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Abstract

In this paper we show that the general finite-energy spectral-function expressions provided
pseudofermion dynamical theory for the one-dimensional Hubbard model lead to the expected low
Tomonaga–Luttinger liquid correlation function expressions. Moreover, we use the former gene
pressions to derive correlation-function asymptotic expansions in space and time which go beyon
obtained by conformal-field theory and bosonization: we derive explicit expressions for the pre-facto
terms of such expansions and find that they have an universal form, as the corresponding critical ex
Our results refer to all finite values of the on-site repulsionU and to a chain of lengthL very large and with
periodic boundary conditions for the above model, but are of general nature for many integrable inte
models. The studies of this paper clarify the relation of the low-energy Tomonaga–Luttinger liquid be
to the scattering mechanisms which control the spectral properties at all energy scales and provide a
understanding of the unusual properties of quasi-one-dimensional nanostructures, organic conduc
optical lattices of ultracold fermionic atoms. Furthermore, our results reveal the microscopic mech
which are behind the similarities and differences of the low-energy and finite-energy spectral prope
the model metallic phase.
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1. Introduction

Over the past twenty five years it has been shown that the low-energy physics of a
of models of one-dimensional (1D) correlated electrons can be described by the Tom
Luttinger liquid (TLL) theory[1]. Indeed, the low-energy physics of such interacting quan
problems displays universal properties which are also found in the simple and exactly s
Tomonaga[2] and Luttinger[3] models. Importantly, the low-energy TLL universal behav
was observed in different real materials and systems, as for instance in carbon nanotub[4,5],
ballistic wires[6], quasi-1D organic conductors[7], 1D metallic chains[8], and quasi-1D quan
tum gases of ultracold fermionic atoms[9]. On the other hand, the low-energy phases of s
quasi-1D compounds are not metallic and correspond to broken-symmetry states[10]. Recently,
the resolution of photoemission experiments has improved, and thenormalstate of these com
pounds was found to display exotic spectral properties[11]. However, such a metallic pha
refers to finite energies and is not described by the TLL theory.

The 1D Hubbard model is one of the few realistic models for correlated electrons in a d
lattice for which one can exactly calculate all the energy eigenstates and their energi[12,
13]. It includes a first-neighbor transfer-integralt1, for electron hopping along the chain, a
an effective on-site Coulomb repulsionU . For finite-energy values, the metallic phase of t
model is not a TLL and thus the study of spectral functions is a very involved many-ele
problem. Fortunately, the recently introducedpseudofermion dynamical theory(PDT) provides
explicit expressions for these functions[14,15]. Moreover, the theory describes successfully
unusual spectral features of quasi-1D compounds for the whole finite-energy band widt[16].
More recently, consistent results were obtained by numerical techniques, involving the us
dynamical density matrix renormalization group method[17]. Furthermore, when combined wi
the renormalization group, the use of the PDT reveals that a system of weakly coupled H
chains is suitable for the successful description of the phase diagram observed in quasi-1D
Mott–Hubbard insulators[18]. The PDT is a generalization for all values ofU/t1 of the method
introduced in Ref.[19] for U/t1 → ∞. Such an extension was fulfilled by means of the rela
of the original electrons to the exotic objects whose occupancy configurations describe all
eigenstates of the model[20]. The electron–rotated-electron unitary transformation[20], defined
in the whole Hilbert space, and the pseudoparticle–pseudofermion unitary transformatio[14,
15,21], defined in the subspace where the one- and two-electron excitations are containe
a major role in the construction of the PDT.

In turn, the low-energy physics of the model corresponds to the universal TLL behavio
was studied by different techniques, such as bosonization[22] and conformal-field theory[23,
24]. There are many investigations where the low-energy conformal invariance was com
with the model exact Bethe-ansatz solution in the study of the asymptotics of correlation
tions and related quantities[25–34].

The connection of the low-energy TLL behavior to the microscopic scattering mecha
which control the unusual spectral properties of the model at all energy scales[14,21] remains
an interesting open problem, which we study in this paper. Indeed, while conformal-field
and bosonization techniques do not provide correlation-function expressions for finite ene
show here that the general finite-energy PDT introduced in Refs.[14,15]reproduces the expecte
correlation-function expressions in the limit of low energy. Moreover, we derive the corres
ing correlation-function asymptotic expansions in space and time. Such expansions go
those obtained by conformal-field theory and bosonization: we derive explicit expressio
the pre-factors of all terms of such expansions and find that they have an universal fo
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the corresponding critical exponents. We also find the relation of the low-energy pseudofe
description to the conformal-field theory primary fields and Virasoro-algebra generators[23,24].

In this paper the emergence of the TLL low-energy physics is described in terms of the g
non-perturbative microscopic scattering mechanisms of the model at all energy scales[14,15,21].
Thus, our results provide further information about the microscopic mechanisms and sca
processes behind both the low-energy and finite-energy properties of one-dimensional fe
interacting problems. For instance, we clarify why there occurs a different type of mome
and energy dependence for the low-energy and finite-energy parts of important singular s
features of the model metallic phase. Furthermore, our findings lead to a broader unde
ing of the unusual properties observed in low-dimensional materials and nanostructure[4–8]
and systems of interacting ultracold fermionic atoms in 1D optical lattices[35]. Following the
investigations on quasi-1D quantum gases of ultracold fermionic atoms[9], studies about two
atom correlation functions of interacting ultracold fermionic atoms in 1D optical lattices a
progress[36]. Recently, the model was used in preliminary theoretical investigations of the
sity profiles and collective models of 1D ultracold fermionic atoms confined in an optical la
with harmonic trapping potential[37].

Our study provides the details of the preliminary results on the universal form of the
factors of the correlation-function asymptotic expansions presented in short form in Ref[38].
The paper is organized as follows: in Section2 we introduce the model and summarize
basic information about the PDT which is needed for our studies. The general finite-e
PDT spectral-function expressions are shown in Section3 to recover in the limit of low en-
ergy the correct correlation-function expressions and corresponding asymptotic expans
space and time. Moreover, we are able to obtain expressions for the pre-factors of all te
such expansions. In Section4 we discuss the universal form of the pre-factors of all terms of
correlation-function asymptotic expansions and the emergence of the TLL low-energy p
in terms of the general scattering mechanisms which control the model spectral prope
all energy scales. Furthermore, in that section we discuss the qualitative difference betw
low-energy and finite-energy parts of the singular charge and spin spectral features of the m
phase and the relation of the low-energy pseudofermion description to the conformal-field
primary fields and Virasoro-algebra generators. Finally, the concluding remarks are prese
Section5.

2. The model, the general correlation functions, and the pseudofermions

The 1D Hubbard model reads

(1)Ĥ = −t1
∑
j,σ

[
c

†
j,σ cj+1,σ + h.c.

] + U
∑
j

n̂j,↑n̂j,↓,

wherec
†
j,σ andcj,σ are spin-projectionσ =↑,↓ electron operators at sitej = 1,2, . . . ,Na and

n̂j,σ = c
†
j,σ cj,σ . The model(1) describesN↑ spin-up electrons andN↓ spin-down electrons in

a chain ofNa sites. We denote the electronic number byN = N↑ + N↓. The number of lattice
sitesNa is even and very large. For simplicity, we use units such that both the lattice spaa
and the Planck constant are one. In these units the chain length readsL = Na . Our results refe
to periodic boundary conditions. We consider an electronic densityn = n↑ + n↓ in the range
0< n < 1 and a spin densitym = n↑ −n↓ such that 0< m < n, wherenσ = Nσ /L andσ =↑,↓.
We introduce the Fermi momenta which except for 1/L corrections are given by±kFσ = ±πnσ
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and±kF = ±[kF↑ + kF↓]/2 = ±πn/2. The Hamiltonian(1) commutes with the generators
the η-spin and spinSU(2) algebras[20,39,40]. We call theη-spin and spin eigenvalues of th
energy eigenstatesη andS, respectively, and the corresponding projectionsηz andSz.

We consider the following generalN -electron correlation function

(2)χl
N (k,ω) = l

+∞∫
−∞

dω′ Bl
N (k,ω′)

ω − ω′ + il0
,

whereBl
N (k,ω) is the correspondingN -electron spectral function given by

(3)Bl
N (k,ω) =

∑
f

∣∣〈f |Ôl
N (k)|GS〉∣∣2δ(ω − l[Ef − EGS]

)
, lω > 0, l = ±1.

Here the generalN -electron operatorŝO+1
N (k) ≡ Ô

†
N (k) andÔ−1

N (k) ≡ ÔN (k) carry momen-
tum k, thef summation runs over the excited energy eigenstates, the energyEf corresponds
to these states, andEGS is the ground-state energy. Most common examples are the op
Ô1(k) = ck,σ and different choices of charge, spin, and Cooper-pairN = 2 operators. For sim
plicity, we use in expression(3) a momentum extended scheme such thatk ∈ (−∞,+∞), yet it is
a simple exercise to obtain the corresponding spectral function expressions for the first B
zone.

The double Fourier transform̃χl
N (x, t) of the general correlation function(2) relative to the

momentumk and energyω can be expressed in terms of the corresponding Fourier trans
B̃l
N (x, t) of the spectral function(3) as

(4)χ̃ l
N (x, t) = −i2πθ(lt)B̃l

N (x, t),

where here and in other expressions provided belowθ(y) = 1 for y > 0 andθ(y) = 0 for y � 0.
One of the goals of this paper is the evaluation of a general asymptotic expansion for the

lation function(4). To reach such a goal, in Section3 we use the finite-energy expressions deri
in Ref. [14] for the general spectral function(3) by means of the PDT. The pseudofermion
scription is related to the holon and spinon representation for the model: all its energy eige
can be described in terms of occupancy configurations ofη-spin 1/2 holons, spin 1/2, spinons,
andη-spin-less and spin-lessc pseudoparticles[20]. We use the notation±1/2 holons and±1/2
spinons according to the values of theη-spin and spin projections, respectively. For large va
of U/t1, the+1/2 holons and−1/2 holons become the holons and doublons, respectively,
in the studies of Ref.[41]. The electron–rotated-electron unitary transformation[20] maps the
electrons onto rotated electrons such that rotated-electron double occupation, unoccupa
spin-up and spin-down single occupation are good quantum numbers for all values ofU . The
±1/2 holons of charge±2e and zero spin and the charge-less±1/2 spinons are generated fro
the electrons by that unitary transformation, where−e denotes the electronic charge. The cor
sponding holon and spinon number operatorsM̂c,±1/2 andM̂s,±1/2, respectively, are of the form
given in Eq. (24) of Ref.[20] and involve the electron–rotated-electron unitary operator.

While the−1/2 and+1/2 holons refer to the rotated-electron doubly occupied and uno
pied sites, respectively, the−1/2 and+1/2 spinons correspond to the spin degrees of free
of the spin-down and spin-up rotated-electron singly occupied sites, respectively. The
degrees of freedom of the latter sites are described by the spin-less andη-spin-lessc pseudopar
ticles, which are composite objects of a chargeon and a antichargeon, and thus carry ch−e

or +e for the description of the transport of charge in terms of electrons and electronic
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respectively[20]. Thecν pseudoparticles (andsν pseudoparticles) such thatν = 1,2, . . . areη-
spin singlet (and spin singlet) 2ν-holon (and 2ν-spinon) composite objects. Thus, the numb
of ±1/2 holons (α = c) and±1/2 spinons (α = s) read

(5)Mα,±1/2 = Lα,±1/2 +
∞∑

ν=1

νNαν, α = c, s,

whereNαν denotes the number ofαν pseudoparticles andLc,±1/2 = [η ∓ ηz] andLs,±1/2 =
[S ∓ Sz] gives the number of±1/2 Yang holons and±1/2 HL spinons, respectively. Those a
the holons and spinons that are not part of composite pseudoparticles. The total number o
(α = c) and spinons (α = s) is given by

(6)Mα = [Mα,+1/2 + Mα,−1/2], α = c, s.

All energy eigenstates can be described by occupancy configurations ofc pseudoparticles,αν

pseudoparticles,−1/2 Yang holons, and−1/2 HL spinons[20]. For the ground state,Nc = N ,
Ns1 = N↓, andNcν = Nsν′ = Lα,−1/2 = 0 for α = c, s, ν > 0, andν′ > 0.

The construction of the PDT involves a second unitary transformation, which mapsc
pseudoparticles (and compositeαν pseudoparticles) ontoc pseudofermions (and compos
αν pseudofermions)[14,15,21]. Such a transformation introduces shifts of order 1/L in the
pseudoparticle discrete momentum values and leaves all other pseudoparticle propertie
ant. As a result of such momentum shifts and in contrast to thec pseudoparticles and compo
ite αν pseudoparticles, the corresponding pseudofermions have no residual-interaction
terms.

A concept widely used in the PDT is that of a CPHS ensemble subspace[14,42]. (Here CPHS
stands forc pseudofermion, holon, and spinon.) Such a subspace is spanned by all energy
states with fixed values for the−1/2 Yang holon numberLc,−1/2, −1/2 HL spinon number
Ls,−1/2, c pseudofermion numberNc, and for the sets ofαν pseudofermion numbers{Nαν}
corresponding to the composite pseudofermion branches.

3. General asymptotic expressions of correlation functions

Here we derive the pre-factors of all terms of the general asymptotic expansion for the
lation function(4) by use the finite-energy spectral-function expressions derived in Refs.[14,15]
by means of the PDT. To reach such a goal, we start by defining the low-energy subsp
the electronic densities and spin densities considered in this paper[43] and providing further
information about the pseudofermion description when defined in such a subspace.

3.1. Pseudofermion description in the low-energy subspace

For each correlation function, the electronic number deviations
N↑ and
N↓ have well-
defined values and for electronic densities 0< n < 1 and spin densities 0< m < n, all low-energy
excited energy eigenstates belong to a single CPHS ensemble subspace such that


Nc = 
N, 
Ns1 = 
N↓,

(7){Ncν} = {Nsν′ } = {Lc,−1/2} = {Ls,−1/2} = 0, ν = 1,2,3, . . . , ν′ = 2,3, . . . .

The results of this section refer to such a correlation-function low-energy subspace.
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For simplicity, in this paper we denote thes1 branch bys branch. Thec ands indices used her
correspond to thec0 ands1 indices in all quantities of Refs.[14,15,21,42]. In our study we use
the indexι = ±1, which refers to the right (ι = +1) and left (ι = −1) α, ι Fermi points. For the
ground state and except for 1/L corrections[20] such points readιq0

Fc = ι2kF andιq0
Fs = ιkF↓.

All the α (andι) sums and products appearing in the expressions provided throughout this
run over the valuesα = c, s (andι = +1,−1). Theα pseudofermion number deviation
Nα and
current deviation
JF

α of the excited energy eigenstates relative to the initial ground stat
given by

(8)
Nα =
∑

ι


NF
α,ι, 
JF

α = 1

2

∑
ι

ι
NF
α,ι, α = c, s,

where

(9)
NF
α,ι = 
N0,F

α,ι + ιQ0
α/2π, α = c, s, ι = ±1.

Here
N0,F
α,ι stands for the number ofα pseudofermions created (
N0,F

α,ι > 0) or annihilated
(
N0,F

α,ι < 0) as a result of the ground-state–excited-energy-eigenstate transition andQ0
α/2 is a

scattering-less phase shift that has a single and well-defined value for the correlation-fu
excitation CPHS subspace such that

Q0
c/2= 0, 
Ns even, Q0

c/2= ±π/2, 
Ns odd,

(10)Q0
s /2= 0, 
Nc + 
Ns even, Q0

s /2 = ±π/2, 
Nc + 
Ns odd.

It is useful for our study to consider the pseudofermion subspace (PS). It is spanned
initial ground state|GS〉 and all excited energy eigenstates contained in the one- two-ele
excitations[14,15]. The pseudoparticle–pseudofermion unitary transformation which map
α pseudoparticle onto theα pseudofermion is defined in the PS. Theα pseudoparticle has discre
bare-momentum valuesqj = [2π/L]Iα

j such thatIα
j are consecutive integers or half-odd integ

[20]. These values are good quantum numbers whose allowed occupancies are one and z
[20]. Due to the values of such quantum numbers, the current deviations
JF

α are integers or half
odd integers depending on the parities of the number deviations
N = 
Nc and
N↓ = 
Ns

as follows


JF
c = 
Nc + 
Ns

2
mod 1= 
N + 
N↓

2
mod 1,

(11)
JF
s = 
Nc

2
mod 1= 
N

2
mod 1.

On the other hand, theα pseudofermion has discrete canonical-momentum values give
[14,21],

(12)q̄j = q̄(qj ) = qj + QΦ
α (qj )/L, α = c, s,

wherej = 1,2, . . . ,N∗
α and the numberN∗

α is such thatN∗
α = Nα + Nh

α . HereNh
α denotes the

number ofα pseudofermion (andα pseudoparticle) holes[14,15,20]. For the PS low-energ
sector such numbers are given by

N∗
c = Na, N∗

s = N0↑ + 
N↑,

(13)Nh
c = Na − N0 − 
N, Nh

s = N0↑ + 
N↑ − N0↓ − 
N↓.
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Thus, the bare-momentum values are defined in the range−q0
α � q � +q0

α where the limiting
bare-momentumq0

α reads

(14)q0
c = π, q0

s = kF↑.

In these expressions we have neglected 1/L corrections[20]. When below we refer to theα
pseudofermion bare-momentumq, we mean thatq is the bare-momentum value that correspo
to the pseudofermion canonical momentumq̄ = q + QΦ

α (q)/L. Except for the discrete mome
tum values, the above pseudoparticle and pseudofermion have the same properties. Thu
energy eigenstates that span the low-energy sector of the PS can described by occupanc
urations ofα pseudofermions. The functional

(15)QΦ
α (qj )/2 = π

∑
α′

N∗
α∑

j=1

Φαα′(qj , qj ′)
Nα′(qj ′), α = c, s,

of Eq.(12) is the scattering part of the overall pseudofermion or pseudofermion hole phas
[21]

(16)Qα(q)/2 = Q0
α/2+ QΦ

α (q)/2, α = c, s,

whereQ0
α/2 is the scattering-less phase shift given in Eq.(10). Such an overall phase sh

plays an important role in theα pseudofermion scattering theory and related spectral pro
ties. On the right-hand side of Eq.(15), 
Nα(qj ) ≡ Nα(qj ) − N0

α(qj ) is the excited-stateα
branch bare-momentum distribution-function deviation relative to the initial ground state
andπΦαα′(q, q ′) is a two-pseudofermion phase shift such that theα′ (andα) pseudofermion o
hole of momentumq ′ ∈ [−q0

α′ ,+q0
α′ ] (andq ∈ [−q0

α,+q0
α]) is the scattering center created und

the ground-state–excited-state transition (and the scatterer)[21]. The two-pseudofermion phas
shiftsπΦαα′(q, q ′) are defined inAppendix A.

The low-energy correlation-function CPHS subspace contains several J-CPHS subspa
current deviation values of the energy eigenstates which span each of the latter subspac
in at least one of the two current deviation values{
JF

c ,
JF
s }. At low-energy, the reduced J

CPHS subspaces considered in Ref.[14] are spanned by a single energy eigenstate. Since s
state is the lowest-energy eigenstate of the corresponding J-CPHS subspace, we call it J
state. It corresponds to ac and s pseudofermion bare-momentum densely packed occup
configuration such thatqFα,−1 � q � qFα,+1. Here the J-ground-stateFermi pointqFα,ι reads

qFα,ι = ιq0
Fα + 
qFα,ι = q0

Fα,ι +
Q0

α

L
, q0

Fc = 2kF , q0
Fs = kF↓,

(17)α = c, s, ι = ±1,

where we have neglected 1/L corrections to the value ofq0
Fα [20] and
qFα,ι denotes theα, ι

bare-momentumFermi-pointdeviation relative to the corresponding ground-state value g
by

(18)
qFα,ι = 
q0
Fα,ι +

Q0
α

L
= ι

2π

L

NF

α,ι = ι
2π

L

[

Nα

2
+ ι
JF

α

]
, α = c, s, ι = ±1.

In these expressions the bare-momentumq0
Fα,ι and corresponding deviation
q0

Fα,ι read

(19)q0
Fα,ι = ιq0

Fα + 
q0
Fα,ι, 
q0

Fα,ι = ι
2π


N0,F
α,ι , α = c, s, ι = ±1.
L
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A J-ground state has excitation momentum

(20)kF
0 =

∑
α


P F
α ,

where

(21)
P F
α =

∑
ι

ιq0
Fα
NF

α,ι = 2q0
Fα
JF

α , α = c, s.

Such a state is generated from the ground state by zero-energy and finite-momentum ele
processes (B), which create or annihilateα pseudofermions at or from the fourα, ι Fermi points,
respectively. In turn, the PDT processes (A) do not exist at low energy[14]. The corresponding
J-CPHS subspace is spanned by energy eigenstates generated from the J-ground state
momentum and low-energy processes in the vicinity of theα, ι Fermi points, which we call
elementary processes (C). Such processes conserve the set of{
Nc,
Ns,
JF

c ,
JF
s } deviation

values. For each low-energy J-CPHS subspace, the general momentum spectrum pro
Eq. (29) of Ref.[14] simplifies and is single valued and given in Eq.(20).

A crucial point for the low-energy scattering properties and corresponding correl
function asymptotic expansions studied in this paper is that theα pseudofermions and holes cr
ated by the above processes (C) are not active scattering centers, once the phase shifts
by the created pseudofermions exactly cancel those originated by creation of the corresp
holes[14]. It follows that the overall scattering phase shift(15)has for eachα pseudofermion o
hole scatterer of momentumq the same value

QΦ
α (q)/2 = π

∑
α′

∑
ι′

Φαα′
(
q, ι′q0

Fα′
)

NF

α′,ι′

(22)= π
∑
α′

∑
ι′

Φαα′
(
q, ι′q0

Fα′
)[
Nα′

2
+ ι′
JF

α′

]
, α = c, s,

for all excited states spanning given J-CPHS subspace.
Note that the scattering part of the overall phase shift, Eq.(15), vanishes and is finite fo

the initial ground state and excited states, respectively. Thus, the ground-state–excited-
eigenstate transition leads to a shift

(23)
q̄Fα,ι = 
qFα,ι + QΦ
α

(
ιq0

Fα

)
/L = 
q0

Fα,ι + Qα

(
ιq0

Fα

)
/L, α = c, s, ι = ±1,

in the value of the fourα, ι canonical-momentumFermi-points. Such a shift is the excited-sta
deviation in the value of̄q corresponding tōq = q = ιq0

Fα for the initial ground state. The squa
of these shifts in units of 2π/L plays a key-role in the spectral properties at all energy scale
is denoted by 2
ι

α . It can be written as follows

(24)2
ι
α ≡

(

q̄Fα,ι

[2π/L]
)2

=
(

ι
N0,F
α + Qα(ιq0

Fα)

2π

)2

, α = c, s, ι = ±1.

The general expression in terms of two-pseudofermion phase shifts of the functionalQα(ιq0
Fα)/2

appearing in the second expression of Eq.(24) is given in Eqs. (35)–(37) of Ref.[14]. However,
for the excited energy eigenstates that span the low-energy subspace the finite-energy d
given in Eq. (14) of that reference vanishes. This property together with the values of the nu
given in Eq.(7) implies that at low energy the general expression of the general functiona(24)
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(14) of

.

simplifies to

2
ι
α = 2
ι

α

(

Nc,
Ns,
JF

c ,
JF
s

) =
(∑

α′

[
ιξ0

αα′

NF

α′
2

+ ξ1
αα′
JF

α′

])2

,

(25)α = c, s, ι = ±1,

where the parametersξj

αα′ can be expressed in terms of the two-pseudofermion phase sh
follows

(26)ξ
j

αα′ = δα,α′ +
∑
ι=±1

(
ιj

)
Φαα′

(
q0
Fα, ιq0

Fα′
)
, j = 0,1, α,α′ = c, s.

Expressions(25) and (26)are consistent with the low-energy form of the scattering phase
given in Eq.(22).

The overall phase shift(22) controls the unusual spectral properties of the model throug
pseudofermions anticommutators[14,21]. To illustrate the dependence of the latter anticomm
tators on the overall phase shifts for the two pseudofermion branches used in our study
consider pseudofermion creation and annihilation operatorsf

†
q̄,α andfq̄ ′,α , respectively. When

the canonical momentum valuesq̄ and q̄ ′ = q ′ correspond to an excited-energy-eigenstate
the initial ground-state J-CPHS ensemble subspaces, respectively, the pseudofermion a
mutation relations read[14,15],

(27)
{
f

†
q̄,α, fq ′,α′

} = δα,α′
1

N∗
α

e−i(q̄−q ′)/2eiQα(q)/2 sin(Qα(q)/2)

sin([q̄ − q ′]/2)
, α,α′ = c, s,

and{f †
q̄,α, f

†
q ′,α′ } = {fq̄,α, fq ′,α′ } = 0. HereN∗

α is the number whose value is given in Eq.(13).
The anticommutation relations(27) are indeed controlled by the value of the overall phase s
(16), which in our case has the same value for all excited energy eigenstates spanning
J-CPHS subspace.

In addition to the overall phase shift(16), the group velocities

(28)vα(q) = ∂εα(q)

∂q
, vα ≡ vα

(
q0
Fα

)
, α = c, s,

play an important role in our studies. Hereεc(q) andεs(q) are thec ands pseudofermions energ
dispersions defined by Eqs. (C.15) and (C.16) of Ref.[20], respectively. These energy bands
plotted in Figs. 6 and 7 of Ref.[42], respectively, as a functionq for several values ofU/t1 and
n for m = 0.

3.2. The asymptotic expressions of correlation functions

Our starting point for the study of low-energy correlation functions and associated corre
function asymptotic expansions in spacex and timet is the general expression for theN -electron
spectral function(3) given in Eq. (41) of Ref.[14]. Fortunately, such a general expression s
plifies for the low-energy problem considered here. Indeed, the numbersN

phNF
c0 ≡ N

phNF
c and

N
phNF
s1 ≡ N

phNF
s of the summation on the right-hand side of the above equation vanish in ou

because the corresponding bare-momentum distribution function deviation given in Eq.
the same reference vanishes in the low-energy limit considered here. Also the numbersNF

αν,ι of
the summation of the former equation vanish. This follows from the number values of Eq(7),
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since the numbersNF
αν,ι refer to thecν and sν′ pseudofermion branches such thatν > 0 and

ν′ > 1, respectively.
Furthermore, as discussed above, for each specific correlation function the low-energ

space is contained in a single CPHS ensemble subspace, spanned by excited energy ei
with the same values for the number deviations
Nc ≡ 
Nc0 = 
N and
Ns ≡ 
Ns1 = 
N↓.
Thus, the{
Nαν} ≡ {
Nα} summation of Eq. (41) of Ref.[14] is also absent, since the corr
sponding deviations have the same values for all excited states. This result together w
deviation expressions provided in Eq.(8) shows that the{
NF

αν,ι} ≡ {
NF
α,ι} summation in

expression (41) of Ref.[14] should be replaced by a corresponding{
JF
α } ≡ {
JF

c ,
JF
s } sum-

mation over the low-energy J-CPHS ensemble subspaces contained in the correlation-f
low-energy CPHS ensemble subspace.

It follows from all the above simplifications that for low-energy the expression (41
Ref. [14] can be rewritten as

(29)Bl
N (k,ω) =

∞∑
i=0

cl
i

∑
{
JF

α }
Bl,0(k,ω), cl

0 = 1.

When expressed in terms of rotated-electron creation and annihilation operators, tN -
electron operatorÔl

N (k) of the general spectral-function expression(3) is given by a sum o
operators, each corresponding to one of the integeri values of the sum on the right-hand side
Eq. (29). The correspondingi = 0 operator has the same expression in terms of rotated-ele
creation and annihilation operators asÔl

N (k) in terms of electronic creation and annihilati
operators[14,15], respectively. In turn, thei > 0 operators have a number of extra pairs
rotated-electron creation and annihilation operators which increases for increasing valuei.

For all values ofU/t1, the i > 0 terms of expression(29) correspond to less than 1% of t
total N -electron spectral weight[14,15,44]. However, we have kept these terms and used
method presented below for the derivation of the general asymptotic expansion of the corr
function χ̃ l

N (x, t) given in Eq.(4). The result is that the leading terms in the asymptotic ex
sion of such a function are always generated by thei = 0 term of expression(29). Moreover,
the strongest reason for neglecting the very small contributions of thei > 0 terms of expressio
(29) is that for all values ofU/t1 all terms of the correlation-function asymptotic expans
obtained by conformal-field theory are generated by thei = 0 term of that expression. Thus, t
low-energy expression needed for our studies is of the form

(30)Bl
N (k,ω) =

∑
{
JF

α }
Bl,0(k,ω),

where the
∑

{
JF
α } summation is over the J-CPHS subspaces contained in the low-energy

of the CPHS subspace specific to theN -electron spectral functionBl
N (k,ω). HereBl,0(k,ω) is

the function is given in Eq. (44) of Ref.[14] and Eq. (68) of Ref.[15] for i = 0.
It follows from the form of the spectral-function expression(30) that the corresponding ge

eralN -electron correlation function(2) can be written as

(31)χl
N (k,ω) = l

∑
{
JF

α }

+∞∫
−∞

dω′ Bl,0(k,ω′)
ω − ω′ + il0

.

Thus, the functioñχl
N (x, t) of Eq.(4) can be expressed in terms of the double Fourier trans

relative tok andω of the set of functionsBl,0(k,ω) corresponding to each J-CPHS subspa
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B̃l,0(x, t), as follows

(32)χ̃ l
N (x, t) = −i2πθ(lt)

∑
{
JF

α }
B̃l,0(x, t).

We start by deriving the asymptotic expression ofB̃l,0(x, t) associated with the low-energ
behavior ofBl,0(k,ω). Within the low-energy limit considered here, the second expressio
Eq. (68) of Ref.[15] for Bl,0(k,ω) simplifies. Indeed, the low-energy correlation-function ex
tation CPHS ensemble subspace is always adominantCPHS ensemble subspace, such that
corresponding real positive coefficientGC defined in the unnumbered equation below Eq. (
of Ref.[15] readsGC = 1 for the whole parameter space and thusCs = Cs in Eq. (68) of that ref-
erence. The absence of independent−1/2 holons and−1/2 spinons[14,15], including of−1/2
Yang holons and−1/2 HL spinons, then implies that,

(33)

( ∏
α=c,s

1

Cα

)
= 1,

in that general expression forBl,0(k,ω) and,

(34)l
∑

α=c,s

Pα = l
∑

α=c,s

Eα = 0,

in the argument of its functionBl,0
Qc0

≡ B
l,0
Qc

. Moreover, according to Eq.(7) there are nocν
pseudofermions andsν′ pseudofermions belonging to branches such thatν > 0 andν′ > 1, re-
spectively, in the excited energy eigenstates which span the low-energy subspace. Thu
are only finite occupancies for thec ≡ c0 ands ≡ s1 pseudofermion branches. Furthermo
there are no finite-energyc ands processes called processes (A) in Ref.[14] so that the numbe
Nαν ≡Nα given in Eq. (61) of Ref.[15] vanishes. For all these reasons the factor(

D∏
j=1

(
1

Na

)Nανj
[ ∑

J–CPHS–ανj–(A)

])

(35)=
2∏

j=1

(
1

Na

)Nανj =
∏

α=c,s

(
1

Na

)Nα

=
∏

α=c,s

(
1

Na

)0

= 1,

in the second expression of Eq. (68) of Ref.[15] reduces to the unity and the values

(36)l

D∑
j=1


Pανj
= l

2∑
j=1


Pανj
= l

[

P F

c + 
P F
s

] = lkF
0 , l

D∑
j=1


Eανj
= 0,

must be used in the argument of the functionB
l,0
Qc0

≡ B
l,0
Qc

appearing in the same general expr

sion. Note that the momentumkF
0 of Eq. (36) is that given in Eq.(20) and
P F

c and
P F
s are

provided in Eq.(21).
As a result of the above simplifications, in the low-energy limit considered in this pape

second expression of Eq. (68) of Ref.[15] for Bl,0(k,ω) leads to

Bl,0(k,ω) = 1

2π

+∞∫
−∞

dk′
+∞∫

−∞
dω′ Bl,0

Qc

(
k − l
P F

c − k′ − l
P F
s ,ω − ω′)Bl,0

Qs
(k′,ω′).
(37)
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This expression can be rewritten as

(38)

Bl,0(k,ω) = 1

2π

+∞∫
−∞

dk′
+∞∫

−∞
dω′ Bl,0

Qc

(
k − l
P F

c − k′,ω − ω′)Bl,0
Qs

(
k′ − l
P F

s ,ω′),
where the functionBl,0

Qα
(k − l
P F

α ,ω) is such that

B
l,0
Qα

(
k − l
P F

α ,ω
) = Na

4π

+∞∫
−∞

dk′
+∞∫

−∞
dω′ Bl,+1,0

Qα

(
k − lq0

Fα
NF
α,+1 − k′,ω − ω′)

(39)× B
l,−1,0
Qα

(
k′ + lq0

Fα
NF
α,−1,ω

′), α = c, s.

HereB
l,0
Qα

(k′,ω′) andB
l,ι,0
Qα

(k′,ω′) are the functions defined in Eqs. (45) and (47) of Ref.[14],
respectively.

For small finite values oflω′ we use for the functionBl,ι,0
Qα

(k′,ω′) the expression provided i
Eq. (58) of Ref.[14]. If one uses continuum values ofk′, the latter expression can be rewritten

(40)

B
l,ι,0
Qα

(k′,ω′) = θ(lω′) 2πΛα,ι√
Navα�(2
ι

α)

(
lω′

vα

)2
ι
α−1

δ

(
k′ − ιω′

vα

)
, α = c, s, ι = ±1,

where�(y) is the usual� function, 2
ι
α is the functional given in Eq.(25), vα is the velocity

provided in Eq.(28), andΛα,ι reads

(41)Λα,ι =
(

Na

2π

)2
ι
α A

(0,0)
α,ι√
Na

=
√

S0
αfα,ι

(2πS0
α)2
ι

α
, α = c, s, ι = ±1.

It is convenient to introduce the related quantity

(42)Λα =
∏

ι

Λα,ι =
(

Na

2π

)[2
+1
α +2
−1

α ]
A

(0,0)
α√
Na

, α = c, s.

HereA
(0,0)
α,ι is given in Eq. (49) of Ref.[14] and refers to the fourα, ι weights such that the tw

associatedα pseudofermion spectral-function lowest-peak weights

(43)A(0,0)
α =

∏
ι

A(0,0)
α,ι , α = c, s,

can be expressed in terms of theα pseudofermion overall phase shifts(16)as follows[14]

A(0,0)
α = A(0,0)

α

(

Nc,
Ns,
JF

c ,
JF
s

)
=

(
1

N∗
α

)2[N0
α+
Nα] ∏

qj ∈F
sin2(Qα(qj )/2

)N∗
α−1∏

j=1

[
sin

(
πj

N∗
α

)]2[N∗
α−j ]

×
∏

qi∈F

∏
qj ∈F

θ(qj − qi)sin2
(

Qα(qj )/2− Qα(qi)/2+ π(j − i)

N∗
α

)

(44)×
∏

q ∈F

∏
q ∈F

1

sin2(
π(j−i)+Qα(qj )/2

∗ )
, α = c, s.
i j Nα
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In this expression
Nα is the number deviation of Eq.(8), N∗
α is given in Eq.(13), Qα(qj )/2

is the overall phase shift(16), andqj ∈ F corresponds to the set of discrete bare-momen
values in the rangeqFα,−1 � qj � qFα,+1 whereqFα,ι is the J-ground stateFermi pointgiven

in Eq. (17). We emphasize that theNa dependence ofA(0,0)
α is such that the quantityΛα given

in Eq. (42) is independent ofNa . Indeed, by use of the second expression of Eq.(41) such a
quantity can be rewritten as

(45)Λα = S0
α

∏
α

fα,ι

(2πS0
α)2
ι

α
, α = c, s,

where here and in that equation the related quantitiesfα,ι andS0
α are those of Eqs. (49) and (5

of Ref. [14]. All quantities on the right-hand side of this equations are independent ofNa [14].
It is straightforward to confirm that the convolution of Eq.(39) leads to the first expression

Eq. (58) of Ref.[14] for the functionB
l,0
Qα

(k,ω) if one uses the expression(40) for the function

B
l,ι,0
Qα

(k′,ω′) in that convolution.
In contrast to the small-momentum and low-energyα pseudofermion particle–hole process

(C), the processes (B) create activeα pseudofermion and/orα pseudofermion hole scatterin
centers. The active scattering centers created by these processes are those which le
value of the scattering part of theα overall phase shift given in Eq.(16). We recall that the
latter value is the same forall energy eigenstates which span a given J-CPHS subspace.
the general expression for the weightA

(0,0)
α given in Eq.(44) has also the same value for a

energy eigenstates which span such a subspace. The same occurs for the overall phase(16),
functional(25), and related weightsA(0,0)

α,ι . Hence, the quantitiesΛα,ι andΛα given in Eqs.(41)
and (42), respectively, have also the same value for all energy eigenstates which span
J-CPHS subspace. It follows that the expression of each of the functionsBl,0(k,ω) on the right-
hand side of Eq.(30)and that of each of the corresponding functionsB̃l,0(x, t) of Eq.(32), which
we derive below, involve a single value of the two parametersΛα and four quantities 2
ι

α .
Since the functions of Eqs.(38) and (39)are given by convolutions of other functions, the u

of the Convolution Theorem of Fourier transforms implies that the asymptotic expression
functionB̃l,0(x, t) on the right-hand side of Eq.(32)can written as

(46)B̃l,0(x, t) =
(

Na

2

)2 ∏
α

∏
ι

B̃
l,ι,0
Qα

(x, t).

Here B̃
l,ι,0
Qα

(x, t) is the double Fourier transform ofBl,ι,0
Qα

(k′ − lιq0
Fα
NF

α,ι,ω
′). Due to theδ-

function in expression(40), one of the integrals involved in the derivation of such a transfor
straightforward to perform, what leads to

B̃
l,ι,0
Qα

(x, t) = leilιq0
Fα
NF

α,ιx
Λα,ι√

Na(vα)2
ι
α�(2
ι

α)

∞∫
0

dz e
i lιz
vα

(x−ιvαt+iι0)
(z)2
ι

α−1,

(47)α = c, s, ι = ±1.

After performing thez integration of this expression one finds

(48)

B̃
l,ι,0
Qα

(x, t) = leilιq0
Fα
NF

α,ιxe−ilι π
2 2
ι

α
Λα,ι√

Na

(
1

x − ιvαt + iι0

)2
ι
α

, α = c, s, ι = ±1.
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In the expressions given in Eqs.(47) and (48)we have added a small infinitesimal number,iι0,
to (x − ιvαt). Such a number introduces the correct regularization.

By use of Eq.(48) in Eq.(46)we arrive to

(49)B̃l,0(x, t) = i
eilkF

0 x

2π
χ0

∏
α

∏
ι

(
1

x − ιvαt + iι0

)2
ι
α

,

where the pre-factorχ0 is given by

(50)χ0 = χ0
(

Nc,
Ns,
JF

c ,
JF
s

) = −i
π

2
e−i π

2 λl
∏
α

Λα,

and

(51)λl = l
∑
α

∑
ι

ι2
ι
α.

Finally, use of expression(49) in Eq. (32) leads to the following general expression for
correlation-function asymptotic expansion

(52)χ̃ l
N (x, t) = θ(lt)

∑
{
JF

α }

{
eilkF

0 xχ0

∏
α

∏
ι

(
1

x − ιvαt + iι0

)2
ι
α
}
.

In Appendix A it is shown that in the present low-energy limit the square of the shift in
value of theα, ι pseudofermionFermi-point2
ι

α given in Eq.(25) is the conformal dimensio
of theα, ι primary field of conformal-field theory. In the ensuing section we clarify the rela
of that field to theα pseudofermion operators. The asymptotic expression(52) has the sam
general form as that provided by conformal-field theory. Thus, that in the low-energy limit
sidered here the square of the shift in the value of theα, ι pseudofermionFermi-point, 2
ι

α , is
the conformal dimension of aα, ι primary field confirms that the expansion(52) coincides with
the general conformal-field theory correlation-function asymptotic expansion used in the s
of Refs.[25–29,34]. However, we emphasize that within the PDT the important functional(24)
is well defined for all energy scales and corresponds to a much more general paradigm[14], and
thus such a connection only emerges in the low-energy limit considered here.

The Fourier transforms considered above used low-energy expressions which capture
versal part of the asymptotic expansion of correlation functions, Eq.(52). In this paper we do no
study the corresponding logarithmic corrections, which are specific to each correlation fu
[22].

4. Pre-factors universal form and relation of the low-energy physics to the scattering
properties at all energy scales

The main result of the previous section is the evaluation of the pre-factorsχ0, Eq. (50), of
each term of the correlation-function asymptotic expansion(52). Here we discuss the univers
character of such pre-factors and their relation to the scattering properties at all energy sc
addition, we address other issues such as the qualitative difference between some of the
features of the low-energy and finite-energy metallic phases and the relation of the low-
pseudofermion description to the conformal-field theory primary fields and Virasoro-algebr
erators[24].
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4.1. Pre-factors and relation to the general scattering properties

The universal character of the asymptotic expansion(52) is such that the value of the co
formal dimensions 2
ι

α = 2
ι
α(
Nc,
Ns,
JF

c ,
JF
s ) defined in Eq.(25) only depends on

the specific correlation function through the values of the four deviations
Nc, 
Ns , 
JF
c , and


JF
s of each allowed excitation J-subspace. Otherwise, theU/t1, n, andm dependence of th

two-pseudofermion phase-shift parametersξ
j

αα′ of Eq. (25) is specific to the model but is th
same for all its correlation functions.

Importantly, careful analysis of the form of the quantities defined in Eqs.(42) and (44)reveals
that the same occurs for the pre-factorsχ0 of the correlation-function asymptotic expansion.
deed, the expression of the associated weight of Eq.(44)involves the overall phase shiftQα(q)/2
given in Eqs.(16) and (22), which for each value ofq also depends on the specific correlat
function through the values of the four deviation numbers
Nc, 
Ns , 
JF

c , and
JF
s of each al-

lowed J-subspace. Moreover, theqj andqi products of theA(0,0)
α expression given in Eq.(44)run

over the rangesqFα,−1 � qj � qFα,+1 andqFα,−1 � qi � qFα,+1, respectively, with the limiting
valuesqFα,±1, Eq. (17), involving the deviation given in Eq.(18), whose value is solely dete
mined by the deviations
Nα and
JF

α . Thus, the pre-factorsχ0 = χ0(
Nc,
Ns,
JF
c ,
JF

s )

value also depends on the specific correlation function through the values of the four de
numbers
Nc, 
Ns , 
JF

c , and
JF
s only, as the conformal dimensions. Otherwise, theU/t1,

n, andm dependence of the two-pseudofermion phase shifts involved in theχ0 expression is spe
cific to the model but is again the same for all its correlation functions. Such two-pseudofe
phase shifts are defined by Eqs.(A.1)–(A.7)of Appendix A.

The form of the pre-factorsχ0 of all terms of the asymptotic expansion(52) is universal
for all correlation functions and is given in Eq.(50). Their value is controlled by the overa
pseudofermion and hole phase shifts, Eq.(16), through the dependence on these shifts of the
weightsA(0,0)

α of Eq.(44)and four functionals 2
ι
α of Eqs.(24) and (25). Concerning the relatio

of the latter quantities to the scattering mechanisms, note that in theA
(0,0)
α expression(44) the

bare-momentum products run over the overall phase shifts of theα pseudofermion scattere
with bare momentum inside the J-ground-stateFermi sea, whose scattering centers are thec

and s pseudofermion and holes created at the J-ground-stateFermi pointsby the elementary
processes (B). Furthermore, the four conformal dimensions of the primary fields equal the
of the shifts in the twoc and twos pseudofermion canonical-momentumFermi points. The
four functionals 2
ι

α and the two weightsA(0,0)
α also play an important role in the finite-ener

scattering properties, by controlling the unusual spectral properties of the model[14,21]and real
materials[16,18] at all energy scales. Thus, our results reveal the connection of the low-e
quantities to the scattering mechanisms that control the spectral properties at all energy s

4.2. The low-energy TLL and finite-energy metallic phases

The above discussed connection of the low-energy quantities to the scattering mech
that following the PDT studies of Refs.[14,15]control the spectral properties at all energy sca
can be used to clarify an interesting issue related to different behaviors of the low-ener
finite-energy spectral-weight distributions. Indeed, there are some features in the spectr
tions (3) whosek andω dependence is qualitatively different for small values ofω, where the
low-energy TLL behavior dominates, and for finiteω values. Here we address such an iss
whose understanding involves general mechanisms already studied in Ref.[14].
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Due to the convolutions in Eqs.(38) and (39), the asymptotic expansion(52)was obtained by
use in expression(46) of theα, ι spectral function(40). To study the above issue it is useful
perform the inverse Fourier transform of the asymptotic expansion(52) relative to bothx andt .
This provides the behavior ofχl

N (k,ω) near the singularities corresponding to the branch l
whose linear shape is defined by the following parametric equations

(53)ω = ιvα

(
k − lkF

0

)
, α = c, s, ι = ±1,

where the momentumkF
0 and velocityvα are given in Eqs.(20) and (28), respectively. The

obtained expression corresponds to a range of small values ofω and (k − lkF
0 ) such that

ω ≈ ιvα(k − lkF
0 ). By performing the double inverse Fourier transform relative tox and t of

the leading-order term of the general asymptotic expansion(52), one finds that this behavior
associated with the followingk andω dependence of the correlation function(2)

(54)χl
N (k,ω) ∝ (

lω − ιvα

(
k − lkF

0

))ζα,ι , α = c, s, ι = ±1,

where the exponent reads

(55)ζα,ι = −1+ 2
ι
α + 2
+1

ᾱ + 2
−1
ᾱ , α = c, s, ι = ±1,

and 2
ι
α is the functional given in Eq.(25), c̄ = s, ands̄ = c. For the values ofk andω that these

expressions refer to, the real and imaginary parts ofχl
N (k,ω) have the samek andω dependence

but differ in the pre-factors. Thus, one also finds

(56)Bl
N (k,ω) ∝ (

lω − ιvα

(
k − lkF

0

))ζα,ι , α = c, s, ι = ±1,

for the general spectral function given in Eq.(3).
When applied to specificN -electron spectral functions, expression(56) with the power-law

exponent given in Eq.(55) provides the universal and well, known low-energy TLL behav
for the 1D Hubbard model[25–29,34], Tomonaga–Luttinger model[45–47], and many othe
models whose low-energy physics corresponds to the same universality class. Whenζα,ι < 0,
such an expression refers to a linear singular spectral feature.

The PDT studies of Ref.[14] reveal that the spectral feature whose shape is defined by Eq(53)
is the low-energy part of a spectral-functionα branch line which also exists for finite ener
values. The parametric equations which define the(k,ω)-plane points belonging to such aα
pseudofermion (orα pseudofermion hole) branch line is of the general form

(57)k = l
[
kF

0 − c1ιq
0
Fα + c1q

]
, ω = lEα(k) = lc1εα(q), αν = c, s, ι = ±1,

where

(58)q ∈




[−q0
Fα,+q0

Fα], α = c, s, ι = ±1, c1 = −1,

[+q0
Fα,+q0

α], α = c, s, ι = +1, c1 = +1,

[−q0
α,−q0

Fα], α = c, s, ι = −1, c1 = +1,

and the constantc1 is such thatc1 = +1 (andc1 = −1) for creation of aα pseudofermion (and
α pseudofermion hole), as discussed below. Note that for

(59)q = ιq0
Fα + lc1

(
k − lkF

0

)
, α = c, s, ι = ±1,

with (k − lkF
0 ) small one finds

(60)lEα(k) = lc1εα

(
ιq0

Fα + lc1
(
k − lkF

0

)) ≈ ιvα

(
k − lkF

0

)
, α = c, s, ι = ±1.
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Here we used the property thatεα(ιq0
Fα) = 0 [14,20,42,48]. This confirms that for bare

momentum valuesq in the vicinity of ιq0
Fα the energyω is small and the line defined by th

parametric equation(57) becomes indeed the line(53). However, although the latter line is co
tinuously reached from the general line(57)asq approachesιq0

Fα , thek andω dependence of th
corresponding spectral feature has two regimens, for small and finite values ofω, respectively.

Indeed, use of the general PDT reveals that the line defined by the parametric eq
(57) corresponds to a spectral feature calledα pseudofermion (c1 = +1) or α pseudofermion
hole (c1 = −1) branch line[14]. Such spectral features were observed for the one-electro
moval case by photoemission experiments in quasi-1D compounds[11,16]. A spectral-functionα
branch line is produced by creation for the values of the momentum and energy given in E(57)
of a α pseudofermion orα pseudofermion hole, as a result of ground-state–excited-en
eigenstate transitions with such values for the excitation momentum and energy. Therefo
branch lines are named according to the corresponding pseudofermion or pseudofermio
once the shape of the branch line in the(k,ω)-plane coincides with that of that object ener
dispersion.

The use of the spectral-function expressions derived in Ref.[14] reveals that for(k,ω)-plane
points located just above (l = +1) or below (l = −1) the branch line whose shape is defined
Eq.(57), the weight distribution has the following form for finite values ofω,

(61)Bl
N (k,ω) ∝ (

lω − Eα(k)
)ζα(k)

, α = c, s,

where the exponent reads

(62)ζα(k) = −1+ 2
+1
c (k) + 2
−1

s (k) + 2
+1
c (k) + 2
−1

s (k), α = c, s.

In this expression the parameters 2
ι
α(k) correspond to the general functional given in Eq.(24).

However, they are not given by expression(25), which corresponds to the low-energy limit
such functionals. In the present general case the phase-shift dependence is that provide
(40) of Ref.[14]. The dependence on the momentumk occurs through the corresponding d
pendence on the scattering center bare-momentum of the phase-shift scattering compone
in Eq. (36) of that reference. In contrast to the low-energy limit studied here, the genera
expressions derived in Ref.[14] include contributions from pseudofermion and/or hole sca
ing centers created off theFermi pointsfor finite values of the excitation energy. The aboveα

pseudofermion or hole which generates the spectral feature(61) is an example of such scatte
ing centers. Note that when the exponent(62) is such thatζα(k) < 0, expression(61) refers to a
singular spectral feature.

As k → lk0
F (andq → ιq0

Fα) andω → 0, the parameters 2
ι
α(k) of the exponent expressio

(62) become those of Eqs.(25) and (55), with 2
ι
α(lkF

0 ) = 2
ι
α . This result together with com

parison of the 2
ι
α dependence of the exponents(55) and (62)confirms that the latter expone

does not evolve continuously onto the former exponent asq → ιq0
Fα andω → 0. The origin of

such two different behaviors of the spectral function in the vicinity of the branch line for s
and finite values ofω, respectively, can be explained by an effect which is as a particular
of a general PDT mechanism studied in Ref.[14]. As q → ιq0

Fα and thusω → 0 the spectra
function corresponds to the vicinity of aαν = c, s branch line end point,(k = lkF

0 ,ω = 0). That
for this low-energy TLL limit the expression of the spectral function in the vicinity of thec or s

branch-line is not that of Eq.(61) results from a resonance effect: the branch line group velo
vα(q) equals the velocityvα(ιq0

Fα) = ιvα associated with theα, ι pseudofermion particle–hol
excitation sub-branch generated by the elementary processes (C). Due to such a reson
fect, which also occurs for finite energies corresponding to the lower limits of the first, se
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and higher-order upper Hubbard bands, it is shown in Ref.[14] that the momentum and ener
dependence of the spectral function in the vicinity of theα pseudofermion or pseudofermio
hole branch line is instead given by Eq. (73) of that reference. The above low-energy exp
(54)corresponds to a particular case of the general expression given in that equation. In t
finite-ω expression(61) is a particular case of the general expression (70) of that referenc
the spectral function in the vicinity ofc ands pseudofermion branches lines considered here.
latter expression corresponds to the same spectral function in the vicinity of any pseudof
branch line, including those corresponding to thecν andsν′ pseudofermion branches such th
ν > 0 andν′ > 1, respectively.

We note that there is an intermediate regimen in the vicinity of theα branch where the spe
tral function is neither given by the low-energy TLL expression(54) nor by the finite-energy
expression(61). These expressions correspond tovα(q) ≈ ιvα and vα(q) �= ιvα , respectively.
The energy and momentum widths of the crossover regimen are infinitesimal. In turn, the
and momentum widths of the low-energy linear regimen of Eqs.(53) and (56)are controlled by
the value of|vα(q) − ιvα|. The low-energy TLL behavior emerges when such difference ca
written as

(63)
∣∣vα(q) − ιvα

∣∣ ≈ ∣∣aα

(
q0
Fα

)(
k − lkF

0

)∣∣, aα(q) = ∂vα(q)

∂q
, α = c, s, ι = ±1,

where theq values are in the ranges given in Eq.(58)and the relation betweenk andq is defined
by the first expression of Eq.(57). As the value ofq approachesιq0

Fα the behavior(63)is reached
For smaller values of|aα(q0

Fα)| the value of|vα(q) − ιvα| can remain small for larger value
of |(k − lkF

0 )| and thus ofω ≈ ιvα(k − lkF
0 ). It follows that the momentum and energy widt

of the(k,ω)-plane region in the vicinity of(lkF
0 ,0) where the TLL liquid behavior(54) is valid

increase for decreasing values of|aα(q0
Fα)|, provided thatvα is finite. For instance, in the lim

of zero spin density,m → 0, the value of|as(q)| is small in two relatively largeq regions in the
vicinity of q = −kF andq = +kF , respectively, and thus the domain of the corresponding
s branch lines where the low-energy TLL expression(56) is valid increases in that limit.

4.3. Relation to conformal-field theory primary fields and Virasoro algebras

The relation of the low-energy conformal-field theory[23,24] to bosonization[1,22] is well
established. Thus, here we briefly discuss the connection of the general pseudofermion
tion to the conformal-field theory primary fields and Virasoro-algebra generators[23,24,43].
Implicitly, that also provides information about the relation of that description to bosonizat

In the limit of low-energy considered here the reduced J-CPHS subspaces of the gene
[14] are spanned by a single energy eigenstate. We have called it J-ground state: it is the
energy state of a J-CPHS subspace. Within the pseudofermion description a J-ground s
be written as

(64)|J − GS〉 =
∏
α

Û†
α

∏
ι

Fα,ι|GS〉,

where the initial ground state reads

(65)|GS〉 =
∏
α

+q0
Fα∏

q =−q0

f †
qj ,α|0〉,
j Fα
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and|0〉 is the pseudofermion vacuum such thatfqj ,α|0〉 = 0. The operatorF†
α,ι and the transpos

of the operatorÛ†
α appearing in expression(64)are given by

Fα,−1 =
[
θ
(

N

0,F
α,−1

) −q0
Fα∏

qj =q0
Fα,−1

f †
qj ,α + θ

(−
N
0,F
α,−1

) q0
Fα,−1∏

qj =−q0
Fα

fqj ,α

]
, α = c, s,

(66)Fα,+1 =
[
θ
(

N

0,F
α,+1

) q0
Fα,+1∏

qj =q0
Fα

f †
qj ,α + θ

(−
N
0,F
α,+1

) q0
Fα∏

qj =q0
Fα,+1

fqj ,α

]
, α = c, s,

and

(67)Ûα = exp

{ N∗
α∑

j=1

f †
qj ,α[fq̄j ,α − fqj ,α]

}
, α = c, s,

respectively. In the pseudofermion operatorfq̄j ,α of Eq. (67) q̄j = qex
j + QΦ

α (qj )/L = qj +
Qα(qj )/L whereqex

j = qj + Q0
α(qj )/L denotes the excited-state discrete bare-momentum

ues. Moreover,qj stands for the ground-state discrete bare-momentum values and in th
pseudofermion operators of Eq.(66) and two remaining pseudofermion operators of Eq.(67)
the discrete canonical-momentum values are those of the initial ground state(65) such that
QΦ

α (qj )/2= 0 and, therefore,̄qj = qj . The operator(67)is unitary and leaves the pseudofermi
vacuum invariant and thuŝU†

α |0〉 = |0〉.
Once the functional 2
ι

α given in Eq.(25) is shown inAppendix A to be the conforma
dimension of theα, ι primary field, it is straightforward to show by analysis of the correspon
finite-size energy and momentum spectra that the J-ground state(64) is a highest-weight stat
(HWS) of the modelc ands Virasoro algebras[24]. Thus, theα, ι operator

(68)Gα,ι = Û†
αFα,ιÛα, α = c, s, ι = ±1,

whereFα,ι andÛα are expressed in terms ofα pseudofermion operators in Eqs.(66) and (67),
respectively, refers to the pseudofermion representation of the correspondingα, ι primary field.
It follows that the initial ground state(65) plays the role of the vacuum of conformal-field th
ory and the zero-energy and finite-momentum processes (B) generate the HWSs of thec ands

Virasoro algebras from such a vacuum.
For the pseudofermion description, application onto the ground state of the operatoGα′,ι

creates|
N
0,F
α′,ι | α′ pseudofermion scattering centers (
N

0,F
α′,ι > 0) or α′ pseudofermion-hole

scattering centers (
N
0,F
α′,ι < 0) at theα′, ι Fermi point. This leads to an overall phase sh

Qα(q)/2 for all α pseudofermions (Nα(q) = 1) or α pseudofermion holes (Nα(q) = 0) of bare-
momentumq ∈ [−q0

α,+q0
α]. In particular, this shifts theα, ι canonical-momentumFermi point

by 
q̄Fα,ι = [
q0
Fα,ι + Qα(ιq0

Fα)/L]. The square of such a shift in units of 2π/L is denoted by
2
ι

α in Eq.(24). In the present low-energy limit, the latter quantity has the form given in Eq.(25)
and for the conformal-field theory it is the conformal dimension of theα, ι primary field.

On the other hand, the generators of the small-momentum and low-energyα pseudofermion
particle–hole processes (C) in the vicinity of theα, ι Fermi point, correspond in the present low
energy limit to the generators of twoα = c, s Virasoro algebras[24]. These generators have
much simpler form in terms of the pseudofermion creation and annihilation operators than
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those given in Eqs.(66)–(68). Thus, the excited energy eigenstates generated from the J-g
state by the elementary processes (C) correspond to the tower of states of conformal-field
A crucial point of the pseudofermion scattering theory is that theα pseudofermions and hole
created by the latter processes are not active scattering centers. As discussed above, th
phase shifts generated by the created pseudofermions exactly cancel those originated by
of the corresponding holes. This implies that the overall scattering phase shift(15)has for eachα
pseudofermion or hole scatterer of momentumq ∈ [−q0

α,+q0
α] the same value given in Eq.(16)

for all excited states generated by the elementary processes (C) from a given J-groun
For the conformal-field theory, this means that all tower states obtained from application
generators of each of the twoα Virasoro algebras onto a given HWS correspond to the s
value of the conformal dimension 2
±1

α of the two correspondingα,±1 primary fields.
Thus, while the pseudofermion scattering controls the model spectral properties at all

scales[14], in the limit of low energy considered in this paper the pseudofermion oper
are closely related to the conformal-field theory operators and fields. This reveals that
than corresponding to the original electrons, the conformal-field theory spectrum and op
correspond to the low-energy limit of the general pseudofermion description.

5. Concluding remarks

In this paper we have shown that in the limit of low energy the general finite-energy spe
function expressions derived in Refs.[14,15] by means of the PDT fully recover the TL
universal expressions of correlation and spectral functions. Importantly, we were able
rive explicit expressions for the pre-factorsχ0, Eq.(50), of all terms of the asymptotic expansio
(52) for the correlation functions of the 1D Hubbard model. Furthermore, we have show
the form of these pre-factors is universal for all correlation functions.

Our results have also clarified the relation of the low-energy TLL behavior to the ge
scattering mechanisms which control the model exotic spectral properties at all energy
Such a relation was used in the description of the effects behind the qualitative difference
momentum and energy dependence of the low-energy and finite-energy parts of importan
lar features of the general spectral functions given in Eq.(3). The low-energy connection of th
conformal-field primary fields and Virasoro algebra generators to the pseudofermion desc
was also clarified.

While the studies of this paper considered the 1D Hubbard model, which describes s
fully some of the exotic properties observed in low-dimensional materials[11,16–18,49], our
results are of general nature for many integrable interacting problems[1,50] and therefore hav
wide applicability. Such results provide a broader understanding of the low-energy prope
carbon nanotubes[4,5], ballistic wires[6], quasi-1D conductors[7,8], and interacting ultracold
fermionic atoms in 1D optical lattices[35,37]. Indeed, our results relate these properties to
general scattering processes of the objects whose occupancy configurations describe th
quantum phases of matter corresponding to different energy scales of quasi-1D mater
systems. This is confirmed for finite energies in Refs.[11,16], where the general PDT weig
distributions[14,15] are shown to describe the photoemission features of quasi-1D comp
for the whole finite-energy band width, whereas the TLL universal behavior was obser
quasi-1D materials and systems whose low-energy phase is metallic[4–9], as mentioned in Sec
tion 1.
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Appendix A. The c and s two-pseudofermion phase shifts and Fermi point shifts

Here we define the two-pseudofermion phase shiftsπΦαα′(q, q ′) on the right-hand side o
Eqs. (15) and (22)for the scattering part of theα overall phase shift at bare-momentumq,
Eq.(16). Furthermore, we show that the low-energy expression(25)of the square of the fourα, ι

canonical-momentumFermi pointsin units of 2π/L equals that of the conformal dimension
the conformal-field theory fourα, ι primary fields used in the studies of Refs.[25–29,34]. We
start by the definition of the two-pseudofermion phase shifts. These quantities can be ex
as,

(A.1)πΦαα′(q, q ′) = πΦ̄α,α′
(

4t1Λ
0
α(q)

U
,

4t1Λ
0
α′(q ′)
U

)
, α,α′ = c, s,

whereπΦ̄α,α′(r, r ′) is the corresponding rapidity two-pseudofermion phase shift defined b
and

(A.2)Λ0
c(q) = sink0(q),

k0(q), andΛ0
s (q) are ground-state rapidity functions[20]. Those are single-valued functions

the bare-momentumq. Thus, they can be given in terms of their inverse functions, which ar
functionsq0

c (k) andq0
s (Λ) ≡ q0

s1(Λ), respectively, defined in Eq. (A.1) of Ref.[14].
The rapidity two-pseudofermion phase shiftsπΦ̄αα′(r, r ′) on the right-hand side of Eq.(A.1)

are particular cases of the corresponding general PDT rapidity two-pseudofermion phase
In spite of a different notation for thecν and sν′ branches of Refs.[14,15,21], such thatν =
γ and ν′ = γ + 1, respectively, the general integral equations which define the rapidity
pseudofermion phase shifts̄Φαν,α′ν′(r, r ′) are those given in Eqs. (B30)–(B40) of Ref.[48].
While the phase shiftsπΦ̄αα′(r, r ′) considered here refer to the twoα = c, s pseudofermion
branches whose occupancy configurations describe the low-energy eigenstates, the pha
Φ̄αν,α′ν′(r, r ′) refer to all the pseudofermion branches. From direct use of the general s
of coupled integral equations which defines the PDT two-pseudofermion phase shifts, w
that the phase shiftsπΦ̄αα′(r, r ′) involved in our low-energy study are uniquely defined by
following integral equations

(A.3)

πΦ̄ss(r, r
′) = arctan

(
r − r ′

2

)
− 1

π

r0
c∫

−r0
c

dr ′′ arctan(r ′′ − r ′)
1+ (r − r ′′)2

+
r0
s∫

−r0

dr ′′ G(r, r ′′)πΦ̄ss(r
′′, r ′),
s
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(A.4)πΦ̄cs(r, r
′) = −arctan(r − r ′) + 1

π

r0
s∫

−r0
s

dr ′′ πΦ̄ss(r
′′, r ′)

1+ (r − r ′′)2
,

(A.5)πΦ̄sc(r, r
′) = −arctan(r − r ′) +

r0
s∫

−r0
s

dr ′′ G(r, r ′′)πΦ̄sc(r
′′, r ′),

and

(A.6)πΦ̄cc(r, r
′) = 1

π

r0
s∫

−r0
s

dr ′′ πΦ̄sc(r
′′, r ′)

1+ (r − r ′′)2
.

In the above equations the function arctan(y) corresponds to the branch such that−π/2 �
arctan(y) � +π/2, the kernelG(r, r ′) is given by

(A.7)G(r, r ′) = − 1

2π

[
1

1+ [(r − r ′)/2]2 − 2

π

r0
c∫

−r0
c

dr ′′ 1

[1+ (r − r ′′)2][1+ (r ′ − r ′′)2]

]
,

and the integration limiting values read

(A.8)r0
c = 4t1 sinQ

U
, r0

s = 4t1B

U
,

where Q = k0(2kF ) and B = Λ0
s (kF↓) are the parameters appearing in the expression

Ref. [12]. They are such thatq0
c (±Q) = ±2kF and q0

s (±B) = ±kF↓, their value being self
consistently defined by the solution of the relations given in Eq. (A.5) of Ref.[14].

Finally, let us confirm that the low-energy limit of the square of the shift in the value o
α, ι canonical-momentumFermi pointgiven in Eq.(25) is indeed the conformal dimension
theα, ι primary field. To reach such a goal, we start by noting that combination of Eqs.(26) and
(A.1) reveals that the parameters defined in Eq.(26)can forj = 1 be expressed as

(A.9)ξ1
αα′ = Ωαα′

(
r0
α

)
, α,α′ = c, s,

where the functionΩαα′(r) is given by

(A.10)Ωαα′(r) = δα,α′ +
∑
ι=±1

ιΦ̄α,α′
(
r, ιr0

α′
)
, α,α′ = c, s.

Based on Eqs.(A.3)–(A.7), it is straightforward to confirm that the functions defined
Eq.(A.10) obey the following integral equations:

(A.11)Ωss(r) = 1+
r0
s∫

−r0
s

dr ′′ G(r, r ′′)Ωss(r
′′),

(A.12)Ωcs(r) = 1

π

r0
s∫

−r0

dr ′′ Ωss(r
′′)

1+ (r − r ′′)2
,

s
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(A.13)Ωsc(r) = 1

π

[
arctan

(
r + r0

c

) − arctan
(
r − r0

c

)] +
r0
s∫

−r0
s

dr ′′ G(r, r ′′)Ωsc(r
′′),

and

(A.14)Ωcc(r) = 1+ 1

π

r0
s∫

−r0
s

dr ′′ Ωsc(r
′′)

1+ (r − r ′′)2
.

From analysis of the form of the kernel function given in Eqs.(A.7), one straightforwardly
finds that Eqs.(A.10)–(A.14)are equivalent to those that define the entries of the conformal-
theory dressed charge matrix of Ref.[25] and the transposition of that of Eq.[28]. Thus, this
shows that the four parametersξ1

αα′ given in(A.9) are indeed the entries of these matrices.
Finally, if one uses similar procedures for the four parametersξ0

αα′ , one finds that they are th
entries of the transposition of the inverse of the conformal-field theory dressed charge m
Ref. [25] and the inverse of that of Eq.[28].

The quantity 2
ι
α given in Eq.(25) has the same expression as the conformal dimensio

theα, ι primary field, provided that the four parametersξ1
αα′ (and four parametersξ0

αα′ ) are the
entries of the conformal-field theory dressed charge matrix (and the entries of the transpos
the inverse of the conformal-field theory dressed charge matrix). Thus, we conclude that
quantity, which was obtained by considering the low-energy limit of the general functional
in Eq.(24), is indeed the conformal dimension of theα, ι primary field of the 1D Hubbard mode
α conformal-field theory.
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