
TRAJECTORY GENERATION FOR A REMOTELY OPERATED
VEHICLE

Sérgio Loureiro Fraga, João Borges Sousa, Fernando Lobo Pereira

{slfraga,jtasso,flp}@fe.up.pt
Faculdade de Engenharia da Universidade do Porto

Rua Dr. Roberto Frias, s/n 4200-465 Porto PORTUGAL
Tel: +351225081539 Fax: +351225081443

Keywords: Trajectory generation, Remotely operated under-
water vehicles, Differential flatness, Nonlinear Systems, Mod-
eling.

Abstract

This paper addresses the problem of trajectory generation for a
remotely operated vehicle (ROV). The ROV is a nonholonomic
vehicle and has limited actuator capabilities. This means that
the task of trajectory generation for the inspection of under-
water structures is not a trivial one, and that it cannot be done
without computer aided design tools. The approach is based on
techniques developed for differential flat systems. The ROV
model is presented and it is shown that it satisfies the differen-
tial flatness property. The paper details the architecture of the
computer aided trajectory generation tool.

1 Introduction

In this paper we present our approach to the design of the tra-
jectory specification, generation and tracking modules for the
Inspection of Underwater Structures (IES) system (figure 1).
IES is a collaborative project that involves the Administração
dos Portos de Douro e Leixões (APDL), Faculdade de Engen-
haria do Porto and Instituto de Sistemas e Robótica - Pólo
do Porto. Except for the ROV frame, hull and thrusters, all
the other components and systems were designed and imple-
mented at LSTS (Underwater Systems and Technology Labo-
ratory). The IES system comprises the following subsystems:
power, computer, motor control, navigation and image. The
computer system consists of a PC-104 stack running the real-
time operating system QNX, and a Windows based PC con-
nected through an Ethernet cable. The PC-104 stack is housed
in the main cylinder of the ROV, and controls the ROV systems
through a CAN bus. The PC runs the operator console. The
PC-104 computer system runs the command, control and nav-
igation software. Basically, this computer accepts high-level
commands from the console and informs the console about the
state of the system. The navigation system includes the on-
board sensors and an external acoustic navigation network. The
on-board sensors are: magnetic compass, inclinometers, Iner-
tial Motion Unit (IMU), Doppler Velocity Logger (DVL), Long
Base Line (LBL) acoustic system, magnetic compass and depth
cell [2][4].

One of the major innovations of the IES system with respect to
commercially available ROV solutions is the consideration of
two modes of operation: tele-operation and tele-programming.
The IES ROV is able to receive motion commands through an
umbilical cable from the console, which is mainly composed
of a PC, a TV/Video set, and a joystick. In the tele-operation
mode the ROV’s pilot uses the joystick to control the vehicle’s
velocity. In this mode the trajectory generation module inter-
prets, in real time, the joystick commands and transform them
into feasible trajectories. In the tele-programming the pilot
specifies with the aid of a graphical user interface a trajectory
for the vehicle to follow. There are several trajectory specifi-
cation models including for example waypoints. The trajectory
generation module is able to convert the specification into fea-
sible trajectories for ROV to follow. The computation of the
trajectory is made at the console and it is sent to the on board
computer, where the controller is implemented.

Trajectory generation plays an important role in defining the
overall performance of a ROV control system. A properly de-
signed trajectory generation system facilitates the task of the
controllers since it should prevent the system from saturating,
and thus operating in open-loop. One way to avoid input satura-
tion is to generate feasible trajectories. The design of trajectory
generation modules has to take into account the cinematic and
dynamic constraints of the ROV in order to generate feasible
trajectories.

The problem of trajectory generation for nonlinear systems with
nonholonomic constraints [6][5] represents a considerable chal-
lenge to control design. In fact, there is no universal technique
that can be readily applied to this end. In a differential flat sys-
tem we can take advantage of techniques from differential ge-
ometry for the generation of feasible trajectories. But one thing
is trajectory generation, and the other is control design and per-
formance. These are intimately related. We use a three level
architecture for trajectory generation and tracking [11] (figure
2):

• User interface for output specification. This module has a
graphical user interface to assist the operator in the specifi-
cation of the desired values for the ROV outputs. Upon val-
idation, the pilot’s objectives (represented as system out-
puts) are sent to the trajectory generation module.

• Trajectory generation. This module computes a feasible
trajectory for the ROV, which may be optimized over some

Figure 1: The remotely operated vehicle

factor or variable to improve the overall system perfor-
mance. The output of this module is a complete description
of the desired state and input of the system.

• Controller. This module controls the actuators to track the
trajectory defined by the trajectory generation module. The
output of this module is a control signal overlaying the in-
put signal, defined by the trajectory generation module, in
order to eliminate drifts or perturbations on the structure.

The main focus of this article is the trajectory generation mod-
ule. For a thorough discussion of the other modules see [4][2].

This paper is organized as follows. Section 2 presents the dy-
namical and kinematical model of the ROV. Section 3 intro-
duces differential flat systems. Section 4 presents two approaches
for trajectory generation for ROVs. Finally, section 5 presents
some concluding remarks.

2 Modelization of the ROV

The ROV is a rigid body with six degrees of freedom. Its mo-
tion can be described using either an inertial coordinate system
XYZ or a body fixed coordinate system X0Y0Z0 (figure 3).
Since the ROV moves slowly in the water, a earth fixed coordi-
nate system can be defined to be inertial. On the other hand, the
body fixed coordinate system has its origin in the ROV’s cen-
tre of mass and its axis’ directions coincide with the vehicle’s
principal inertial axis:

• Xo - longitudinal axis (from aft to fore)

• Yo - transverse axis (from port side to starboard)

• Zo - vertical axis (from top to bottom).

The vehicle’s position and velocity is represented in the iner-
tial and body fixed coordinate system. We adopted the notation
form ”The Society of Naval Architects and Marine Engineers
(SNAME)” (1950). According to SNAME, the motion of un-
derwater vehicles in six degrees of freedom can be described
by the following vectors:

η =
[
ηT1 , η

T
2

]T
; η1 = [x, y, z]

T
; η2 = [φ, θ, ψ]

T
;

v =
[
vT1 , v

T
2

]T
; v1 = [u, v, w]

T
; v2 = [p, q, r]

T
;

τ =
[
τT1 , τ

T
2

]T
; τ1 = [X,Y, Z]

T
; τ2 = [K,M,N]

T .

Outputs
definition

Controller

+

+

-

Perturbations

ROV Trajectory
Generation

ηd

η

τd

τc

Figure 2: Modules of the trajectory generation system

Thus, η represents the inertial coordinates of the vehicle, ν rep-
resents the linear and angular velocities in body fixed coordi-
nates and, finally, τ are the forces and moments applied on the
vehicle in body fixed coordinates.

The kinematical equations relating the state variables between
the inertial and body fixed coordinate system are given by:[

η̇1
η̇2

]
=

[
J1(η2) 03×3
03×3 J2(η2)

][
v1
v2

]
⇔ η̇ = J(η)v (1)

with (t. = tan(.)M , s. = sin(.) and c. = cos(.))

J1(η2) =


 cψcθ −sψcφ+ cψsθsφ

sψcθ cψcφ+ sφsθsψ

−sθ cθsφ

sψsφ+ cψcφsθ

−cψsφ+ sθsψcφ

cθcφ


 (2)

and

J2(η2) =


 1 sφtθ cφtθ

0 cφ −sφ

0 sφ
cθ

cφ
cθ


 . (3)

The matrix of equation (3) has a singularity for θ = ±
π
2 and is

not a rotational matrix, i.e. it does not belong to SO(3). This
singularity does not bring problems for the ROV’s control since
it never reaches a state where θ = ±

π
2 . On the other hand, J1

matrix is a rotational matrix, i.e. J1 ∈ SO(3).

The dynamical model of a rigid body moving in six degrees of
freedom is a well known model [7] and may be represented by
the following equation (body fixed coordinates):

MRBv̇ + CRB(v)v = τRB . (4)

In the preceding equation, v = [u, v, w, p, q, r]T , CRB(ν) rep-
resents the Coriolis forces and centripetal terms, then τRB =
[X,Y, Z,K,M,N]

T and, finally, MRB represents the inertial
matrix of the rigid body. Taking into account the previous
definitions about body fixed coordinate system, MRB is given
by:

MRB =




m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ix 0 0
0 0 0 0 Iy 0
0 0 0 0 0 Iz




(5)

Z0

X0

Y0

u
(surge)

p
(roll)

w
(heave)

r
(yaw)

v
(sway)

q
(pitch)

O

Z

X

Y

Inertial frame

ro

Body fixed frame

Figure 3: Body fixed and inertial coordinates systems

where m is the vehicle’s mass and Ix, Iy, Iz are the inertial mo-
ments around the axis x, y, z, respectively. The termCRB(v).v

is given by
[
ωb ×mvb

ωb × Iωb

]
with vb =

[
u v w

]T
and wb =

[
p q r

]T
and τRB are exterior actuations.

The external forces acting on the ROV are included in the right
side of equation (4). These forces can be classified in the fol-
lowing categories [1][4]: radiation-induced forces τH (added
inertia, hydrodynamic damping, restoring forces), environmen-
tal forces τE (underwater currents, waves, wind) and propul-
sion forces τ (thrusters and propeller forces, control surfaces
and rudder forces).

Considering the previous forces, the resulting force acting on
the vehicle is given by:

τRB = τH + τE + τ . (6)

The hydrodynamic forces τH has the following expression:

τH = −MAv̇ − CA(v)v −D(v)v − g(η). (7)

The term −MAv̇ − CA(v)v models the added mass due to the
inertia of the surrounding fluid, while the term −D(v)v repre-
sents the total hydrodynamic damping [1]. Finally, the compo-
nent −g(η) represents the restoring forces due to the vehicles’
weight and buoyancy and has the following expression:

g(η) = col(0, 0, 0,−zBB cos θ sinφ,−zBB sin θ, 0), (8)

where zB represents the distance between the application point
of the weight and the buoyancy force and B is the impulsion
force, which is equal to the weight W for this ROV.

Substituting equation (6) into (4) together with equation (7),
we obtain the vehicle’s dynamic model:

Mv̇ + C(v)v +D(v)v + g(η) = τE + τ (9)

where M = MA +MRB and C(v) = CRB(v) + CA(v). A
full description of these matrices can be found in [1].

It was not considered the model of ROV’s actuators, namely the
model of the thrusters and the electric motors. It was not also
considered the model of environment forces, such as aquatic
currents, waves and wind. Despite their influence in the vehi-
cle’s behaviour, not including these models doesn’t affect the
desired results for this work. On the other hand, this simpli-
fication reduces considerably the implementation of software

y

F2

F3

F4

F3x

F1y
F4y

F4

F1

x

F2y

F1=F2

F4

F3
F3x

F3z

F1z=F2z

F4x

z

x

Figure 4: Applied forces on the ROV by the thrusters

equations allowing more control on the trajectory generation
results.

The dynamical model of the ROV is presented in equation (9)
in body fixed coordinates and can also be represented in the
inertial coordinate system by using the kinematical equation
(1):

Mη(η)η̈ + Cη(v, η)η̇ +Dη(v, η)η̇ + gη(η) = τη. (10)

where

Mη(η) = J−T (η)MJ−1(η)

Cη(v, η) = J−T (η)
[
C(v)−MJ−1(η)J̇(η)

]
J−1(η)

Dη(v, η) = J−T (η)D(v)J−1(η)

gη(η) = J−T (η)g(η)

τη(η) = J−T (η)τ. (11)

After presentation of dynamic and cinematic equations it is
convenient to show how the ROV’s thrusters affect the variable
τ . In figure 4are represented the forces applied in the ROV by
the thrusters. The ROV does not have rudders so its motion is
only affected by thrusters. The relationship between the forces
applied by the thrusters and its effect in variable τ is given by:



X

Y

Z

K

M

N



=




1 1 0 0
0 0 1 0
0 0 0 1
0 0 −F3z F4y

F1z F2z 0 −F4x

−F1y −F2y F3x 0



.



F1

F2

F3

F4


 . (12)

3 Differential flatness

In this section, we show the utility of differential flatness pro-
prieties for trajectory generation [9][10]. A system is differ-
entially flat if it is possible to find a set of variables (equal in
number of the inputs), called flat outputs, such that all state
variables and input become defined from them without integra-
tion. Let η ∈ Rn be the system state and τ ∈ Rm its input, then

the system is flat if it is possible to find flat outputs z ∈ Rm in
the form:

z = Z(η, τ, τ̇ , ..., τ (l)) (13)

such that

η = η(z, ż, ..., z(q)) (14)

τ = τ (z, ż, ..., z(q)).

whereZ,η, τ are mapping functions between flat outputs, state
variables and input.

Differentially flat systems are interesting when flat outputs rep-
resent the desired behaviour of the system and trajectory plan-
ning can be made from these variables. This approach is espe-
cially interesting when the flat outputs have a physical meaning
and are not an arbitrary combination of state variables and in-
put. The problem is that there is no systematic method to deter-
mine the flat outputs. Hence, finding flat outputs with physical
meaning for a particular system can be a hard task [8]. Usually,
the dimension of the flat outputs is lower than system dimen-
sion, which means an improvement on the steering efficiency.
For differentially flat systems we are able to transform the sys-
tem such that the equations of motion for the flat outputs vari-
ables become trivial. For instance, in the case of a rigid body
with six degrees of freedom and three inputs, if the flat outputs
can be found then it would be possible to steer the body just as
if it was a point. Since flat outputs trajectories are completely
free, the only constraints that should be imposed refer to the
desired initial and final configuration of the system and bounds
on the derivatives of the trajectories. Other constraints, such
as, input saturation can be converted to the flat outputs space
by imposing limitations on the curvature of the trajectories or
bounds on the higher order derivatives.

Next, we show that ROV’s model is differentially flat. As stated
before, its model in inertial coordinates is given by:

Mη(η)η̈ + Cη(v, η)η̇ +Dη(v, η)η̇ + gη(η) = τη. (15)

The system state η represents the ROV’s inertial positions. We
can easily check that the state variables are also the flat out-
puts since the system input (τη) becomes defined from those
variables without integration [8][3].

As pointed out before the number of flat outputs must be equal
to the dimension of the input space. This is not the case of our
ROV. The IES ROV is under-actuated. We have actuation in
four degrees of freedom. In this situation, the trajectory gener-
ation is based on the fact that roll an pitch are stable (due to the
large distance between the application point of the weight and
the buoyancy forces) and assuming that it is not a requisite to
define a trajectory for these degrees of freedom, so their trajec-
tories are always assumed to be zero. The actuation on these
two degrees of freedom is also negligible since the components
Fij in equation (12) affecting the variables K,M are smaller
when compared to the actuation on the others degrees of free-
dom. Hence, we compute the desired actuation in all degrees of
freedom but we only apply four forces on the ROV. We expect
the actuation on roll and pitch to be negligible. We confirmed
this hypothesis from the simulation runs. We do not consider

0 5 10 15 20
0

5

10

x
[m

]

time [s]
0 5 10 15 20

0

2

4

6

z
[m

]

time [s]

Figure 5: Flat outputs parametrization

K,M in the computation of these forces. This may result in
some performance degradation. The computation of the forces
to apply to each propeller is given by:


X

Y

Z

N


 =




1 1 0 0
0 0 1 0
0 0 0 1

−F1y −F2y F3x 0


 .


F1

F2

F3

F4


 . (16)

The effect of the actuators on φ, θ is small but we will present
a technique that minimize the actuation in these two degrees of
freedom. We expect a better performance since the equation
(16) becomes a better approximation of the physical reality. To
sum up, the ROV’s flat outputs are the state variables and an
approximation is made when computing the input from those
flat outputs.

4 Trajectory generation for the ROV

In this section, we present two trajectory generation methods
based on differential flatness [10]. The problems addressed in
this paper are finite horizon and anti-causal, i.e. some informa-
tion about the trajectory’s future is necessary. This information
can be the complete form of the trajectory or waypoints. The
temporal scheme of the trajectory generation architecture de-
fines the desired trajectory for all states and inputs at a lower
rate than that of the controllers. These, in turn, track the defined
trajectory at a higher rate (10ms).

We implemented the algorithms in ANSI C and used the li-
braries from the software package ”C-Routines for Trajectory
Generation for Flat and Approximately Flat Systems” [9] de-
veloped at ”California Institute of Technology”.

In this paper we consider the problem of finding a trajectory for
the state variables and the system inputs from the flat outputs
trajectory, in a finite time horizon [t0, tf]. The trajectories of
the flat outputs will be approximated by polynomials to com-
pute its derivatives symbolically to enhance the computational
efficiency. The model used for this problem is the one pre-
sented in equation (15) since, in this case, it is convenient to
define the trajectory in the inertial coordinate system to facili-
tate the task of the pilot.

The first method is the simplest one since it refers to guide the
vehicle from a point of its state space to another one. In this
problem we are given the entire state at t0 and at tf . Assuming
the inputs and its derivatives are also defined at both times,
we can compute the flat outputs for these instants (equation
(14)). After determination of the initial and final values of the

0 5 10 15 20
-20

0

20

40

60

X
b

[N
]

time [s]
0 5 10 15 20

-20

0

20

40

Z
b

[N
]

time [s]

0 5 10 15 20
-20

-15

-10

-5

0

K
b

[N
.m

]

time [s]
0 5 10 15 20

-20

-15

-10

-5

0

M
b

[N
.m

]

time [s]

Figure 6: Computed inputs

flat outputs it is possible to parameterize them for an interval
[t0, tf] as follows:

zi(t) =
∑
j

Aijφj(t) (17)

where φj(t) represents a basis of polynomial functions, which
through a linear combination given by the matrix A allows the
computation of the flat outputs at [t0, tf]. The values of the Aij

coefficients can be obtained by solving the following system of
equations:

zi(t0) =
∑

j Aijφj(t0) zi(tf) =
∑

j Aijφj(tf)

... ...

z
(l)
i (t0) =

∑
j Aijφ

(l)
j (t0) z

(l)
i (tf) =

∑
j Aijφ

(l)
j (tf).

(18)

Let p be the number of polynomials of basis φj . Then it is nec-
essary to specify the initial and final values for the flat outputs
until the l derivative (p = 2(l+1)) in order to determine allAij

coefficients. Thus, the number of coefficients to be computed
in matrix A will be 2(m(l + 1)).

Since a trajectory for the flat outputs has already been defined
between the instants t0, tf by the previous parameterization,
now it is necessary to compute the state and input of the sys-
tem from that trajectory. This can be done by choosing several
points along the flat outputs trajectory in order to compute the
corresponding state and input. Increasing the number of com-
puted pointsN , means an improvement on the system accuracy
since the discretization is made with a higher frequency. In the
ROV, the flat outputs coincide with vehicle’s state so it is only
necessary to compute its input using equation (15). However, it
should be noted that a trade-off has to be resolved because in-
creasing the number of computed points will increase the com-
putation time, which is also determined by the time necessary
to perform the flat outputs parameterization. The parameteriza-
tion time is much smaller on systems where nonlinear systems
of equations must be resolved to compute the state and the in-
put. In the ROV system, it is not necessary to resolve systems
of equations since analytical expressions exist to obtain the sys-

0 5 10 15 20
0

1

2

3

4

5

6

7
x 10

-3

ph
i [

ra
d]

time [s]
0 5 10 15 20

0

0.05

0.1

0.15

0.2

0.25

th
et

a
[r

ad
]

time [s]

Figure 7: ROV’s roll and pitch behaviour

tem input.

In figure 5 we show a parameterization (with p = 6) of the flat
outputs from two given points: an initial point (x, y, z, φ, θ, ψ) =
(0, 0, 0, 0, 0, 0) at t0 = 0s and a final point (x, y, z, φ, θ, ψ) =
(10, 0, 5, 0, 0, 0) at tf = 20s. At these points the initial and fi-
nal velocity is defined to be zero. It is only shown the trajecto-
ries for x, z because the others variables are always zero. After
performing the flat outputs parameterization, it is now possible
to compute the input, which is able to implement the parame-
terized trajectory. The number of points used to perform that
task were N = 100 and the computed inputs are depicted in
figure 6 (in body coordinates). Again, Y,N is not presented
since these inputs are always zero.

It should be noted that this trajectory will be the input of the
control module mentioned in section 1.

As it is possible to verify in figure 6, the desired values for
K,M are slightly different of zero. This means a degradation
of performance as discussed in section 4. As a result of com-
puting thrusters forces using equation (16), the ROV’s roll and
pitch will have the shape depicted in figure 7. As expected, the
approach brings loose of performance in roll and pitch, which
is a consequence of ROV’s under actuation.

In order to minimize this drawback, it is possible to generate
trajectories minimizing the actuation effort on K,M . To im-
plement this concept, trajectories will be generated through the
following minimization cost function:

min
A

∫ t1

t0

(zd(s)−Aφ(s))T ∗ (zd(s)−Aφ(s))+λP (K,M)ds

(19)
where zd(t) represents the desired trajectory for the flat out-
puts, for instance the trajectory defined by the previous algo-
rithm, z(t) = Aφ(s) is the output trajectory (z(t) still be a lin-
ear combination of a polynomial basis with p = 10 polynomi-
als) and P represents a function which penalizes the actuation
effort on the variablesK eM (in this example P = K2+M2).
The trajectory z is a trade-off solution between trajectory track-
ing of zd(t) and the actuation effort inK,M , which is obtained
by a suitable choice of λ. If λ is chosen to be close to zero,
this means that we give more preference to trajectory tracking.
Otherwise, we prefer to reduce the actuation effort.

The main design issue is the choice of a suitable λ. This choice
is left to the pilot who will be able to go through an iterative

0 5 10 15 20
-2

-1

0

1

2

K
b

[N
.m

]

time [s]
0 5 10 15 20

-2

-1

0

1

2

M
b

[N
.m

]
time [s]

Figure 8: Results of input minimization on K,M

procedure with the user interface. Detailed information about
the output trajectory with a chosen λ should be given to the
pilot before applying the trajectory on the vehicle. This way
the ROV’s pilot can refine as much as we want the value λ, and
obtain a better overall performance.

The results of trajectory computation with λ = 0, 05, with
zd(t) being the same trajectory presented in figure 5, are de-
picted in figure 8, where it is possible to see a significant reduc-
tion on K,M values. This reduction causes a slightly degra-
dation in trajectory tracking, namely in x, z, but, as expected,
results in a lower perturbation on θ (figure 9).

The main drawback of the previous approach is, definitively,
the computational power required to perform the minimization
presented in equation (19). This fact may prevent the applica-
tion of this technique in real-time applications.

5 Conclusions

This paper has reported an approach to the problem of trajec-
tory generation for a ROV. The architecture of the trajectory
generation and control system consists of three modules: 1)
output specification; 2) trajectory generation; 3) controller. The
main advantage of this architecture is its modularity: we devel-
oped the three modules separately, and further improvements
can be implemented independently.

The main focus of this article is the design of the trajectory
generation module. This module takes into account ROV’s dy-
namical and kinematical model to steer the vehicle without vio-
lating its constraints. It is shown that ROV’s model is differen-
tially flat under some mild assumptions: the stability of ROV
in the pith and roll modes and the negligible influence of the
thrusters on these degrees of freedom.

We presented two trajectory generation techniques that take ad-
vantage of the differential flatness of the ROV model. The first
one steers the vehicle from an initial state configuration to a fi-
nal one, while the second one steers the vehicle minimizing the
effect on K,M variables. We present simulation results that
confirm the validity of our assumptions, namely in what con-
cerns the low sensitivity of the ROV’s roll and pitch when we
use the second technique. However, this improvement requires
more computational time, which may not be feasible for real
time applications.

0 5 10 15 20
0

0.05

0.1

0.15

0.2

th
et

a
[r

ad
]

time [s]

Figure 9: Pitch behaviour after minimizing actuation on K,M

6 Acknowledgments

This material is based upon work funded by the Programa PRAXIS
XXI - Medida 3.1b) (IES project) and by Ministério da Defesa,
Portugal. Sérgio Fraga was funded by the Fundação para a
Ciência e Tecnologia (FCT) and the European Social Fund.

References
[1] Thor I. Fossen. Guidance and Control of Ocean Vehicles.

John Wiley and Sons, 1995.
[2] Sérgio Loureiro Fraga, João Sousa, Anouck Girard, and

Alfredo Martins. An automated maneuver control frame-
work for a remotely operated vehicle. In MTS/IEEE
Oceans 2001. IEEE, 2001.

[3] Sérgio Loureiro Fraga, João Borges Sousa, and Fernando Lobo
Pereira. A framework for the automation of a remotely
operated vehicle. In 10th IEEE Mediterranean Confer-
ence on Control and Automation, Junho, 2002.

[4] Rui Manuel Ferreira Gomes. Modeling and control of
underwater vehicles. Master’s thesis, Faculdade de En-
genharia da Universidade do Porto, 2002.

[5] Jean-Claude Latombe. Robot Motion Planning. KAP,
1993.

[6] Jean-Paul Laumond. Robot Motion Planning and Con-
trol. Springer, 1998.

[7] Richard Murray, Zexiang Li, and S. Sastry. Mathemat-
ical Introduction to Robotic Manipulation. CRC Press,
1994.

[8] Richard Murray, Muruhan Rathinam, and Willem Sluis.
Differential flatness of mechanical control systems: A
catalog of prototype systems. In ASME International
Mechanical Engineering Congress and Exposition, 1995.

[9] Michiel J. Van Nieuwstadt. Trajectory Generation for
Nonlinear Control Systems. PhD thesis, California Insti-
tute of Technology, Pasadena, California, 1997.

[10] Michiel Van Nieuwstadt and Richard Murray. Approxi-
mate trajectory generation for differentially flat systems
with zero dynamics. In IEEE Conference on Decision
and Control, New Orleans, 1995.

[11] Pravin Varaiya. Towards a layered view of control. In
36th IEEE Conference on Decision and Control. IEEE,
1997.

