=1,3
if (jm(1,3).ne.0) then
igh=igh+1
jm (1,3)=igh
endif
500 continue
510 continue
iggn=igh+nel
igg=igh
ntot=iggn+2*nel
c***************************************************************

c FILLING LM MATRIX
e et T L E A L L S LR S L L L L AL LA S bbbl dobohohaalolahadade
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common /vgeom/ cl(100),cos1(100),cos2(100),1m(6,100),

* cvmu (100)
common /vload/ r(100) ,cvliocad(100),3jm(6,100),no0l(100),
* no2 (100)

common /xcord/ xc(100),yc(100),d(100),jdir(3)

common /parr/ cv,ec,rp, fc,es,ecm,relind, co, fy,epsy

common /pari/ igh,iqg,nel,ntot,iggn

open ( 9,file='data', form='formatted' )

rewind 9
c****************************************************************

c # ELEMENTS AND # JOINTS
Chkhkkhhhhhkhhhkhhhhhhrhhhddhhdhdhhhhhhhhrhhhhhhdohhhkkhrhhhrrhsk
read (9,*)nel,nj
c***************************************************************
c NODES PER ELEMENT
Chkkkhhhhkhhkhhhkrkhhrhhhhdhhohhhhhhhhhdhhhhhhhdhhhhhdrhhhthirrs
do 100 i=1,nel
read(9,*)nol(i),no2(1i)
100 continue
Chkhhkkkhkhhhhdkhhhhkhhhhhhhhhdhhokrkhhhhhhrhhohhohdohhhhhhdkhhikids

c - JM MATRIX
c***************************************************************
do 200 kk=1,nj
jm(1,kk)=1
m(2,kk)=2
Im(3,kk)=3
200 continue
c***************************************************************

c SUPPORT CONDITIONS AND COORDINATES
c***************************************************************
do 300 3j=1,nj
read(9,*)jdir(1),3jdir(2),jdir(3),xc(3),yc(3)
do 350 1 =1,3
if (jdir(i).gt.0) then
Jm {l:J) =0
endif
350 continue
300 continue
c***************************************************************

c GLOBAL DEGREES OF FREEDOM
c***************************************************************
igh=0
do 510 j=1,nj
do 500 1=1,3
if (jm(1,3j).ne.0) then
igh=igh+1l
jm (1,j)=iqh
endif
500 continue
510 continue
iggn=igh+nel
igg=iqgh
ntot=iqggn+2*nel
c***************************************************************

o FILLING IM MATRIX
c***************************************************************
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end

subroutine valobf (x,vof)

implicit double precision (a-h,o0-2z)

dimension x(1)

common /vgeom/ c¢l(100),cos1(100),cos2(100),1m(6,100),

* cvmu (100)
common /vload/ r(100),cvload(100),jm(6,100),nol(100),
* no2 (100)

common /xcord/ xc(100),yc(100),d(100),jdir(3)
common /parr/ cv,ec,rp,fc,es,ecn,relind,co,fy,epsy
common /pari/ igh,iqg,nel,ntot,iqgn
common /inequa/ vag(l00) ,beta(100),u(6),vahk(100),ck(6,6)
common /equal/ vah(100),vmu(100)
vof = 0.0
do 100 kX = 1,nel
base = x(3*k-2)
height = x(3*k-1)
steel = x(3*k)
area = base * height
vof=vof+ (area+steel*10) *cl (k)
100 continue
return
end

subroutine inecon(x)

implicit double precision (a-h,o-2)

dimension x(1)

common /vgeom/ cl(100),cos1(100),cos2(100),1m(6,100),

* cvmu (100)
common /vload/ r(100),cvload(100),jm(6,100),nol(100),
* no2(100)

common /xcord/ xc(100),yc(100),d(100),jdir(3)

common /parr/ cv,ec,rp,fc,es,ecm,relind,co, fy,epsy

common /pari/ igh,igg,nel,ntot,iqgn

common /inequa/ vag(l100),beta(100),u(6),vahk(100),ck(6,6)

common /equal/ vah(100),vmu(100)

nel3=3*nel
c***************************************************************

c RELIABILITY
c***************************************************************
do 200 k=1, iqg
vag(k) = relind-beta(k)
200 continue
return
end
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subroutine modsti(kel,tinert,area,vksi,vksj)
implicit double precision (a-h,o0-z)
common /vgeom/ cl1(100),cos1(100),cos2(100),1m(6,100),

* cvmu (100)
common /vload/ r(100),cvload(100),jm(6,100),n0l(100),
* no2(100)

common /xcord/ xc(100),yc(100),d(100),jdir(3)

common /parr/ cv,ec,rp, fc,es,ecm,relind, co, fy,epsy

common /pari/ igh,iqg,nel,ntot,iqgn

common /inequa/ vag(l00),beta(100),u(6),vahk(100),ck(6,6)

common /equal/ vah(100),vmu(100)
c***********************************************************

c FLEXIBILITY MATRIX (2x2) .
Chkkkdhkhkhhhhhrhrhhkhhhhhrhhhhhhhhhhhhhhrhdhhhhhhhhrhhkddhhkk
n=nel
do 10 i=1,6
do 20 j=1,6
ck(i,j)=0.0
20 continue
10 continue

xd=cl (kel)/(3*ec*tinert)+1l./vki
y=cl(kel)/(3*ec*tinert)+1./vkj
=-cl(kel)/(6*ec*tinert)
c***************************************************************

c INVERSION OF MATRIX
ChkkhhhhhhhhhrarrRrhrhhhAhhhhkhkkrkhhhrhkhhhhhhhhhrhhrrhhkhhhhkdd

det=xd*y-z*2

a=y/det
=-2z/det
c=b
dd=xd/det
c**************************************************************
c EXPANDED MATRIX (6x6)

c*************************************************************
ckll=ec*area/cl (kel)
ckl4i=-ckll
ck4l=-ckll
ck44=ckll
ck22=(a+b+c+dd)/(cl(kel) *cl(kel))
ck25=-ck22
ck52=ck25
ck55=ck22
ck23=(a+c)/cl(kel)
ck53=-ck23
ck26=(b+dd)/cl(kel)
ck56=-ck26
ck33=a
ck36=b
cké63=c
cké66=dd
ck32=(a+b)/cl(kel)
ck35=-ck32
ck62=(c+dd)/cl (kel)
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ck65=~-ck62
Chkkkkhhkhhhhrhrhkhhhkrhhkhhhhhhdkhhhhhhhhhhhhkhrhhrkharkhhdhhhhhhdk

c ROTATED MATRIX

c***************************************************************
csl=cosl(kel)
cs2=cos2 (kel)
c2=csl*csl
s2=Ccs2*cs2
cs=csl*cs2
ck(l,1)=ckll*c2+ck22*s2
ck(1,2)=ckll*cs-ck22*cs
ck(1l,3)=-ck23*cs2
ck(l,4)=-ckll*c2-ck22*s2
ck(1l,5)==-ckll*cs+ck22*cs
ck(1l,6)=-ck26*cs2
ck(2,1)=ckll*cs-ck22*cs
ck(2,2)=ckll*s2+ck22*c2
ck(2,3)=ck23*csl
ck(2,4)==-ckll*cs+ck22*cs
ck(2,5)==-ckll*s2-ck22*c2
ck(2,6)=ck26*csl
ck(3,1)=-ck32*cs2
ck(3,2)=ck32*csl
ck(3,3)=ck33
ck(3,4)=-ck(3,1)
ck(3,5)=-ck(3,2)
ck(3,6)=ck36
ck(4,1)=-ck(1,1)
ck(4,2)==-ckll*cs+ck22*cs
ck(4,3)=ck23*cs2
ck(4,4)=ckll*c2+ck22*s2
ck(4,5)=ck(2,1)
ck(4,6)=ck26*cs2
ck(5,1)=ck(2,4)
ck(5,2)=ck(2,5)
ck(5,3)=-ck(2,3)
ck(5,4)=-ck(2,4)
ck(5,5)=-ck(2,5)
ck(5,6)=-ck26*csl
ck(6,1)=-ck62*cs2
ck(6,2)=ck62*csl
ck(6,3)=ck36
ck(6,4)=-ck(6,1)
ck(6,5)=-ck(6,2)
ck(6,6)=ck6E6
return
end

subroutine sysrel(jflag)
implicit double precision (a-h,o0-2)
common /vgeom/ c1(100),cosl(lOO),cosz(100),lm(6,100),
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* cvmu (100)
common /vload/ r(100),cvlocad(100),jm(6,100),nol(100),
* no2(100)

common /pari/ igh,iqg,nel,ntot,iqgn

common /sysr/ betmin,epsilo,elerel(100),invmec(100)
common /equal/ vah(100),vmu(100)

dimension theta(200,100),p(100),rb(200,100),

* become(SOO),lc(300),thesum(lOO),temp(lOO,lOO),

* locmec(100) ,thesul(100) ,dispsu(100),ni(100),

* nucomb (100) ,1ct (300)
e T L T AR AT L AL D L S L L AL LR R LS A bbb bbbt
c form fundamental mechanisms

c***************************************************************
call mecsys(nel,iqh,cl,cosl,cosz,lm,numec,rb,theta)

ndof=igh
do 20 j=1,ndof
~ p(3)=r(d)
20 continue
Chhkkkkhhhhhhhhhhhkhhhhhhhhnhohkhhhhhhhhhhhhhhhhhkrhhhhhrkhkhhddhk
c ordering theta and r matrices

C***************************************************************

do 710 k=1,numec-1l
jflag=0
do 720 i=1,ndof
if (abs(rb(i,k)).gt.0.0)jflag=1
720 continue
if (jflag.eq.0)then
do 730 1l=k+1,numec
do 740 li=1,ndof
if(abs(rb(li,1)).gt.0.0)then
do 750 1j=1,ndof
temp(1lj,1)=rb(1j,1)
rb(1j,1)=rb(1lj,jflaqg)
rb(1j,jflag)=temp(1j,1)
750 continue
do 760 1j=1,2%nel
temp(lj,1)=theta(lj, 1)
theta(lj,1l)=theta(lj,jflaq)
theta(lj,jflag)=temp(lj,1)

760 continue
go to 733

. endif
740 continue
733 continue
730 continue

endif

710 continue
c**************************************************************
c normalizing theta and r vectors

C**************************************************************

do 810 i=1,numec
do 820 j=1,2*nel
if(abs(theta(j,i)).ne.1.0.and.
* theta(j,i) .ne.0.0)then
fact=abs(l./theta(j,i))
do 830 jj=1,2*nel
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theta(jj,i)=theta(jj,i)*fact
830 continue
do 840 jj=1,ndof
rb(jj,i)=rb(jj,1i)*fact

840 continue

go to 734

endif

820 continue
734 continue
810 continue
ChhkhkhhhhhhkhhhhhhhhhhhhhkhhRhhdehhkkhhhhkhhhhhkhkhrhkkkhkkkhkkkhkk
c transpose theta and r matrices

Chhkhkkhhhkhkkhkhhkkhhkkhkkhhkhhhkhkhkhhhhhkhhhkhhhhhhhkhhhhhhhhkhhhhkhhhhkdhhikk
do 25 j=1,numec
do 91 i=nel
temp(i,j)=theta(i,])
91 continue
25 continue
do 56 i=1,numec
do 55 j=1,2*nel
theta(i,j)=temp(j,1i)
55 continue
56 continue
do 28 j=1,numec
do 27 i=1,ndof
temp(i,3)=rb(i,3J)
27 continue
28 continue
do 66 i=1,numec
do 65 j=1,ndof
rb(i,j)=temp(j, i)

65 continue

66 continue
Chkhkkkhkhkhhkhkhkhhkhhkhhhkhkkhkhkkhhkhhhkhkhhhrhhhkhhhhhhhhhhhhhhhhhhhkkhkhkkhkk
c reliability of fundamental mechanisms

Chkhkhhkhhhhkhhkhhkhhhhkhhhhkkhhkhkhkkhkkrkhkhhkhhhkhhkkhhkhhhhkhhkhhkkhkkkrhkkhik

do 102 i=1l,numec
vmeanr=0.0
stdevr=0.0
do 202 k=1,nel
j=2*k-1
theji=abs(theta(i,j))
thejil=abs(theta(i,j+1))
if(theji.lt.0.0001.and.thejil.1lt.
* 0.0001)goto 202
term2=(theji+thejil) *cvmu (k) *vmu (k)
stdevr=stdevr+term2*term2
vmeanr=term2/cvmu(k)+vmeanr
202 continue
vmeanl=0.0
stdevl=0.0
do 302 k=1,ndof
if(abs(p(k)).1lt.0.001)go to 302
term=p (k) *rb(i, k)
vmeanl=vmeanl+term
stdevl=stdevl+term*term* (cvload (k)
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* *v]load(k))
302 continue
vmean=vmeanr-vmeanl
stdev=stdevr+stdevl
become (i) =vmean/sqrt (stdev)
Inumbe=1lnumbe+1l
102 continue
Chhkkhkhhkhkhhkhkhhhhkhhhkhhhkhhhhhhkhdhdhhhhhhkhkhhhhhkhkhkhkhhhkhhhkhhkkkkkk
c reliability of combined mechanisms
c (internal work)
c**************************************************************
do 50 1=1,numec
le(l)=1
lect(l)=1
50 continue
lp=numec
ltemp=numec
ni(1)=1
numax=6
nucome=1
nucomb (1) =numec
lpt=numec
lpti=numec+1
111 continue
Chkhkhkhkhkhhhkkhhhkhkdhhhkhkhkhhhkhkhkhhhkhhkhhkhhhkhhhkkhhkhkhhhkhkhhkkhkhhhkhkhdhhhhk

c : loop over mechanisms in location vector
Chkhkhkhhkkhkhkhkdkhkhhkhkkhkhhkhkhhhhhkhhhhkhhhhkhhkhhhkhkhhhhkkhkhhhhkkhhhhhkkkkkix
do 699 kmo=1,nel
thesul (kmo)=0.0
thesum(kmo)=0.0
699 continue
do 698 klp=1,ndof
dispsu(klp)=0.0
698 continue
kmu=1
nic=ni (nucomne)
nif=nic+nucomb (nucome) *nucome-1
nucomb (nucome+1) =0
'c**************************************************************

c define acceptable interval
c**************************************************************
if(nucome.gt.1l)then
nifbet=1lpti-1
nicbet=1lpti-nucomb (nucome)
do 5544 ia=nicbet+l,nifbet
betaal=become(nicbet)+epsilo
if(become(ia).gt.betaal)then
do 5545 ib=ia,nifbet
become (ib)=1000.

5545 continue
go to 5541
endif
5544 continue
5541 continue

niccon=nicbhet
endif
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c**************************************************************
c reliability of combined mechanisms
c (internal work)
Chkhkkhkhkkhhhkkhhkhhhdhkhhhhhhkhhhhhkhkhkhkhhkhhkhkhhkhkhkhhkhkhkhhhkhhhkkkkkhkkhkhkk

do 200 j=nic,nif,nucome
icontr=0
if (nucome.gt.l)then
if (become(niccon).gt.100.) icontr=1
niccon=niccon+l
if (icontr.eq.l)go to 5564
endif
do 300 1l=1,nucome
1j=lc(j+1-1)
if(lj.1t.-0.1)then
kmu=-1
lj=abs(1l3])
endif
do 400 kk=1,nel
kkj=2*kk~-1
thesum(kk)=thesum(kk)+theta (1j,kkj) *kmu
thesul (kk)=thesul (kk)+theta(1j,kkj+1) *kmu

400 continue
kmu=1
300 continue
Chhkkhkhhkkhkhhkhkhhhhkhkhkhhkhhkhkhhhhhhkhhhkhhhkhkhkkhkhhdhhhhkhhkkkhkkhkhhkkhkhkkik
c reliability of combined mechanisms
c (external work)

Chhkhkhkkhkhkkhkdkhkhhkhhhkhhkhhhkhhkhhkhhhhkkhkhhhhdkhhkhkhhkhhhhhhhkhhhhkhhkhhhkhkhkhhk

do 372 1=1,nucome

lcl=1lc(j+1-1)

if(lcl.1lt.~-0.1)then
kmu=-1
lcl=abs(1lcl)

endif

do 472 kk=1,ndof
if(abs(p(kk)).1t.0.001)go to 472
dispsu(kk)=dispsu(kk)+rb(lcl, kk) *kmu

472 continue
kmu=1
372 continue
5564 continue
Chikhdkhhkdhdddiddhdddidkkhddkhkhkdkhkdhhhdhihidkdddddkkhkikkiidihkkkkihkikkk
c combination with fundamental mechanisms
c (internal work)

ChkhkhkhhkhkhhkhkhkhkhkhkhhhkkhkAhkhhhkhkhhhhkhhhhhhhkhkhkhhkhkhhkhhkkkhhkhhkhkhkkkkk

do 100 k=1,numec
vmeanr=0.0
vmeanl=0.0
stdevr=0.0
stdevl=0.0
vmanrm=0.0
vmanlm=0.0
stdvrm=0.0
stdvlm=0.0
do 499 1l1l1=j,j+nucome-1
if(abs(lc(11ll)).ge.k)go to 100
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499 continue
if (nucome.gt.l)then
if (icontr.eq.l)then
becomi=400.

becopl=500.
go to 5574
endif

endif

thesu=0.0

thesu2=0.0

thesui=0.0

thesln=0.0

do 600 kk=1,nel

kkj=2*kk-1

thesu=thesunm(kk)+theta (k, kkj)
thesu2=thesul (kk)+theta(k, kkj+1)
term=(abs(thesu)+abs(thesu2))*cvmu(kk)
* *ymu (kk)
vmeanr=term/cvmu(kk)+vmeanr
stdevr=stdevr+term*term
thesui=thesum(kk)-theta (k, kkj)
theslm=thesul (kk) -theta(k,kkj+1)
termm=(abs(thesui)+abs(theslm))*cvmu(kk)
* *ymu (kk)
vmanrm=termm/cvmu (kK)+vmanrm
stdvrm=stdvrm+termm*termm

600 continue _
c*************************************************************
c combination with fundamental mechanisms
c (external work)

c*************************************************************

do 672 kk=1,ndof
if(abs(p(kk)).1lt.0.001)go to 672
dispkk=(dispsu(kk)+rb(k,kk)) *p (kK)
vmeanl=vmeanl+dispkk
stdevl=stdevl+dispkk*cvload (kk) *dispkk
* *cvload (kk)
dispkm=(dispsu(kk)-rb(k,kk)) *p(kk)
vmanlm=vmanlm+dispkm
stdvim=stdvlm+dispkm*cvload (kk) *dispkm
* *cvload (kKk)

672 continue
becopl=(vmeanr-vmeanl)/sqrt(stdevr+stdev1)
becomi=(vmanrm-vmanlm)/sqrt(stdvrm+stdvim)

5574 continue
if (becomi.lt.becopl) then
do 138 1lk=1l,nucone
ltemp=ltemp+l
lc(ltemp)=lc(j+1k-1)

138 continue

ltemp=ltemp+l

lc(ltemp)=-k

lctlp=-k

becote=becomi
else

do 139 1lk=1,nucomne
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ltemp=ltemp+1l
lc(ltemp)=1lc(j+1k-1)
139 continue
lctlp=k
ltemp=ltemp+1
lc(ltemp)=k
becote=becopl

endif

lpt=1pt+1l

iflag=0
Chikhkhhhkhhhhhhhhkhhhhhhhkhhhkkhhkkhhhkhhhdkhkhkkdkkkhdhhhhdikkkhkkk
c ordering the combined beta values in the same row

c*************************************************************
if (lpti.gt.lpt-1)then
do 524 1lk=1,nucome
lp=1p+1
let(lp)=1lc(j+1k-1)
524 continue
lp=1p+1
lct(lp)=1lctlp
become (1pt)=becote
else
do 510 jkj=1pti,lpt-1
if(become(jkj).gt.becote)then
iflag=-1
do 511 kjk=jkj,lpt-1
itemp=lpt-1+jkj-kjk
become (itemp+1)=become (itemp)
511 continue
become (jkj)=becote
becote=become (1pt)
c*************************************************************

c moving lc array
c*************************************************************

movini=nic+nucomb (nucome) *nucome+

* (Jkj-1pti) * (nucome+1)
movfin=(lpt-1lpti)* (nucome+1)+nic+
* nucomb (nucome) *nucome-1

do 512 lmn=movini,movfin
lcou=movini+movfin-lmn
nucl=nucome+1l
lct (lcout+nucl)=1ct(lcou)
512 continue
do 513 n=movini,movini+nucome-1
lptaa=n-movini+l
lct(n)=1lc(j+1lptaa-1)
513 continue
lct(movini+nucome)=1ctlp
endif
510 continue
if(iflag.eq.0)then
do 124 lk=1,nucome
lp=1p+1
let(1lp)=lc(j+1k-1)
124 continue
lp=1p+1



208

lct(1p)=1lctlp
become (1pt)=becote
else
lp=1p+nucome+1l
endif
endif
nucomb (nucome+1) =nucomb (nucome+1) +1
Inumbe=lnumbe+1l
100 continue
do 6991 kmo=1l,nel
thesul (kmo)=0.0
thesum(kmo)=0.0
6991 continue
do 6981 klp=1,ndof
dispsu(klp)=0.0
6981 continue
200 continue
c*************************************************************

c control of maximum number of tree rows
c*************************************************************
lpti=lpti+nucomb (nucome+1)
nucome=nucome+1
ni(nucome)=ni(nucome-1)+(nucome-1)*nucomb(nucome-l)
if(nucome.lt. (numax))go to 111
c*************************************************************

c find minimum beta value
c*************************************************************
betmin=100
do 7890 i=1, lnumbe
if (become(i).lt.betmin)then
betmin=become (i)
itab=i
endif
7890 continue
c*************************************************************

c find mechanisms involved
CRARIR AR R R IR KRR KRR IR AR AR AR R R AR R AR AR IR R IRk ke ke kkhhk ok ks k
mecoun=0
mncomb=1
do 7891 j=1,nucome-1
do 7895 jk=1,nucomb(j)
mecoun=l+mecoun
if(itab.eqg.mecoun)then
nistar=mcomb
do 7893 1=1,3
locmec(1l)=1ct(nistar+1l-1)

7893 continue
nummec=j
go to 7894
endif
mcomb=j+mcomb
7895 continue
7891 continue
7894 continue

c*************************************************************
o find elements involved
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c*************************************************************
nk=1
numele=0
do 8000 m=1,nel
do 8001 k=1,numec
do 8002 1=1,nummec
if(abs(locmec(l)).eq.k)then
ml=2*m-1
m2=2%*m
if (abs(theta(ml,k)).gt.0.0.
* or.abs(theta(m2,k)).gt.0.0)then
if(nk.gt.1l) then
do 8003 1lmi=1l,nk
if(invmec(lmi).eq.m)
* go to 8004
8003 continue
endif
nk=nk+1
numele=numele+l
invmec(n)=m

go to 8000

8004 continue
endif
; endif

8002 continue
8001 continue
8000 continue - ,
Chhkhkhhhkhhkhhhhhhhhhhhhhkhhhhkkkhhdokhhkhhhhhhkhrhkrkhhhhkhkdkhkk
c control of system reliability

c*************************************************************

write(3,*)

write(3,*) 'BETA MINIMAL FOR THE SYSTEM = ', betmin

write(3,*)

jflag=0

if(betmin.lt.relind)then

delta=(relind-betmin)/relind

do 3891 i=1,nel
do 3892 j=1,numele

if(invmec(j).eq.i)then
elerel(i)=(l.+delta) *elerel(i)

endif
3892 continue
3891 continue
jflag=1l
endif
return
end

subroutine mecsys(n, igh,cl,cost,sint,lm, numec,r,theta)



210

implicit double precision (a-h,o-z)
dimension a(100,100),b(100,100),c(100) ,cm(100,100),

* cost(n),qa(100,100),sint(n),cl(n),q(100,100),

* 1m(6,n),am(lOO,lOO),bl(lOO,lOO),theta(200,100),

* r(igh,100)
C**************************************************************
c Constraint matrix for the structure

c**************************************************************
do 300 i=1,3*n
do 400 j=1,6%*n
cm(i,j)=0.0
q(i,j)=0.0
400 continue
300 continue
do 60 k=1,n
i=3*k
j=6%*k
at=1.0/cl (k)
im2=i-2
iml=i-1
jml=j-1
S jm2=j~2
jm3=j-3
jm4=j-4
jmS5=j-5
cm(im2, jm5)
cm(im2, jm2)
cem(iml, jm3)
cm(i,j)=1.0
cm(iml, jm4)=-at
cm(iml,jml)=at
cm(i,jm4)=-at
cm(i,jml)=at

-1'
1.0
1.0

0

60 continue
c**************************************************************

c Coordinate trnsformation matrix
c**************************************************************
do 70 k=1,n
co=cost (k)
si=sint (k)
j=6%k

do 80 i=1,2
jum=j=3*%i+1
jdois=j-3*i+2
jtres=j=3*i+3
d(jum, jum)=co
d(jum,jdois)=si
g(jdois,jum)=-si
g(jdois,jdois)=co
g(jtres,jtres)=1.0
80 continue

70 continue
c**************************************************************

c Compatibilibity matrix from IM matrix
c**************************************************************

né=6*n
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do 500 i=1,né6
do 510 k=1,igh
am(i,k)=0.0
510 continue
500 continue
do 520 i=1,6
do 530 k=1,n
iflag=1lm(i,k)
if (iflag.gt.0) am(6*(k-1)+i,iflag)=1.0
530 continue
520 continue
CREIRIRARRRI IR RR IR AR IR KRR IR AR R kAR Rk k Rk AR Ak kR Rk Rk hhk kA kk &

c Rotation of basic compatibility matrix
Chkhkkkhkhkhkkhkkhkhhhhkhhhhhhhkhhkhkhhkhhhhhhkhhhhhhhkhhkhhhkhhkhhkhhhhhkhhhh
mm=80
call multi(g,am,qga,né6,igh,né,mnm)
Chhkkhkhhkkhkkhkhhhkhhhhkhhhkhhhkhhhhhhkhkhhhkhhhhhhhhhhkhhkhkhhhhhhhkhkd

c Expansion of QA matrix
Chhhhkdhkhkhkhhhhkhhhhhhhhhhhkhkhhhhhhhhhkhhhhkhhkhhkhkhhhkhhkhhkhkhhrhkkkhkdkh
do 585 i=1,n
i6=6*i
i3=i6-3
do 595 j=1,iqgh
qa(i3,j)=0.0
qa(i6,j)=0.0
595 continue
i2=2%i
qa(i3,igh+i2-1)=1.0
ga(ie,igh+i2)=1.0
585 continue
Chkhkkhkhkkhkkhkkhkhhkkkhkhkrkkhhkkhkhhhhhhkkhkkkhkhkhkhhhhkhkhhkhhkhkhhkhhkhhkhkkhhkhk

c Matrix A = C * QA (transformed)
Chkhkkkkhkhkhhkhhhkhhkhhkhkhkhkhkhhhkhhhrhhhkdhhkhkkhhkhkhhhkhrhhkhkhhhhhkhkrhkkik
m=3+*n
nt=igh+2#*n

call multi(cm,qga,a,m,nt,n6,mm)
Chkhkkkhkhkhkkhkhkhkhhhhkhkhkhkhdkhhkkhhhhhhkhhkkkhkhhhkhhhhhhhhhhhkhhhhhhhhkkhk
c Solution for virtual displacements
Chhkkkhhhkhhhhkhhhhhkhhhhhhhhhhkhhhhhhkhhhhkhhhkhhkhhhkhkhkhkhhhkhhhhkhkhhhdk
do 150 k=1,nt
do 175 1=1,nt
b(k,1)=0.0
175 continue
150 continue
do 160 k=1,nt
b(k,k)=1.0
160 continue
do 200 i=1,m
amax=0.0
iflag=0
do 250 j=i,nt
if (abs(a(i,j)).gt.amax)then
iflag=j
amax=abs(a(i,3j))
endif
250 continue
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do 305 k=1,m
c(k)=a(k,iflaq)
a(k,iflag)=a(k,1i)
a(k,i)=c(k)
305 continue
do 310 k=1,nt
c(k)=b(k,iflaqg)
b(k,iflag)=b(k,1i)
b(k,1i)=c(k)
310 continue
do 280 j=i+l,nt
if (abs(a(i,j)).gt.0.00001) then
fact=-a(i,j)/a(i,i)
do 290 kk=1,m
a(kk,j)=a(kk,j)+a(kk,i)*fact
290 continue
do 291 kk=1,nt
_ b(kk,j)=b(kk,j)+b(kk,i)*fact
291 ' continue
endif
280 continue
200 continue
numec=nt-3*n ,
c***************************************************************
c Forming bl
c***************************************************************
lcount=nt-numec+1
ki=1
do 800 i=lcount,nt
do 810 j=1,nt
bl(j,ki)=b(j,1i)
810 continue
ki=ki+1
800 continue
c**************************************************************

c Creating Theta matrix
CHhAXRARI KA AR A A IR R R AR AR IR R A RN AR R AR AR AR Rk ke ko khh k& k&
do 156 j=1,numec
do 157 i=1,2#*n

k=igh+i
theta(i,j)=bl(k,J)
157 continue
156 continue
C***************************************************************
c Creating virtual displacements

C**************************************************************

do 169 j=1,numec
do 158 i=1,iqgh
. r(i,3)=bl(i,]j)
158 continue
CHRIAIR AR KKRA KRR AR KA IR RN RAAA AR R KAk kAR R ARk ke kR kkkhkk ok ok

c Adding joint mechanisms
CRAIRARRARI I AR A AR AR KRR R AR R KRR AR R A Rk kAR AR AR Rk k kA kAR Ak Ak k& & &
do 161 i=3,igh,3
if (abs(r(i,3j)).gt.0.000001)then
r(i,3)=0.0
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do 162 k=1,n
if(1m(3,k).eq.i)then

lpo=2*k-1
theta(lpo,j)=1
endif
if(lm(6,k).eq.i)then
lpo=2%*k
theta(lpo,j)=1
endif
162 continue
endif
161 continue
169 continue
return
end

subroutine multi(aa,bb,cc,1,m,n, k)
implicit double precision (a-h,o-2z)
dimension aa(l,n),bb(n,m),cc(l,m)

do 10 i=1,1
do 20 j=1,m
d=0.0

do 30 kk=1,n
d=d+aa (i, kk) *bb(kk, j)

30 continue
cc(i,j)=a
20 continue
10 continue
return
end

subroutine equcon(x)

implicit double precision (a-h,o-z)

dimension x(1)

common /vgeom/ c1(100),cosl(100),cos2(100),1m(6,100),

* cvmu(100)
common /vload/ r(100),cvload(100),jm(6,100),no0l(100),
* no2(100)

common /xcord/ xc(100),yc(100),d(100),3jdir(3)

common /parr/ cv,ec,rp,fc,es,ecm,relind,co, fy, epsy
common /pari/ igh,iqg,nel,ntot,iqgn

common /inequa/ vag(100) ,beta(100),u(6),vahk(100),ck(6,6)
common /equal/ vah(100),vmu(100)

common /springs/ vksi(100),vksj(100)
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do 121 ikl=1l,iqgh
vahk(ikl)=0.0

121 continue

n=nel

n3=n+n+n

do 100 k = 1,n

sigma2=0.0

do 111 ipo=},6

u(ipo)=0.0

111 continue

do 200 i = 1,6

m=1lm(i, k)

if (m.eq.0) go to 200
if(cvload(m).gt.sigma2)sigma2=cvload(m)
l1=n3+m

u(i) = x(1)
200 continue
cl=cosl (k)
c2=cos2 (k)
d2=-c2%u(l)+cl*u(2)
d3=u(3)
d5==-c2*u(4)+cl*u(5)
dé=u(6)
o2 2222222222222 22 2 2 2R 22 2 R 2222 2 2 d it 2 222 2222 X222 2 2 22 222202
c element forces
e 25X 2222222222822 2222222222 2 2 2 2 22222 22X 322222222 2222222 X X2
c = cl(k)’

base = x(3*k-2)
height = x(3*k-1)
aste = x(3%*k)
area = base * height
tinert = area*height*height/12.0
al = ec*tinert/(c*c*c)
call eley (ec,tinert,c,vksi(k),vksj(k),d2,d43,d5,ds6,
* fo3,fo6)
sigmal=cvmu (k)
Chkhkkkhkkkhkhkhkhkhrhkhhkhkhkhkhkhkhhkhkhkhhhhhkhhhkhhkhhkhhhhhkhkhkkhkhhkhhhhdhhhhkkhih

c ultimate and yield moments
Chkhkhkkhkhkhhkhhkhhkhkhhkhkkhkhkhhkhkhkhkhhkhhhkhhkhhhhkhkhhhhhkhkhhkkhkhkhhkhhhkhkkkhkhkhk

call newmum(k,x,sigmal,sigma2, fo3,fo6,vksi(k),vksj(k),

* dz2,d5,d3,ds)
CRRA AR IR RRARR AR RR R AR AR AR AR AR R AR AR R AR AR ARk Rk Rk Ak khkk
c global modified stiffness

Chhkhkhkhhkhhkhhhhhhkhhrhhhhhhhkkhhhhhhhkhhhhhhkhhkhhhhhhhhhhkhhhhhhhkhdkik

call modsti(k,tinert,area,vksi(k),vksj(k))
do 300 1=1,6
j=1m(1,k)
if (j.eq.0) go to 300
do 400 1l1l=1,6
m= 1m(ll,k)
if (m.eq.0) go to 400
j3 = n3+m
vahk(j)=vahk(j)+ck(1l,11)*x(37)
400 continue
300 continue
100 continue
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c***************************************************************

c subtraction of external global forces
c***************************************************************
rmax=0,01
do 510 i=1,iqh
if(abs(r(i)).gt.rmax)rmax=abs(r(i))
510 continue
do 500 k=1,iqgh
if(abs(r(k)).1t.0.0001)then
vah (k) =vahk(k)/rmax
go to 500
endif
vah (k)=(vahk(k) - r(k))/rmax
500 continue
return
end

subroutine mumy (kel, x,sigmal,sigma2,fo3,fo6,vki,vkj,displ,
* disp2,rotl,rot2)

implicit double precision (a-h,o-z)

dimension x(1) )

common /vgeom/ cl(100),cos1(100),cos2(100),1m(6,100),

* cvmu (100)
common /vload/ r(100),cvload(100),3jm(6,100),no0l(100),
* no2(100)

common /xcord/ xc(100),yc(100),d(100),jdir(3)

common /parr/ cv,ec,rp,fc,es,ecm,relind,co,fy,epsy

common /pari/ igh,iqg,nel,ntot,iggn

common /inequa/ vag(100),beta(100),u(6),vahk(100),ck(6,6)

common /equal/ vah(100),vmu(100)

common /springs/ vksi(100),vks3j(100)

n=nel

nodel=0

node2=0

b=x(3*kel=~2)

h=x(3*kel-1)

dd=h-co

aste=x(3*kel)

clk=cl (kel)

ei=57000.*sqrt (ec) *h*h*h*b/12.
Chhhhkhkhhhkhhkhkrhkhhkhhkkhkhkhhkhkhkhhkhkkhkhkkrkrkkhhkhhrhkkkhkrhkhhkhkhhhhrhkhrhhkkk
c evaluation of yielding moment
Chhhkhhhhhhkhhhhhhkhhhhkhhhhhhhhhhhhhhhkhkkhkkkhkhhhkhkkkhhdkhkh kA khkhkih

call comcon(aste,dd,b,vmy,phiy)

afo3=abs(fo3)

afo6=abs (fo06)

vm=max(afo3,afo6)
Chhkkhkkkhhhhhhhkhhkhhhhhkhhhhhhkhhhhhhhhhhhhhhrhhhhrhhhhhhkhhhhkhikk

c ultimate moment and reliability
ChhkhkhkhhkhhhkhhkhhkhhhhhhkhhkhrhRhhkhkhhkhhhkkhhrhhkhhhkhkhhkhrhhrhkrrhkkk

hl2v0sObe4U1sblhagaste,b,kel,dd, vm,vmy,phiy, phiu,sigmal, sigma2)
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vmuk=vmu (kel)
c****************************************************************
c integration of curvature
c****************************************************************
if(vmy.lt.afo3)nodel=1
if(vmy.lt.afo6)node2=1
if(nodel.eq.l.0or.node2.eq.1)then
if((fo3*fo6).gt.0.) then
if(afo3.ge.afo6)then
tetay=(vmy/(3.*ei)+afo6/(6.*ei) ) *clk
vlp—(afo3—vmy)/(afo3-afo6)*clk
if (abs(vlp) .gt. clk)vlp-clk
tetal=(vmuk/(3.*ei)+afo6/(6.*ei)) *clk
tetau=tetal+(phiu-phiy) *vlp
endif
if(afo3.1lt.afo6)then
tetay=(vmy/(3.*%ei)+afo3/(6.*ei)) *clk
vlp—(afos-vmy)/(afos -afo3) *clk
if(abs(vlp).gt.clk)vlp=clk
tetal=(vmuk/(3.*ei)+afo3/(6.*ei))*clk
tetau=tetal+(phiu-phiy) *vlp
endif
endif
if((fo3*fo6).1t.0.) then
if (afo3.ge.afo6)then
tetay=(vmy/(3.*ei)~afo6/(6.*ei)) *clk
vlp=(afo3-vmy)/(af03+af06)*clk'
tetal=(vmuk/(3.%*ei)-afo6/(6.*ei)) *clk
tetau—teta1+(ph1u-ph1y)*vlp
endif
if(afo3.1lt.afo6)then
tetay=(vmy/(3.*ei)-afo3/(6.*eli)) *clk
vlip=(afo6-vmy)/(afo3+afo6) *clk
tetal=(vmuk/(3.*ei)-afo3/(6.%*ei))*clk
tetau=tetal+(phiu-phiy) *vlp
endif
endif
endif
crotl=rotl-(-displ/clk+disp2/clk)
crot2=rot2-(-displ/clk+disp2/clk)
vksp=(vmuk-vmy)/ (tetau-tetay)
Chhhhhhhhhkhhhkkhhhrhhhhkhrhhhhkhhhhrkhhhhhhhhrkhrhhhkdkhkrkhhhrrhhkhhhdd

c spring rotation
c*****************************************************************
srotl=abs(crotl)-tetay
srot2=abs(crot2)-tetay
c******************************************************************

c new secant spring values
Chhkhhkdhhkhhhhhhhhkhhhkhkhkhhkhhhhhhhkhhhhhhhhhkhhhhhkhhhhkhhrhhkhhhkhhrhhkhkhhhkik

if(nodel.eq.1l) then

if(srotl.le.0.)then
vki=vmy/tetay
go to 123
endif

vki=(vksp*srotl+vmy)/abs (crotl)
if (vm.gt.vmuk)vki=vmuk/tetau
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if(abs(crotl).gt.tetau)vki=vmuk/tetau
123 continue
endif .
if(node2.eq.1l) then
if(srot2.le.0.)then
vkj=vmy/tetay
go to 124
endif
vkj=(vksp*srot2+vmy)/abs(crot2)
if (vm.gt.vmuk)vkj=vmuk/tetau
if(abs(crotZ).gt.tetau)vkj=vmuk/tetau
124 continue
endif
if(nodel.eq.l.and.node2.eq.1l) then
if(srotl.le.0.)then
vki=vmy/tetay
go to 125
endif
Vvki=(vksp*srotl+vmy)/abs(crotl)
if (vm.gt.vmuk)vki=vmuk/tetau
if(abs(crotl).gt.tetau)vki=vmuk/tetau
125 continue
if(srot2.le.0.)then
vkj=vmy/tetay
go to 126
endif
vkj=(vksp*srot2+vmy)/abs(crot2)
if (vm.gt.vmuk)vkj=vmuk/tetau
if(abs(crotZ).gt.tetau)vkj=vmuk/tetau
126 continue
endif
return
end

subroutine valmu(aste,b,kel,dd, vm,vmy, phiy, phiu,
* sigmal,sigma2)
implicit double precision (a-h,o-2z)
common /vgeom/ c1(100),cosl(lOO),cosZ(lOO),1m(6,100),

* cvmu(100) .
common /vload/ r(100) ,cvload(100),jm(6,100),nol(100),
* no2(100)

common /xcord/ xc(100),yc(100),d(100),3jdir(3)

common /parr/ cv,ec,rp,fc,es,ecm,relind,co,fy,epsy

common /pari/ igh,iqg,nel,ntot, iqgn

common /inequa/ vag(100),beta(100),u(6),vahk(100),

* ck(6,6)

common /equal/ vah(100),vmu(100)

n=nel
c*************************************************************
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c neutral axis
c*************************************************************
x=47./60.*b*fc
y=0.004*es*aste-aste*fy
z=-0.004*es*co*aste
vkd=(-y+sqrt (y*y-4.*x*z) )/ (2.*x)
epcs=0.004*(vkd-co) /vkd

if (epcs.gt.epsy)then
epcs=epsy
endif .
c**************************************************************
c concrete force in region ab

ChrkhhhhkhhhhrhrhhhkkkhhhhkRAkhhhkhhhhhhhhhhkhhhhrhhhkkrhhkhkdik
alphal=2./3.
ccab=alphal*b*0.5*vkd*fc
Chhhkkkhhhkhhhhhkhhhhkkhhhrrhhrkhhhhhhhhhhhhdkhhhkhhhhhhhdhhdkds

c concrete force in region bc :
c*************************************************************
alpha2=0.9

ccbec=alpha2*b*0.5*vkd*fc
c**************************************************************

c distance of centroid to top in ab
c**************************************************************

gamal=0.875*vkd
Chhkhhkhhhhhhhrhhhhhkhohhhhhhhhhhhhhkhhhhhhhhhkhhhhhdkhhhhdhkhhds

c distance of centroid to top in bc
T T T T T T TS T ST T TR TS TS T LR S 22 T 2

gama2=0.259255*vkd
ChhkhhhkhhhhkhhAhhdkhrhhhhhhhhhhddohhhhhhkhhkhhhhr ok Ak dhhhhhdk

c coefficients for failure function
c************************************************************

al=(ccab* (dd-gamal)+ccbc*(dd-gama2))/fc

a2=-1.
c***********************************************************
c cosine directors
c**********************************************************

tetal=al*sigmal*fc

teta2=a2*sigma2*vm
c************************************************************
c independent term
c***********************************************************

fps=0.004*es* (vkd-co) /vkd

bi=aste*fps* (dd-co)
c***********************************************************

c reliability index
c***********************************************************

beta(kel)=(a1*fc+a2*vm+bi)/sqrt(tetal*tetal+teta2*teta2)
ChkhkkkhhhhkhhhRARRAIRARIARRRRIIRRIR AR AR AR IR Rk h oAk kkhhhhk

c ultimate moment and rotation
c**************************************************************
vmu (kel)=al*fc+bi
phiu=0.004/vkd
vmuk=vmu (kel)
if((4.*phiy).1lt.phiu)then
vmu(kel)=(vmuk-vmy)/(phiu—phiy)*3*phiy+vmy
phiu=3#*phiy
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endif
return
end

\
i
! ==

subroutine comcon(aste,dd,b,vmy,phiy)

implicit double precision (a-h,o0-2)

dimension x(1)

common /vgeom/ cl(100),cosl(100),cos2(100),1m(6,100),

* cvmu(100)
common /vload/ r(100),cvlioad(100),jm(6,100),no0l(100),
* no2(100)

common /xcord/ xc(100),yc(100),d(100),jdir(3)
common /parr/ cv,ec,rp,fc,es,ecm,relind,co,fy,epsy
common /pari/ igh,iqg,nel,ntot,iqgn

common /inequa/ vag(100),beta(100),u(6),vahk(100),

* ck(6,6)
common /equal/ vah(100),vmu{(1l00)
node=0
epso=0.002

c**************************************************************

c ,

c exc - concrete strain

c epcs - compressive steel strain

c epsy - yield strain

2**************************************************************

c first value for a

CHhARRAAKRRRRR KRR AR AR RRRARRARRRARRR AR AR ARk khhhhhkhkkhkh*
al=dd/2.

exc=al*epsy/(dd-al)

epcs=exc*(al-co)/al

t=fy*aste

cs=epcs*es*aste

eces=exc/epso

alpha=eces-eces*eces/3.

cc=alpha*fc*b*al

resl=cc+cs-t
c**************************************************************

c second value for a
ChhkAARRRRRAKRRRRRRAKRRRRRRRRAR AR R AR R Ik Rk R hhkkh AR ARk hkhhhhhhhx
a2=0.25*dd

exc=a2*epsy/(dd-a2)

epcs=exc* (a2-co) /a2

cc=fc*a2*alpha#*b

eces=exc/epso

cs=epcs*es*aste

res2=cc+cs~t
c***************************************************************

c newton iteration
c***************************************************************

100 a=a2-res2*(a2-al)/(res2-resl)
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exc=a*epsy/ (dd-a)
if (exc.gt.epso) go to 200

Chkhkhkhhkhkhkkhkhkhkhkhhhhhkhhhkhkkhhhhkhkkhhkhhhhhkhhhkhkhkhkkhkkhhkkhhkhkdkhkhdhkkkk

(o]

parabolic shape

Chkhkkhkhhkhkhhhhhhkhhhkhkhkhkhkhkhkhhkkhhhhhhhhhhkhkhkhkhkhhkhhhkhkhkhhhkhhkhhkhkhkkkkk

epcs=exc#*(a-co)/a
eces=exc/epso
alpha=eces-eces*eces/3.
cc=fc*alpha*b*a
cs=epcs*es*aste
res=cc+cs-t
control=0.0001*b*dd*fc
if (abs(res).gt.control) then

al=a2

a2=a

resl=res2

res2=res

go to 100
endif
gama=1l.-(8.*epso-3.%exc)/(12.*epso-4.*exc)
arm=dd-gama*a
vmy=cc*arm+epcs*es*aste* (dd-co)
phiy=epsy/(dd-a)
return

322222 2222222222222 22 2R 22 22 2223222222222 222 222222 2 222222222222 X

c

concrete strain > epso

Chhkkkhkkhhhhkhhhkhkhhhhkhhkhhkhkhkhhhhhkhkhhhhkhkhkhhkhkhkhhhkkhkhkhhhkhkkkhhhkhhkkkk

200

if(exc.gt.0.004) exc=0.004
Xl=epso*a/exc
ccl=fc*x1*2,./3.*b
gama=3,6*exc*exc-200. *exc*exc*exc-0.0000128
gama=gama/ ( (exc-epso) *(7.2*exc-300*exc*exc-0.0132))-1.
alpha=exc-50, *exc*exc+100.*exc*epso-0.0022
alpha=alpha/ (exc-epso)
cc2=alpha*fc* (a-x1) *b
epcs=exc* (dd-co)/a
t=fy*aste
cs=epcs*es*aste
cc=ccl+cc2
res=cc+cs-t
control=0.0001*b*dd*fc
if (abs(res).gt.control) then
al=az2
az2=a
resl=res2
res2=res
go to 100
endif
arml=dd-a+2./3.*xl
arm2=dd-gama* (a-x1l)
vmy=ccl*arml+epcs*es*(dd-co) *aste+cc2*arm2
phiy=epsy/(dd-a)
return
end
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program eley

implicit double precision(a-~h,o-2z)
open(l,file='ydata', form='formatted"')
rewind 1
read(l,*)ec,tinert,cl,vki,vkj,u2,u3,us,us6
ei=ec*tinert

w=cl/(3.%ei)+1./vki
y=cl/(3.%*ei)+1l./vk]j

z=-cl/(6.*ei)

det=w*y-z*z

a=y/det

b=-z/d4t

c=b

d=w/det
fo3=(a+b)/cl*u2+a*u3-(a+b)/cl*uS+b*ué
fo6=(c+d) /cl*u2+c*u3-(c+d)/cl*us5+d*ué
write(*,*)'fo3 = ',fo3,' fo6 = !',fo6
stop

end

program yiel

implicit double precision (a-h,o0-2)
open(l,file='yieln', form="'formatted’)

rewind 1
read(1l,*)b,d,aste,epsy,es,co,fy,fc,ecm,vm,sigmal,sigma2
ec=3122019

node=0

epso=0,002
CRAII AR R AR R AR IR AR AR R R R R R AR R AR R AR AR R R AR AR AR R ARA R A AR AR hhAhh*k

c

c EXC = CONCRETE STRAIN

c EPCS - COMPRESSIVE STEEL STRAIN
c EPSY - YIELD STRAIN
Cc
C
C

FIRST VALUE FOR A

hhkhkhhkhkhkhhrhkhkhdbhkhkhrhhkhkhhhhhkhkhhhhkhkhhhhhhbhhrhhrhkhhhkhkhkrhkhrhkhkhkhh

dd=x(3*kel~-1) ~-co ‘

al=dd/2.

exc=al*epsy/(dd-al)

epcs=exc*(al-co)/al

t=fy*aste

Cs=epcs*es*aste

eces=exc/epso

alpha=eces-eces*eces/3.

cc=alpha*fc*b*al
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resl=cc+cs-t
Chhkkkkhhkhhhkhkhhhhhkhhhkhhdkhhhkhhhhhhkhhhhhkhhkhhhkhhhkkhkkkhkrkhhhkkk

c SECOND VALUE FOR A
o3 222 2 2222222222222 2 2 2 2z 2 2 2 2 2 22 2 i 2R R R R YRR Y Y
az2=0.25*dd
exc=a2*epsy/(dd-a2)
epcs=exc* (az-co) /a2
cc=fc*a2*alpha*b
eces=exc/epso
cs=epcs*es*aste
res2=cc+cs-t
Chhkhkhkhkhkhhkhkhhhhhhkrkhhkhkhkhkdhkhhkdhkhhhkhhhkhhkrhhhkhhhhhhkhkhkhhhkhhkhkhkkhhhikhk

c NEWTON ITERATION
Chhhkhdhhhkkhkhrkhhkhkhkhhhhhdhkrhhdkhkhhdkhhhdhkhkhhhkhhhkdhhdhhrhhkk
" 100 a=az2-res2*(az2-al)/(res2~resl)

exc=a*epsy/(dd-a)

if(exc.gt.epso) go to 200
ChAR R AR R KRR RKIRRRRRRRARRR R KRR KRR RN R AR AR R Ak hhkhkkkhhkhkkhhhhhk

c PARABOLIC SHAPE
Chhhkhhkhkhkhhkhkhkhhhkhkhhhhkhhhhkhkhkhkhhkhkhhkhkhkhkhhkhkkhkhhhkhhhhkkhhkhhhhkhhdhikkihk

epcs=exc#* (a-co)/a

eces=exc/epso

alpha=eces-eces*eces/3.

cc=fc*alpha*b*a

cs=epcs*es*aste

res=cc+cs-t

control=0.0001*b*dd*fc

if (abs(res).gt.control) then

al=az

az2=a

resl=res2

res2=res

go to 100

endif

gama=l.-(8.%*epso-3.*exc)/(12.*epso-4.*exc)

arm=dd-gama*a

vmy=cc*arm+epcs*es*aste* (dd-co)

phiy=epsy/(dd-a)
Chhhkhkhhhkhhkhkhkhkhkhhhhkhhhhhhhhhkhhhhkhhhhhhhhkhrhkrhhkrrkhkrhkhrhhkhkk

c CONCRETE STRAIN > EPSO
Chkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhhhkhkhkhkhkhhkhhkhkkkhkhkhdhkhkhdhhkhkhkhkrhhkhkrhkkhhdhhhkk
200 if(exc.gt.0.004) exc=0.004

Xl=epso*a/exc

ccl=fc*x1*2.,/3.*b

"gama=3,6*exc*exc-200.*exc*exc*exc-0.0000128

gama=gama/ ( (exc-epso) *(7.2*%exc-300*exc*exc-0.0132))~-1.

alpha=exc-50.*exc*exc+100. *exc*epso-0.0022

alpha=alpha/ (exc-epso)

cc2=alpha*fc*(a-xl) *b

epcs=exc* (dd-co)/a

t=fy*aste

cs=epcs*es*aste

cc=ccl+cc2

res=cc+cs-t

control=0,0001*b*dd*fc

if (abs(res).gt.control) then
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al=az

az2=a

resl=res2

res2=res

go to 100

endif

arml=dd-a+2./3.*xl

arm2=dd-gama* (a-xl)

vmy=ccl*arml+epcs*es*(dd-co) *aste+cc2*arm2

phiy=epsy/(dd-a)
c********************************************************

c LINEAR APPROXIMATION
c********************************************************
ro=aste/ (b*d) '
vn=es/ec
vk=sqrt (4.*ro*ro*vn*vn+2.*(ro+ro*co/d) *vn)-2.*ro*vn
vkd=vk*d
exc=epsy/ (d-vkd) *vkd
cc=0.5*vkd*b*ec*exc
excs=exc/vkd* (vkd-co)
fps=excs*es
cs=fps*aste
vmy=cc* (d-vkd/3.)+cs*(d-co)
phiy=exc/vkd
write(*,*)'cc=',cc,'cs=',cs, 'exc="',exc, 'excs=',excs
write(*,*)'linear approx', 'vmy=',vmy, 'phiy=',phiy
stop
end
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Example: Debug Frame

Input File: DATA

TESTE LINEAR BETAO ARMADO

21

-
SO O DU bEN-®

ol
N o

5.00
1.00
.805

EPNE

EPST
1l
1500

oONS OO

17 9

® o o o o * o o
[eNeoNoNeRoNoloNo

ANOANDOANON

27.8
27.8
27.8
27.8
10.00 1.0
5.0 10.
.07 .9

0.1
0.000001

500010000

0
0
4

11

5.00
1'0
.0

10.00
.5
-.092

1.00
.059

5.0
.0

10.0.
.900
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User's Manual
Generalized Reduced Gradient Method
Example: Debug Frame

Input File: DATA

Line 1
Problem title.
Line 2

Number of variables, number of constraints, number of
equality constraints.

Line 3

Number of variables with lower bounds.
Line 4 to line 11

variable number and respective lower bound.
Line 12

Number of constraints with upper bounds.
Line 13 to line 16

Constraint number and respective upper bound.
Line 17 to line 19

Initial values of design variables.
Line 20

Number of prescribed optimization parameters.
Line 21

Constraint tolerance.
Line 22

Convergence tolerance.

Line 23
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Parameter indicating alteration of the limit of number
of iterations.

Line 24
Maximum number of consecutive iterations without
objective function improvement, maximum number of
consecutive Newton iterations, maximum number of
completed one dimensional searches.

Line 25

Parameter that controls the quantity of information in
the output file.

Line 26
Number indicating minimum printed information.
Line 27

Indication that tangent vector extrapolation should be
used for estimating initial values of basic variables.

Line 28

Number of design variables iniatially included in the
basis. '

Line 29
Numbers of design variables of the initial basis.
Line 30

Parameter that indicates if new data should be read.



I

/1,0
,0,0,100
'0.50,100
,0,100,100
,1,100,0

, 5000
,=5000

,0
0,40000,1
6,0.004
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Example: Debug Frame

Input File: DATAl
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User's Manual
Generalized Reduced Gradient Method
Example: Debug Frame

Input File: DATAl

Line 1
Number of elements, number of nodes.

Line 2 to line 5
Node i, node j of element 1 through 4.

Line 6 to line 10
Boundary conditions of displacement in the horizontal
direction, vertical direction, in-plane rotation,
horizontal coordinate, vertical coordinate.

Line 11 and line 12

Node where force is applied, direction of load and
magnitude of load.

Line 13
Termination of force information.
Line 14

Flexural strength of concrete, yielding stress of steel
and reinforcement cover.

Line 15

Steel modulus.of elasticity and concrete ultimate
strain. '

Line 16
Minimum element and system reliability index.
Line 17 to line 20
Coefficient of variation of flexural concrete strength.

Line 21 to line 29
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Coefficient of variation of external global loads.
- Line 30 to line 33
Coefficient of variation of element ultimate moment.
- Line 34

Value of interval gap in the Beta unzipping method.
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