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Abstract

In this paper we show that the general finite-energy spectral-function expressions provided by the
pseudofermion dynamical theory for the one-dimensional Hubbard model lead to the expected low-energy
Tomonaga—Luttinger liquid correlation function expressions. Moreover, we use the former general ex-
pressions to derive correlation-function asymptotic expansions in space and time which go beyond those
obtained by conformal-field theory and bosonization: we derive explicit expressions for the pre-factors of all
terms of such expansions and find that they have an universal form, as the corresponding critical exponents.
Our results refer to all finite values of the on-site repuldiband to a chain of length very large and with
periodic boundary conditions for the above model, but are of general nature for many integrable interacting
models. The studies of this paper clarify the relation of the low-energy Tomonaga-Luttinger liquid behavior
to the scattering mechanisms which control the spectral properties at all energy scales and provide a broader
understanding of the unusual properties of quasi-one-dimensional nanostructures, organic conductors, and
optical lattices of ultracold fermionic atoms. Furthermore, our results reveal the microscopic mechanisms
which are behind the similarities and differences of the low-energy and finite-energy spectral properties of
the model metallic phase.
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1. Introduction

Over the past twenty five years it has been shown that the low-energy physics of a variety
of models of one-dimensional (1D) correlated electrons can be described by the Tomonaga—
Luttinger liquid (TLL) theory[1]. Indeed, the low-energy physics of such interacting quantum
problems displays universal properties which are also found in the simple and exactly solvable
Tomonagg2] and Luttinger[3] models. Importantly, the low-energy TLL universal behavior
was observed in different real materials and systems, as for instance in carbon naffh&jbes
ballistic wires[6], quasi-1D organic conductofs], 1D metallic chaing8], and quasi-1D quan-
tum gases of ultracold fermionic atorf8. On the other hand, the low-energy phases of some
guasi-1D compounds are not metallic and correspond to broken-symmetry{$@tézecently,
the resolution of photoemission experiments has improved, andottmal state of these com-
pounds was found to display exotic spectral propeitid. However, such a metallic phase
refers to finite energies and is not described by the TLL theory.

The 1D Hubbard model is one of the few realistic models for correlated electrons in a discrete
lattice for which one can exactly calculate all the energy eigenstates and their efjgéggies
13]. It includes a first-neighbor transfer-integra) for electron hopping along the chain, and
an effective on-site Coulomb repulsidn. For finite-energy values, the metallic phase of this
model is not a TLL and thus the study of spectral functions is a very involved many-electron
problem. Fortunately, the recently introducedeudofermion dynamical theoflyDT) provides
explicit expressions for these functiofigt,15] Moreover, the theory describes successfully the
unusual spectral features of quasi-1D compounds for the whole finite-energy bandMidth
More recently, consistent results were obtained by numerical techniques, involving the use of the
dynamical density matrix renormalization group metfbd]. Furthermore, when combined with
the renormalization group, the use of the PDT reveals that a system of weakly coupled Hubbard
chains is suitable for the successful description of the phase diagram observed in quasi-1D doped
Mott—Hubbard insulatorfl8]. The PDT is a generalization for all values®@f 1 of the method
introduced in Ref[19] for U/t — oco. Such an extension was fulfilled by means of the relation
of the original electrons to the exotic objects whose occupancy configurations describe all energy
eigenstates of the modgl0]. The electron—rotated-electron unitary transformajij, defined
in the whole Hilbert space, and the pseudoparticle—pseudofermion unitary transforfidtion
15,21] defined in the subspace where the one- and two-electron excitations are contained, play
a major role in the construction of the PDT.

In turn, the low-energy physics of the model corresponds to the universal TLL behavior and
was studied by different techniques, such as bosoniz§Zidhand conformal-field theori23,

24]. There are many investigations where the low-energy conformal invariance was combined
with the model exact Bethe-ansatz solution in the study of the asymptotics of correlation func-
tions and related quantiti¢®5—34]

The connection of the low-energy TLL behavior to the microscopic scattering mechanisms
which control the unusual spectral properties of the model at all energy $tdl@d]remains
an interesting open problem, which we study in this paper. Indeed, while conformal-field theory
and bosonization techniques do not provide correlation-function expressions for finite energy, we
show here that the general finite-energy PDT introduced in Refsl5]reproduces the expected
correlation-function expressions in the limit of low energy. Moreover, we derive the correspond-
ing correlation-function asymptotic expansions in space and time. Such expansions go beyond
those obtained by conformal-field theory and bosonization: we derive explicit expressions for
the pre-factors of all terms of such expansions and find that they have an universal form, as
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the corresponding critical exponents. We also find the relation of the low-energy pseudofermion
description to the conformal-field theory primary fields and Virasoro-algebra gendi2i¢?4]

In this paper the emergence of the TLL low-energy physics is described in terms of the general
non-perturbative microscopic scattering mechanisms of the model at all energy[$4a1&s21]
Thus, our results provide further information about the microscopic mechanisms and scattering
processes behind both the low-energy and finite-energy properties of one-dimensional fermionic
interacting problems. For instance, we clarify why there occurs a different type of momentum
and energy dependence for the low-energy and finite-energy parts of important singular spectral
features of the model metallic phase. Furthermore, our findings lead to a broader understand-
ing of the unusual properties observed in low-dimensional materials and nanostrid¢t8ks
and systems of interacting ultracold fermionic atoms in 1D optical lat{i8&s Following the
investigations on quasi-1D quantum gases of ultracold fermionic af@nstudies about two-
atom correlation functions of interacting ultracold fermionic atoms in 1D optical lattices are in
progresg36]. Recently, the model was used in preliminary theoretical investigations of the den-
sity profiles and collective models of 1D ultracold fermionic atoms confined in an optical lattice
with harmonic trapping potenti§B7].

Our study provides the details of the preliminary results on the universal form of the pre-
factors of the correlation-function asymptotic expansions presented in short form ifBBef.
The paper is organized as follows: in Sectidnwe introduce the model and summarize the
basic information about the PDT which is needed for our studies. The general finite-energy
PDT spectral-function expressions are shown in Secdi@a recover in the limit of low en-
ergy the correct correlation-function expressions and corresponding asymptotic expansions in
space and time. Moreover, we are able to obtain expressions for the pre-factors of all terms of
such expansions. In Sectidrwe discuss the universal form of the pre-factors of all terms of the
correlation-function asymptotic expansions and the emergence of the TLL low-energy physics
in terms of the general scattering mechanisms which control the model spectral properties at
all energy scales. Furthermore, in that section we discuss the qualitative difference between the
low-energy and finite-energy parts of the singular charge and spin spectral features of the metallic
phase and the relation of the low-energy pseudofermion description to the conformal-field theory
primary fields and Virasoro-algebra generators. Finally, the concluding remarks are presented in
Sectionb.

2. Themode, the general correlation functions, and the pseudofer mions

The 1D Hubbard model reads

ﬂ:_tlZ[C;‘ng+lﬂ+h-C-]+UZﬁj,Tﬁj,¢7 0}
jo J
Wherec}ﬁ andc;, are spin-projectiom =1, | electron operators at site=1,2,..., N, and

Rjo= c}igcj,(,. The model(1) describesV, spin-up electrons an¥; spin-down electrons in

a chain ofN, sites. We denote the electronic number¥y= N4 + N,. The number of lattice
sitesN, is even and very large. For simplicity, we use units such that both the lattice spacing
and the Planck constant are one. In these units the chain lengthreads,. Our results refer

to periodic boundary conditions. We consider an electronic densityn, + n, in the range

0 <n < 1and aspin density =n4y —n  such that < m < n, wheren, = N, /L ando =1, |.

We introduce the Fermi momenta which except foE Torrections are given bykp, = +7n,
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and+kr = *[krpy + kp1/2 = £nn/2. The Hamiltoniar(1) commutes with the generators of
the n-spin and spirU(2) algebrad20,39,40] We call then-spin and spin eigenvalues of the
energy eigenstatesands, respectively, and the corresponding projectignands..

We consider the following generAl-electron correlation function

B! (k, ")
l ’ N\
k,w)=1 do/ ——— | 2

—0o0

WhereB/’v(k, w) is the correspondingy/-electron spectral function given by

Bl (k, ) = Z|(f|éjv(k)|es>|25(w —I[Ef — Egsl), lw>0, 1==1 (3)
f

Here the general/-electron operator® i (k) = O/T\/(k) and 0/ (k) = Onr(k) carry momen-
tum k, the f summation runs over the excited energy eigenstates, the efgrgprresponds
to these states, anfigs is the ground-state energy. Most common examples are the operator
O1(k) = ck.o and different choices of charge, spin, and Cooper-fait 2 operators. For sim-
plicity, we use in expressiaf3) a momentum extended scheme suchihat—oo, +00), yetitis
a simple exercise to obtain the corresponding spectral function expressions for the first Brillouin
zone.

The double Fourier transforliljv(x, t) of the general correlation functiq®) relative to the
momentumk and energyw can be expressed in terms of the corresponding Fourier transform
Bl\/(x, 1) of the spectral functio(3) as

I, 1) = —i2n010) Bl (x, 1), (4)

where here and in other expressions provided bélowy = 1 for y > 0 andf(y) =0 for y < 0.

One of the goals of this paper is the evaluation of a general asymptotic expansion for the corre-
lation function(4). To reach such a goal, in SectiBmve use the finite-energy expressions derived
in Ref. [14] for the general spectral functigB) by means of the PDT. The pseudofermion de-
scription is related to the holon and spinon representation for the model: all its energy eigenstates
can be described in terms of occupancy configurationsggdin 1/2 holons, spin 12, spinons,
andn-spin-less and spin-lespseudoparticleR0]. We use the notatioft1/2 holons andt1/2
spinons according to the values of thespin and spin projections, respectively. For large values
of U/t1, the+1/2 holons and-1/2 holons become the holons and doublons, respectively, used
in the studies of Refl41]. The electron—rotated-electron unitary transformafe] maps the
electrons onto rotated electrons such that rotated-electron double occupation, unoccupation, and
spin-up and spin-down single occupation are good quantum numbers for all valtesToke
+1/2 holons of charge-2¢ and zero spin and the charge-leist/2 spinons are generated from
the electrons by that unitary transformation, whekedenotes the electronic charge. The corre-
sponding holon and spinon number operalzﬁ@ﬂ/z andMAv,il/z, respectively, are of the form
given in Eq. (24) of Ref[20] and involve the electron—rotated-electron unitary operator.

While the—1/2 and+1/2 holons refer to the rotated-electron doubly occupied and unoccu-
pied sites, respectively, thel/2 and+1/2 spinons correspond to the spin degrees of freedom
of the spin-down and spin-up rotated-electron singly occupied sites, respectively. The charge
degrees of freedom of the latter sites are described by the spin-legssgi-less: pseudopar-
ticles, which are composite objects of a chargeon and a antichargeon, and thus carry-eharge
or +e for the description of the transport of charge in terms of electrons and electronic holes,
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respectively{20]. Thecv pseudoparticles (andb pseudoparticles) such that=1, 2, ... aren-
spin singlet (and spin singletpyzholon (and 2-spinon) composite objects. Thus, the numbers
of +£1/2 holons & = ¢) and+1/2 spinons ¢ = s) read

o
My +1/2= Lo +1/2+ Z VNgy, a=c,s, )
v=1
where N,,,, denotes the number ofv pseudoparticles anfl. +1/2 = [n F n;] and Ly +1/2 =
[S F S.] gives the number ot1/2 Yang holons and-1/2 HL spinons, respectively. Those are
the holons and spinons that are not part of composite pseudoparticles. The total number of holons
(¢ = ¢) and spinonsd = s) is given by

My =[My 112+ My _12], a=c,s. (6)

All energy eigenstates can be described by occupancy configuratioqsetidoparticlesyv
pseudoparticles;-1/2 Yang holons, and-1/2 HL spinong[20]. For the ground statey. = N,
Ns1=Ny,andN¢, = Ny =Ly —1/2=0fora =c¢,s, v >0, andv’ > 0.

The construction of the PDT involves a second unitary transformation, which maps the
pseudoparticles (and composit® pseudoparticles) onto pseudofermions (and composite
av pseudofermions)14,15,21] Such a transformation introduces shifts of ord¢r. in the
pseudoparticle discrete momentum values and leaves all other pseudopatrticle properties invari-
ant. As a result of such momentum shifts and in contrast te thgeudoparticles and compos-
ite wv pseudoparticles, the corresponding pseudofermions have no residual-interaction energy
terms.

A concept widely used in the PDT is that of a CPHS ensemble subfpéd®] (Here CPHS
stands forc pseudofermion, holon, and spinon.) Such a subspace is spanned by all energy eigen-
states with fixed values for the1/2 Yang holon numbeL. 1,2, —1/2 HL spinon number
Ly, _1/2, ¢ pseudofermion numbe¥,., and for the sets oftv pseudofermion numbersv,, }
corresponding to the composite pseudofermion branches.

3. General asymptotic expressions of correlation functions

Here we derive the pre-factors of all terms of the general asymptotic expansion for the corre-
lation function(4) by use the finite-energy spectral-function expressions derived in Réf45]
by means of the PDT. To reach such a goal, we start by defining the low-energy subspace for
the electronic densities and spin densities considered in this pé®leand providing further
information about the pseudofermion description when defined in such a subspace.

3.1. Pseudofermion description in the low-energy subspace

For each correlation function, the electronic number deviatiang and AN, have well-
defined values and for electronic densities @ < 1 and spin densities @ m < n, all low-energy
excited energy eigenstates belong to a single CPHS ensemble subspace such that

AN.=AN,  AN;g=AN,,
{Nev) = {Nsw} ={Lc—12) ={Ls—1/2} =0, v=1,23,...,vV=23,.... (7)

The results of this section refer to such a correlation-function low-energy subspace.
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For simplicity, in this paper we denote the branch by branch. The ands indices used here
correspond to the0 ands1 indices in all quantities of Ref§l4,15,21,42] In our study we use
the index: = +1, which refers to the right & +1) and left (= —1) «, ¢ Fermi points For the
ground state and except foy IL correctiong20] such points readqgc =12kp andtqgs =tkrp,.
All the « (and¢) sums and products appearing in the expressions provided throughout this paper
run over the values = ¢, s (and: = +1, —1). Thea pseudofermion number deviatiaw, and
current deviatiomAJ " of the excited energy eigenstates relative to the initial ground state are
given by

1
ANy =) ANJ,. AJ;:EZLANL, a=c,s, (®)
t '
where
ANF = AN +100/2n, a=c,s, 1=%1 ©)

Here AN stands for the number of pseudofermions created (V2> > 0) or annihilated
(ANO?;[F < 0) as a result of the ground-state—excited-energy-eigenstate transitic@gaﬁds a
scattering-less phase shift that has a single and well-defined value for the correlation-function
excitation CPHS subspace such that

0°/2=0, AN;even 0°%2=4n/2, AN, odd
0%/2=0, AN.+ AN, even 0%2=+m/2, AN.+ AN, odd (10)

It is useful for our study to consider the pseudofermion subspace (PS). It is spanned by an
initial ground statgGS) and all excited energy eigenstates contained in the one- two-electron
excitations[14,15] The pseudoparticle—pseudofermion unitary transformation which maps the
a pseudoparticle onto thepseudofermion is defined in the PS. Thpseudoparticle has discrete
bare-momentum valueg = [Zn/L]I;?‘ such that’ are consecutive integers or half-odd integers
[20]. These values are good quantum numbers whose allowed occupancies are one and zero only
[20]. Due to the values of such quantum numbers, the current deviatigfisare integers or half-
odd integers depending on the parities of the number deviafidvis= AN, andAN; = AN
as follows

AN. + AN, AN+ AN
AJF = % mod 1= 22 T 2N o 1
AN, AN
AJF = 5 ¢ mod 1= - mod 1 (11)

On the other hand, the pseudofermion has discrete canonical-momentum values given by
[14,21]
aj=qG)=q;+ 037 @)/L, a=c,s, (12)

wherej =1,2,..., N¥ and the numbeN; is such thatV = N, + N". Here N/ denotes the
number ofa pseudofermion (and pseudoparticle) holefl 4,15,20] For the PS low-energy
sector such numbers are given by

N}=Na  Nf=N{+AN;,
N!'=N,—N°— AN,  N!=N{+AN;—N)-AN,. (13)
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Thus, the bare-momentum values are defined in the rarge< ¢ < +¢° where the limiting
bare-momenturg? reads

ql=m. qp =kry. (14)

In these expressions we have neglectgdl torrections[20]. When below we refer to the
pseudofermion bare-momentuymwe mean thag is the bare-momentum value that corresponds

to the pseudofermion canonical momentirs g + Q2 (¢)/L. Except for the discrete momen-

tum values, the above pseudoparticle and pseudofermion have the same properties. Thus, all the
energy eigenstates that span the low-energy sector of the PS can described by occupancy config
urations ofa pseudofermions. The functional

N*

02 @))/2=7)_Y Puu(qj,q;)ANw(qj), a=c,s, (15)

o j=1

of Eq.(12)is the scattering part of the overall pseudofermion or pseudofermion hole phase shift
[21]

0u(@)/2=02/2+ 02 (9)/2, a=c,s, (16)

where Q2/2 is the scattering-less phase shift given in Ef)). Such an overall phase shift
plays an important role in the pseudofermion scattering theory and related spectral proper-
ties. On the right-hand side of EQL5), AN,(g;) = Nu(q;) — No?(qj) is the excited-stater
branch bare-momentum distribution-function deviation relative to the initial ground state value
andr @, (q, q’) is a two-pseudofermion phase shift such thatdhéanda) pseudofermion or
hole of momentung’ € [—¢2,, +4¢°%1 (andg € [—q2, +40]) is the scattering center created under
the ground-state—excited-state transition (and the scatfddr)The two-pseudofermion phase
shiftst @,/ (g, q¢') are defined iAppendix A

The low-energy correlation-function CPHS subspace contains several J-CPHS subspaces. The
current deviation values of the energy eigenstates which span each of the latter subspaces differ
in at least one of the two current deviation valyes/”, AJF'}. At low-energy, the reduced J-
CPHS subspaces considered in R&4] are spanned by a single energy eigenstate. Since such a
state is the lowest-energy eigenstate of the corresponding J-CPHS subspace, we call it J-grounc
state. It corresponds to @and s pseudofermion bare-momentum densely packed occupancy
configuration such thatry, —1 < ¢ < gra.+1. Here the J-ground-statéermi pointgr,,, reads

QO
qFOt,L = “]?705 + AqFOl,L = ‘I?‘QH + Ta’

a=c,s, t==%1, 17)

0 0
qFCZZkF’ quszi’

where we have neglected L corrections to the value oﬂa [20] and AgF.,., denotes they,
bare-momentumFermi-pointdeviation relative to the corresponding ground-state value given

by

0 2 21 [ AN,
Aqra.=AqRq, + Qo _ 2 pNF = L—|: =

I L SNed =t +tAJF:|, a=c,s, t=%x1 (18)

2 o

In these expressions the bare-momengfip, and corresponding deviatiokg ., | read

21
qgw =tq2a+Aqga,[, Aqngt—ANo”F a=c,s, ==l (19)
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A J-ground state has excitation momentum

k=Y aprf, (20)
o
where
APF =Y 140 AN = 242,008, a=c.s. 1)
L

Such a state is generated from the ground state by zero-energy and finite-momentum elementary
processes (B), which create or annihilatpseudofermions at or from the four: Fermi points
respectively. In turn, the PDT processes (A) do not exist at low erjéejy The corresponding
J-CPHS subspace is spanned by energy eigenstates generated from the J-ground state by small-
momentum and low-energy processes in the vicinity of ¢dhe Fermi points which we call
elementary processes (C). Such processes conserve th¢s&tofAN,, AJF, AJF} deviation
values. For each low-energy J-CPHS subspace, the general momentum spectrum provided in
Eq. (29) of Ref[14] simplifies and is single valued and given in E20).

A crucial point for the low-energy scattering properties and corresponding correlation-
function asymptotic expansions studied in this paper is that thgeudofermions and holes cre-
ated by the above processes (C) are not active scattering centers, once the phase shifts generatec
by the created pseudofermions exactly cancel those originated by creation of the corresponding
holes[14]. It follows that the overall scattering phase skiff) has for eaclx pseudofermion or
hole scatterer of momentumthe same value

07 (@/2=7) Y Poa(q:Vape)ANS

o U

:nzchw/(c],/q%a,)[A;\Iw—i—t’AJj], a=c,s, (22)
o U

for all excited states spanning given J-CPHS subspace.

Note that the scattering part of the overall phase shift, (§), vanishes and is finite for
the initial ground state and excited states, respectively. Thus, the ground-state—excited-energy-
eigenstate transition leads to a shift

AGFa, = AqFa, + QS(LCI%Q)/LZA‘I?«"Q,L"F Qa(tqga)/Lv a=c,s, t==%1 (23)

in the value of the fouw, « canonical-momenturmermi-points Such a shift is the excited-state
deviation in the value of corresponding tqg = ¢ = nga for the initial ground state. The square

of these shifts in units of/2/ L plays a key-role in the spectral properties at all energy scales and
is denoted by A.,. It can be written as follows

- 2 0 2
AgGFa, O.F Qot(th )
2N = . = (AN = et ) =c,5, =21 24
“ <[2n/L]> <‘ « T et &9

The general expression in terms of two-pseudofermion phase shifts of the fun@lp(m@jﬁa)/z
appearing in the second expression of @4.) is given in Egs. (35)—(37) of Ref14]. However,

for the excited energy eigenstates that span the low-energy subspace the finite-energy deviation
givenin Eq. (14) of that reference vanishes. This property together with the values of the numbers
given in Eq.(7) implies that at low energy the general expression of the general func{@al
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simplifies to
ANE, 2
2A!, = 2AL (AN, ANy, AJE AJF) = (Z[[gga, 2 +s§a,AJ§D :
a/
a=c,s, t==1, (25)

where the parametesga, can be expressed in terms of the two-pseudofermion phase shifts as
follows

&l =8aa + Y () Par (qPgr1%y). j=0.1 a.d' =c.s. (26)
1==+1

Expressiong25) and (26)are consistent with the low-energy form of the scattering phase shift
given in Eq.(22).

The overall phase shif22) controls the unusual spectral properties of the model through the
pseudofermions anticommutatdis!,21]. To illustrate the dependence of the latter anticommu-
tators on the overall phase shifts for the two pseudofermion branches used in our study, let us
consider pseudofermion creation and annihilation oper@té;;sand f7 .« respectively. When
the canonical momentum valugsandg’ = ¢’ correspond to an excited-energy-eigenstate and
the initial ground-state J-CPHS ensemble subspaces, respectively, the pseudofermion anticom-
mutation relations read 4,15],

—l(q q)/2 lQa(Q)/Zw a,a/ZC,S, (27)
Nx© sin(lg —q'1/2)’

and{f a, f Y ={f4.a, fg.r} = 0. HereN; is the number whose value is given in E3).
The antlcommutatlon relation(@7) are mdeed controlled by the value of the overall phase shift
(16), which in our case has the same value for all excited energy eigenstates spanning a given
J-CPHS subspace.

In addition to the overall phase sh(ft6), the group velocities

deq(q)
Ve (q) = qu , Vg = va(qga), a=c,s, (28)

{f;av fq’,a/} 280(,0{/

play an important role in our studies. Hetéq) ande, (¢) are thec ands pseudofermions energy
dispersions defined by Egs. (C.15) and (C.16) of IR, respectively. These energy bands are
plotted in Figs. 6 and 7 of Ref42], respectively, as a functiap for several values o/ /#; and

n form =0.

3.2. The asymptotic expressions of correlation functions

Our starting point for the study of low-energy correlation functions and associated correlation-
function asymptotic expansions in spacand timer is the general expression for thé-electron
spectral functior(3) given in Eq. (41) of Ref[14]. Fortunately, such a general expression sim-
plifies for the low-energy problem considered here. Indeed, the numq‘?é%':z thNF and

NfthFz thNFof the summation on the right-hand side of the above equation vanish in our case
because the corresponding bare-momentum distribution function deviation given in Eq. (14) of
the same reference vanishes in the low-energy limit considered here. Also the nwWjbecs

the summation of the former equation vanish. This follows from the number values ¢7):q.
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since the numbera/[, | refer to thecv and sy’ pseudofermion branches such that 0 and
v/ > 1, respectively.

Furthermore, as discussed above, for each specific correlation function the low-energy sub-
space is contained in a single CPHS ensemble subspace, spanned by excited energy eigenstates
with the same values for the number deviatid§, = AN.g = AN andAN; = AN;; = AN|.

Thus, the{AN,,} = {AN,} summation of Eq. (41) of Refl4] is also absent, since the corre-
sponding deviations have the same values for all excited states. This result together with the
deviation expressions provided in E@) shows that thg A w[} = {AN[} summation in
expression (41) of Ref14] should be replaced by a corresponding/ [} = {AJCF, AJF} sum-

mation over the low-energy J-CPHS ensemble subspaces contained in the correlation-function
low-energy CPHS ensemble subspace.

It follows from all the above simplifications that for low-energy the expression (41) of
Ref.[14] can be rewritten as

Bk, w) = Z Z B0k, w), ch=1. (29)

i=0 JF}

When expressed in terms of rotated-electron creation and annihilation operatos§; the
electron operatoéj\/(k) of the general spectral-function expressi@is given by a sum of
operators, each corresponding to one of the integatues of the sum on the right-hand side of
Eq. (29). The corresponding= 0 operator has the same expression in terms of rotated-electron
creation and annihilation operators éﬁf(k) in terms of electronic creation and annihilation
operators[14,15] respectively. In turn, thé > O operators have a number of extra pairs of
rotated-electron creation and annihilation operators which increases for increasing values of

For all values oft/ /11, thei > 0 terms of expressiofR9) correspond to less than 1% of the
total NV-electron spectral weighi4,15,44] However, we have kept these terms and used the
method presented below for the derivation of the general asymptotic expansion of the correlation
function ;Zjl\/(x, t) given in Eq.(4). The result is that the leading terms in the asymptotic expan-
sion of such a function are always generated byithe0O term of expressioli29). Moreover,
the strongest reason for neglecting the very small contributions afth@ terms of expression
(29) is that for all values ofU /1, all terms of the correlation-function asymptotic expansion
obtained by conformal-field theory are generated byi thed term of that expression. Thus, the
low-energy expression needed for our studies is of the form

Byk.w)= ) Bk w), (30)
{aJf)
where theZ{M{} summation is over the J-CPHS subspaces contained in the low-energy sector

of the CPHS subspace specific to thieelectron spectral functioB’,-(k, »). Here B'O(k, w) is
the function is given in Eq. (44) of ReffL4] and Eq. (68) of Refl15] fori =0

It follows from the form of the spectral-function expressi@d) that the corresponding gen-
eral A/-electron correlation functio(®) can be written as

, B0 Bk, o) ')
XN(k a))_l{g /d w—ao +il0 (31)

Thus, the function}N(x, t) of EQ.(4) can be expressed in terms of the double Fourier transform
relative tok andw of the set of functions3’-%(k, w) corresponding to each J-CPHS subspace,
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B'O(x, 1), as follows

X ) =—i2m0t) Y B"O(x.1). (32)
(aJf)

We start by deriving the asymptotic expressionBdf(x, r) associated with the low-energy
behavior of B/-O(k, w). Within the low-energy limit considered here, the second expression of
Eq. (68) of Ref[15] for B!:O(k, w) simplifies. Indeed, the low-energy correlation-function exci-
tation CPHS ensemble subspace is alwageminantCPHS ensemble subspace, such that the
corresponding real positive coefficie@itc defined in the unnumbered equation below Eq. (68)
of Ref.[15] readsG ¢ = 1 for the whole parameter space and thilus= C, in EqQ. (68) of that ref-
erence. The absence of independeff2 holons and-1/2 spinong14,15], including of —1/2
Yang holons and-1/2 HL spinons, then implies that,

()= <33>

o=c,S§
in that general expression f&'%(k, ) and,
[Y Py=1) Eq=0, (34)
o=c,S oa=c,S§

in the argument of its functlorB 0w = Bl °. Moreover, according to Ed7) there are nav
pseudofermions and’ pseudofermions belonglng to branches such that0 andv’ > 1, re-
spectively, in the excited energy eigenstates which span the low-energy subspace. Thus, there
are only finite occupancies for the= cO ands = s1 pseudofermion branches. Furthermore,
there are no finite-energyands processes called processes (A) in R&4] so that the number

Naw =N given in Eq. (61) of Ref{15] vanishes. For all these reasons the factor

(jli<Ni“>ij |:J—CPH§\)»—(A):|>
MGG e

in the second expression of Eq. (68) of R&6] reduces to the unity and the values

D 2 D
1Y APy, =1Y APy, =I[APF + APf]=IK{. 1) AE4, =0, (36)
j=1 j=1 i
must be used in the argument of the funct@’@ = B appearlng in the same general expres-
sion. Note that the momentuk§ of Eq. (36) is that glven in Eq(20)and AP/ andAP[ are
provided in Eq(21).
As a result of the above simplifications, in the low-energy limit considered in this paper the
second expression of Eq. (68) of REf5] for B:0(k, w) leads to
+00

Bk, w) = /dk’ / do' By (k—IAPF —k —IAPF 0 — o) B (K . o).
37)
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This expression can be rewritten as

oo oo
B0k, w) = /dk//da) By (k—IAPF —k 0 — o) By (K —1aP] . o),
" (38)
where the functiorBlQ0 (k — ZAPaF, w) is such that
+o0
By (k—1AP] . ) /dk//d "By Ok —1g0,ANY K 0 — o)
S0 —oo
xB lo(k’+lqgaAN(5_l,w’), a=c,s. (39)

Here BZQ'S (K", w') and BIQ’:O(k/, w') are the functions defined in Eqgs. (45) and (47) of RR&4],
respectively.

For small finite values ofw’ we use for the functlonB ') the expression provided in
Eq. (58) of Ref[14]. If one uses continuum values iof the Iatter expression can be rewritten as

2T A l ’ ZAfx—l ’
B O, w)—@(lw)#(ﬂ> 8<k’—£>, a=c.s, 1=+1,
Naval (2AL)

1,.,0
(k'

(40)
whereT (y) is the usuall function, 2A}, is the functional given in Eq(25), v, is the velocity
provided in Eq(28), and A, , reads

A No\ 22« AQ0  /s0f,,
wi=|= = AT =08, t==+1 (41)
21 VN, (2r59)%

It is convenient to introduce the related quantity
+1 -1 0,0
)[ZA‘X +2A;1Y Afx )

N,
A, = | | A = — s
o t o, (2 ,—Nu

HereAff;O) is given in Eq. (49) of Ref{14] and refers to the foux, ¢ weights such that the two
associated pseudofermion spectral-function lowest-peak weights

APO =TTA2°,  a=cs, (43)

a=c,s. (42)

can be expressed in terms of th@seudofermion overall phase shifi$) as follows[14]

A((xo’o) = A((xo’o)(ANC, ANS7 AJCF’ AJSF)

1\ 2ANS+AN] _ No-tl. i\ AN
= (F) 1_[ Slnz(Qa(q.j)/Z) 1_[ |:S|n<m>j|

qjeF =1
<[1 11 6’(qj—c1,)sm2<Q"‘(‘11)/2 Qa]\(’Zz)/Z-i-?T(] —1))
qi€F q,-e]—‘
X 1_[ H n(] lH‘Qa(q,)/Z a=c,S. (44)
qtej:q G}—SI —)
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In this expressiom\ N, is the number deviation of E@8), N is given in Eq.(13), O« (g;)/2
is the overall phase shiftl6), andg; € F corresponds to the set of discrete bare-momentum
values in the rang@rq,—1 < ¢j < grq,+1 Wheregr,,, is the J-ground statéermi pointgiven

in Eq. (17). We emphasize that th€, dependence oAfxo’O) is such that the quantity, given
in Eq. (42) is independent ofV,. Indeed, by use of the second expression of @) such a
guantity can be rewritten as

_c0 f(x,t _
Aa—Sanm, a=c,S, (45)
o o

where here and in that equation the related quantj‘@gsandsg are those of Egs. (49) and (50)
of Ref.[14]. All quantities on the right-hand side of this equations are independevi {if4].

It is straightforward to confirm that the convolution of Eg9) leads to the first expression of
Eq. (58) of Ref[14] for the functionBlQ’S (k, w) if one uses the expressi@¢h0) for the function

BZQ’:O(k/, ') in that convolution.

In contrast to the small-momentum and low-enexgyseudofermion particle—hole processes
(C), the processes (B) create activepseudofermion and/ax pseudofermion hole scattering
centers. The active scattering centers created by these processes are those which lead to th
value of the scattering part of the overall phase shift given in Eq16). We recall that the
latter value is the same foall energy eigenstates which span a given J-CPHS subspace. Thus,
the general expression for the Weighio’o) given in Eq.(44) has also the same value for all
energy eigenstates which span such a subspace. The same occurs for the overall plia6g shift
functional(25), and related Weightaff;o). Hence, the quantitieg, , and A, given in Eqs(41)
and (42) respectively, have also the same value for all energy eigenstates which span a given
J-CPHS subspace. It follows that the expression of each of the funa@idh, ») on the right-
hand side of Eq(30)and that of each of the corresponding functi®€ (x, r) of Eq.(32), which
we derive below, involve a single value of the two parametgysand four quantities 2.

Since the functions of Eq§38) and (39)are given by convolutions of other functions, the use
of the Convolution Theorem of Fourier transforms implies that the asymptotic expression of the
function B/-%(x, r) on the right-hand side of E¢32) can written as

1§”0<x,z)=( > HHBZQ‘ Ox, 1). (46)

Here Bl . 0(x 1) is the double Fourier transform df.;" 0(k’ — 1igd, AN}, o). Due to thes-
functlon in expressio0), one of the integrals involved in the derivation of such a transform is

straightforward to perform, what leads to

1 1,0 ilig% AN x

Q (x,1) =le ~(x zvat+uO)( )ZA‘ -1

Zé’”

’

x/N_a(va)ZAfxT(ZA‘ ) /
a=c,s, t==x1 (47)

After performing thez integration of this expression one finds

24!
BLiO(x, 1) = [ei1aPu AN x =il 52, Aa, 1 Y a—cs =41
Bg, VN, \x —vgt +ii0 ’ o

(48)
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In the expressions given in Eqgl7) and (48)we have added a small infinitesimal numhie®,
to (x — wwyt). Such a number introduces the correct regularization.
By use of Eq(48)in Eq. (46) we arrive to

. oitkG x 1 27,
B0, 1) =i Xo]_[]_[<7> : (49)
o L

X — tvgt +1i0

where the pre-factoyg is given by

x0=x0(ANe, ANy, AJE, AJF) = =i Ze 7 ] Aa, (50)

o

and
=1) Y 2N, (51)

Finally, use of expressio9) in Eq. (32) leads to the following general expression for the
correlation-function asymptotic expansion

- L 2a¢
Avan=60an > {el”‘O"xo]—[l—Km) } 2

(A}

In Appendix Ait is shown that in the present low-energy limit the square of the shift in the
value of thew, : pseudofermionFermi-point2A}, given in Eq.(25)is the conformal dimension
of thew, ¢ primary field of conformal-field theory. In the ensuing section we clarify the relation
of that field to thea pseudofermion operators. The asymptotic expresg@yhas the same
general form as that provided by conformal-field theory. Thus, that in the low-energy limit con-
sidered here the square of the shift in the value ofdthepseudofermioriFermi-point 2A!, is
the conformal dimension of @, « primary field confirms that the expansi¢R) coincides with
the general conformal-field theory correlation-function asymptotic expansion used in the studies
of Refs.[25-29,34] However, we emphasize that within the PDT the important functi@¥)
is well defined for all energy scales and corresponds to a much more general pdibticgend
thus such a connection only emerges in the low-energy limit considered here.

The Fourier transforms considered above used low-energy expressions which capture the uni-
versal part of the asymptotic expansion of correlation functions(32yj. In this paper we do not
study the corresponding logarithmic corrections, which are specific to each correlation function
[22].

4. Pre-factorsuniversal form and relation of the low-energy physicsto the scattering
propertiesat all energy scales

The main result of the previous section is the evaluation of the pre-fagtoiisg. (50), of
each term of the correlation-function asymptotic expan$i@). Here we discuss the universal
character of such pre-factors and their relation to the scattering properties at all energy scales. In
addition, we address other issues such as the qualitative difference between some of the spectral
features of the low-energy and finite-energy metallic phases and the relation of the low-energy
pseudofermion description to the conformal-field theory primary fields and Virasoro-algebra gen-
eratorq24].
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4.1. Pre-factors and relation to the general scattering properties

The universal character of the asymptotic expang&®) is such that the value of the con-
formal dimensions &, = 2A. (AN,, AN, AJF, AJF) defined in Eq(25) only depends on
the specific correlation function through the values of the four deviattoNs, AN, AJL, and
AJF of each allowed excitation J-subspace. Otherwiselija, n, andm dependence of the

two-pseudofermion phase-shift paramet%ﬁr‘)ts of Eq. (25) is specific to the model but is the
same for all its correlation functions.

Importantly, careful analysis of the form of the quantities defined in @&g.and (44Yeveals
that the same occurs for the pre-factggsof the correlation-function asymptotic expansion. In-
deed, the expression of the associated weight of&Linvolves the overall phase shift, (¢)/2
given in Eqs(16) and (22) which for each value of also depends on the specific correlation
function through the values of the four deviation numheng., ANy, AJCF, andAJSF of each al-
lowed J-subspace. Moreover, tagandg; products of theﬁléo’o) expression given in E§44)run
over the rangegra, —1 < ¢j < gra,+1 aNdgre,—1 < gi < gra,+1, respectively, with the limiting
valuesgrq +1, EQ. (17), involving the deviation given in E18), whose value is solely deter-
mined by the deviationA N, andAJF . Thus, the pre-factorgo = xo(AN., AN, AJF, AJF)
value also depends on the specific correlation function through the values of the four deviation
numbersAN,, ANy, AJF, andAJF only, as the conformal dimensions. Otherwise, the,
n, andm dependence of the two-pseudofermion phase shifts involved ixptBrpression is spe-
cific to the model but is again the same for all its correlation functions. Such two-pseudofermion
phase shifts are defined by E¢a.1)—(A.7) of Appendix A

The form of the pre-factorgg of all terms of the asymptotic expansi@¢s2) is universal
for all correlation functions and is given in E(p0). Their value is controlled by the overall
pseudofermion and hole phase shifts, @), through the dependence on these shifts of the two
weightsAéO’O) of Eq.(44)and four functionals 2}, of Egs.(24) and (25)Concerning the relation

of the latter quantities to the scattering mechanisms, note that iﬂgﬂ'ﬁ% expression(44) the
bare-momentum products run over the overall phase shifts ok theeudofermion scatterers

with bare momentum inside the J-ground-stBéemi sea whose scattering centers are the

ands pseudofermion and holes created at the J-ground-dfateni pointsby the elementary
processes (B). Furthermore, the four conformal dimensions of the primary fields equal the square
of the shifts in the twar and twos pseudofermion canonical-momentuiifermi points The

four functionals 2, and the two Weightsﬁfyo‘o) also play an important role in the finite-energy
scattering properties, by controlling the unusual spectral properties of the fidd&]and real
materials[16,18] at all energy scales. Thus, our results reveal the connection of the low-energy
guantities to the scattering mechanisms that control the spectral properties at all energy scales.

4.2. The low-energy TLL and finite-energy metallic phases

The above discussed connection of the low-energy quantities to the scattering mechanisms
that following the PDT studies of Refd4,15]control the spectral properties at all energy scales
can be used to clarify an interesting issue related to different behaviors of the low-energy and
finite-energy spectral-weight distributions. Indeed, there are some features in the spectral func-
tions (3) whosek andw dependence is qualitatively different for small valueswpfwhere the
low-energy TLL behavior dominates, and for findevalues. Here we address such an issue,
whose understanding involves general mechanisms already studied [aRef.
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Due to the convolutions in Eqé38) and (39)the asymptotic expansiqb2) was obtained by
use in expressio(¥6) of the «, ¢ spectral functior(40). To study the above issue it is useful to
perform the inverse Fourier transform of the asymptotic expan@g)relative to bothx and:.
This provides the behavior o@‘j\/(k, ) near the singularities corresponding to the branch lines
whose linear shape is defined by the following parametric equations

w:Lva(k—lkg), a=c,s, (. ==+1, (53)

where the momentumg and velocityv, are given in Eqs(20) and (28) respectively. The
obtained expression corresponds to a range of small values arfid (k — lkg) such that
w ~ vy (k — lkg). By performing the double inverse Fourier transform relativer tand ¢ of
the leading-order term of the general asymptotic expan&ah one finds that this behavior is
associated with the following andw dependence of the correlation functi()

Xk, ) o (lo — g (k — 1K), a=c,s5, 1==+1, (54)
where the exponent reads
Loy =—14+2A +2AF 12071, a=c,5, 1==1, (55)

and 27}, is the functional given in Eq25), ¢ = s, ands = c¢. For the values ot andw that these
expressions refer to, the real and imaginary par;d/\g(k, ) have the sameandw dependence,
but differ in the pre-factors. Thus, one also finds

Bﬁ\/(k, W) X (la) — LUy (k — lkg)){““, a=c,s, . ==+1, (56)

for the general spectral function given in E@).

When applied to specifi$/-electron spectral functions, expressi@f) with the power-law
exponent given in Eq(55) provides the universal and well, known low-energy TLL behavior
for the 1D Hubbard moddlk5-29,34] Tomonaga—Luttinger mod¢45—-47] and many other
models whose low-energy physics corresponds to the same universality classzyVhe®,
such an expression refers to a linear singular spectral feature.

The PDT studies of Refl14] reveal that the spectral feature whose shape is defined B &Eq.
is the low-energy part of a spectral-functienbranch line which also exists for finite energy
values. The parametric equations which define (thev)-plane points belonging to suchea
pseudofermion (o pseudofermion hole) branch line is of the general form

k=1[k§ —cuqp, +c1q],  0=1E.(0) =lcrca(q), av=c,s, 1==%L, (57)
where
[—¢2,. +4%,1, a=c5, t=%1 c1=—1,
g€} [+4%,.,+q%, a=c,s, 1=+1 c1=+1, 8)
[—0.—q% 1. a=c.s, 1=—1 c1=+1,

and the constany is such that; = +1 (andc; = —1) for creation of axr pseudofermion (and a
a pseudofermion hole), as discussed below. Note that for

qchga—i—lcl(k—lkg), a=c,s, 1 ==+1, (59)
with (k — (k) small one finds

1Eq (k) = lcreq (1q2y +lcr(k — 1K) ~ g (k — 1K), a=c,s, 1==%1. (60)
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Here we used the property tha&(zqga) = 0 [14,20,42,48] This confirms that for bare-
momentum valueg in the vicinity of nga the energyw is small and the line defined by the
parametric equatio(b7) becomes indeed the li(3). However, although the latter line is con-
tinuously reached from the general li(¥¥) asq approache&lga, thek andw dependence of the
corresponding spectral feature has two regimens, for small and finite valuesesfpectively.

Indeed, use of the general PDT reveals that the line defined by the parametric equation
(57) corresponds to a spectral feature callegseudofermiond; = +1) or o pseudofermion
hole (1 = —1) branch ling[14]. Such spectral features were observed for the one-electron re-
moval case by photoemission experiments in quasi-1D compqglhds] A spectral-functior
branch line is produced by creation for the values of the momentum and energy giver{37Eq.
of a o pseudofermion orx pseudofermion hole, as a result of ground-state—excited-energy-
eigenstate transitions with such values for the excitation momentum and energy. Therefore, the
branch lines are named according to the corresponding pseudofermion or pseudofermion hole,
once the shape of the branch line in e w)-plane coincides with that of that object energy
dispersion.

The use of the spectral-function expressions derived in [Ré&f.reveals that fock, w)-plane
points located just abové £ +1) or below ( = —1) the branch line whose shape is defined in
Eq. (57), the weight distribution has the following form for finite valuesuf

Bl (k, 0) x (o — Eq(0))*Y, a=c,s, (61)
where the exponent reads
Calk) = =14 2AF k) 4+ 207 (k) + 28 (k) + 2071 k), a=c,s. (62)

In this expression the parameters. k) correspond to the general functional given in ).
However, they are not given by expressi@d), which corresponds to the low-energy limit of
such functionals. In the present general case the phase-shift dependence is that provided in Eq.
(40) of Ref.[14]. The dependence on the momentiroccurs through the corresponding de-
pendence on the scattering center bare-momentum of the phase-shift scattering component giver
in Eq. (36) of that reference. In contrast to the low-energy limit studied here, the general PDT
expressions derived in Rgfl4] include contributions from pseudofermion and/or hole scatter-
ing centers created off th&ermi pointsfor finite values of the excitation energy. The above
pseudofermion or hole which generates the spectral fe@dddas an example of such scatter-
ing centers. Note that when the expon@®) is such that, (k) < 0, expressiori6l) refers to a
singular spectral feature.

Ask — lk% (andg — nga) andw — 0, the parameters/A, (k) of the exponent expression
(62) become those of Eq&5) and (55)with 2A;(lkg ) = 2A},. This result together with com-
parison of the 2!, dependence of the exponeli®) and (62)confirms that the latter exponent
does not evolve continuously onto the former exponent as nga andw — 0. The origin of
such two different behaviors of the spectral function in the vicinity of the branch line for small
and finite values ofo, respectively, can be explained by an effect which is as a particular case
of a general PDT mechanism studied in R&#]. As ¢ — nga and thusw — 0 the spectral
function corresponds to the vicinity ofea = ¢, s branch line end poinik = lkg, w=0). That
for this low-energy TLL limit the expression of the spectral function in the vicinity ofdloe s
branch-line is not that of E461) results from a resonance effect: the branch line group velocity
v (q) equals the velocity, (nga) = (v, associated with the, : pseudofermion particle—hole
excitation sub-branch generated by the elementary processes (C). Due to such a resonance ef
fect, which also occurs for finite energies corresponding to the lower limits of the first, second,
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and higher-order upper Hubbard bands, it is shown in Rdf.that the momentum and energy
dependence of the spectral function in the vicinity of th@seudofermion or pseudofermion
hole branch line is instead given by Eq. (73) of that reference. The above low-energy expression
(54) corresponds to a particular case of the general expression given in that equation. In turn, the
finite-w expressior(61) is a particular case of the general expression (70) of that reference for
the spectral function in the vicinity efands pseudofermion branches lines considered here. The
latter expression corresponds to the same spectral function in the vicinity of any pseudofermion
branch line, including those corresponding to tleandsv’ pseudofermion branches such that
v > 0 andv’ > 1, respectively.

We note that there is an intermediate regimen in the vicinity obteanch where the spec-
tral function is neither given by the low-energy TLL express{é#d) nor by the finite-energy
expression61). These expressions corresponduvidq) ~ (v, and v, (g) # tvy, respectively.
The energy and momentum widths of the crossover regimen are infinitesimal. In turn, the energy
and momentum widths of the low-energy linear regimen of E§3) and (56)re controlled by
the value ofiv, (¢) — vy |. The low-energy TLL behavior emerges when such difference can be
written as

vy (q)
g

where they values are in the ranges given in E§8) and the relation betwednandg is defined

by the first expression of E¢G7). As the value of approachesyga the behavio(63)is reached.

For smaller values qtzo,(qgaﬂ the value oflv, (¢) — tv,| can remain small for larger values
of |(k — Ik{)] and thus ofw ~ e (k — 1k). It follows that the momentum and energy widths
of the (k, w)-plane region in the vicinity of/k!’, 0) where the TLL liquid behaviof54) s valid
increase for decreasing values|oa§(q2a)|, provided that, is finite. For instance, in the limit
of zero spin densityn — 0, the value ofa;(¢)| is small in two relatively largeg regions in the
vicinity of ¢ = —kr andqg = +kp, respectively, and thus the domain of the corresponding spin
s branch lines where the low-energy TLL expressijb6)is valid increases in that limit.

|va(@) = tva| ~ [aa (q7e) (k = Ikg )

; aq(q) = a=c,s, t==%1, (63)

4.3. Relation to conformal-field theory primary fields and Virasoro algebras

The relation of the low-energy conformal-field thed®s,24] to bosonizatiorj1,22] is well
established. Thus, here we briefly discuss the connection of the general pseudofermion descrip-
tion to the conformal-field theory primary fields and Virasoro-algebra generfzar24,43]
Implicitly, that also provides information about the relation of that description to bosonization.

In the limit of low-energy considered here the reduced J-CPHS subspaces of the general PDT
[14] are spanned by a single energy eigenstate. We have called it J-ground state: it is the lowest-
energy state of a J-CPHS subspace. Within the pseudofermion description a J-ground state can
be written as

11 =G =[0I ] Fa.lGS. (64)
o L
where the initial ground state reads
+4Pa
_ t
=[] [ /) .0, (65)

o ,.__ 0
4j="49Fa
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and|0) is the pseudofermion vacuum such tifat,|0) = 0. The operatoﬁ-",;t and the transpose
of the operatof]of appearing in expressiqp4) are given by

B —q?a q?’a,—l
Fo-1= G(ANo?ffl) H quj,a +9(_AN2{1) H fq/aa:|’ @ =C 5,
- 4=, 1 4j==4
B ‘iga,ﬂ q?a
Forr=|0(aN>1) [] £ eto(=andty) 1 qu,a] a=c,s, (66)
- 9i=42q 41400 41
and
Ny
Uy = exp{ Yoy alfae = fapalps a=c,s, (67)
j=1

respectively. In the pseudofermion operafy .. of Eq. (67) g; = ¢}* + 0%2(q/)/L =q; +
Oulgj)/L whereqj" =q;+ Qg (¢;)/L denotes the excited-state discrete bare-momentum val-
ues. Moreoverg; stands for the ground-state discrete bare-momentum values and in the four
pseudofermion operators of E(66) and two remaining pseudofermion operators of (&)

the discrete canonical-momentum values are those of the initial ground(68teuch that
0%(gqj)/2=0and, thereforej; = q;. The operato(67)is unitary and leaves the pseudofermion
vacuum invariant and thu§;|0) =10).

Once the functional &, given in Eq.(25) is shown inAppendix Ato be the conformal
dimension of the, « primary field, it is straightforward to show by analysis of the corresponding
finite-size energy and momentum spectra that the J-ground(stéltés a highest-weight state
(HWS) of the modet ands Virasoro algebraf24]. Thus, thex, : operator

ga,tzﬁgfa,tﬁaa a=c,s, t==1, (68)

whereF,, andU, are expressed in terms efpseudofermion operators in Eq§6) and (67)
respectively, refers to the pseudofermion representation of the correspandipdgmary field.
It follows that the initial ground statés5) plays the role of the vacuum of conformal-field the-
ory and the zero-energy and finite-momentum processes (B) generate the HWSs ahthe
Virasoro algebras from such a vacuum.

For the pseudofermion description, application onto the ground state of the op@yator

creates|ANg;f| o’ pseudofermion scattering centermNo([);ltF > 0) or o’ pseudofermion-hole

scattering centersA(NO?;f < 0) at thea’,: Fermi point This leads to an overall phase shift
Q4 (g)/2 for all « pseudofermionsN, (¢) = 1) or« pseudofermion holes\, (¢) = 0) of bare-
momentuny € [—qg, +q8]. In particular, this shifts the, « canonical-momentuniermi point
by AGra. =[AqR, , + Qu(tq?,)/L]. The square of such a shift in units of 2L is denoted by
2A!, in Eq.(24). In the present low-energy limit, the latter quantity has the form given ir{Z=].
and for the conformal-field theory it is the conformal dimension ofdheprimary field.

On the other hand, the generators of the small-momentum and low-emgggudofermion
particle—hole processes (C) in the vicinity of tha Fermi point correspond in the present low-
energy limit to the generators of two= ¢, s Virasoro algebrag24]. These generators have a
much simpler form in terms of the pseudofermion creation and annihilation operators than that of
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those given in Eq966)—(68) Thus, the excited energy eigenstates generated from the J-ground
state by the elementary processes (C) correspond to the tower of states of conformal-field theory.
A crucial point of the pseudofermion scattering theory is thatdtpseudofermions and holes
created by the latter processes are not active scattering centers. As discussed above, the overall
phase shifts generated by the created pseudofermions exactly cancel those originated by creation
of the corresponding holes. This implies that the overall scattering phasél&)ifias for eacla
pseudofermion or hole scatterer of momentym [—qg, +q2] the same value given in E¢L6)

for all excited states generated by the elementary processes (C) from a given J-ground state.
For the conformal-field theory, this means that all tower states obtained from application of the
generators of each of the two Virasoro algebras onto a given HWS correspond to the same
value of the conformal dimensiom* of the two corresponding, +1 primary fields.

Thus, while the pseudofermion scattering controls the model spectral properties at all energy
scales[14], in the limit of low energy considered in this paper the pseudofermion operators
are closely related to the conformal-field theory operators and fields. This reveals that rather
than corresponding to the original electrons, the conformal-field theory spectrum and operators
correspond to the low-energy limit of the general pseudofermion description.

5. Concluding remarks

In this paper we have shown that in the limit of low energy the general finite-energy spectral-
function expressions derived in Refd.4,15] by means of the PDT fully recover the TLL
universal expressions of correlation and spectral functions. Importantly, we were able to de-
rive explicit expressions for the pre-factgrs, Eq.(50), of all terms of the asymptotic expansion
(52) for the correlation functions of the 1D Hubbard model. Furthermore, we have shown that
the form of these pre-factors is universal for all correlation functions.

Our results have also clarified the relation of the low-energy TLL behavior to the general
scattering mechanisms which control the model exotic spectral properties at all energy scales.
Such a relation was used in the description of the effects behind the qualitative difference in the
momentum and energy dependence of the low-energy and finite-energy parts of important singu-
lar features of the general spectral functions given in(By.The low-energy connection of the
conformal-field primary fields and Virasoro algebra generators to the pseudofermion description
was also clarified.

While the studies of this paper considered the 1D Hubbard model, which describes success-
fully some of the exotic properties observed in low-dimensional mateidld 6-18,49] our
results are of general nature for many integrable interacting proltes(3] and therefore have
wide applicability. Such results provide a broader understanding of the low-energy properties of
carbon nanotubgg,5], ballistic wires[6], quasi-1D conductor§/,8], and interacting ultracold
fermionic atoms in 1D optical latticd85,37] Indeed, our results relate these properties to the
general scattering processes of the objects whose occupancy configurations describe the exotic
guantum phases of matter corresponding to different energy scales of quasi-1D materials and
systems. This is confirmed for finite energies in R¢4,16], where the general PDT weight
distributions[14,15] are shown to describe the photoemission features of quasi-1D compounds
for the whole finite-energy band width, whereas the TLL universal behavior was observed in
guasi-1D materials and systems whose low-energy phase is mptabi; as mentioned in Sec-
tion 1.
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Appendix A. The ¢ and s two-pseudofer mion phase shifts and Fermi point shifts

Here we define the two-pseudofermion phase shiffs,./ (g, ¢’) on the right-hand side of
Egs. (15) and (22)for the scattering part of the overall phase shift at bare-momentum
Eq.(16). Furthermore, we show that the low-energy expres&énof the square of the four,
canonical-momenturfermi pointsin units of 2r/L equals that of the conformal dimension of
the conformal-field theory foug, : primary fields used in the studies of Reffi85-29,34] We
start by the definition of the two-pseudofermion phase shifts. These quantities can be expressed
as,

411.A%(q) 4t1A2/(q/)> ol — s (A1)

v ’ U
wheren @, . (r, ') is the corresponding rapidity two-pseudofermion phase shift defined below
and

ﬂ(paa’(Qv 6]/) = nq;a,oz’(

%) = sink%(g), (A2)

k%), andA?(q) are ground-state rapidity functiof0]. Those are single-valued functions of
the bare-momentump. Thus, they can be given in terms of their inverse functions, which are the
functionsq?(k) andg2(A) = ¢% (A), respectively, defined in Eq. (A.1) of RéL4].

The rapidity two-pseudofermion phase shift®,, (r, ') on the right-hand side of E¢A.1)
are particular cases of the corresponding general PDT rapidity two-pseudofermion phase shifts.
In spite of a different notation for thev andsv’ branches of Refd14,15,21] such that =
y andv’ = y + 1, respectively, the general integral equations which define the rapidity two-
pseudofermion phase shiftg,, . (r,7') are those given in Egs. (B30)—(B40) of R§8].
While the phase shifta @, (r, r’) considered here refer to the two= c, s pseudofermion
branches whose occupancy configurations describe the low-energy eigenstates, the phase shift
d_jav,a’v/(rv r") refer to all the pseudofermion branches. From direct use of the general system
of coupled integral equations which defines the PDT two-pseudofermion phase shifts, we find
that the phase shifts @, (r, r’) involved in our low-energy study are uniquely defined by the
following integral equations

0

_ , r—r’ 1 f , arctargr’” —r’)
n@ss(r,r):al’ctaI( 2 )—;/dr m

0

0
Ty

+ / dr" G@r,r"Nn dg (r", ), (A.3)

.



258 J.M.P. Carmelo et al. / Nuclear Physics B 737 [FS] (2006) 237—260

0

7 Py (r", 1)

Bos(r, 1y = —arctarr — )+ = [ arr FET) (A.4)
TP (r, 1) = r—r - r Tr o2 .
0 |
7Py (r,r') = —arctanr —r’) + / dr" G@r, ¥ ds. (", 1), (A.5)
—rf
and
ry _
= 1 7T®sc(r//s r/)
TPec(r,r') = - / d””mo (A.6)

0

In the above equations the function argt@ncorresponds to the branch such that/2 <
arctan(y) < +r/2, the kernelG (r, ') is given by

0
c

o Al 2 1
6oy = 2n[1+[(r—r'>/2]2 b /0 a [1+(r—r/’)21[1+(r/—r")2]}’ (A7)

—rg

r

and the integration limiting values read
r?: 4tlsinQ’ r‘?z 4ti
U U
where QO = k%2kr) and B = A?(k”) are the parameters appearing in the expressions of
Ref. [12]. They are such thaj®(+Q) = +2k and ¢°(£B) = +k |, their value being self-
consistently defined by the solution of the relations given in Eq. (A.5) of [Réf.

Finally, let us confirm that the low-energy limit of the square of the shift in the value of the
«, t canonical-momenturfrermi pointgiven in Eq.(25) is indeed the conformal dimension of
thew, « primary field. To reach such a goal, we start by noting that combination of(Eg)sand
(A.1) reveals that the parameters defined in @) can forj = 1 be expressed as

(A.8)

s

£l = Quw (rg), a,a =c,s, (A.9)
where the functiof2,, (r) is given by
Qo (r) =80 + Z By (r,r0), o =c,s. (A.10)
(=+1

Based on Egs(A.3)-(A.7), it is straightforward to confirm that the functions defined by
Eq. (A.10) obey the following integral equations:

0

Qi) =1+ / dr”" G@r,r" 2, ("), (A.12)

1 Q")
2cs) = — dr’" ————— A.l12
) b / ’ 14+ (r —r")2 ( )
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0
Tg

1
Q4c(r) = ;[arctar(r +r0) —arctar(r — r0)] + / dr” G(r,r") 2., (A.13)
*719
and
rO
1 Q5c(r")
Qec(r) =1+ - / dr” [T (A.14)

0

From analysis of the form of the kernel function given in E@s.7), one straightforwardly
finds that Eqs(A.10)—(A.14)are equivalent to those that define the entries of the conformal-field
theory dressed charge matrix of RE#5] and the transposition of that of Ef£8]. Thus, this
shows that the four paramete§ro§x, given in(A.9) are indeed the entries of these matrices.

Finally, if one uses similar procedures for the four parame&l;%yrs one finds that they are the
entries of the transposition of the inverse of the conformal-field theory dressed charge matrix of
Ref.[25] and the inverse of that of E{R8].

The quantity 2}, given in Eq.(25) has the same expression as the conformal dimension of
thea, « primary field, provided that the four parametéﬁ;, (and four parametergga,) are the
entries of the conformal-field theory dressed charge matrix (and the entries of the transposition of
the inverse of the conformal-field theory dressed charge matrix). Thus, we conclude that such a
guantity, which was obtained by considering the low-energy limit of the general functional given
in Eq.(24), is indeed the conformal dimension of thg primary field of the 1D Hubbard model
a conformal-field theory.
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