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ABSTRACT 
 
The paper describes the on-line dynamic security assessment functions developed within CARE. These functions are based 
exclusively on the application of machine learning techniques. A description of the problem and the data set generation 
procedure for the Crete island power system are included. Comparative results regarding performances of Decision Trees, 
Kernel Regression Trees and Neural Networks are presented and discussed. 
 
1. INTRODUCTION 

In isolated networks where there is a large penetration of wind power production, system security and control of frequency 
are major problems in the operation of the system. A common aspect to these problems is the requirement to ensure that 
sufficient reserve capacity exists within the system to compensate for sudden loss of generation (Kundur and Morison, 
1997). 

Fast wind power changes and very high wind speeds resulting in sudden loss of wind generator production can cause 
frequency excursions and dynamically unstable situations (Hatziargyriou, Karapidakis and Hatzifotis, 1998). Moreover, 
frequency oscillations might easily trigger the under-frequency protection relays of the wind parks, thus causing further 
imbalance in the system generation/load. The dynamic behaviour performance of these systems depends not only on the total 
load and the size of the conventional units in operation, but also on their location and the response of the available spinning 
reserve (Hatziargyriou et al, 2000). 

In order to guard isolated power systems against the consequences of these disturbances it is necessary to keep acceptable 
security levels in the network. On-line dynamic security assessment and monitoring are very important functions to assure 
these requirements. Such security functions have been developed and integrated within the CARE control system. 

Conventional dynamic security evaluation is, however, a large time consuming task and therefore unsuitable for on-line 
purposes. Application of machine learning techniques is the approach that enables to cope with the time computational 
reduction needs. 

This paper describes the application of machine learning techniques to the on-line dynamic security assessment of the Crete 
island power system, considering the large degree of wind power production levels foreseen for a near future. Advanced 
inductive inference and statistical methods as well as artificial neural networks were used to provide on-line dynamic 
security assessment and security monitoring of these systems.  

The security evaluation structures that were obtained provide a classification on dynamic security when Decision Trees and 
Regression Trees are used while an emulation of the security index is provided when Kernel Regression Trees and Neural 
Networks are used. The availability of the degree of security, (which in this case is evaluated by predicting the expected 
minimum value of system frequency and the maximum rate of frequency change for a selected disturbance) is also most 
important as it helps evaluating the robustness of the system.  

In the CARE software, security evaluation functions can be activated “on call” by the operator, namely security monitoring. 
These functions provide the security robustness information needed by the CARE operation algorithm, as described by 
Hatziargyriou et al, 2000. 

2. THE STUDY CASE SYSTEM 

The development of these procedures was performed over a realistic model of the power system of Crete, projected for the 
year 2000. As mentioned by Hatziargyriou et al., 2000, all WPs, with only a few exceptions, will be installed at the eastern 
part of the island of Crete, that presents the most favorable wind conditions. As a result, in case of faults on some particular 
lines the majority of the wind parks will be disconnected. Furthermore, the protections of the WTs might be activated in case 



of frequency variations, decreasing additionally the dynamic stability of the system. This might happen in case of frequency 
variations caused by wind fluctuations, conventional unit outages, faults or other disturbing conditions.  

Extensive simulations on the power system model have been performed using EUROSTAG software in order to identify and 
understand the problems from a physical point a view. From these studies it was possible to conclude that for the most 
common wind power variations, the system remains satisfactorily stable, if sufficient spinning reserve is provided. On the 
other hand for various short-circuits and conventional unit outages, the system frequency undergoes fast changes and might 
reach very low values. In any case, the dynamic security of the system depends critically on the amount of spinning reserve 
provided by the conventional machines and the response of their speed governors.  

As an example, Figure 1 shows the change of the system frequency in two different operating conditions, following the 
disconnection of three wind parks producing approximately 30 MW. First, the system is considered to operate with 28% of 
wind power, equal to 46 MW and with the fast thermal units, such as the Diesel machines and gas turbines to provide the 
spinning reserve (fast spinning reserve). The lower value of the frequency is 49.31Hz. Secondly, the system is again 
considered to operate with the same high penetration of wind power but with the slower machines, such as the steam turbines 
to cover mainly the spinning reserve plus some Diesel machines (slow spinning reserve). In this case, the lower frequency 
value, which is equal to 49.04Hz, will cause the operation of the protection devices of the rest of the wind parks. The total 
wind power disconnection may lead the system to collapse. 

3. APPLICATION OF MACHINE LEARNING TECHNIQUES 

The application of machine learning techniques in the field of dynamic security assessment requires a four step approach, 

Figure 1. Frequency change. 
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Figure 2 – Main steps to apply Machine Learning to perform dynamic security assessment 



that includes: 
1- the identification of the security problem, where a physical understanding of the phenomena is performed in order to 

help selecting attributes that characterize the operating conditions relatively to the security problem; 
2- Generation of a data set with information regarding the behavior of the system in several operating conditions;  
3- Design of security evaluation structures that afterwards will be used on-line providing to the operators information on 

the system robustness for the disturbances under consideration; Decision Trees (DTs), Regression Trees (RT), Kernel 
Regression Trees (KRTs) and Artificial Neural Networks (ANN) were used in a competitive way in this work; 

4- Performance evaluation, necessary to assess the quality of the security evaluation structures obtained in step 4. 

Figure 2 describes schematically the procedure to be followed when dealing with these techniques. 

 

4. CREATION OF THE LEARNING & TEST SETS 

The application of machine learning techniques are based on previous knowledge about the behaviour of the system, 
obtained from a large number of off-line dynamic simulations that define a data set. This data set is afterwards split in two 
sub-sets: a learning set (LS) and a testing set (TS). The learning set is required to extract the knowledge needed to derive 
automatic security evaluation structures. It consists of a large number of operating points (Ops) covering all possible states 
of the power system under study in order to ensure its representativity. Each OP is characterised by a vector of pre-
disturbance steady-state variables, called attributes, that can be either directly measured (powers, voltages etc.) or indirectly 
calculated quantities (wind penetration, spinning reserve etc.). The quality of the selected attributes and the representativity 
of the LS are very important for the successful implementation of the automatic structures. 

For the creation of the global data set, a large number of initial operating points (Ops) are obtained by varying randomly the 
load for each load busbar, the wind power for each wind park and the wind margin. These variables are assumed to follow 
normal distributions around three operating profiles: 

1. Low-load operating condition with a total load PL =100MW. 
2. Medium-load operating condition with PL =180MW. 
3. High-load operating condition with PL =280MW. 

For each one of the 11 load busbars and each one of the 4 aggregate wind parks in operation, a perturbation of 
approximately ±10% is applied around each one of the above operating profiles. A dispatch algorithm approximating actual 
operating practices followed in the control system of Crete is applied next in order to complete the pre-disturbance OPs. For 
a given load demand PL and wind power PW, the total conventional generation PC is given by 

PC = PL – PW   (1) 

and is after dispatched to the units in operation, depending on their type and their nominal power.  

For each one of the produced OPs a number of possible disturbances has been simulated, where EUROSTAG was used to 
obtain the system dynamic behaviour. Two major disturbances have been finally selected after studying extensively the 
behavior of the network for several disturbances. These are: 

a) outage of a major gas turbine 

b) three phase short-circuit at a critical bus near the Wind Parks.  

In fact, a unit disconnection is a frequent event and a tree-phase fault, although rare, is a severe event that can occur during 
stormy conditions. 

For each OP the minimum value of system frequency and the maximal rate of frequency change are recorded. Both of these 
parameters are checked against the values that activate the under-frequency relays that protect the WPs, and the OPs are then 
labelled as secure/insecure. 

The list of activated attributes, that characterise each OP, includes namely: 

• Active and reactive power of all power sources. 

• Spinning reserve of the conventional units. 

• Wind power penetration, expressed as the ration of the total wind power to the load of the system. 

• Wind margin, expressed as the ratio of the conventional units spinning reserve to the total wind power. 

• Active and reactive loads. 

The variable used to verify security is the minimum frequency the system experiments after the disturbance. 

 The security criteria used was 
If  fmin <= 49 Hz then the system is insecure  



      else is secure 

Table 1 - List of selected Attributes 
AT ID Description units   symbol
AT23 Wind Park 1 MW -
AT24 Wind Park 2 MW -
AT25 Wind Park 3 MW -
AT26 Wind Park 4 MW -
AT27 Wind PowerTOTAL MW ΣPW

AT28 Wind Q.TOTAL MVAr -
AT37 Power Gen.1 MW Pg1
AT38 Spinning Res.1 MW SR1
AT39 Power Gen.2 MW -
AT40 Spinning Res.2 MW -
AT41 Power Gen.3 MW Pg3
AT42 Spinning Res.3 MW -
AT43 Power Gen.4 MW -
AT44 Spinning Res.4 MW -
AT45 Wind Penetration % WP
AT46 Wind Margin - -
AT47 Active Power MW -
AT49 Reactive Power MVAr -
AT51 Conv. Gen. MW ΣPC

AT52 Total Active Load MW ΣPL

AT55 Total React. Load MVAr -
AT57 Capacitors MVAr -

TOTAL

 
Using the approach described in this section, 2765 acceptable operating points have been obtained, which are divided in the 
two sets mentioned before, (by sending 2 OPs to the LS and 1 OP to the TS). The LS comprises 1844 OPs and the TS used 
for testing the developed classifiers comprises 921 OPs. In this way, the capability of the security evaluation structures to 
evaluate correctly the security of unforeseen states can be estimated on a more objective basis. 

5. DESIGN OF SECURITY EVALUATION STRUCTURES 

5.1 Decision Trees 

The decision tree methodology is a non-parametric learning technique able to produce classifiers about a given problem in 
order to deduce information for new unobserved cases. The construction of a DT starts at the root node with the whole LS of 
pre-classified OPs. These OPs are analysed in order to select the test T that splits them “optimally” into a number of most 
“purified” subsets. For the sake of simplicity, a two-class partition is considered. The test T is defined as:  

T: Ai < t                  (2) 

where t is the optimal threshold value of the chosen attribute Ai.  

The selection of the optimal test is based on maximizing the additional information gained through the test. The selected test 
is applied to the LS of the node splitting it into two subsets, corresponding to the two successor nodes. The optimal splitting 
rule is applied recursively to build the corresponding subtrees. In order to detect if one node is terminal, i.e. “sufficiently” 
class pure, the stop splitting rule is used, which checks whether the entropy of the node is lower than a present minimum 
value. If it is, the node is declared a leaf, otherwise a test T is sought to further split the node. If the node cannot be further 
split in statistically significant way, it is termed a deadend, carrying the two class probabilities estimated on the basis of the 
corresponding OPs subset. A more detailed technical description of the approach followed is described by Hatziargyriou, 
Papathanassiou and Papadopoulos, 1995. 

5.2 Kernel Regression Trees 

The Kernel Regression Tree (KRT) is an hybrid algorithm that integrates recursive partitioning (regression trees – RT) with 
kernel regression (KR), dealing with continuous goal variables (i.e. regression problems).  

Like in decision trees, the design of a RT consists in the extraction of interpretable security rules. Kernel regression models 
provide quite opaque models of the data, but, on the other hand, are able to approximate highly non-linear functions. By 
integrating this regression procedure in the tree leafs, we can obtain a model that keeps the efficiency and interpretability of 
a RT, but with a better accuracy, by increasing the non-linearity of the functions used at the leaf nodes.  

The regression problem consists in obtaining a functional model that relates the output y with the inputs a1, a2, ...,an (OP 
attributes), where the output y (denominate as goal variable) is, in this case, a numerical value of any electrical security 
index of the power system. For the problem under analysis the security index adopted is the minimum frequency - fmin (Hz). 
The design of a KRT involves two stages: 

• Determination of the regression tree; 



• Definition of the regression models in the leafs. 

Building the RT 

The learning of a RT consists in the decomposition of the attribute hyperspace into a hierarchy of regions. In our application, 
it consists in the decomposition of the LS into regions where the severity/security of a disturbance (y value) is as constant as 
possible. The main practical difference between decision and regression trees, is that the latter determines automatically the 
appropriate numerical value of the severity into subintervals, whereas the former merely reproduce a predefined 
classification. 

Starting with the root node (and exploiting the learning set data), the growing of the RT is made by successive splitting their 
nodes. The splitting rule of a node is defined by a dichotomic test as described in (2). 

The split of each node, i.e. the optimal splitting test, is determined so as to reduce as much as possible the MSE (Mean 
Square Error) of  y. In other words, the best split is the one that provides a maximum amount of information on the security 
index (y). Thus, the optimal split s at each node n is the one that maximizes: 

)3()y(MSEP)y(MSEP)y(MSE)y(MSE nRRnLLnsn −−=∆ where: 

− PL and PR is the proportional number of OPs at the left and right subsets resulting from the split; 

− MSE(y)n is the mean square error at node n; 

− MSE(y)nL and MSE(y)nR are the mean square error at the left and right subsets. 

This splitting rule is the one described by Breiman et al. (1984) and employed in CART. Once the optimal test is found, the 
next step consists in creating two successor nodes, corresponding to the two possible instances of the test  

}   (){ and  }   (){ kkkk uaua ≤> . 

The procedure continues splitting the created successor nodes, until a stop splitting criterion is met. This decides whether a 
node should indeed be further developed or not. There are the two possible stop splitting rules: 

- Rule 1: It is not possible to reduce the MSE further in a statistically significant way; 

- Rule 2: The variance has been sufficiently reduced; 

When, in a node, one of these rules is verified it becomes a terminal node, i.e. a leaf node. Stop splitting at leaf nodes 
prevents the tree from overfitting the learning set, and hence allows the method to reach a better compromise between 
accuracy and simplicity. 

Deriving Kernel regressors 
To obtain a KRT structure, a kernel regression model is developed to make prediction at the tree leafs. Given a new unseen 
operating point Q, a prediction for its security index, y(Q), is obtained by applying a regression model to the learning 
samples stored in the RT leaf that verifies the Q operating conditions. Kernel Regression models make prediction by a 
weighted average of the response y (fmin in our case)of the form: 
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where )D(Q,OPi - normalized distance function measured in the attributes hyperspace; h - bandwidth value; [ ] [ ]h/xKxK h = , 

being (.)K  the Kernel function. The prediction is obtained using the samples (also denominated by neighbors) that are 
"most similar" to Q, being this similarity measured by the distance function. The Kernel function estimates the weight of 
each neighbor, giving more weight to neighbors that are nearest to Q. The design of the kernel regression model includes the 
choice of the distance function, the bandwidth value, and the kernel function. In the implemented model it was used an 

Euclidean distance, a k-nearest neighbor (KNN) rule to define the bandwidth, and a Gaussian
2de)d(K −= to define the 

kernel function. KNN method sets the bandwidth value h as the distance D to the k-nearest neighbor of Q. It also sets that 
only the k-nearest neighbors will be used to make prediction. 

Kernel Regression Trees are usually characterized by a large complexity which may decrease its explanation capabilities, 
namely when used for understanding the reasons of some phenomena. For that purpose pruning techniques have been used, 
as described by Peças Lopes and Vasconcelos, 2000, to derive simpler structures that do not compromise, however, the 
accuracy of the security evaluation structures. 



It is important to mention that according to the final purpose for which the KRT is aiming (security classification, index 
prediction or phenomena interpretation) different KRT can be obtained.  

5.3 Artificial Neural Networks 

For the application of ANN techniques, two multi-layer ANNs were trained (one for each disturbance) using an adaptive 
back propagation algorithm (a description of the applied algorithm is provided by Miranda et al., 1995). For the two ANNs 
the following structure was selected (see Figure 3): one input layer with 22 attributes as inputs, one hidden layer with 8 
neurons and one output layer with the two security indices as outputs. The 22 inputs are the attributes presented in table 1.  

ANN

22-8-2

fmin

df/dt

.

.

.

input 1

input 22

 
Figure 3 – Structure selected for training the ANNs 

6. NUMERICAL RESULTS 

In any machine learning approach the quality of the results needs to be evaluated through classification errors, (global 
classification error, false alarm and missed alarm errors) relatively to a priori classes or by quantifying mismatches 
relatively to the target output values y, in this case the minimum frequency - fmin. These indicators are namely the mean 
relative error, the mean absolute error and the mean square error. The performance evaluation, in terms of classification, for 
both disturbances are shown in the next tables for the DT and RT approaches. 

Table 2 - Performance evaluation with DT and RT 

Disturbance ( Machine-Loss ) 

DT                                    KRT 

Global Error 1.84% 0,33% 

False Alarm 1,31% 0,00% 

Missed 
Alarm 

4,4% 15,0% 

Table 3 - Performance evaluation with DT and RT 

Disturbance ( Short-Circuit ) 

DT                                      KRT 

Global Error 2.17% 2,39% 

False Alarm 1,87% 1,83% 

Missed 
Alarm 

2,58% 3,22% 

Figures 4 and 5 describe the DT and RT designed for the Short-circuit disturbance. In these figures, the total number of 
operating points in the learning set belonging to this node are presented aside the node number. The contents of the box 
representing each node are respectively: 

• For DT - the ratio of the secure operating points over the total number of LS OPs belonging to the node and the splitting 
test for non terminal nodes; Leaf nodes with a safety ratio larger than 0,5 correspond to secure nodes; 

• For RT – the mean value of the security index (Hz) and the variance of the index regarding the OPs belonging to that 
node (for terminal nodes); For non-terminal nodes the splitting test is included only. 

In Regression Trees one can assigned a given degree of security to each leaf accordingly to the mean value of the OPs that 
belong to the node. 

 



For the prediction of the minimum frequency value associated to each OP, kernel regressors, that employ expression (4), 
were used exploiting the data available at each terminal node of the RT, as well as ANNs with the architecture of figure 3.  

KRTs demonstrated to be able to predict the security index with good accuracy.  Figures 6 and 7 enable to compare the 
performance of ANNs and KRT in classification and prediction of security for the 2 disturbances considered. 

Extensive results from the application of these procedures in the Crete network and in the Terceira island system can be 
found in the final CARE report, 1999. 

From the results obtained with the three approaches one can derive the following main conclusions: 

• Both DTs and KRTs were capable of selecting the same attributes as the most important ones (although sometimes in a 
different order); 

• When used for security classification all the 3 approaches lead to small classification errors, although in the cases where 
not enough information is available, ANN and KRT show to performe worse. 

• KRTs have the advantage of producing simultaneously a classification structure, capable of being interpreted as 
described in rules of figure 5, and giving the degree of robustness of the system through the predicted value of fmin; 

• All the security evaluation structures are able to provide information on the system security in a very fast way; However, 
if KRTs (namely the ones obtained after pruning) are used for prediction purposes they demand more time in the 
prediction task than ANNs or DTs. 

• The DTs present, in general, simpler classification structures, which makes easier any interpretation of the phenomena 
and the identification of the influence of the relevant parameters. 

The security evaluation structures were integrated in the CARE software as modules, activated “on call” by the operators. 
Each module has its specificity, in terms of computational needs, and specially KRT demand that the learning set operating 
points should be kept in the system data base, to be exploited during the operation stages. 

7. CONCLUSIONS 

This paper described the approach developed to deal with the problem of evaluating, in a fast way, dynamic security of 
isolated systems with large shares of with power integration. Evaluation structures based on the application of machine 
learning techniques were successfully used for that purpose. 

These structures were integrated in the dynamic security assessment module of the advanced control system of the island of 
Crete, helping to identify the operating conditions and parameters, namely wind power penetration, that lead to a less robust 
operation of the system. 

 

0.33%
(3 OPs)

0.22%
(2 OPs) 0% 0%

15%
(3 OPs) 10%

(2 OPs)

0%

5%

10%

15%

20%

Global False Alarm Missed Alarm

Classification Errors (%)

0.01560.0215

0.0405 0.0432

0.00

0.01

0.02

0.03

0.04

0.05

MAE RMSE

KRT (43 Nodes; K=5)

ANN

Regression Errors (Hz)

TS
Number of Insecure OPs: 20
Number of Secure OPs: 901

TS
Number of Insecure OPs: 20
Number of Secure OPs: 901

Figure 6 – TS performance evaluation results for Crete (y,Crete: fmin due to machine loss)

0.0289
0.0330

0.1127

0.0654

0.00

0.02

0.04

0.06

0.08

0.10

0.12

MAE RMSE

KRT (23 Nodes; K=5)

ANN

Regression Errors (Hz)

TS
Number of Insecure OPs: 375
Number of Secure OPs: 546

TS
Number of Insecure OPs: 375
Number of Secure OPs: 546

2.39%

(22 OPs)

3.8%
(35 OPs)

1.83%

(10 OPs)

4.4%

(24 OPs) 3.2%

(12 OPs) 2.93%
(11 OP)

0%

1%

2%

3%

4%

5%

6%

Global False Alarm Missed Alarm

Classification Errors (%)

Figure 7 – TS performance evaluation results for Crete (y,Crete: fmin due to short circuit)



REFERENCES 

P. Kundur, G.K. Morison, “A Review of Definitions and Classification of Stability Problems in Today’s Power Systems”, 
Panel Session on Stability  Terms and Definitions, IEEE PES Meeting, Feb. 2-6, 1997, New York. 

N. Hatziargyriou, E. Karapidakis, D. Hatzifotis, “Frequency Stability of Power Systems in large Islands with high Wind 
Power Penetration”, Bulk Power Systems Dynamics and Control Symposium – IV Restructuring, Santorini, August 24-28, 
1998. 
N. Hatziargyriou, G. Contaxis, M. Papadopoulos, B. Papadias, J.A. Peças Lopes, M. Matos, G. Kariniotakis, E. Nogaret, J. 
Halliday,  G. Dutton, P. Dokopoulos, A. Bakirtzis, A. Androutsos, J. Stefanakis, A. Gigantidou, “Advanced Control Advice 
for Power Systems with Large-Scale Integration of Renewable Energy Sources – The CARE System”, Companion paper in 
this issue of Wind Engineering, 2000. 

N. Hatziargyriou, S. Papathanassiou, M. Papadopoulos,  “Decision Trees for Fast Security Assessment  of Autonomous 
Power Systems with large Penetration from Renewables”, IEEE Transactions on Energy Conversion, Vol. 10, Nr. 2, June 
1995. 

L. Breiman, et.al, “Classification and Regression Trees”, Wadsworth International, 1984. 

J. Peças Lopes, M. H. Vasconcelos, “On-Line Dynamic Security Assessment Based on Kernel Regression Trees”, Paper to 
be presented to the IEEE Winter Meeting 2000, Singapore, January 2000. 

V. Miranda, J. Fidalgo, J. Peças Lopes and L. Almeida, "Real Time Preventive Actions for Transient Stability Enhancement 
with a Hybrid Neural Network - Optimization Approach", Trans. on IEEE, PWRS, Vol. 10, May 1995. 

 “CARE: Advanced Control Advice for power systems with large scale integration of Renewable Energy sources”, contract 
JOR3-CT96-0119, Final Report, August 1999. 

 

Acknowledgment:  

The authors would like to thank the EU for funding project JOR3-CT96-0119. They are also grateful to all the other 
members of the project for their contributions. 


