
A reconfigurable computing system

for an autonomous sailboat

Jose C. Alves, Nuno A. Cruz
Department of Electrical and Computer Engineering

University of Porto
Porto, Portugal

{jca,nacruz}@fe.up.pt

Abstract

This paper presents the computing infrastruc-
ture used in an autonomous unmanned small-
scale sailboat. The system is build on a reconfig-
urable FPGA and includes custom designed inter-
faces for the various sensors and actuators used
in the sailboat. The central processing unit is
a 32-bit RISC microprocessor (Microblaze from
XILINX) implemented as a soft IP (Intellectual
Property) core, running at a maximum frequency
of 50 MHz. The computing system runs uClinux,
a simplified version of the popular Linux operat-
ing system. The usage of a reconfigurable plat-
form enables the possibility to reconfigure com-
pletely the processing and control hardware sys-
tem. This facilitates enormously the development
of the control system and allows the selection of
different hardware control systems, according to
the navigation requirements and environmental
conditions.

1. Introduction

The FEUP1 autonomous sailboat (FASt) is a small
sailing yacht capable of fully autonomous navigation
through a predefined set of waypoints. The boat was
custom designed and built as a response to the Micro-
transat challenge and offers a flexible platform for var-
ious applications like data acquisition of oceanographic
or atmospheric variables, wild life tracking and moni-
toring, surveillance and also support platforms for co-
operative navigation with autonomous underwater vehi-
cles (Curtin et al., 1993) (AUVs).

1.1 Sailing

Sailing can be an easy task or a very complex task, de-
pending on the desired level of performance and also
on the wind and sea conditions. In conventional sailing

1Faculdade de Engenharia da Universidade do Porto (School of
Engineering of the University of Porto)

boats the basic controls are the rudder and sail sheet.
The rudder determines the course to navigate and the
sail sheet is used much like the throttle of a car: loose
it to stop the boat or pull it to go ahead. For a given
course, boat speed, wind speed and wind direction, there
is an optimum angle between the sail and direction of the
wind that maximizes the speed of the boat. If the boat
speed changes (for example, slowing down when climb-
ing up a wave or accelerating by surfing a wave) the
apparent wind direction and wind speed relative to the
boat are modified, implying constant corrections to the
sail angle to maintain the course with optimum speed.
Alternatively, the sailor can keep the sail in the same
position and alter the course with the rudder to keep
the same apparent wind angle. Also, variations in the
true wind speed due, for example, to the waves (wind
speed increases in the crest of a wave), add important
variations to the wind conditions seen by an observer on
the boat. This results in the necessity of continuously
adjust the sail and/or the rudder to keep the boat at its
maximum speed. In addition, conventional fabric sails
also have control lines that are used to adjust the shape
of the sail, depending on the leg sailed (up-wind, down-
wind), wind speed and sea condition. Although this is
a simplified view of the close interactions that exist be-
tween the variables involved in the sailing process, it is
clear that a control procedure should adapt dynamically
to the environmental conditions.

Sailors have from several years the assistance of auto-
pilots to provide autonomous steering, for limited peri-
ods of time. In a sailing yacht the electric energy is usu-
ally limited and the normal sources of power are the sun
and the wind. If the boat is well balanced with respect
to the various forces involved, the amount of energy re-
quired to steer it can be relatively small. The auto-pilot
is a valuable accessory in sailing yachts, allowing the
automatic control of course according to some reference
direction (GPS, compass or wind direction). One type of
fully mechanical auto-pilot is the wind-vane self steering
system, very popular some decades ago (Belcher, 1982)
and still in use by some sailors for long journeys. It com-



bines a wind vane mechanically linked to a rudder and
steers the boat automatically, relative to the apparent
wind. Although this system has some limitations, it has
the big advantage of not requiring any electric energy for
working.

1.2 FPGAs

The computing system designed for FASt is based
on a FPGA (Field-Programmable Gate Array),
providing a flexible reconfigurable computing plat-
form (Compton and Hauck, 2002). The system includes
a RISC 32-bit central processor surrounded by a set
of custom designed peripheral digital systems that
implement the processes responsible for interfacing with
sensors and actuators, and also for custom processing
and control. This allows the integration of almost all
the custom digital electronics into a single chip and
simplifies significantly the design of the control software,
alleviating the processor from the low-level interfacing
and data processing tasks.

FPGAs are commercial integrated circuits that can
be configured by the end user to perform any arbi-
trary digital system. The common configuration tech-
nology used in present FPGAs is based on SRAM and
provides a virtually infinite number of re-configurations
in very short times (tens to hundreds of milliseconds).
Cutting-edge FPGA devices offer capacities equivalent
to a few millions of logic gates, and include on-chip
memory blocks exceeding 10 Mbit, dedicated functional
blocks optimized for signal-processing applications, giga-
bit transceivers and, in some families, embedded high-
performance processors. Furthermore, the digital sys-
tems implemented in such devices can run with clocks
of a few hundreds of mega-hertz and exceed one thou-
sand input/output pins available for the user applica-
tion. This is now a mature digital technology that of-
fers flexible platforms for targeting complex and high-
performance digital systems without incurring in the
high costs and long turnaround times of silicon fabri-
cation.

Another interesting attractive of FPGA technology is
the ability to quickly modify the digital system imple-
mented in the chip. Different configuration files can re-
side in low cost off-chip flash memories (or hard disk) and
loaded into the FPGA to perform a completely different
system. Some FPGA families even allow partial recon-
figurations without disturbing the rest of the chip. This
is particularly interesting in applications where the pro-
cessing requirements may vary along the time and also
during the development and experimentation stages.

1.3 Paper organization

In addition to this introduction, the paper is organized
as follows. Section 2. briefly presents the autonomous

Total length (LOA) 2.50 m
Length in the water line (LWL) 2.48 m
Maximum width (beam) 0.67 m
Draft 1.25 m
Displacement 45 Kg
Wetted surface 1.0 m2

Ballast 16 Kg
Sail area 3.7 m2

Mast height 3.4 m

Table 1: Main dimensions of the FEUP Autonomous Sailboat

- FASt

sailboat built at FEUP (FASt). Section 3. overviews the
electronic system used in FASt and the hardware plat-
form that implements the main computer is presented
in section 4.. The computing system is detailed in sec-
tion 5., including the sensors and actuators. Main imple-
mentation results are presented in section 6.. Section 7.
summarizes the operating modes supported by the FASt
control system and finally section 8. concludes the paper
and presents the current status of the project.

2. The FASt project

The FASt project was launched at FEUP in the begin-
ning of 2007 to participate in the Microtransat com-
petition. The project aimed to build a small-scale au-
tonomous sailing boat with two objectives in mind: min-
imize the energy required for sailing and navigate as fast
as possible. Although the Microtransat rules establish
a maximum length of 4m and the theoretical maximum
speed of a boat is proportional to the square root of its
length, we decided for a 2.5m long mono-hull. This was
determined after scaling down in length and displace-
ment some real oceanic modern sailing boats, to keep
the final weight not far from the 40Kg mark, in order to
facilitate the launch and transportation either by towing
or on the top of a car.

The design was inspired on the modern racing oceanic
yachts and was developed with the free version of the
boat design software DelftShip (Delftship, 2008) (former
FreeShip). The hull bottom at the stern is flat to induce
planning. To increase stability, the boat includes a deep
keel with a ballast. The rig is a standard Marconi config-
uration with a small jib mounted on a boom, as used in
smaller RC sailing boats. Main dimensions are presented
in table 1.

2.1 FASt hull construction

The boat was built by a team of students and pro-
fessors of FEUP, with the support of a local kayak
builder (Elio, 2008) that executed the fabrication of the
parts in composite materials and gave a valuable help
during all phases of the process. The construction



started in the beginning of March 2007 with the assem-
bly of the positive model. This was built starting with
plywood frames, a rough cover of strip planking and fi-
breglass with polyester resin, followed by various iter-
ations of filling and sanding to achieve a final smooth
surface. This full scale model was then used to build a
negative mould and, afterwards, the final hull.

The hull has been fabricated using a sandwich of car-
bon fibre in the outer layer, a low density honey comb
core in the middle and a inner layer of fibreglass. This
sandwich was pressed with vacuum during the cure of the
epoxy resin. This is the same construction process used
to build high-performance racing kayaks and resulted in
a very stiff hull, weighing less than 5kg, without the
deck. The hull was reinforced internally at the points
subject to the major mechanical forces: the attachment
of the keel, foot of mast and the points where the shrouds
connect to the hull. Two platforms placed at the bot-
tom interior (front and middle) provide convenient space
for mounting the electronic system. Figure 1 illustrates
some stages of the construction process.

The keel was manually built starting from a core of
rigid polyurethane foam shaped to a NACA profile, then
laminated in vacuum with several layers of carbon fi-
bre. The rudders were made from a wood core covered
by fibre glass, firmly attached to a stainless steel shaft.
Mast and boom were built with carbon fibre tubes used
in competition paddles and some standard hardware of
masts of small dinghies.

3. Electronic system

The electronic system used in FASt is assembled with
various modules, some of them custom built for this ap-
plication. Figure 2 presents a block diagram showing the
general organization of the system and the approximate
physical location inside the hull.

The computing system is implemented in a small
FPGA-based single board computer (Atmark-Techno, ).
This includes a 32-bit RISC microprocessor run-
ning at a 50MHz maximum clock frequency (Microb-
laze (Microblaze, )), surrounded by various custom de-
signed dedicated circuits. The organization, character-
istics and modes of operation of the computing system
are detailed in the next sections.

The communications section includes a WiFi router
(LinkSys WRT54GC), GSM modem (Siemens MC35),
IRIDIUM SBD modem (model 9601) and a conventional
RC receiver used in radio-commanded models. All these
components are integrated as OEM modules and can be
switched on/off under control of the software running in
the computing system, depending on the operating mode
of the system.

Sensors include the wind vane and anemometer,
boom position, compass (Honeywell HMR3300), GPS
(uBlox RCB-4H), inclinometer (two axis accelerometer

Figure 1: The construction of FASt: (top-left to bottom)

assembly of the frames, strip planking, the mould, filling the

mould with the layers of fibere and core materials and the

final hull.

ADXL202, from Analog Devices), voltage monitors, am-
bient light sensor, interior temperature (Analog Devices
A/D converter AD7905) and a set of moisture sensors
custom made with small pieces of gold plated PCB ter-
minals. A total of 4 additional A/D channels and 16 dig-
ital I/Os are available for future expansion. The wind
vane and boom position indicator were built with a mag-
netic field sensor AS5040 from Austria Micro Systems.
This chip measures the orientation of the magnetic field
of a small magnet placed close to its case and provides
10 bit measures with 1 degree of accuracy. The chip was
embedded in epoxy resin and is thus completely isolated
from the water. The wind speed sensor is made with a
conventional cup rotor actuating a hall-effect switch also
embedded in epoxy.

Regarding the actuators, one DC motor controls the
sail’s position and two standard RC servos provide inde-
pendent control of the two rudders. A second DC motor



Figure 2: The organization of the FASt electronic system and its distribution inside the hull.

is planned to be installed for adjusting the sail area. The
DC motors are standard window motors used in cars.
Although this type of motor and the associated gear-
box is known for its low efficiency, they are extremely
robust and once positioned and unpowered the gearbox
naturally locks the motor’s shaft. As the sail angle only
needs to be adjusted to set a new course or when the
wind direction changes significantly, this represents an
important saving of electric energy when comparing to
other combinations motor-gearbox that need power to
react to the force of the sail sheet.

Finally, the power generation and control section in-
cludes a 48Wp solar panel (Solara SM160M), a pack of
Li-ion batteries, battery charger and DC-DC converters
to provide all the voltages used by the rest of the sys-
tem. This part is still under development at the time
this paper is being written.

4. The computing platform

The computer board used in FASt is a commercial
system from Suzaku (SZ130 (Atmark-Techno, )), built
around a Xilinx FPGA, model Spartan3E S1200. The
system has 32 MB of SDRAM, 8MB of SPI flash mem-
ory, serial interface and Ethernet port implemented by
a dedicated chip external to the FPGA. A total of 86
I/O pins are available for the user application, directly
connected to FPGA I/Os and distributed in edge con-
nectors around the board. The FPGA is only partially
occupied by the base project (processor and essential pe-
ripherals), leaving roughly more than 1 million equiva-
lent logic gates available for user logic. Figure 3 depicts
the organization of the SZ130 board and the reference
project implemented in the FPGA.

The system runs uCLinux (www.uclinux.org), an-
other version of the popular Linux operating system that
has been simplified and adapted for embedded applica-
tions running in processors with no memory manage-

ment unit (MMU). The operating system provides an
interactive console through a standard RS232 port, a
structured file system, multitasking and basic TCP/IP
services (FTP, HTTP and TELNET).

Figure 3: Organization of the Suzaku SZ130 board.

This board constitutes a convenient platform for build-
ing a digital integrated system, providing a combined
hardware/software solution for a given problem. A de-
sign may include virtually any custom designed digi-
tal circuit that may fit into the FPGA’s free resources.
Combining conventional software execution with custom
processing by dedicated hardware modules can alleviate
significantly the computing load of the central micro-
processor. Besides simplifying the development of the
software (some of concurrent processing tasks are done
transparently in hardware), this approach also permits
to reduce the processor’s clock frequency and thus the
overall power consumption.

4.1 Software development

The software for this machine is developed in ANSI C
and compiled with a customized version of gcc. There
are two levels of software that may be developed, de-
pending on the usage or not of the underlying uCLinux



operating system. A stand alone program can be created
with the compiler embedded in the XILINX EDK tools
and integrated with the configuration data of the FPGA.
When the FPGA boots, that program is started auto-
matically and allows only basic console I/O. In this case,
the uCLinux operating system is not started and thus
there is no support for TCP/IP and file system services.
The development of programs to run on the uCLinux
operating system can make use of the most common
Linux standard libraries, including TCP/IP communi-
cation, file I/O and file system management. The com-
pilation is done on a conventional Linux machine and
transferred to the Suzaku board via FTP or through the
RS232 serial interface.

The uCLinux file system is locally stored in the flash
memory and loaded into a segment of the SDRAM (con-
figured as a RAM disk) during the boot process. An
image of the file system is maintained in the computer
with the development system. The modifications of the
uCLinux file system are done in this image and trans-
ferred to the Suzaku flash memory with appropriate com-
mands.

During development, evaluation and debug, the sup-
port of such an operating system is a convenient solution
because it eases the implementation of network commu-
nication processes, file management and eases the mul-
titasking of different program’s parts. However, for ap-
plications requiring low power consumption, running on
the top of an operating system may represent a signifi-
cant overhead for the global power consumption. From
this point of view, running a stand alone program may
be a better solution. Both approaches are conveniently
supported by this platform.

4.2 Hardware development

The development of the digital system implemented in
the FPGA is done with the EDK/ISE software tools
from XILINX. The XILINX EDK (Embedded Devel-
opment Kit) is a design tool that builds a combined
hardware/software design, targeted to a XILINX FPGA-
based board. The hardware part is assembled with
pre-designed parametrizable modules (microprocessor,
SDRAM interface, USART, etc.) and user designed com-
ponents. The software part is built as a C program that
will be later embedded with the FPGA configuration
data. The ISE tool suite performs the complete digi-
tal design flow for XILINX FPGAs and translates the
circuit models produced by EDK into the final FPGA
bitstream.

To attach a user-defined digital block to the micro-
processor, the library of modules include general pur-
pose I/O interfaces that attach to the microprocessor
buses. A user’s circuit is specified in standard hardware
description languages (Verilog or VHDL) and integrated
into the system’s top-level description.

4.3 FPGA reconfiguration

When the system is powered up, the FPGA is config-
ured with the data stored in the beginning of the flash
memory. Once the configuration is completed (less than
1 second), the I/O buffers associated to the FPGA pins
are enabled and the system implemented in the FPGA
starts running (freeing an internal global reset). The Mi-
croblaze microprocessor runs the code stored internally
in the FPGA memories. If the startup of the uCLinux is
enabled (the original configuration), then a boot loader is
executed that loads the file system image stored into the
flash to the SDRAM, builds the uCLinux file system and
loads the operating system kernel. The complete pro-
cess, from power-up to system idle state, takes approx-
imately 42 seconds, running the Microblaze at 50MHz
(76 seconds if running at 25MHz).

The reconfiguration of the FPGA can be done easily
under control of software. Under uCLinux, the section
of the flash memory that holds the FPGA configuration
data (usually called bitstream) can be re-written from a
regular file stored in the file system, using one applica-
tion included in the file system distribution. The run-
ning software can thus choose a bitstream from a batch
of pre-built configurations, copy it to the flash memory
and issue a reboot command to restart the system with
a different FPGA configuration.

This unique feature of FPGA-based systems allows to
change the digital circuit played by the FPGA, accord-
ing to different processing needs that may be driven by
several factors (eg. the availability of energy or environ-
mental conditions). This is not yet being exploited in
FASt, although it may be a good strategy for reducing
the energy consumption.

5. The FASt computing system

The FASt computing system is implemented in the
FPGA of the Suzaku board. Besides the central Mi-
croblaze processor, the system includes various dedicated
controllers for interfacing the sensors and actuators used
in the sailboat, some of them associated with custom
computing modules. Figure 4 presents the general orga-
nization of the system.

The global strategy adopted during the design of this
system was to create a set of autonomous interfaces ca-
pable of delivering to the software the data retrieved
from the sensors in a format easy to be integrated in
the software control system. Besides the implementa-
tion of the sensor’s specific interface protocols, this in-
cludes parsing messages from the sensors, filtering, and
units conversion. Although simple averaging filters have
been implemented for the wind sensors and acceleration
(inclinometer), there is enough room to include higher
quality low pass filters.

The access to the peripherals from the Microblaze is



Figure 4: Simplified view of the organization of the FASt

computing system implemented in the FPGA. All the sen-

sors and actuators are accessed by the microprocessor via

dedicated interfaces. The two shaded blocks are standard se-

rial port controllers implemented as pre-built modules from

the EDK library.

done through a port expander. This module uses only
one pair of 32-bit memory-mapped bidirectional ports
and makes available for the rest of the circuit a set of
eight output ports and 16 inputs ports (32-bit each).
This is implemented as a finite-state machine that inter-
prets a set of simple commands issued by the micropro-
cessor as memory writes and reads.

5.1 Sensors

The wind direction interface reads the ASS5040 sensor
sampled at 50Hz and averaged using a sliding window
of 64 samples (the boom position sensor is built with
the same chip and is interfaced by another instance of
this module). The output is an integer in the range
[-180,+180] and the position of the direction reference
can be corrected with an offset defined by software. The
interface with the wind speed sensor outputs the number
of 10KHz clock periods during one revolution of the cup
rotor, sampled at 10Hz and averaged by a 64 tap mean
filter.

The inclinometer reads the PWM outputs of the 2-axis
accelerometer and returns two integers that are propor-
tional to the X and Y acceleration. These values are
sampled at an frequency approximately equal to 100Hz,
dictated by an RC network in the accelerometer board.
These values are averaged with 128 tap average filters.

The magnetic compass provides the complete data
(heading, roll and pitch angles) in ASCII format, as vari-
able sized messages. Although the ASCII format is easy
to interface with a software function, it is also impor-
tant to have access to this data, from the hardware side,
in numeric digital format. This allows for future inte-
gration of hardware control processes that directly link
the heading/roll/pitch information to the controllers of
the steering servos. This interface implements a parser

of the messages sent by the compass and performs the
conversion ASCII to binary. The GPS interface is done
in a similar way, extracting the relevant data (lat/lon,
speed, course and status) from the binary protocol out-
put (uBlox UBX protocol (u Blox, 2008)).

The interface with the radio-control receiver is done
by 4 instances of the same controller, one for each chan-
nel of the radio. The standard control signal used in
RC receivers and servos is a 50Hz digital signal, where
the high time defines the position of the servo (ranging
from 0.8ms to 2.2ms). Each receiver module measures
the high time of the corresponding channel and converts
it to a two’s complement 10 bit integer: zero means the
control stick at the middle, +511 is full right (full front)
and -512 is full left (full rear). One additional mod-
ule monitors continuously the signal received from radio
channel 1, looking for 8 consecutive valid pulses (crite-
ria for valid pulses is frequency between 45 and 55 Hz
and high time between 0.5 and 2.5ms) to assert a radio
present signal. This notifies the rest of the system that
the RC transmitter is in range and transmitting correct
data.

The system includes an A/D converter with 6 analog
inputs, plus two additional channels that monitor of the
3.3V supply and the chip temperature (AD7795). This is
interfaced with a controller that implements the SPI and
provides to the computing system a simpler interface to
select a channel and read the conversion result.

5.2 Actuators

The servo controllers receive a 10-bit two’s complement
number and generate the 50Hz standard control signal,
according to the timing referred above. For the moment,
only two servos are being used for the two rudders, al-
though additional servo controllers can be easily added.
A hardware multiplexer selects the source of data that is
routed to these servos: this can be the output of the RC
channel 1 (to use the left-right stick) or the data sent by
the software application running on the processor.

The sail sheet of both sails is commanded by one DC
motor with a multi-turn potentiometer for position feed-
back. This motor is controlled by a PWM modulator
that drives one power bridge assembled with MOSFET
power transistors. The PWM module include a low-pass
filter applied to the input data, to avoid high accelera-
tions that result in high current draw. Another PWM
modulator is included to support the control of the sec-
ond DC motor.

6. Implementation

Current design, as represented in figure 4, uses less than
50% of the XC3S1200E FPGA resources and corresponds
approximately to 1 million equivalent logic gates. All
the modules support the maximum clock frequency of



4-input LUTs 7,314 (42%)
Flip-flops 3,997 (23%)
Occupied slices 4,730 (54%)
LUTs used as route-thru 324 (1.8%)
LUTs used as SRAM 256 (1.5%)
LUTs used as shift-registers 796 (4.6%)
Block RAMs 14 (50%)
Dedicated multipliers 8 (28%)
Equivalent gate count 1,078,257

Table 2: Summary of the FPGA occupation (Spartan 3E

1200)

50MHz allowed for the Microblaze processor, although
most of them can run with much lower frequencies. Ta-
ble 2 summarizes the occupation of the FPGA resources.

6.1 Power consumption issues

Electric power consumption is one of the great concerns
in an autonomous sailboat. For a small boat, the reason-
able sources of electric energy for long term navigation
are photovoltaic panels and wind turbines. Best solution
would be a combination of both but, as far as we know,
the commercially available wind generators are too large
and heavy for our sailboat. In both cases, the availabil-
ity of energy always depends on the weather conditions
which still have a high degree of uncertainty. The elec-
tronic system must consume the lowest possible energy
and whenever possible adapt its behaviour to the power
budget available at each stage.

According to our first estimates, the computing sys-
tem will account for more than 50% of the total energy
consumed by the system, assuming a continuous oper-
ation with the maximum power consumption measured
for the present configuration. This represents aproxi-
mately 500mA for the 3.3V supply (1.65W, including
100mW for the digital compass and the wind sensors)
running the microprocessor at the maximum frequency
of 50MHz with the Ethernet port enabled. Disconect-
ing the Ethernet cable puts the Ethernet controller in
power down mode and reduces the power consumption
by approximatley 200mW; lowering the clock frequency
to 25MHz saves more 100mW. The reconfiguration fea-
ture of the FPGA-based system can be exploited to fur-
ther enhance the power management strategy. For ex-
ample, once a course and sail position has been defined,
the steering control can be made by a simple controller
implemented directly in hardware the FPGA, disabling
the microprocessor and all the peripherals not in use.

7. Operating modes

The FASt computing system supports three different
modes of operation, depending on the purpose of the

navigation. The selection of the control mode is done
by the throttle level of the radio-command: mid-
dle for radio-commanded mode, front for WiFi semi-
autonomous control and rear for fully autonomous sail-
ing. When the radio transmitter is switched off, the
boat enters automatically the fully autonomous mode,
and checks for the presence of the RC radio signal at
periodic intervals (this is currently set to 1 minute but
can be software programmed). At the time this paper
is being written, the two last operating modes were only
implemented in a simulation program.

The simplest mode is the radio-commanded control
mode, where the control is totally done through the
radio-command, using only two control sticks: left-right
turn and sheet control. In this mode, FASt behaves as
a conventional RC sailing boat and logs the information
received from the sensors, as well as the position of rud-
ders and sail defined by the operator. Is this mode, the
WiFi link is active and the status of the boat can be
monitored in real time from a computer in range of the
wireless network.

The semi-autonomous mode is enabled by setting the
throttle lever to the front position. This mode requires
additional commands sent from a control program run-
ning in a PC in the range of the WiFi signal. Route con-
trol is done by the software running in FASt, by defining
remotely the desired heading, course or apparent wind
angle. Sail control can be done manually (the user spec-
ifies the boom angle) or autonomously, according to the
rules established in the software for a given apparent
wind angle. The tack and jibe maneuvers are performed
automatically by the software running in FASt, upon
request of the operator.

In the fully autonomous mode with the presence of
the RC radio signal, the WiFi router is enabled and the
operation of FASt can be monitored in real time from the
remote PC. If the RC signal is not present, the electronic
system switches off the WiFi router and the RC receiver,
and starts the fully autonomous navigation to round a
set of pre-programmed waypoints.

The first two modes are convenient during the devel-
opment of the software and tuning of the control param-
eters. The short range of the WiFi link and radio control
limits the operation of the boat to within a few hundred
meters, even though these modes of operation are only
intended to be used under visual operation.

8. Conclusions

This paper presented a FPGA-based reconfigurable elec-
tronic system used in an autonomous sailing boat. The
FPGA implements the computing part and includes a
RISC microprocessor surrounded by several custom de-
signed peripherals that interface with the sensors and
actuators used in the sailboat. The hardware reconfig-
urability feature of the FPGA enables a short design



iteration and allows fast reconfigurations of the running
hardware. This may be exploited for minimizing the
energy consumption by adapting the control and com-
puting logic circuits to the specific requirements of nav-
igation under given wind and sea conditions.

By the time the paper is being written (middle March
2008), and more than one year after starting the con-
struction, the boat is almost ready for the first tests in
water. Designing and building a new boat from scratch
was a challenging and time consuming task, specially
being a first prototype. We hope that an efficient au-
tonomous sailing platform will open, in a near future, in-
teresting opportunities for applications in various fields.

Acknowledgements

The authors would like to thank the Department of
Electrical and Computing Engineering (DEEC) of the
School of Engineering of the University of Porto, Portu-
gal (FEUP), for the financial support of this project.

References

Atmark-Techno. SUZAKU-SZ130-U00,
hardware manual, v1.0.2.

Belcher, B. (1982). Wind-vane Self-Steering. Interna-
tional Marine Publishing Company.

Compton, K. and Hauck, S. (2002). Reconfigurable
computing: A survey of systems and software. ACM
Computing Surveys, 34(2):171–210.

Curtin, T., Bellingham, J., Catapovic, J., and Webb, D.
(1993). Autonomous oceanographic sampling net-
works. Oceanography, 6(3):86–94.

Delftship (2008). http://www.delftship.net.

Elio (2008). Kayak builder, elio kayaks web page
http://www.eliokayaks.com.

Microblaze. Microblaze processor reference guide,
UG081, V8.0 (EDK 9.1i).

u Blox (2008). NMEA, UBX Protocol Specification,
u-Blox 5 GNSS receiver, public release.


