
PRT Simulation in an Immersive Virtual World

Cristina V. Lopes
Bren School of Information

and Computer Sciences
University of California, Irvine

lopes@ics.uci.edu

Lorraine Kan
Bren School of Information

and Computer Sciences
University of California, Irvine

lkan@uci.edu
Anton Popov

Bren School of Information
and Computer Sciences

University of California, Irvine
apopov@uci.edu

Ricardo Morla
Faculdade de Engenharia

Universidade do Porto
Porto, Portugal

ricardo.morla@gmail.com

ABSTRACT
Immersive virtual world environments, such as Second LifeTM

(SL), have the potential to dramatically improve the process
of analyzing usability within technically correct system sim-
ulations, long before the system is built. We report our
findings with the SL simulation of a Personal Rapid Transit
(PRT) system. The SL model and simulation were done ac-
cording to the original technical specifications. In interact-
ing with this simulation, the system designers were able to
identify several usability issues that would have gone unno-
ticed in a non-immersive simulation environment. Namely:
(1) a problem with the design of the offramp to the station;
(2) further requirements for the design of the top of the ve-
hicles, so that the suspended track is out of direct sight of
the people inside; (3) further safety requirements for dealing
with unexpected obstacles along the path.

While all of these issues would have been identified upon
deployment of the physical prototype, the contribution of
our work is to show how usability issues like these can now be
identified much earlier, using simulations in a virtual world.

Categories and Subject Descriptors
I.6.7 [Simulation and Modeling]: Simulation Support
Systems; I.6.8 [Simulation and Modeling]: Types of Sim-
ulation—Animation, Combined, Visual

General Terms
Design, Human Factors

Keywords
Simulation, Virtual Worlds, Complex Engineering Systems

1. INTRODUCTION
Most engineering simulation tools focus on data, function,
and operational performance as the main objects of simu-
lation [6]. Usability by people is usually modeled as addi-
tional data following certain patterns of behavior, and then
simulated using a variety of techniques. This practice is
inherently limited, because real people tend to behave in
unpredictable ways when using complex systems deployed
in the real world.

Over the past decades, there has been considerable work in
immersive virtual reality environments capable of support-
ing the virtual presence of people in those environments.
The vast majority of this work has been in the military, and
it is usually associated with sophisticated immersion tech-
niques that may include special goggles, displays, and as-
sorted instrumentation for people to wear. Recently, there
has been a growing interest in virtual reality environments
that can be interfaced through any ordinary computer. Ex-
amples include massive multi-player on-line games such as
World of Warcraft [11], Club Penguin [2], and general pur-
pose, user-programmable virtual world platforms such as
Second Life [9] (SL) and Croquet [3]. This last group is
particularly relevant for engineering systems. A visit to any
part of SL reveals complex user-centered interactive virtual
systems programmed by SL’s users, suggesting the poten-
tial for combining technical simulation with immersive user
experience at a level unseen before.

We describe a case study of using SL as the modeling and
simulation environment of a real-world complex engineer-
ing system: a Personal Rapid Transit system (PRT) being
developed by a company in Southern California. Accord-
ing to Wikipedia, PRT is “a public transportation concept
that offers automated on demand non-stop transportation,
on a network of specially built guideways.” This concept ac-
commodates a variety of hardware solutions that range from
cars on rubber wheels guided by a supporting guideway, to
cars suspended on guideways through magnetic levitation.
The system we modeled uses suspension through magnetic
levitation on guideways made of large numbers of special
“bricks.” Fig. 1 depicts concept images of this system. The
first physical prototype being developed consists of a simple
loop with one single station.



Figure 1: Concept images of the PRT system of this
study.

The purpose of this work was twofold. First, we wanted to
find out if and to what extent, SL, the most popular general-
purpose virtual world platform, can be used as a systems
simulation tool by supporting technically accurate virtual-
izations of complex engineering systems; second, we wanted
to find out if and to what extent those virtualizations are
useful in the process of designing the systems. Our case
study shows that (a) SL is capable of supporting technically
accurate virtualizations of these systems, within certain lim-
its; and (b) the virtualization of the system allowed the de-
tection of several design issues, some of which were purely
technical while others involved the system’s usage and its
context.

Second Life was chosen as the simulation platform because
of its accessibility and the pre-existing virtual places created
by other SL users. SL is free for all to use on desktop or lap-
top computers running Windows, Mac, and Linux. The sim-
ulation environment is accessed through the point of view
of a customizable avatar. The avatar interacts with other
avatars and manipulates nearby objects using keyboard and
mouse inputs. SL’s avatar based user-interface makes it easy
for users to explore and increases the immersiveness of their
experience. Additionally, SL already contains more than
a million active members at the time of this publication.
Other SL users have created many different virtual places,
with some that mimic their real life counter parts. The
pre-existing virtual locations will be excellent for deploying
our simulation to create public awareness and to gain feed-
back about the system. Using SL does have one drawback:
the physics engine in the system was designed to emulate
only a limited amount of physical properties. However, our
research is not focused towards the physics portion of the

system so the limited physics engine proved to be adequate.

The remainder of the paper is organized as follows. Sec-
tion 2 describes what the PRT system does, and how we
implemented it in SL. Section 3 presents the findings of the
study. Section 4 discusses related work, and Section 5 con-
cludes the paper.

2. MODELING AND SIMULATION
The process used in this study was as follows. The PRT
company’s engineers provided us the specifications of their
system, and we developed the SL model and simulation.
Additionally, we had several meetings with them to clarify
parts of their design.

The PRT system of the original specifications consists of a
layered architecture that goes from the physical to the appli-
cation layer (there are some similarities to the OSI model).
Our simulation focused on the logic control software, i.e.
the software that controls the vehicles’ departure from the
station onto the main driveway and that ensures that all ve-
hicles remain in their assigned positions on the guideway; so,
flow control problem reminiscent of the data link layer in the
OSI model. We emulated the physical system to the point
that we could capture all the meaningful input parameters
for this control.

This section describes the major components of the model
and simulation, starting with a brief introduction to SL pro-
gramming which was used extensively.

2.1 Second Life Programming
SL is an end-user, fully programmable 3D virtual world with
powerful features for real-world systems simulation such as
a variety of sensors (touch, motion, and presence) and ac-
tuators (e.g. for generating light and sound, moving and
spinning objects), as well as support for communications
between simulated objects. Inworld programming of virtual
objects is done using LSL, a C-like event- and state-based
scripting language. Each object can hold a collection of
concurrently-running LSL scripts that implement the ob-
ject’s behavior. LSL scripts can react to 37 kinds of events
from the simulated environment and invoke the 300+ func-
tions of the Second Life LL API. Table 1 shows a few exam-
ples of events and functions of SL.

SL applications are divided into server-side, where the LSL
scripts run, and client-side, where the 3D graphics engine
renders the 3D virtual world data sent by the SL servers.
Given that the scripts execute on the server, all clients are
able to observe the scripts in action – a key feature of SL that
enables the simultaneous observation of the world’s state by
all avatars nearby.

2.2 Modeling of Real-World Objects
One of the most important components of any PRT system
is the guideway. The guideway of the particular system we
studied is made of a sequence of “bricks” of about 50cm,
each one comprising of magnetic levitation hardware, sen-
sors, and communication capabilities. As stated before, the
first prototype consists of a loop with an on/off-ramp to one
single station; this guideway has been carefully designed by



Communications
llSay Broadcasts a message on a channel number; 20m

range.
listen Calls user-defined message handling code.

Sensing
llVolumeDetect Sets collision detection in an object’s volume.
collision start Calls user-defined collision handling code.

Control
llSetPos Sets an object’s position in the 3D space of the

simulation region.
sensor Calls user-defined handling code for in-range

object events.

Object Creation
llRezObject Creates a new object on a given position in the

3D space of the simulation region.
on rez Calls user-defined constructor code of the cre-

ated object.

Table 1: Example LSL functions and events.

Figure 2: The guideway and its individual bricks.

the company’s engineers to account for the exact position
and rotation of each brick. Fig. 2 shows the overview of the
SL model guideway and a detail highlighting the individual
bricks. There are 312 bricks on the upper guideway, and 238
bricks on the lower one (the ramp/station).

The bricks, vehicle, and station are built and positioned pro-
grammatically by a creation object we developed. This al-
lows for the PRT simulation to be deployed in different SL
cities and immediately become a part of the environment for
users to experience.

For the purposes of the logic control we were studying, we
didn’t need detailed physical modeling of the system. This
was a good match with SL, because the current physics en-
gine of SL is quite limited. Physical phenomena such as wind
can be emulated by supplying additional input parameters
to our simulation that affect the behavior of the vehicles;
the controller simply needs to perform the appropriate pro-

From To Message

Brick Station Vehicle detected at brick n
Vehicle Station Request to move
Vehicle Station Notify stop
Station Vehicle Accept/deny request to move
Station Vehicle When to start moving

Table 2: Communications in the simulated PRT sys-
tem.

cedures to deal with such vehicle errors.

2.3 Simulation
2.3.1 Sensing
Each of the bricks that compose the real-world system guide-
way contains sensors that capture the passing vehicle’s pres-
ence and ID. As the top of the vehicle moves through the
inside of a brick, the sensors are triggered and a detection
notification is sent to the station. The station uses the infor-
mation to determine if the vehicle is at the correct location
and takes corrective action if necessary. The sensors in the
real-world system can also detect how fast the vehicle is
traveling based on the rate of change of positions.

We implemented the equivalent sensing mechanism in SL by
equipping the individual bricks with a sensor for presence
and identification, and notifying the station of the detected
vehicle. The sensor is implemented using the SL function
llSensorRepeat on each brick. llSensorRepeat performs
a scan within a specified sensor range every half a second
within 0.3 meters of the brick’s center. When llSensorRe-

peat detects an object passing through the brick, the event
sensor is triggered. the vehicle’s unique identifier is then
retrieved using the SL function llDetectedKey.

2.3.2 Communications
Table 2 summarizes the messages that are sent between the
several components of the system.

In the real-world system, the communications medium is
still an open design decision. In SL, we used an emulation
of wireless communications using SL’s channels: communi-
cation between the system’s different objects is passed as
plain text through selected channels using the SL function
llShout. Each object listens to a specific set of channel(s)
using llListen and parses the text message to determine
the next action. The communication in SL is sent immedi-
ately regardless of the distance of the recipient object, but,
just as in the real physical medium, there is the possibility
of congestion.

2.3.3 Flow Control
The system requires the vehicles to keep a specific amount
of distance between each other. To enforce the distance,
the station pre-determines the amount of slots available for
a given guideway. When the vehicle requests to move, the
station assigns an empty slot and notifies the vehicle when
it is cleared to go. The vehicle then accelerates and merges
with the main guideway at the correct time in order to be
at the assigned slot. The station then marks the slot as



occupied until the vehicle returns to the station and sends
a notification that it has stopped. If a vehicle requests to
move and the station has already assigned all available slots,
the vehicle will not be cleared to move and is forced to wait
for a free slot.

3. FINDINGS: THE IMMERSION FACTOR
Design mistakes are a normal and unavoidable part of any
design process. The purpose of engineering simulations, in
general, is to identify design mistakes and other issues of
concern, long before the systems are built. The more prob-
lems and insights are identified during simulation, the more
successful that simulation is considered to be. Conversely, if
no problems or insights are identified during simulation that
is usually an indicator that the simulation itself is inappro-
priate, since it is highly unlikely that the design is flawless.

As stated before, the goal of this study was to investigate
the appropriateness of SL as simulation tool for complex en-
gineering systems through this particular case study. There
were two parts to this goal: (1) feasibility of a technically
accurate virtualization of the system; and (2) study of the
kinds of design issues that would be identified, if any, with
such a simulation.

With respect to the first part, and as described here, we
were able to successfully produce a fairly accurate virtu-
alization of the PRT system. At several times during this
study we discussed the need for more detailed physical mod-
eling. Since the focus was on the logic control, we were able
to make progress without having to model the physical phe-
nomena more accurately. This was accomplished by emulat-
ing the physical phenomena as additional input parameters
to the scripts in the object models. For example, the effect
of wind on the vehicles is emulated by an additional random
error parameter on the movement of the vehicle.

Our conclusion is that, as of now, SL is inappropriate for
detailed physical modeling. If that is the focus of a simula-
tion, then another tool should be used.1 But for simulations
pertaining to logic control problems in physical systems, SL
proved to be an excellent fit. Its virtualization capabilities,
along with the programming API, make a powerful combi-
nation for general-purpose physical systems simulation.

With respect to the second part of our goal (i.e. detection
and nature of design issues), our findings exceeded our ex-
pectations. Not only the simulation detected routine techni-
cal mistakes, but it also enabled the detection of additional
mistakes of a very different nature: usability. Table 3 lists
the main design issues that were identified with this simula-
tion.

SL has two properties that are rarely seen in engineering
simulation tools: (1) the virtual presence of people through
“avatars;” and (2) the loose control of the environment where
the virtual model is deployed – that is, the site has public ac-

1We note, however, that the SL architecture is not tied to
any particular physics engine. Documents describing the
future of SL mention the possibility of varying the specific
physics engine for different simulators of the SL network.
Therefore, it is predicted that detailed physical modeling
will be supported in the future.

Design Issue
1 Guideway calculation errors.
2 Guideway stop section not big enough.
3 View of upper guideway at the station too uncom-

fortable.
4 Direct sight of the guideway on moving vehicle

might cause panic or epileptic attacks.
5 Unexpected Obstacles.

Table 3: Design issues identified with this simula-
tion.

Figure 3: Top: avatars at the station. Bottom: an
avatar riding one of the cars.

cess, and other people have been doing virtual constructions
in it. We call these two properties the “immersion factor.”
Fig. 3 illustrates this immersion.

Looking at Table 3, we notice that issues 1 and 2 would
have also been detected with a non-immersive simulation
environment. For 1: the initial guideway specification used
the wrong radius for the arcs’ curvatures, which caused the
bricks to not line up correctly. For 2: initially, the stop
section at the station was only 4 bricks long, which wasn’t
even enough for one single car. These are routine mistakes in
any physical modeling process, and they are usually detected
fairly early, either by unfolding the calculation on a drawing,
or by modeling the artifact in a modeling tool. In our case,
they were immediately detected as soon as we started laying
the bricks in space. In turn, the engineers promptly redid
the calculations and generated the correct specifications.

Issues 3, 4, and 5, however, have a different nature. They
have to do with usability of the system by people, and the



Figure 4: Design problem in a prior version of the
guideway. Top image: the original station design.
Bottom image: the redesigned station.

context in which the system is deployed. They were de-
tected because of the immersion factor. The remainder of
this section focuses on these.

Upper guideway at the station. Fig. 4 illustrates the sit-
uation. In the initial design, the two guideways aligned ver-
tically according to the concept images shown in Fig. 1. As
such, the vehicles moving at high speed in the upper guide-
way would pass on top of the platform where people stand.
This looked nice in the concept image. However, when we
placed the avatar at the station and looked up through the
“mouse view”(a view of the world through the avatar’s eyes),
the view of the vehicles on top made this design feel uncom-
fortable, if not unsafe. Once this was detected, the engineers
promptly redid the calculations of the guideway, and gener-
ated the specifications leading to the new guideway seen on
the bottom of Fig. 4. In this second design, the lower guide-
way shifted horizontally outwards from the upper one. As
such, the moving vehicles on the upper guideway are at a
confortable angle and distance from the people at the sta-
tion.

Direct sight of the guideway on moving vehicle may
cause panic or epileptic attacks. Fig. 5 attempts at
illustrating the situation, although it can only be fully per-
ceived while riding on the moving vehicle. The problem here
is that seeing the guideway on top as the vehicle moves can
be highly unsettling, especially for people who are prone to
panic or epileptic attacks. The system engineers detected
this problem the first time they interacted with the simula-
tion using the “mouse look” view, i.e. the view of the world
through the avatar’s eyes. As a result, they issued further

Figure 5: View forward, from inside the car.

Figure 6: Obstacle along the path.

requirements for the vehicles so that the view of the top is
obstructed as much as possible.

Unexpected Obstacles. Fig. 6 illustrates this situation.
This problem is predictable even without any simulation.
Any system that involves autonomous vehicles must account
for unexpected obstacles, and the engineers were aware of
that. However, the simulation made it an urgent concern.
In this case, the interference of the obstacle along the path
happened in a natural manner: we wanted to deploy the
system near a pre-existing building, to make it more re-
alistic. Along with the building, there were several other
objects already there, including a garden with trees and a
movie screen – in Fig. 6, the vehicle is hitting this movie
screen. All that construction had been done before, and
was unrelated to the PRT simulation. Real-world deploy-
ments must take into account the existing environment, and
avoid existing obstacles, or take them down, so this partic-
ular situation would have been solved in real life by taking
down the movie screen and some trees. However, unless the
guideway is relentlessly monitored, it will be impossible to
control obstacles along the path after the guideway is de-
ployed: vandals may place them on purpose; nearby trees
may grow onto the path; etc. For the engineers, it became
clear that if their PRT technology is to be accepted, they
need to address collision avoidance right from the start.

Further Observation on Deployment. The ability to
generate the track anywhere in SL provides the system en-
gineers with the opportunity to see and minimize the visual



impact of the track in different environments such as cities,
parks, and natural habitats. The large collection of envi-
ronments built by SL users, contribute to the immersion
factor and provide a unique way to test and minimize the
visual footprint of the track. Other, non-immersive simula-
tion tools do not have a readily available collection of en-
vironments which render the visual-impact test impossible.
Furthermore, the simulation exists and runs on Second Life
even if we, the creators, are not there, allowing anyone to
experience it at any time.

Public Access. The virtual PRT system we developed
is publicly accessible in secondlife://TechCoast. Anyone
with an SL account can visit and interact with the system.

4. RELATED WORK
As mentioned before, most engineering modeling and sim-
ulation tools focus on data, functionality, and operational
performance. For example, modeling tools such as LabView
[6] and Matlab [7] provide numerous toolbox libraries and
textual and graphical interfaces for composing system mod-
els that provide complex data processing functionality. Ap-
plications of these tools include sound and image process-
ing, communication systems modeling, financial analysis,
and control system design. General purpose simulation tools
such as Simulink [10] and C++SIM [4] also focus on support-
ing the performance assessment of e.g. algorithm and mod-
els, providing basic simulation functionality such as random
number generators, queuing algorithms, and event genera-
tion and management. Similarly, domain-specific simulators
provide constructs that make it easier to build systems in
those domains and to assess their performance. For exam-
ple, the ns network simulator [8], en route to its third version
includes simulation objects for most of the OSI stack e.g. at
the physical layer (e.g. simulation of two way ray propaga-
tion in wireless networks) and at the MAC, IP, and TCP
layers, as well as logging throughout the different layers and
simulation objects. The same also happens in the domain
of transportation systems, where traffic simulators such as
[19] can be used to determine the performance (traffic con-
gestion) of a city or freeway grid, incorporating simulation
details such as multi-lane streets with lane changing, lane-
to-lane connections, and different vehicle types. Research
based on these simulation tools is often based on batches of
numerous simulation runs with different input parameters,
mostly random, the output of which is typically processed
to provide statistically meaningful results. While immersive
virtual world environments such as SL provide the program-
ming building blocks for developing technically correct sim-
ulations, they are not designed for batch runs or to run in
faster than real time. In fact, in SL it is typically a human-
controlled avatar that triggers the response of the simulated
system, which does not lend it self to the same number of
simulation runs per time unit that a simulation system with-
out a human in the loop can perform.

Architecture-wise, the SL virtual world is accessible online,
much like web-based simulations [16]. Moreover, SL is de-
signed to support multiple users connected simultaneously
to a grid of simulation servers. The servers communicate
with each other through UDP connections and the client-
server protocol is open source. This is reminiscent of a
number of simulation and emulation architectures [14, 15,

20] although its general purpose nature does not lie on the
different types of simulators that can be included in the sim-
ulation architecture, as is the case with [14, 15, 20]. Rather,
SL’s general purpose nature lies in the variety of interactive
3D objects that can be simulated – much like what happens
in [21] for grid and P2P applications.

To some extent the ability to identify usability issues on SL
derives from its 3D support. SL has embedded 3D object
creation tools and can import 3D objects as sculpted tex-
tures from other 3D tools such as Blender [1] and SketchUp
[5]. Although SketchUp can export 3D objects into Google
Earth (which is, to some extent, a virtual environment), nei-
ther SketchUp nor Blender objects can be programmed and
given a simulated behavior – unlike SL objects. A variety
of 3D virtual worlds have been developed and used so far
but fall short of having the potential for improving the us-
ability analysis of technically correct systems. Namely, they
do not have one or more of the following properties: fully
online (e.g. UbiWise [12], a ubiquitous computing-focused
3D simulation environment); they are not general purpose
nor end-user programmable (e.g. WoW [11]); or they have
not reached the same growth and critical mass as SL (e.g.
Croquet [3]) that supports deploying a simulation prototype
with a large number of people that can individually assess
the usability of that simulation prototype.

There are a number of research efforts into the issue of as-
sessing the usability of a prototype without fully developing
it. The ”Wizard of Oz” approach is often explored [18] in
which an application whose functionality has not been fully
developed is tried out and evaluated with users. The appli-
cation functionality is typically provided by a researcher that
is hidden from the user or by model-based simulations [13].
This has a number of disadvantages, e.g. incorrect model
simulation and technical issues hiding the researcher/wizard.
With SL simulation prototypes, a technically correct simu-
lation of a somewhat complex system (e.g. the PRT system
that we developed) can be quickly developed and the us-
ability of that system explored without need for a Wizard
of Oz. Providing technically correct functionality is not the
only issue when evaluating usability with virtual environ-
ments; the interface with the user plays an important role
and is often used as an argument against using virtual envi-
ronments as tools for helping assessing usability. However,
recent research [17] shows that even crude foam board-based
user interfaces can prove useful when exploring how proto-
types can be used – in this case a smart home prototype was
explored. This points to the direction in which 3D virtual
reality simulations can be used to explore the usability of
real world prototypes such as the PRT simulation presented
in this paper.

5. CONCLUSIONS
We have presented a case study of using the virtual world
Second Life as simulation tool for a complex real-world en-
gineering system. SL supports 3D virtualization of objects
and people, along with a general-purpose programming API
that allows the association of behavior with the virtual ob-
jects. While we found SL to have several limitations in terms
of physical modeling, we found it to be very effective for sim-
ulating logic control of physical objects. Our SL simulation
of the real-world PRT system allowed the system engineers



to detect several design mistakes and concerns, including
some of usability nature – a kind of design concern that is
rarely detected with engineering simulation tools.

Modeling tools such as Google’s SketchUp provide solid sup-
port for detailed 3D modeling; advanced physics engines
being developed by Intel and others will enable accurate
physics modeling; and finally user-programmable virtual worlds
such as SL allow the deployment of interactive 3D construc-
tions with sophisticated sensing, communicating, and con-
trol behavior, in relatively uncontrolled social environments.
The convergence of these three technologies may revolution-
ize the process of design in engineering.

6. ACKNOWLEDGMENTS
Dr. Lopes is partially supported by the US National Science
Foundation grant No. CCF-0347902. Dr. Morla was sup-
ported by the Portuguese Fundação para a Ciência e Tec-
nologia. The authors would like to thank Unimodal Inc.,
Irvine, CA for sharing their confidential design documents,
and for their generous gift supporting our research on sim-
ulation in virtual worlds.

7. REFERENCES
[1] Blender web site. http://www.blender.org/.

[2] Club Penguin Community Site.
http://www.clubpenguin.com/.

[3] Croquet Consortium. http://www.opencroquet.org/.

[4] C++SIM web site. http://cxxsim.ncl.ac.uk/.

[5] Google SketchUp. http://sketchup.google.com/.

[6] LabView web site. http://www.ni.com/labview/.

[7] Matlab web site.
http://www.mathworks.com/products/matlab/.

[8] ns-3 Network Simulator web site.
http://www.nsnam.org/.

[9] Second Life Community Site.
http://www.secondlife.com/.

[10] Simulink web site.
http://www.mathworks.com/products/simulink/.

[11] World of Warcraft Community Site.
http://www.worldofwarcraft.com/.

[12] J. J. Barton and V. Vijayaraghavan. UBIWISE, A
ubiquitous wireless infrastructure simulation
environment. HPLabs Technical Report
HPL-2002-303, 2002.

[13] R. Chatley, J. Kramer, J. Magee, and S. Uchitel.
Model-based simulation of web applications for
usability assessment. In ICSE Workshop on SE-HCI,
2003.

[14] J. S. Dahmann, R. M. Fujimoto, and R. M. Weatherly.
The department of defense high level architecture. In
29th Winter Simulation Conference, 1997.

[15] O. Dalle. The osa project: an example of component
based software engineering techniques applied to
simulation. In Summer Computer Simulation
Conference (SCSC’07), 2007.

[16] A. D’Ambrogio and D. Gianni. Using corba to enhance
hla interoperability in distributed and web-based
simulation. In 19th International Symposium on
Computer and Information Sciences (ISCIS’04), 2004.

[17] S. Davidoff, M. K. Lee, A. K. Dey, and

J. Zimmerman. Rapidly exploring application design
through speed dating. In Conference on Ubiquitous
Computing (Ubicomp’07), 2007.

[18] S. Dow, B. MacIntyre, J. Lee, C. Oezbek, J. D. Bolter,
and M. Gandy. Wizard of oz support throughout an
iterative design process. IEEE Pervasive Computing,
2005.

[19] D. Krajzewicz, G. Hertkorn, P. Wagner, and
C. Rossel. An example of microscopic car models
validation using the open source traffic simulation
sumo. In 14th European Simulation Symposium, 2002.

[20] R. Morla and N. Davies. Evaluating a location-based
application: A hybrid test and simulation
environment. IEEE Pervasive Computing, 2004.

[21] M. Quinson. Gras: A research & development
framework for grid and p2p infrastructures. In 18th
IASTED International Conference on Parallel and
Distributed Computing and Systems (PDCS 2006),
2006.


