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Abstract: This paper presents a new assignment algorithm 

with order restriction. Our optimization algorithm was 

developed using dynamic programming. It was implemented 

and tested to determine the best global matching that 

preserves the order of the points that define two contours to 

be matched. In the experimental tests done, we used the 

affinity matrix obtained via the method proposed by Shapiro, 

based on geometric modeling and modal matching. 

The proposed algorithm revealed an optimum performance, 

when compared with classic assignment algorithms: 

Hungarian Method, Simplex for Flow Problems and LAPm. 

Indeed, the quality of the matching improved when compared 

with these three algorithms, due to the disappearance of 

crossed matching, which is allowed by the conventional 

assignment algorithms. Moreover, the computational cost of 

this algorithm is much lower than the ones of other three, 

leading to enhanced execution times. 

Keywords: Image analysis, contours matching, optimization, 

dynamic programming. 

1 Introduction 

The recognition of objects represented in images is one of the 

central problems in Computational Vision. It is a challenging 

task, mainly due to the large number of variations of 

projection of objects in 2D images, for instance as a result of 

changes of camera position, or even due to the deformations 

that the objects might have suffered. 

To measure the similarity or disparity between two objects 

represented in images, or the same object represented in 

different instants, techniques based on the signal that 

represents them could be used. In these techniques, the 

images are considered as a 2D signal that represents the gray 

level or color, for instance. In many of these methods, the 

well developed techniques of signal processing based on 

Fourier or wavelet transforms are used. In [Daugman (2003)] 

a method is presented based in Gabor wavelets widely used 

for identifying people by their iris. Fourier or wavelet 

transforms are also frequently used in applications of image 

compression. In [Zhang (2007)] a comparative study is made 

among some methods based on wavelet transform for image 

compression. 

A problem tightly related with the one of recognition of 

objects in images is the problem of identifying corresponding 

elements between images, often defined by groups of points, 

segments of straight lines or curves and boundaries. 

Frequently, these groups of points or segments represent the 

external contour of shapes represented in the input images. 

To extract points, segments or boundaries of shapes 

represented in images it is necessary to divide the input 

image into regions. This process is usually called 

segmentation. Many segmentation techniques exist, such as, 

methods based on templates matching; statistical modeling; 

deformable templates; deformable models; level set methods, 

[Wang, Lim, Khoo and M. Wang (2007)] and physical 

principles, [Gonçalves, Tavares and Natal (2008)]. For a 

review of these methods see, for example, [Zhang (2001)] 

and [Tavares et al (2007)]. 

Different segmentation methods are applied to distinct 

situations to solve the image processing issue. As examples 

of application of these techniques, see for instance, [Zhang et 

al (2008)] and [Tavares et al (2007)]. 

The problem of finding correspondences among 

characteristic points of an object in two different instants, or 

between two objects, represented in images, originated the 

emergence of many proposals, in the sense of reaching the 

best global correspondence among the referred points. To 

determine the matches, the following techniques can be used: 

spatial intensity gradient information, [Lucas and Kanade 
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(1981)]; modal matching, [Shapiro and Brady (1992); 

Sclaroff and Pentland (1995)]; shape context, [Belongie, 

Malik and Puzicha (2002)]; curvature information, [Oliveira 

and Tavares (2007); Oliveira (2008)]; or distance to the 

center of the objects, [Oliveira (2008)]. 

When the similarity among characteristic points is quantified 

in a cost matrix, traducing the match affinities, the matching 

problem can be interpreted as an optimization problem. 

Usually, assignment algorithms are used to determine the 

best global matching. Such algorithms are frequently based 

in: simulated annealing, [Starink and Backer (1995)]; linear 

or integer programming, [Bastos (2003), Bastos and Tavares 

(2004, 2006)]; bipartite graph matching, [Fielding and Kam 

(2000)]; convex optimization, [Maciel (2001)]; dynamic 

programming, [Scott and Nowak (2006)]; etc. 

The optimization of correspondences between two closed 

contours defined by a set of ordered points is constrained by 

an important rule that should not be discarded: the relative 

order of the points to be matched should be preserved to 

guarantee the coherence of the matching obtained, avoiding, 

like this, crossed matching. 

This problem of finding the global matching of minimum 

cost preserving the order of the points of the input shapes 

contours is not trivial, because there are different ordinations 

that define the same contour. The solution described in this 

paper is based on dynamic programming and is able to solve 

this problem in a simple and fast way. 

To experiment and compare the developed new dynamic 

programming algorithm with other assignment algorithms, it 

was integrated in a computational platform, already 

developed, [Tavares (2000); Tavares, Barbosa and Padilha 

(2000, 2002)]. The results of the comparison with the 

Hungarian Method, Simplex for Flow Problems and LAPm 

are presented and discussed further in this paper. The cost 

matrices used for the comparison were obtained using the 

modal matching methodology proposed by Shapiro, which 

was already integrated in the referred platform, [Shapiro and 

Brady (1992); Tavares (2000); Tavares, Barbosa and Padilha 

(2000, 2002); Bastos (2003); Bastos and Tavares (2004, 

2006); Tavares and Bastos (2005)]. However, another cost 

matrices could be used. 

In this paper, after enumerating some previous works 

developed to find the best global matching between objects, 

the problem of searching for the best correspondence 

between two sets of ordered points that preserves the order 

defined is considered. Afterwards, comparative results 

between the developed algorithm and the classic assignment 

algorithms already referred are presented. The last section is 

dedicated to final conclusions and future work perspectives. 

2 Previous work 

This work comes in the sequence of the work presented in 

[Tavares (2000); Tavares, Barbosa and Padilha (2000)], in 

which methodologies for matching characteristic points of 

two objects in images were implemented, using physical 

modeling and geometric modeling, complemented with 

modal matching, [Shapiro and Brady (1992), Sclaroff and 

Pentland (1995)]. Thus, those methodologies were used to 

determine the matching between characteristics points from 

two shapes represented in images, through the construction of 

an affinity matrix. Afterwards, this cost matrix was used to 

search for the desired correspondences. The solution 

presented to establish the matching had a pure local nature, in 

the sense that two points were only matched if, for each one 

of them, the other point was the nearest in cost terms. This 

way, frequently happened that some points were not 

corresponded and sometimes crossed matching occurred, see 

Fig. 1. 

 

 

Figure 1: Matching found between two contours (“heart5” 

and “heart6”) using a local approach. These contours are 

defined by 81 and 83 points, respectively. 

 

In [Bastos (2003)], the work previously done in [Tavares 

(2000); Tavares, Barbosa and Padilha (2000)] was 

complemented through the implementation of three global 

optimizations methods, aiming the determination of the 

desired matching. Thus, the problem of searching for the best 

global matching between two contours was formulated as a 

classic assignment problem and three algorithms traditionally 

employed to solve these kind of problems were used, [Dell’ 

Amico and Tooth (2000)]: the usual Hungarian Method, 

[Hillier and Lieberman (1995)]; the Simplex for Flow 

Problems, [Löbel (2000)], and the LAPm, [Volgenant 

(1996)]. When those assignment algorithms were applied on 

the affinity matrices established using physical or geometric 

modeling, the experimental results obtained improved 

considerably in comparison with the ones obtained using the 

previous methodology based on pure local aspects, [Bastos 

(2003); Bastos and Tavares (2004, 2006); Tavares and Bastos 

(2005)]. 

As already referred, when the assignment algorithms were 

applied to match contours defined by ordered point sets, it 

was verified that sometimes the matching found appeared 

without sense, that is, the order of the points was not 

considered and, therefore, crossed matches were present, see 

Fig. 2. Thus, the work here presented had as main aim to 

develop an assignment algorithm that must preserve the 

predefined order of the points to be matched. 
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Figure 2: Matching found between the contours of Fig. 1 

using global optimization. 

3 Definition of the problem 

Let us begin by defining what means, in this work, relative 

order and absolute order of the points that define a contour.  

In Fig. 3, the sequence of points shown can be defined as: 1, 

3, 4, 6, 7, 9. This sequence is monotonous increasing. 

Considering the same figure, it can also be defined the 

sequence: 4, 6, 7, 9, 1, 3. However, the former is not 

monotonous. 

Considering Fig. 3 as a closed contour, it can be observed 

that the above two sequences define the same contour. Their 

difference is only the initial point considered. In this paper, 

we will say that the first sequence preserves the absolute 

order, because it is monotonous increasing, and that the 

second one only preserves the relative order. 

 

7

41

3

9
6

 

Figure 3: Sequence: 1, 3, 4, 6, 7, 9 placed on a 

circumference. The points of the circumference 

can also be defined, for instance, by 

the sequence: 4, 6, 7, 9, 1, 3. 

 

To illustrate our solution for the problem of matching the 

points of two contours preserving their relative order, let us 

begin to analyze the two following examples: 

 

a) Suppose that we have two contours, both defined by 4 

points and numerated from 1 to 4, and consider the 

following matchings (given by column): 









=

4321

4321
f  and 








=

2143

4321
g . 

When we observe the second line, which corresponds 

to the second contour, we can conclude that the 

matching f satisfies the absolute order but the matching 

g does not. However, the relative order is correct in 

both, because after point 1 comes point 2, after point 2 

comes point 3 and so forth (considering the sequence of 

points disposed in circle). 

b) Suppose now that we have two contours, one defined 

by 4 points and other defined by 7 points, respectively. 

Observe the next matchings: 









=

7521

4321
h , 








=

1642

4321
t  and 

 









=

5476

4321
p , 

all of them preserve the relative order, but only 

matching h preserves the absolute order. 

 

When the input contours are defined by equal number of 

points, the matching can be easily accomplished. In fact, it is 

enough to observe that if point i of contour 1 is matched with 

point j of contour 2, then point 1+i  ( 1+i  means the point 

that follows point i in de sequence of points disposed in 

circle) of contour 1 has to be matched with point 1+j  of 

contour 2, and so forth. Therefore, considering that both 

contours are defined by n points each one; there are just n 

hypotheses of global matching that preserve the relative 

order: 










n

n

...321

...321
, 









1...432

...321 n
, 










2...543

...321 n
,… , 









−1...21

...321

nn

n
. 

Thus, it is enough to determine the cost of each one of the n 

global matchings and then choose the one that originated the 

minimum cost. 

For contours defined by different number of points, we will 

present, afterwards, a new formulation based on dynamic 

programming, which finds the best global matching 

maintaining the absolute order of the matched points. 

4 Formulation as a dynamic programming problem 

4.1 General formulation 

Let us begin this section considering a straightforward 

example. Let us suppose that we have contour 1 and contour 
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2 defined, respectively, by 4 and 6 points and the following 

cost matrix of the matches between them: 



















=

1

8

1

1

4

0

2

5

5

4

5

4

7

2

1

1

2

1

3

0

3

6

0

1

C , 

where ijc  represents the cost to match point i from contour 1 

with point j from contour 2. 

To avoid crossed matches, we require that the absolute order 

of the matched points must be preserved. Thus, we impose 

the monotony of the matching sequence, that is, if point i of 

contour 1 is matched with point j of contour 2, then point 

1+i  of contour 1 has to be matched with a point kj +  of 

contour 2, where k is an integer and not less than one. Hence, 

we have, for instance, among others, the following valid 

matchings: 










4321

4321
, 









5431

4321
, 










6432

4321
, 









6543

4321
, 

with the associated global costs: 11, 10, 6 and 7, respectively. 

In total, for the imposed hypotheses, we have exactly 15 

possible global matchings, because to count the global 

matching hypotheses is equivalent to count how many 

subsets of 4 different elements we can get from the 6 

elements of contour 2. Therefore, the number of global 

matchings that preserve the absolute order is, in this example, 

given by: 

( )
15

!2!46

!66
4 =

−
=C . 

In general, if a contour is defined by n points and the other by 

m points, with mn ≤ , there are exactly m
nC  (combinations 

of n elements in a set of m elements) matching hypotheses 

maintaining the absolute order. Considering the relative 

order, there are exactly m
nmC  hypotheses, as we will explain 

later. 

Using a usual notation in dynamic programming, [Norman 

(1975) and Winston (1994)], for the previous example, we 

will define 4 stages. In stage 1, the match of smaller cost for 

point 1 of contour 1, under the matching hypotheses is 

chosen. In stage 2, the best match for point 2 of contour 1 is 

selected, under the matching hypotheses derived from the 

match of point 1 in stage 1, and so forth. It is fundamental to 

refer that the definition of a match between two points in a 

certain stage will affect the hypotheses of matching in the 

subsequent stages. 

For better understanding of the former approach, let us 

observe the following. In the example in study, point 1 of 

contour 1 can just be matched with points 1, 2 or 3 of contour 

2, but, for instance, if point 1 of contour 1 is matched with 

point 3 of contour 2, then point 2 of contour 1 has only one 

matching hypothesis: with point 4 of contour 2. Thus, and 

according to the matching already done in the previous 

stages, for a certain stage k from the example in study, point 

k of contour 1 will be matched with only a point of the 

following groups of points of contour 2: 

{ }k , { }1, +kk  or { }2,1, ++ kkk . 

To indicate how many points of contour 2 are available to be 

matched with a certain point of contour 1, we will define the 

state variable s. For the referred example, we have 

{ }3,2,1∈s . If in a certain stage k we have 1=s , then point k 

of contour 1 has only one matching hypothesis (with point k 

of contour 2); if 2=s , then point k of contour 1 has two 

matching hypotheses (with points k or 1+k of contour 2), 

and so on. 

Let us now define the function of minimum cost ( )sfk , 

where s is the state variable already defined, k represents the 

stage and ( )sfk  represents the minimum cost to match points 

1, 2, 3… k of contour 1, when point k of contour 1 has s 

matching hypotheses of choice. 

To better elucidate our approach, we will apply this 

formulation on the example in study. Thus, we will build, 

successively, an optimal matching that preserves the absolute 

order of the points involved. For such, on the left we indicate 

the minimum costs for each stage and for each state, and on 

the right we define the matching established: 

( ) 11 111 == cf  








1

1
 

( ) { } 0,min2 12111 == ccf  








2

1
 

( ) { } 0,,min3 1312111 == cccf  








2

1
 

( ) ( ) 41311 1222 =+=+= fcf  








21

21
 

( ) ( ) ( ){ } 12,1min2 1231222 =++= fcfcf  








32

21
 

… 

( ) { } 2...min34 ==f  








6532

4321
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As in total there are 4 stages, if the intension is just to 

calculate the minimum cost, in the fourth stage it would not 

be necessary to calculate ( )14f  and ( )24f  but, because it is 

necessary to keep relative information for the matching, such 

calculations have to be done. For the example in study, the 

minimum cost to match the 4 points of contour 1 with 4 

points of contour 2, preserving the absolute order of the 

points, is equal to 2 and the associated matching is the last 

one. 

In general, for a cost matrix C of dimension mn × , with 

mn ≤ , nk ≤  and { }1...,,2,1 +−∈ nms , ( )sfk  represents 

the minimum cost to match the points 1, 2, …, k of contour 1, 

when point k of contour 1 has s matching hypotheses. With 

this formulation, we guarantee that the best global matching 

that preserves the absolute order is reached. 

To obtain the best global matching while maintaining the 

relative order, it is necessary to rearrange the points of 

contour 2 (point 2 becomes point 1; point 3 becomes point 2 

and so forth). Continuously, the matching of minimum cost 

that preserves this new absolute order and the respective cost 

are calculated. The rearrangement process and consecutive 

calculus are repeated again, and so forth. 

With the described approach, each new absolute order 

corresponds to a relative order, relatively to the initial 

arrangement. Thus, all of the possible relative arrangements 

of contour 2 are built, and thus all the matchings that 

preserve the relative order and respective minimum costs are 

obtained. 

In the example in study, it is necessary to solve 6 problems of 

global matching that preserve the new successive absolute 

arrangements of the points of contour 2. After applying this 

formulation, the matching of minimum cost that preserves the 

relative order of the points still is the previously presented. 

4.2  Algorithm and implementation 

Before we present our new algorithm, let us observe the 

example described in the previous section. In that example, 

we have, for instance: 

( ) ( ) ( ) ( ){ }3,2,1min3 2352342333 fcfcfcf +++= . 

It seems that to calculate ( )33f  we have to calculate three 

values and later compare them to choose the lower one. 

However, such procedure is not necessary, because the 

values ( )1233 fc +  and ( )2234 fc +  were already calculated 

and ( ) ( )12 233234 fcfc +≤+ . According to this, it is enough 

to calculate ( )3235 fc +  and compare it with ( )2234 fc + . 

Thus, in each stage, only one sum operation and one 

comparison operation for each state is done, if 1>s . If 

1=s , then only one sum is necessary. 

The presented algorithm starts from the hypothesis that it is 

not known a priori any matches that should be considered. 

For that reason, it determines all the possible global 

matchings that preserve the new successive absolute orders 

and then it chooses the one of minimum cost. The chosen 

matching is the one of lower cost that maintains the relative 

order of the points. 

Our new algorithm can be described as follows: 

 

Algorithm: 

1. Read the dimension of contours to be matched and the 

costs matrix C. Define the value of n and m so that 

mn ≤ . If necessary ( mn > ), make the transpose of 

matrix C. 

2. Repeat m times: 

i. To nk ,...,2,1=  and 1,...,2,1 +−= nms , calculate 

the values of ( )sfk , taking in consideration what 

was referred before, avoiding repeated calculations 

already made. Keep the values of ( )sfk  in a table of 

n rows and 1+− nm  columns, that is, the used table 

must have so many rows as stages and so many 

columns as states, (Tab. 1). 

ii. Determine and keep the minimum cost, which is the 

value kept in the position ( )1, +− nmn  of the values 

table. (In the previous example, it is the value kept 

in position ( )3,4  of Tab. 1). 

iii. Define and keep the global matching of minimum 

cost, which is made by making a search in the built 

table. Notice that the selection of a certain cell ( )ji,  

means that the point i of contour 1 is matched with 

point 1−+ ji  of contour 2. (See the cells used to 

define the matching in the example in study, Tab. 1.) 

iv. Rearrange the columns of the matrix C, so that, 

column 2 becomes column 1, column 3 becomes 

column 2 and so forth. 

3. Seek the minimum cost between the m kept values and 

the respective matching. 

 

If one match is known a priori, then the algorithm does not 

need to determine all the possible global matchings as in the 

presented case. For instance, let us suppose that it is known 

that point i of contour 1 should be matched to point j of 

contour 2. Then, the points of both contours are rearranged: 

point i of contour 1 becomes point 1, point 1+i  becomes 

point 2 and so forth. The same is made in contour 2. Now, it 

is enough to solve only one problem to search for the best 

global matching that preserves the new absolute order, 

instead of m problems that the algorithm will have to solve if 

any match was known a priori. 
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Table 1: Minimum costs kept by the algorithm for the 

example in study. The values are relative to the first 

problem (initial order). The marked cells are 

used to define the matching. 

 State (s) 

Stage (k) 1 2 3 

1 ( ) 111 =f  ( ) 021 =f  ( ) 031 =f  

2 ( ) 412 =f  ( ) 122 =f  ( ) 132 =f  

3 ( ) 613 =f  ( ) 523 =f  ( ) 133 =f  

4 ( ) 1114 =f  ( ) 924 =f  ( ) 234 =f  

 

4.3 Computational cost 

Considering a contour defined by n points and another one 

defined by m points, with mn ≤ , for each global matching 

that preserves the absolute order there are n stages and 

1+− nm  states. For each stage, only one sum for state is 

effectuated. For each state larger than 1 (one) only one 

comparison is effectuated. Thus, we have in total 

( )1+−× nmn  sums and ( )nmn −×  comparisons, 

considering only the fundamental operations involved. 

To obtain the best global matching preserving the relative 

order, we have to solve m problems; therefore, there are 

( )1+−×× nmnm  sums and ( )nmnm −××  comparisons. To 

choose the best global matching from among all the global 

ones, we have more 1−m  comparisons. 

From the explained, we can conclude that execution time will 

increase when the number of points that define the contours 

increases and decreases when the difference among the 

number of points of the two contours decreases. 

5 Dynamic programming with restriction of order 

versus Hungarian Method, Simplex for Flow Problems 

and LAPm 

5.1 Test conditions 

Before presenting some of the experimental results obtained, 

it is important to refer that this comparison was accomplished 

after the implementation of our new algorithm of dynamic 

programming in the computational platform for image 

processing and analysis already referred, [Tavares (2000), 

Tavares, Barbosa and Padilha (2002)]. To compare the two 

optimization methods – assignment algorithms without order 

restriction (AAWOR) and the dynamic programming 

algorithm with order restriction (DPAWOR) – one employed 

affinity matrices obtained using the methodology integrated 

in the same platform, based on geometric modeling and 

modal matching, proposed by Shapiro, [Shapiro and Brady 

(1992); Tavares (2000); Tavares, Barbosa and Padilha 

(2002); Bastos (2003); Bastos and Tavares (2004, 2006); 

Tavares and Bastos (2005)]. 

To compare the optimization algorithms based on the 

Hungarian Method, Simplex for Flow Problems and LAPm 

with the new optimization algorithm based on dynamic 

programming, it is necessary that the process to determine 

the cost matrix associated to the points that define both 

contours be exactly the same. Thus, in all of the experimental 

tests done, the configuration defined by default in the 

computational platform used for the building process of the 

affinity matrices was adopted. 

In the definition of the Simplex for Flow Problems algorithm 

integrated in the computational platform adopted, the default 

configuration was also used, because it is, in general, the 

fastest, Fig. 4. To get the time required by each one of the 

optimization algorithms considered, a function already 

available for that proposed in the same platform was used. 

 

 

Figure 4: Configuration defined by default in the 

computational platform for the optimization 

algorithm based on the Simplex. 

5.2 Results 

The quality of the matchings obtained using AAWOR and 

DPAWOR algorithms, in most of the contours tested, were 

exactly the same and excellent. The differences appeared 

when AAWOR presented crossed matches, what obviously 

did not happen with DPAWOR. 

To illustrate the differences of the matches found by the two 

types of algorithms considered in some experimental cases, 

observe Figs. 2, 5, 6, 7, 8, 9 and 10. In those, the contours 

were aligned by applying the rigid transformation estimated. 

In some of the cases presented there are small differences in 

the positions of the contours, because the angle of rotation of 

a contour in relation to the other one is obtained based on the 

matches found. Thus, bad matches can originate an erroneous 

rotation angle. 

In Tab. 2, we present the computational times required to 

determine the matching of several pairs of ordered contours 

and the respective matching costs. Some of the matching 

results indicated are not illustrated in this paper because they 

were equal for the two types of algorithms in comparison, or 

present almost imperceptive differences. It is important to 
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refer that the cost of the global matching relies on the 

elements of the cost matrix and that this one depends on the 

contours and the values of the parameters considered in the 

Shapiro’s matching methodology. The time indicated is an 

average time, because small variations were observed. In 

several situations, the execution time was very low and for 

that reason the computational platform indicated an execution 

time of 0 (zero) seconds. Thus, in those situations we indicate 

in Tab. 2 a time “<0.01”. 

 

 

Figure 5: Matching found between the contours of Fig. 1 

using the algorithm based on dynamic programming. 

 

 

  (a)   (b) 

Figure 6: Contours “foot13” and “foot14”, defined by 233 

and 253 points, respectively, and (a) matching found using 

AAWOR, (b) matching found using DPAWOR. 

 

 

  (a)   (b) 

Figure 7: Contours “rib1” and “rib2”, both defined by 46 

points, and (a) matching found using AAWOR, (b) matching 

found using DPAWOR. 

 

 

  (a)   (b) 

Figure 8: Contours “heartB3” and “heartB2”, defined by 389 

and 139 points, respectively, and (a) matching found using 

AAWOR, (b) matching found using DPAWOR. 

 

 

  (a)   (b) 

Figure 9: Contours “heartB3” and “heartB4”, defined by 389 

and 417 points, respectively, and (a) matching found using 

AAWOR, (b) matching found using DPAWOR. 

 

 
  (a)   (b) 

Figure 10: Contours “heartA1” and “heartA2”, both defined 

by 36 points, and (a) matching found using AAWOR; (b) 

matching found using DPAWOR. 

6 Conclusions and future work perspectives 

Relatively to the matchings found, the AAWOR algorithms 

always present, obviously, a solution of minimum cost, 

because they are driven by the same restriction. Besides, only 

in very singular situations more than one matching of 

minimum cost exists. Thus, the matchings obtained by the 

three assignment algorithms were always equal. 
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Table 2: Comparison between AAWOR and DPAWOR algorithms. (The experimental tests were accomplished 

using a PC Pentium III, at 1GHz with 256MB of RAM and Microsoft Windows XP.) 

N. of points and “contour name” Global cost of the matching Execution time [s] 

Contour 1 Contour 2 Hung./Simp./LAPm Dynamic Hungarian Simplex LAPm Dynamic 

28, “heart1” 28, “heart1a” 0.00266 0.00266 4.286 0.02 0.01 <0.01 

36, “heartA1” 36, “heartA2” 0.98965 1.1468 >60 0.04 2.352 <0.01 

46, “rib1” 46, “rib2” 3.63974 4.06635 >60 0.06 2.774 <0.01 

86, “airplane12” 57, “airplane2” 1.74522 1.74522 >60 0.20 1.332 0.01 

81, “heart5” 84, “heart6” 5.79033 6.70609 >60 0.20 2.426 <0.01 

233, “foot13” 67, “foot2” 6.0508 6.11264 >60 1.332 15.983 0.25 

233, “foot13” 253, “foot14” 50.5486 57.9803 >60 2.013 >60 0.15 

389, “heartB3” 139, “heartB2” 24.8986 25.7363 >60 5.418 >60 3.796 

389, “heartB3” 417, “heartB4” 12.3774 13.833 >60 9.864 >60 1.192 

 

 

The comparison between the results obtained using AAWOR 

algorithms and DPAWOR algorithm allows us to conclude 

the following: 

− Whenever the AAWOR reached a good matching 

without crossed matches, the DPAWOR reached the 

same matching; therefore the global cost of the matching 

was exactly the same for the two types of algorithms. 

− When the AAWOR reached a matching with some 

crossed matches, the DPAWOR reached an identical 

matching but without crossed matches. Obviously, the 

cost associated was superior because the restriction of 

the order forced some crossed matches to be substituted 

by matches of larger costs but more coherent. 

− In the situations where the matching obtained by 

AAWOR were in the major part without sense, so were 

the matching obtained using DPAWOR. It is important 

to refer that those bad matchings were not due to the 

optimization algorithms used but to the methodology 

adopted in the construction of the cost matrix. Thus, no 

example of this situation was presented in this paper. 

The execution time of the DPAWOR algorithm was always 

inferior to the execution time of all the AAWOR algorithms, 

independently of the contours have been defined by equal or 

different number of points, or if that number is high or low. 

Although the tests were executed in a slow computer, when 

compared with the more modern ones, there were situations 

in which the computational platform indicated execution 

times of 0 (zero) seconds for DPAWOR, what means a very 

low computational time. 

It can be verified that the execution times of the DPAWOR 

algorithm varied in agreement with what was anticipated in 

section 4.3. In other words, the time increased when the 

number of points that define the contours increased, and it 

decreased when the difference between the number of points 

that define the two contours decreased. 

Finally, as perspectives of future work, we hope to apply our 

DPAWOR algorithm to establish the matching of 

characteristic points of objects represented in images using 

several methodologies for the definition of the matching cost 

matrix, where the order of the points or other characteristics 

of the shape or image should be considered and preserved. 
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