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Abstract

For the solution of a weakly singular Fredholm integral equation of the 2nd kind

defined on a Banach space, for instance L1([a, b]), the classical projection meth-

ods with the discretization of the approximating operator on a finite dimensional

subspace usually use a basis of this subspace built with grids on [a, b]. This may

require a large dimension of the subspace. One way to overcome this problem is

to include more information in the approximating operator or to compose one

classical method with one step of iterative refinement. This is the case of Kulka-

rni method or iterated Kantorovich method. Here we compare these methods

in terms of accuracy and arithmetic workload. A theorem stating comparable

error bounds for these methods, under very weak assumptions on the kernel,

the solution and the space where the problem is set, is given.
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1. Introduction and notations

Consider a weakly singular Fredholm integral equation of the 2nd kind

Tϕ− zϕ = f, (1)

where z 6= 0 is in the resolvent set of T , f ∈ X, and T : X→X, is a compact

linear integral operator on the space of Lebesgue integrable complex valued

functions X, defined by

(Tϕ)(τ) =

∫ b

a

g(|τ − τ ′|)ϕ(τ ′) dτ ′. (2)

We can use classical projection methods where Eq. (1) is replaced by

Tnϕn − zϕn = f, (3)

Tn being a Galerkin, Sloan (iterated Galerkin) or Kantorovich as described by

Atkinson in [8].

Sloan in [15] had already described 4 variants of Galerkin methods based on

orthogonal projections and Chatelin in [9] had described some of these methods

in terms of non orthogonal projections, either for bounded and closed integral

operators.

More recently, Kulkarni approximation and iterated Kantorovich approxima-

tion have been proposed (see [10], [11], [12], [5]). The Kulkarni approximation

was presented for operators with smooth kernels, the iterated Kantorovich op-

erator has been studied in [5] for the case where the kernel is weakly singular.

The Kulkarni method includes information about the initial operator T that

existes both in the Sloan (or iterated Galerkin Method) and Kantorovitch meth-

ods, so it approximates better T but the arithmetic complexity of its computa-

tion is greater mainly when the basis in the approximating finite dimensional

subspaces are not very rich.

In this work as we want to compare the methods of Kulkarni and iterated

Kantorovich for weakly integral operators on Banach spaces, we are going to
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use the constants expressed in terms of the same quantities, namely the norm

of the resolvent of the same operator, T .

Kulkarni method is very effective with a very good order of convergence with

smooth kernels, smooth solution and very regular interpolatory projections.

Under the conditions of this work, the error bounds given in Theorem 2, in

terms of the same constants, show that the iterated Kantorovich method may

be preferred as it is much easier to implement and have better error bounds.

As for notations we will use the superscripts G,K, S, IK,RK, respectively

for Galerkin, Kantorovitch, Sloan, iterated Kantorovich and Kulkarni (Rekha

Kulkarni) methods .

If we denote by (πn)n≥1 a sequence of bounded projections each one having

finite-rank range Xn, we can represent the approximating operator Tn by Tn =

TGn := πnTπn or Tn = TKn := πnT or Tn = TSn := Tπn, for classical Galerkin,

Kantorovich and Sloan methods, respectively, and in the same manner by Tn =

TRKn := TKn + TSn − TGn = πnT + Tπn − πnTπn for Kulkarni method. For

the iterated Kantorovich method there is not a different operator, there is an

improvement in the Kantorovich approximate solution thus yelding the iterated

Kantorovich approximation ϕIKn := 1
z (Tϕn − f).

The assumptions made on T ensure that Eq. (1) has a unique solution

ϕ ∈ X, for any f ∈ X, that is ϕ = R(z)f , where R(z) := (T − zI)−1 is the

resolvent operator of T (see [8]), and also that Tn : X → X is a bounded

linear operator, (Tn)n≥1 is ν−convergent to T , in the sense that (‖Tn‖)n≥1 is

bounded, ‖(Tn − T )T‖ → 0, and ‖(Tn − T )Tn‖ → 0, and that z ∈ re(Tn), for n

large enough, as it can be seen in [6].

With that type of convergence of the approximating operators, the conver-

gence of the approximate solution ϕn to T is guaranteed but a large value of

n may be needed. If the basis of the subspace Xn is built on a grid on [a, b]

this leads to large linear systems to be solved as we will show in Section 2.

One way to mitigate this disadvantage is to include more information in the

approximating operator Tn, this is the motivation of Kulkarni method, or to

compose one classical method with one step of iterative refinement, which is the
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case of iterated Kantorovich method. Here we compare two such methods with

the classical ones in terms of accuracy and arithmetic workload.

This type of equations where the kernel of operator in (2) has a singularity

along the diagonal (since it is given in terms of a singular function evaluated on

the absolute value of the difference of two variables) plays a important role in

several mathematical models.

It appears, for instance, in radiative transfer problems (we will take as an

example a simplified model of radiative transfer in stellar atmospheres, interest-

ing because the singular function is a multiple of the first exponential integral

function [1]), in transient groundwater analysis, in image processing, probability

theory, etc.

We consider that g is weakly singular in the sense that g : ]0,+∞[ → R is

such that

g(0+) = +∞,

g ∈ L1([0,+∞[).

We also add, with no considerable loss of generality, that g ∈ C0(]0,+∞[),

g ≥ 0 in ]0,+∞[, and that g is a decreasing function in ]0,+∞[.

For the numerical solution of Eq. (3), the evaluation of a discretization

matrix An, which represents the integral operator Tn restricted to a finite di-

mensional space Xn, is required.

In the examples shown, kernel g can be either the g(s) := − log(s/2), s ∈

]0, 2] kernel (see [13]) or the radiative transfer in stellar atmospheres kernel,

as described in [4] and [14]. g(τ) := $
2 E1(τ) = $

2

∫ 1

0
exp(−τ/µ)

µ dµ, τ > 0

a = 0, b = τ∗, τ ∈ [0, τ∗], τ∗ ∈]0,+∞[

The accuracy of the approximate solution depends, not only on the projec-

tion method used, but also on dimension of the discretization subspace, on the

basis of this subspace, and on the accuracy of the evaluation of this discretization

matrix.

In Section 2 we will present details of the computer implementation of these
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methods for weakly singular problems, and compare the arithmetic complexity

of the algorithms.

In Section 3 we compare the iterated Kantorovich and Kulkarni methods,

with the classical ones by producing theorems on their error bounds, and in

Section 4 illustrations of performance of these in examples in L1([a, b]) and

L2([a, b]) are given. Finally in Section 5 we draw some conclusions.

2. Basis functions and discretization of the approximate operators

When the basis functions of Xn are defined by means of a grid on [a, b] they

may include the discontinuities of the problem as grid points.

In [2] the possible existence of boundary layers for the examples mentioned

above, near the boundaries of the domain or where f has a discontinuity is

proved.

Let the basis en = (ej)
n
j=1 for Xn be made of the piecewise constant canon-

ical functions when X is the space of Lebesgue integrable functions,

ej(s) :=

 1 for s ∈ [τj−1, τj ],

0 otherwise.

based on the grid Gn := (τj)
n
j=0 such that τ0 := a, τn := b, hj := τj−τj−1 >

0.

Its dual basis en∗ is made of local mean functionals e∗j defined by

〈x, e∗j 〉 :=
1

hj

∫ τj

τj−1

x(t)dt,

and 〈en, en∗〉 := In, the idebtity matrix of order n.

The projection πn is then defined by πnx :=
n∑
j=1

〈x, e∗j 〉ej for x ∈ L1([a, b]).

For the classical Galerkin method the operator TGn , restricted to Xn is rep-

resented by the matrix An such that An(i, j) := 〈Tej , e∗i 〉, and the equation (3)

restricted to Xn becomes

n∑
k=1

n∑
j=1

〈ϕGn , e∗j 〉〈Tej , e∗k〉ek − zϕGn =

n∑
j=1

〈f, e∗j 〉ej .
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By applying e∗i , for i = 1, . . . , n, we get

(An − zIn)xGn = fn, (4)

where xGn (i) := 〈ϕGn , e∗i 〉, fn(i) := 〈f, e∗i 〉.

After solving the linear system (4) the solution of (3) is recovered by the

formula

ϕGn =
1

z

n∑
j=1

((Anx
G
n )(j)− fn(j))ej .

For the classical Kantorovich method the equation (3), (TKn − zI)ϕKn = f ,

can be decomposed into its projection onto Xn and onto (I − πn)X:


(πnT − zπn)ϕKn = πnf,

−z(I − πn)ϕKn = (I − πn)f.

We can decompose correspondingly ϕKn = ϕKn,1 + ϕKn,2 and f = f1 + f2, and

obtain, after replacing the result of the second equation into the first,


TKn ϕ

K
n,1 − zϕKn,1 = f1 + 1

zT
K
n f2,

ϕKn,2 = − 1
z f2.

On Xn , since TKn = πnT ,

n∑
j=1

〈TϕKn,1, e∗j 〉ej − zϕKn,1 = f1 +
1

z

n∑
j=1

〈Tf2, e∗j 〉ej .

Applying e∗i , for i = 1, . . . , n, and using

ϕKn,1 =

n∑
j=1

〈ϕKn , e∗j 〉ej ,
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we get

(An − zIn)xKn = fn,1 +
1

z
bn,2, (5)

where xKn (i) := 〈ϕKn,1, e∗i 〉, An(i, j) := 〈Tej , e∗i 〉, fn,1(i) := 〈f1, e∗i 〉, bn,2(i) :=

〈Tf2, e∗i 〉 for i, j = 1, . . . , n.

After solving the linear system (5) the solution of (3) for the Kantorovich

method is recovered by the formula

ϕKn = ϕKn,1 + ϕKn,2 =

n∑
j=1

xKn (j)ej −
1

z
f2.

For the Sloan method the equation (3), (TSn − zI)ϕSn = f means, since

TSn = Tπn,

n∑
j=1

T 〈ϕSn , e∗j 〉ej − zϕSn = f

or
n∑
j=1

〈ϕSn , e∗j 〉Tej − zϕSn = f

Applying e∗i , for i = 1, . . . , n, we get

(An − zIn)xSn = fn, (6)

where xSn(i) := 〈ϕSn , e∗i 〉, An(i, j) := 〈Tej , e∗i 〉, fn(i) := 〈f, e∗i 〉, for i, j = 1, . . . , n.

After solving system (6) the solution ϕSn is given by

ϕSn =
1

z

n∑
j=1

(xSn(j)Tej − f).

All these methods rely on the solution of a linear system of equations of

dimension n with the same coefficient matrix and differing only in the right

hand side and the formula to recover the approximate solution ϕn.

The idea of the Kulkarni Method is to include in the operator TRKn the

information available in both the operators TKn and TSn .
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n∑
k=1

n∑
j=1

〈ϕRKn , e∗j 〉〈Tej , e∗k〉ek + 1
z

n∑
k=1

n∑
j=1

〈ϕRKn , e∗j 〉〈TTej , e∗k〉ek−

− 1
z

n∑
t=1

n∑
k=1

n∑
j=1

〈ϕRKn , e∗j 〉〈Tej , e∗k〉〈Tek, e∗t 〉et − z
n∑
j=1

〈ϕRKn , e∗j 〉ej =

n∑
j=1

〈f, e∗j 〉ej + 1
z

n∑
j=1

〈Tf2, e∗j 〉ej .

Applying e∗i , for i = 1, . . . , n, we get

(An +
1

z
Bn −

1

z
AnAn − zIn)xRKn = fn +

1

z
bn,2, (7)

where

xRKn (i) := 〈ϕRKn , e∗i 〉, Bn(i, j) := 〈TTej , e∗i 〉i, j = 1, . . . , n.

After solving system (7) the solution ϕRKn is given by

ϕRKn =

n∑
j=1

xRKn (j)ej +
1

z

 n∑
j=1

xRKn (j)Tej −
n∑
j=1

(Anx
RK
n )(j)ej − f2

 .

Comparison in terms of arithmetic complexity

For Kulkarni method the linear system to solve has the same dimension as

the classical ones but the coefficient matrix is much more expensive in arith-

metic operations, as it requires, besides An, the computation of a new matrix,

Bn, representing the operator T 2 restricted to Xn and the evaluation of A2
n

which is very time consuming, if n is large. Afterwards, the application of T to
n∑
j=1

xRKn (j)ej or the pre-multiplication by a matrix representing T on a much

larger dimension subspace is required.

As for the iterated Kantorovich the approximation is obtained by using the

Eq.(1) to set a fixed point iteration and perform one step of this, starting with

the approximation of Kantorovich, thus yielding

ϕIKn :=
1

z
(TϕKn − f) =

1

z
(T (

n∑
j=1

xKn (j)ej −
1

z
f2)− f).

8



The solution of a linear system with An as coefficient matrix is needed

to obtain xKn and afterwords the application of T to
n∑
j=1

xKn (j)ej or the pre-

multiplication by a matrix representing T on a much larger dimension subspace

is required.

3. Comparison in terms of accuracy

The error bounds of the classical methods are summarized in the following

theorem as proved in several results that can be seen, for instance in [6] .

Theorem 1. For z 6= 0, the projection approximations satisfy

‖ϕGn − ϕ‖
‖ϕ‖

≤ CK(‖(I − πn)T‖+
‖(I − πn)f‖
‖ϕ‖

),

‖ϕKn − ϕ‖
‖ϕ‖

≤ CK‖(I − πn)T‖,

‖ϕSn − ϕ‖
‖ϕ‖

≤ CS
1

|z|
‖T‖ (‖(I − πn)T‖+

‖(I − πn)f‖
‖ϕ‖

),

for n large enough, where

CK := sup
n≥n0

‖(πnT − zI)−1‖, CS := sup
n≥n0

‖(Tπn − zI)−1‖.

In [2], [7] and [5] some relations between the basis and the error on the solu-

tions are shown for the classical projection methods. If we want the constants

to be comparable we can use CK ≤ 2‖(T − zI)−1‖ , CS ≤ 2‖(T − zI)−1‖ (see

[6]).

For the methods studied in this work we give the following theorem that

compares the corresponding error bounds.

Theorem 2. For n large enough, z 6= 0 in the resolvent set of T ,

‖ϕIKn − ϕ‖
‖ϕ‖

≤ 2C‖(I − πn)T‖ ‖(I − πn)T ∗‖,

‖ϕRKn − ϕ‖
‖ϕ‖

≤ 2C‖(I − πn)T‖2 +
κ

|z|
‖(I − πn)T (I − πn)‖,
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where C := ‖(T − zI)−1‖/|z| depends on the norm of the resolvent operator,

and

κ := ‖T−zI‖ ‖(T−zI)−1‖ is the condition number of T−zI relative to inversion.

Proof. Since

ϕKn − ϕ =
(
RKn (z)−R(z)

)
f

= R(z)(T − TKn )RKn (z)f

= R(z)(I − πn)TϕKn

we have

ϕIKn − ϕ = 1
z (TϕKn − f)− 1

z
(Tϕ− f)

= 1
zT (ϕKn − ϕ)

= 1
zR(z)T (I − πn)TϕKn .

Remarking that

‖T (I − πn)TϕKn ‖ = sup{|〈T (I − πn)TϕKn , x〉| : x ∈ X∗, ‖x‖ = 1}

= sup{|〈(I − πn)TϕKn , (I − π∗n)T ∗x〉| : x ∈ X∗, ‖x‖ = 1}

for n large enough, we have

‖T (I − πn)TϕKn ‖ ≤ ‖(I − π∗n)T ∗‖ ‖(I − πn)TϕKn ‖

≤ 2‖(I − πn)T‖ ‖(I − π∗n)T ∗‖ ‖ϕ‖,

since ‖ϕKn ‖ ≤ 2‖ϕ‖.

As for the Kulkarni approximation we have

ϕRKn − ϕ =
(
RRKn (z)−R(z)

)
f

= R(z)(T − TRKn )RRKn (z)f

= R(z)(T − πnT − Tπn + πnTπn)RRKn (z)f

= R(z) ((I − πn)T − (I − πn)Tπn)RRKn (z)f

= R(z)(I − πn)T (I − πn)ϕRKn ,

and (I − πn)ϕRKn = ((I − πn)Tπnϕ
RK
n − (I − πn)f)/z, thus yielding

ϕRKn − ϕ =
1

z

(
R(z)(I − πn)T (I − πn)Tπnϕ

RK
n −R(z)(I − πn)T (I − πn)f

)
.

10



So, for n large enough

‖ϕRKn − ϕ‖ ≤ 1
z (‖R(z)‖‖(I − πn)T‖2 ‖πn‖ ‖ϕRKn ‖+

+‖R(z)‖ ‖(I − πn)T (I − πn)f‖)

≤ 1
z (2‖R(z)‖‖(I − πn)T‖2 ‖πn‖ ‖ϕ‖+

+‖R(z)‖ ‖(I − πn)T (I − πn)‖ ‖T − zI‖ ‖ϕ‖)

= 2C‖(I − πn)T‖2 ‖ϕ‖+ κ
|z|‖(I − πn)T (I − πn)‖ ‖ϕ‖,

where κ := ‖T − zI‖ ‖(T − zI)−1‖ and C := ‖(T − zI)−1‖/|z|, which leads to

the second inequality, since ‖πn‖ = 1 in the framework described in Section 2.

If we consider that ‖(I−πn)T ∗‖ is of the order ‖(I−πn)T‖ the error bound

for Kulkarni method has a extra term, κ
|z|‖(I − πn)T (I − πn)‖, when compared

with the iterated Kantorovich method.

If these methods are used in Hilbert spaces, H, with self adjoint operators,

the previous theorem can be simplified as follows, considering now the norm

‖.‖H induced by the inner product.

Theorem 3. If T is selfadjoint, for n large enough, and z 6= 0 in the resolvent

set of T

‖ϕIKn − ϕ‖H
‖ϕ‖H

≤ 2C‖(I − πn)T‖2H ,

‖ϕRKn − ϕ‖H
‖ϕ‖H

≤ 2C‖(I − πn)T‖2H+
κ

|z|
‖(I − πn)T (I − πn)‖H .

4. Examples

The first example comes from a simplified model of radiative transfer in

stellar atmospheres. It uses, as we mentioned, the first exponential integral

function [1].

Equation (1) is set in the Banach space X := L1([0, τ∗],C). Its kernel is

g(s) := $
2 E1(s), where E1 is the first exponential integral function:
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E1(s) :=

∫ 1

0

exp(−s/µ)

µ
dµ,

and s ∈]0, τ∗] represents the optical depth of the stellar atmosphere and τ∗ ∈

]0,+∞[ the optical thickness. The albedo $ ∈]0, 1[ measures the scattering

properties of the medium.

Here z = 1, τ∗ = 100, $ = 0.75 and f is defined by

f(s) :=

 −1 for 0 ≤ s ≤ 50,

0 for 50 < s ≤ 100.

n Galerkin Kantorovich Iterated Kantorovich

500 1.2× 10−3 1.2× 10−3 1.2× 10−4

1000 6.3× 10−4 6.3× 10−4 2.8× 10−5

Table 1: L1-norm relative errors

Table 1 shows the estimates of the relative errors in L1−norm, with respect

to a reference solution.

The grids on [0, 100] for this example are two uniform grids of 501 and 1001

points respectively. Computations have been performed with Matlab on a Intel

Core i5− 2410M CPU @2.3 GHz, 4 GBytes of RAM DDR3.

We have computed the estimate relative error of the approximations with

respect to a reference solution, obtained with a grid of 4001 points. The operator

used to get this reference solution is used as a representation of T in the Iterated

Kantorovich method.

As we can see the Iterated Kantorovich method achieves a better error esti-

mate than the classical methods.

The CPU times for this example, averaged over 10 runs of the methods,

were respectively, following the order of Table 1, 76.65, 76.31 and 76.55 seconds

for n = 500, and 307.20, 306.08 and 306.46 seconds for n = 1000. We did

not add the time to build the large matrix representing the operator T (here

we took it with dimension 4000) as it depends strongly on the examples and
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not on the methods under comparison. We took in account however, for the

Iterated Kantorovich method, the time for the matrix-vector product with this

large matrix that is needed independently of the example.

The Iterated Kantorovich method requires slightly more time than the Kan-

torovich method as it performs an extra matrix vector product as referred in

Section 2.

As another example, we consider the function g(s) = − log(s/2), s ∈]0, 2],

z = 4 and the following right hand side function

f(s) :=

 −1 if 0 ≤ s ≤ 1,

0 if 1 < s ≤ 2.

In this example we will also compute the approximate solution with uniform

grids of 501 and 1001 points, respectively. As we do not know the exact so-

lution we will take as reference solution the one obtained with a uniform grid

of 4001 nodes and use it in the computation of estimates of the relative errors

corresponding to the two grids (see Table 2).

n Galerkin Kantorovich Iterated Kantorovich

500 5.0× 10−4 5.0× 10−4 1.4× 10−6

1000 2.5× 10−4 2.5× 10−4 3.3× 10−7

Table 2: L1-norm relative errors

In this case too, the Iterated Kantorovich method achieves a better error

estimate than the classical methods.

The CPU times for this example, averaged over 10 runs of the methods, were

respectively, 0.17, 0.16 and 0.18 seconds for n = 500, and 0.49, 0.48 and 0.51

seconds for n = 1000. Here again we did not add the time to build the large

matrix representing the operator T (here we took it with dimension 4000).

Again the Iterated Kantorovich method requires more CPU time than the

Kantorovich method.
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In the self adjoint case, we consider the space H := L2([0, 1],C) and the

operator

Tx(s) :=

∫ 1

0

g(s, t)x(t) dt.

with the kernel

g(s, t) := 10

 s(1− t) for 0 ≤ s ≤ t ≤ 1,

t(1− s) for 0 ≤ t ≤ s ≤ 1.

The source term f is such that the exact solution is ϕ(s) := s9/2.

In this case the basis is the set of (Pi)i, where Pi is the Legendre polynomial

of degree i, Hn := Span(P0, P1, . . . , Pn−1), πn is the orthogonal projection onto

Hn.

n Kantorovich Kulkarni Iterated Kantorovich

2 2.9× 10−1 1.4× 10+0 2.9× 10−1

3 7.3× 10−2 1.7× 10−2 3.9× 10−2

7 2.0× 10−5 2.0× 10−7 5.9× 10−7

8 7.0× 10−7 3.0× 10−8 1.5× 10−8

9 6.7× 10−8 6.1× 10−9 1.2× 10−9

10 1.0× 10−8 1.5× 10−9 1.4× 10−10

16 5.9× 10−12 3.6× 10−12 3.0× 10−14

Table 3: L2-norm relative errors

We compare the true relative errors in the L2−norm, as the exact solution

is known. The iterations have been computed in Mathematica, Table 3 reports

these results.

In this example we could use subspaces of smaller dimension than in the

other examples because we could use orthogonal polynomials and the kernel

has no singularities. Observing the behavior of one classical and the two new

methods with increasing values of n, we can observe the evolution of the true

relative errors. At first the Kulkarni method behaves better than the iterated
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Kantorovich but for n larger than 7 the iterated Kantorovich is better. In general

both the new methods are better than the classical Kantorovich method.

Kantorovich Kulkarni Iterated Kantorovich

46.46 72.09 46.30

Table 4: Average CPU times in seconds, for the third example, n = 16

As for the CPU times in this example, Table 4 shows that the CPU time

for the Rekha Kulkarni method is larger, as this method needs the computation

of the n × n matrix Bn as referred in Section 2. This takes 25.84 seconds

approximately, which is almost 1/3 of the CPU time for this method .

5. Final remarks

We compared two projection methods for weakly singular Fredholm integral

equations in terms of accuracy and arithmetic complexity. These methods try

and improve the classical ones by adding information about the operator to

the iteration formula. Kulkarni method does this by building an approximate

operator that includes the information of both Kantorovich and Sloan approx-

imations. The iterated Kantorovich achieves that purpose by adding to the

classical method one step of a fixed point iteration, using, in practice, a repre-

sentation of the initial operator restricted to a larger dimension subspace, or ,

if possible the exact operator T . We showed that these are better in accuracy

than the classical methods, by a theorem stating bounds for the relative error.

Comparing Kulkarni method with the iterated Kantorovich, we conclude that

the latter is faster since it has a smaller error bound, and the examples shown

illustrate this behavior.

The projection methods rely on the solution of a linear system that has

the same coefficient matrix for the classical methods. For Kulkarni method

the linear system has a coefficient matrix that is much heavier in arithmetic

computations, but on the other hand has better accuracy. Iterated Kantorovich
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method requires the computation of a representation of T in a larger dimensional

subspace, but only for one matrix vector product, and it has better accuracy

too.
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