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ABSTRACT

The paper describes the on-line dynamic securdggsssnent functions developed within CARE. Thesetions are based
exclusively on the application of machine learnteghniques. A description of the problem and th&a d&t generation
procedure for the Crete island power system arneidied. Comparative results regarding performanéd3egision Trees,
Kernel Regression Trees and Neural Networks argepted and discussed.

1. INTRODUCTION

In isolated networks where there is a large petietraf wind power production, system security aodtrol of frequency
are major problems in the operation of the syst&maommon aspect to these problems is the requiretoeensure that
sufficient reserve capacity exists within the syst® compensate for sudden loss of generation (Kuadd Morison,
1997).

Fast wind power changes and very high wind speesdslting in sudden loss of wind generator productian cause
frequency excursions and dynamically unstable s@ina (Hatziargyriou, Karapidakis and HatzifotiQ98B). Moreover,
frequency oscillations might easily trigger the enftequency protection relays of the wind parksyst causing further
imbalance in the system generation/load. The dyndelhaviour performance of these systems dependsityoon the total
load and the size of the conventional units in apen, but also on their location and the respaidbe available spinning
reserve (Hatziargyriou et al, 2000).

In order to guard isolated power systems agaimsttnsequences of these disturbances it is negdsskeep acceptable
security levels in the network. On-line dynamicis@y assessment and monitoring are very imporfiamttions to assure
these requirements. Such security functions haea Heveloped and integrated within the CARE corgystem.

Conventional dynamic security evaluation is, howewelarge time consuming task and therefore uaisl@tfor on-line
purposes. Application of machine learning technigigethe approach that enables to cope with the ttomputational
reduction needs.

This paper describes the application of machineirg techniques to the on-line dynamic securiseasment of the Crete
island power system, considering the large degfesirad power production levels foreseen for a niedwmre. Advanced
inductive inference and statistical methods as wsllartificial neural networks were used to provadeline dynamic
security assessment and security monitoring oketkgstems.

The security evaluation structures that were obthiprovide a classification on dynamic security mwBecision Trees and
Regression Trees are used while an emulation o$eharity index is provided when Kernel RegresSiozes and Neural
Networks are used. The availability of the degrésezurity, (which in this case is evaluated bydprtng the expected
minimum value of system frequency and the maximate of frequency change for a selected disturbaiscalso most
important as it helps evaluating the robustnegh@tystem.

In the CARE software, security evaluation functiaas be activated “on call” by the operator, nansglgurity monitoring.
These functions provide the security robustnessrimdtion needed by the CARE operation algorithmdescribed by
Hatziargyriou et al, 2000.

2. THE STUDY CASE SYSTEM

The development of these procedures was performedeaorealistic model of the power system of Crptejected for the

year 2000. As mentioned by Hatziargyriou et alQ®all WPs, with only a few exceptions, will bestialled at the eastern
part of the island of Crete, that presents the fasirable wind conditions. As a result, in casdanfits on some particular
lines the majority of the wind parks will be disemtted. Furthermore, the protections of the WTsirig activated in case
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Figure 1. Frequency change.

of frequency variations, decreasing additionally tlynamic stability of the system. This might happecase of frequency
variations caused by wind fluctuations, conventiemét outages, faults or other disturbing condito

Extensive simulations on the power system modet eaen performed using EUROSTAG software in ordédentify and
understand the problems from a physical point avvierom these studies it was possible to conclié¢ for the most
common wind power variations, the system remaitisfaatorily stable, if sufficient spinning reserieprovided. On the
other hand for various short-circuits and converalainit outages, the system frequency undergssifeanges and might
reach very low values. In any case, the dynamiargtgmf the system depends critically on the antafrspinning reserve
provided by the conventional machines and the mrespof their speed governors.

As an example, Figure 1 shows the change of theersyfrequency in two different operating conditiofdlowing the
disconnection of three wind parks producing apprately 30 MW. First, the system is considered terafe with 28% of
wind power, equal to 46 MW and with the fast thdromts, such as the Diesel machines and gas eskim provide the
spinning reserve (fast spinning reserve). The lovadue of the frequency is 49.31Hz. Secondly, thstesn is again
considered to operate with the same high penetrafievind power but with the slower machines, sastithe steam turbines
to cover mainly the spinning reserve plus some @iggmchines (slow spinning reserve). In this céise lower frequency
value, which is equal to 49.04Hz, will cause theragion of the protection devices of the rest efwind parks. The total
wind power disconnection may lead the system ttapsé.

3. APPLICATION OF MACHINE LEARNING TECHNIQUES
The application of machine learning techniqueshim field of dynamic security assessment requirtsuastep approach,
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Figure 2 — Main steps to apply Machine Learning to perfalynamic security assessment



that includes:

1- the identification of the security problem, wher@laysical understanding of the phenomena is peddrin order to
help selecting attributes that characterize theaipgy conditions relatively to the security prable

2- Generation of a data set with information regardimgbehavior of the system in several operatimglitons;

3- Design of security evaluation structures that aféeds will be used on-line providing to the operatmformation on
the system robustness for the disturbances undesidaration; Decision Trees (DTs), Regression T(Bd9, Kernel
Regression Trees (KRTs) and Artificial Neural Netkgo(ANN) were used in a competitive way in thisrigo

4- Performance evaluation, necessary to assess thigy @figdhe security evaluation structures obtaimedtep 4.

Figure 2 describes schematically the procedure tiollowed when dealing with these techniques.

4. CREATION OF THE LEARNING & TEST SETS

The application of machine learning techniques lzaeed on previous knowledge about the behaviouhefsystem,
obtained from a large number of off-line dynamimsiations that define a data set. This data saftéswards split in two
sub-sets: a learning set (LS) and a testing sex. (& learning set is required to extract the Kedge needed to derive
automatic security evaluation structures. It cdesig a large number of operating points (Ops) dogeall possible states
of the power system under study in order to en#tsreepresentativity. Each OP is characterised byector of pre-
disturbance steady-state variables, called atg#yuhat can be either directly measured (poweltages etc.) or indirectly
calculated quantities (wind penetration, spinniegerve etc.). The quality of the selected attribated the representativity
of the LS are very important for the successfullengentation of the automatic structures.

For the creation of the global data set, a largalver of initial operating points (Ops) are obtaitgdvarying randomly the
load for each load busbar, the wind power for esicld park and the wind margin. These variablesaasaimed to follow
normal distributions around three operating prefile

1. Low-load operating condition with a total load £L00MW.

2. Medium-load operating condition with B180MW.

3. High-load operating condition with B280MW.

For each one of the 11 load busbars and each ortbeoft aggregate wind parks in operation, a peatiob of
approximatelyt10% is applied around each one of the above opegratiofiles. A dispatch algorithm approximatingueadt
operating practices followed in the control systnCrete is applied next in order to complete tre-glisturbance OPs. For
a given load demand Rind wind power [, the total conventional generatiog iB given by

Pc=R - Ry (1)
and is after dispatched to the units in operatiepending on their type and their nominal power.

For each one of the produced OPs a number of pegdisturbances has been simulated, where EUROSWASused to
obtain the system dynamic behaviour. Two majorudistnces have been finally selected after studgitgnsively the
behavior of the network for several disturbancdsse are:

a) outage of a major gas turbine
b) three phase short-circuit at a critical bus neatMihind Parks.

In fact, a unit disconnection is a frequent evertt a tree-phase fault, although rare, is a sewaetehat can occur during
stormy conditions.

For each OP the minimum value of system frequencdythe maximal rate of frequency change are recbreth of these
parameters are checked against the values thaatecthe under-frequency relays that protect thes VRd the OPs are then
labelled as securefinsecure.

The list of activated attributes, that charactegigeh OP, includes namely:

» Active and reactive power of all power sources.

*  Spinning reserve of the conventional units.

* Wind power penetration, expressed as the ratidheofotal wind power to the load of the system.

e Wind margin, expressed as the ratio of the congeatiunits spinning reserve to the total wind power
* Active and reactive loads.

The variable used to verify security is the minimineguency the system experiments after the diahgé.

The security criteria used was
If fmin <= 49 Hzthen the system is insecure



elseis secure
Table 1 - List of selected Attributes

AT ID Description units symbol
AT23 Wind Park 1 MW -
AT24 Wind Park 2 MW

AT25 Wind Park 3 MW

AT26 Wind Park 4 MW

AT27 Wind Powerrora.  |MW 2Py
AT28 Wind Q.rora MVAr

AT37 Power Gen.1 MW Pgl

AT38 Spinning Res.1 MW SR1
AT39 Power Gen.2 MW -

AT40 Spinning Res.2 MW -
AT41 Power Gen.3 MW Pg3
AT42 Spinning Res.3 |MW -

AT43 Power Gen.4 MW
AT44 Spinning Res.4 MW

AT45 Wind Penetration |% WP
AT46 Wind Margin -
ATA7 Active Power MW

AT49 Reactive Power  |MVAr

AT51 Conv. Gen. tora.  |MW 2Pc
AT52 Total Active Load MW 2P,
AT55 Total React. Load |MVAr

AT57 Capacitors MVAr

Using the approach described in this section, 2t&®ptable operating points have been obtainedhvere divided in the
two sets mentioned before, (by sending 2 OPs ta.$hand 1 OP to the TS). The LS comprises 1844 @she TS used
for testing the developed classifiers comprises OPk. In this way, the capability of the securiialeation structures to
evaluate correctly the security of unforeseen stedm be estimated on a more objective basis.

5. DESIGN OF SECURITY EVALUATION STRUCTURES
5.1 Decision Trees

The decision tree methodology is a non-paramegacning technique able to produce classifiers abaiten problem in
order to deduce information for new unobserved aBke construction of a DT starts at the root neitle the whole LS of
pre-classified OPs. These OPs are analysed in todezlect the test T that splits them “optimalipto a number of most
“purified” subsets. For the sake of simplicity véotclass partition is considered. The test T isndef as:

T:A <t (2
where t is the optimal threshold value of the chasttribute A

The selection of the optimal test is based on markng the additional information gained through thst. The selected test
is applied to the LS of the node splitting it imteo subsets, corresponding to the two successasndthe optimal splitting
rule is applied recursively to build the correspiogdsubtrees. In order to detect if one node isviteal, i.e. “sufficiently”
class pure, the stop splitting rule is used, wtdbbcks whether the entropy of the node is lowen #gresent minimum
value. If it is, the node is declared a leaf, othiee a test T is sought to further split the ndéighe node cannot be further
split in statistically significant way, it is termea deadend, carrying the two class probabilitstsrnated on the basis of the
corresponding OPs subset. A more detailed techdiestription of the approach followed is describgdHatziargyriou,
Papathanassiou and Papadopoulos, 1995.

5.2 Kernel Regression Trees

The Kernel Regression Tree (KRT) is an hybrid dtpar that integrates recursive partitioning (regies trees — RT) with
kernel regression (KR), dealing with continuouslg@aiables (i.e. regression problems).

Like in decision trees, the design of a RT consisthie extraction of interpretable security rulésrnel regression models
provide quite opaque models of the data, but, enathher hand, are able to approximate highly noeali functions. By
integrating this regression procedure in the tezds|, we can obtain a model that keeps the effigiand interpretability of
a RT, but with a better accuracy, by increasinghe-linearity of the functions used at the leafle®

The regression problem consists in obtaining atfanal model that relates treutput ywith theinputs a, &, ...,& (OP
attributes), where the outpyt(denominate as goal variable) is, in this caseumerical value of any electrical security
index of the power system. For the problem undatyais the security index adopted is the minimuagfrency - fmin (Hz).
The design of a KRT involves two stages:

» Determination of the regression tree;



» Definition of the regression models in the leafs.

Building the RT

The learning of a RT consists in the decompositibtihe attribute hyperspace into a hierarchy ofaesg In our application,
it consists in the decomposition of the LS intoioeg where the severity/security of a disturbarncea(ue) is as constant as
possible. The main practical difference betweernsitat and regression trees, is that the latterrdetes automatically the
appropriate numerical value of the severity intdoistervals, whereas the former merely reproduceredgdined
classification.

Starting with the root node (and exploiting theriéiag set data), the growing of the RT is made umycessive splitting their
nodes. The splitting rule of a node is defined lalyjchotomic test as described in (2).

The split of each node, i.e. the optimal splittiegt, is determined so as to reduce as much aghleottse MSE (Mean
Square Error) ofy. In other words, the best split is the one thavjgles a maximum amount of information on the siegcur
index {). Thus, the optimal splgat each noda is the one that maximizes:

AMSE(y)sn = MSE(Y), ~LMSE(y)n. ~PRMSE(y)g (3) Where:

- P_ and R is the proportional number of OPs at the left eght subsets resulting from the split;
- MSE(y),is the mean square error at node n;
-  MSE(y),. and MSEY).r are the mean square error at the left and rigigeds.

This splitting rule is the one described by Breimnsaml. (1984) and employed in CART. Once the oalitest is found, the
next step consists in creating two successor hagdegsponding to the two possible instances ofdbe

{ac 0 >u} and{a, () <u,}.

The procedure continues splitting the created ssarenodes, until a stop splitting criterion is n¥tis decides whether a
node should indeed be further developed or notrelaege the two possible stop splitting rules:

- Rule I Itis not possible to reduce the MSE further statistically significant way;
- Rule 2 The variance has been sufficiently reduced;

When, in a node, one of these rules is verifiedeitomes a terminal node, i.e. a leaf node. Stdftisglat leaf nodes
prevents the tree from overfitting the learning, setd hence allows the method to reach a bettepranise between
accuracy and simplicity.

Deriving Kernel regressors

To obtain a KRT structure, a kernel regression rhizddeveloped to make prediction at the tree le@fgen a new unseen
operating pointQ, a prediction for its security indey(Q), is obtained by applying a regression model to |¢a&ning
samples stored in the RT leaf that verifies @@perating conditions. Kernel Regression modelsaradediction by a
weighted average of the respoggémin in our case)of the form:

samples

z Ky[D(Q.0R)|xy,
yQ=—5 4)

samples

PACEED)

where D(Q,0R) - normalized distance function measured in thébaities hyperspacé; - bandwidth valuex,[x] = K[x/ h],
being K(.) the Kernel function. The prediction is obtainedngsthe samples (also denominated risighbor3 that are
"most similar" toQ, being this similarity measured by the distance fiomc The Kernel function estimates the weight of
each neighbor, giving more weight to neighbors #iatnearest tQ. The design of the kernel regression model indutie
choice of the distance function, the bandwidth galand the kernel function. In the implemented rhaideas used an
Euclidean distance, a k-nearest neighbor (KNN) tolelefine the bandwidth, and a Gaussk(z@nl):e'dZto define the

kernel function. KNN method sets the bandwidth gdias the distancP to the k-nearest neighbor @ It also sets that
only the k-nearest neighbors will be used to maikeligtion.

Kernel Regression Trees are usually characteriyed large complexity which may decrease its exglanacapabilities,

namely when used for understanding the reasonsmé phenomena. For that purpose pruning technigaes been used,
as described by Pecas Lopes and Vasconcelos, &D@@rive simpler structures that do not compromisevever, the

accuracy of the security evaluation structures.



It is important to mention that according to theafi purpose for which the KRT is aiming (securitgssification, index
prediction or phenomena interpretation) differeRTKcan be obtained.

5.3 Artificial Neural Networks

For the application of ANN techniques, two multda ANNs were trained (one for each disturbanc&guan adaptive
back propagation algorithm (a description of thplig algorithm is provided by Miranda et al., 199Bor the two ANNs
the following structure was selected (see Figureo8g input layer with 22 attributes as inputs, didden layer with 8
neurons and one output layer with the two secimiices as outputs. The 22 inputs are the attribptesented in table 1.

input | —»
P ANN +— fmin

22-8-2
— df/dt
input ,, —>

Figure 3 — Structure selected for training the ANNs

6. NUMERICAL RESULTS

In any machine learning approach the quality of tbsults needs to be evaluated through classificatirors, (global
classification error, false alarm and missed alamors) relatively toa priori classes or by quantifying mismatches
relatively to the target output valugsin this case the minimum frequencymin. These indicators are namely the mean
relative error, the mean absolute error and thenragaare error. The performance evaluation, indevfhclassification, for
both disturbances are shown in the next tableth#®DT and RT approaches.

Table 2 - Performance evaluation with DT and RT

Disturbance ( Machine-Loss )

DT KF
Global Erro 1.84% 0,33%
False Alarn 1,31% 0,00%
Missed 4,4% 15,0%
Alarm

Table 3 - Performance evaluation with DT and RT

Disturbance ( Short-Circuit )

DT KRT
Global Error 2.17% 2,39%
False Alarm 1,87% 1,83%
Missed 2,58% 3,22%
Alarm

Figures 4 and 5 describe the DT and RT designedhfoiShort-circuit disturbance. In these figurés total number of
operating points in the learning set belonginghis hode are presented aside the node number. drtients of the box
representing each node are respectively:

» For DT - the ratio of the secure operating pointsrdhe total number of LS OPs belonging to theenaxd the splitting
test for non terminal nodes; Leaf nodes with atgatgio larger than 0,5 correspond to secure nodes

* For RT - the mean value of the security index (&tz) the variance of the index regarding the OPsrigétg to that
node (for terminal nodes); For non-terminal nodhesdplitting test is included only.

In Regression Trees one can assigned a given defjsseurity to each leaf accordingly to the mealue of the OPs that
belong to the node.
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Figure 6 — TS performance evaluation results fote&fesrete fmindue to machine loss
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Figure 7 — TS performance evaluation results fote&ofe rete: fmin due to short circujt

For the prediction of the minimum frequency valssaciated to each OP, kernel regressors, that gregloression (4),
were used exploiting the data available at eachiterl node of the RT, as well as ANNs with the @satture of figure 3.

KRTs demonstrated to be able to predict the sgcimitex with good accuracy. Figures 6 and 7 enébleompare the
performance of ANNs and KRT in classification amddiction of security for the 2 disturbances coessd.

Extensive results from the application of thesecpdures in the Crete network and in the Tercelemdssystem can be
found in the final CARE report, 1999.

From the results obtained with the three approachesan derive the following main conclusions:

* Both DTs and KRTs were capable of selecting theesattnibutes as the most important ones (althoogietimes in a
different order);

»  When used for security classification all the 3raagphes lead to small classification errors, alifioim the cases where
not enough information is available, ANN and KRDwatto performe worse.

« KRTs have the advantage of producing simultaneoaslglassification structure, capable of being iteted as
described in rules of figure 5, and giving the @&gof robustness of the system through the pretictie offmin;

» All the security evaluation structures are ablpravide information on the system security in anMast way; However,
if KRTs (namely the ones obtained after pruningd ased for prediction purposes they demand more imthe
prediction task than ANNs or DTs.

 The DTs present, in general, simpler classificatrnctures, which makes easier any interpretaifaine phenomena
and the identification of the influence of the rkelat parameters.

The security evaluation structures were integratethe CARE software as modules, activated “on”dafl the operators.
Each module has its specificity, in terms of coraiohal needs, and specially KRT demand that theieg set operating
points should be kept in the system data basee txploited during the operation stages.

7. CONCLUSIONS

This paper described the approach developed towi#falthe problem of evaluating, in a fast way, agnc security of
isolated systems with large shares of with powéegration. Evaluation structures based on the egidin of machine
learning techniques were successfully used forghgtose.

These structures were integrated in the dynamigrgg@ssessment module of the advanced contrédsyef the island of
Crete, helping to identify the operating conditi@am&l parameters, namely wind power penetration|élad to a less robust
operation of the system.
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