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Abstract – When recovering from operational problems, the Airline Operations Control Centre 

(AOCC) usually tries to minimize direct operational costs while satisfying all the required rules. In 

this paper we present the implementation of a Distributed Multi-Agent System (MAS) representing 

the existing real-life roles in an AOCC. This MAS includes software agents that cooperate through 

a distributed problem solving approach, to find the best solution for each problem. We propose a 

general approach to quantify quality operational costs, so that passengers’ satisfaction can also 

be considered in the final decision. We present a real case study to introduce our approach to 

quantify the quality operational costs and solve several real unexpected crew problems. We show 

that our MAS with quality costs is able to reduce flight delays and increase passenger satisfaction 

without increasing significantly the direct operational costs. A comparison with two other methods 

is presented. Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved. 
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I. Introduction 

Operations control is one of the most important areas 

for an airline company. Through operations control 

mechanisms an airline company monitors all the flights 

checking if they follow the schedule that was previously 

defined by other areas of the company. Unfortunately, 

some problems may arise during this stage [1]. Those 

problems can be related with crewmembers, aircrafts 

and passengers. The Airline Operations Control Centre 

(AOCC) includes teams of experts specialized in solving 

the above problems under the supervision of an 

operation control manager. Each team has a specific 

goal contributing to the common and general goal of 

having the airline operation running under as few 

problems as possible. The process of solving these kinds 

of problems is known as Disruption Management [2] or 

Operations Recovery. 

To select the best solution to a specific problem, it is 

necessary to include the actual costs in the decision 

process. One can separate the costs in two categories: 

Direct Operational Costs (easily quantifiable costs) and 

Quality Operational Costs (less easily quantifiable 

costs). Direct operational costs are, for example, crew 

related costs (salaries, lodgement, extra-crew travel, 

etc.) and aircraft/flights cost (fuel, approach and route 

taxes, handling services, line maintenance, etc.). The 

quality operational costs that AOCC is interested in 

calculating are, usually, related with passengers 

satisfaction. Specifically, we want to include in the 

decision process the estimated cost of delaying or 

cancelling a flight from the passenger point of view, that 

is, in terms of the importance that such a delay will have 

to the passenger. In this paper we propose a multi-agent 

system (MAS) to solve the airline operational problems, 

which include a generic model to quantify quality costs. 

This MAS is able to recover from operational problems 

taking into consideration the direct and quality 

operational costs in the decision process. 

The rest of the paper is organized as follows. In 

section II we present some work of other authors. 

Section III introduces the MAS used to test our 

approach, including the decision mechanisms and 

operational costs. Section IV presents our model to 

quantify quality operational costs and in section V we 

show how we have applied this model to a real airline 

case. In section VI we present the scenarios and 

experiments performed to evaluate the system. The 

results and discussion is presented in section VII and in 

section VII we conclude. 

II. Related Work 

In this section we present a summary of the work of 

other researchers regarding operations recovery, divided 

in three main areas: aircraft, crew recovery and 

integrated recovery. We also list a brief summary of the 

application of agents and multi-agent systems in other 

domains. 

II.1. Aircraft Recovery 

Liu et al. [3] proposes a “multi-objective genetic 

algorithm to generate an efficient time-effective multi-
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fleet aircraft routing algorithm” in response to disruption 

of flights. It uses a combination of a traditional genetic 

algorithm with a multi-objective optimization method, 

attempting to optimize objective functions involving 

flight connections,  flight swaps, total flight delay time 

and ground turn-around times. According to the authors 

“(…) the proposed method has demonstrated the ability 

to solve the dynamic and complex problem of airline 

disruption management”. As in other approaches, the 

authors do use the delay time in the objective functions 

but nothing is included regarding passenger quality 

costs. 

Mei Yang Ph.D. thesis [4] investigates the use of 

advanced tabu search methodologies to solve the aircraft 

grounding problem and the reduced station capacity 

problem. The objective is to minimize the schedule 

recovery costs associated with flight schedule 

modifications and deviations from the original route. 

Mei uses cancellation and delay costs in the objective 

function. For the delay costs, Mei uses a value of $20 if 

the delay in less than 15 minutes and $20 each minute if 

the delay is greater or equal to 15 minutes. For flight 

cancellations it uses a combination of lost revenue, loss 

of passenger goodwill and other negative effects, 

specific and predefined for each flight. The main 

difference regarding our approach is that we allow the 

definition of several passenger profiles for each flight 

(Mei and others, do not consider profiles), each one with 

an associated cost formula, that reflects the delay costs 

from the passenger point of view. 

Rosenberger et al. [5] formulates the problem as a Set 

Partitioning master problem and a route generating 

procedure. The goal is to minimize the cost of 

cancellation and retiming, and it is the responsibility of 

the controllers to define the parameters accordingly. It is 

included in the paper a testing process using SimAir [6], 

simulating 500 days of operations for three fleets 

ranging in size from 32 to 96 aircraft servicing 139-407 

flights. Although the authors do try to minimize flight 

delays, nothing is included regarding the use of quality 

costs. 

II.2. Crew Recovery 

In Abdelgahny et al. [7] the flight crew recovery 

problem for an airline with a hub-and-spoke network 

structure is addressed. The paper details and sub-divides 

the recovery problem into four categories: misplacement 

problems, rest problems, duty problems, and unassigned 

problems. The proposed model is an assignment model 

with side constraints. Due to the stepwise approach, the 

proposed solution is sub-optimal. Results are presented 

for a situation from a US airline with 18 different 

problems. This work omits the use of quality costs. 

II.3. Integrated Recovery 

Bratu et al. [8] presents two models that considers 

aircraft and crew recovery and through the objective 

function focuses on passenger recovery. They include 

delay costs that capture relevant hotel costs and ticket 

costs if passengers are recovered by other airlines. 

According to the authors, it is possible to include, 

although hard to estimate, estimations of delay costs to 

passengers and costs of future lost ticket sales. To test 

the models an AOCC simulator was developed, 

simulating domestic operations of a major US airline. It 

involves 302 aircrafts divided into 4 fleets, 74 airports 

and 3 hubs. Furthermore, 83869 passengers on 9925 

different passengers’ itineraries per day are used. For all 

scenarios are generated solutions with reductions in 

passenger delays and disruptions. The difference 

regarding our work is that we propose a generic model 

to calculate the delay cost to passengers, based on their 

specific profile and opinion (obtained through frequent 

surveys). 

Kohl et al. [2] reports on the experiences obtained 

during the research and development of project 

DESCARTES (a large scale project supported by EU) 

on airline disruption management. The current (almost 

manual) mode of dealing with recovery is presented. 

They also present the results of the first prototype of a 

multiple resource decision support system. Passenger 

delay costs are calculated regarding the delay at the 

destination and not at departure (we include both in our 

proposal) and takes into consideration the commercial 

value of the passenger based on the booked fare class 

and frequent flyer information. The main difference 

regarding our proposal is that we use the opinion of the 

passengers when calculating the importance of the delay. 

Lettovsky’s Ph.D. thesis [9] is the first presentation 

of a truly integrated approach in the literature, although 

only parts of it are implemented. The thesis presents a 

linear mixed-integer mathematical problem that 

maximizes total profit to the airline while capturing 

availability of the three most important resources: 

aircraft, crew and passengers. The formulation has three 

parts corresponding to each of the resources, that is, 

crew assignment, aircraft routing and passenger flow. In 

a decomposition scheme these three parts are controlled 

by a master problem denominated the Schedule 

Recovery Model. Although the author takes into 

consideration the passenger, it does so regarding finding 

the best solution for the disrupted passengers. The 

difference regarding our approach is that we use the 

opinion of the passengers regarding the delay (expressed 

through a mathematical formula) to reach the best 

solution regarding delaying the flight. We do not 

approach the, also important, issue of finding the best 

itinerary for disrupted passengers.  

Castro and Oliveira [10] present a Multi-Agent 

System (MAS) to solve airline operations problems, 

using specialized agents in each of the three usual 

dimensions of this problem: crew, aircraft and 

passengers. However, the authors ignore the impact that 
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a delay in the flight might have in the decision process 

and only use operational costs to make the best decision. 

II.4. Other Application Domains 

Agents and multi-agent systems have been applied 

both to other problems in air transportation domain and 

in other application domains. A brief and incomplete list 

of such applications follows. Tumer and Agogino [11] 

developed a multi-agent algorithm for traffic flow 

management. Wolfe et al. [12] uses agents to compare 

routing selection strategies in collaborative traffic flow 

management. For ATC Tower operations, Jonker et al. 

[13] have also proposed the use of multi-agent systems. 

As a last example, a multi-agent system for the 

integrated dynamic scheduling of steel production has 

been proposed by Ouelhadj [14]. 

III. A MAS for Operations Recovery 

It is important to point out that we arrived to the 

architecture of our multi-agent system, after performing 

an analysis and design using an agent-oriented software 

methodology [15]. The agent model and service model 

were the outputs of this process and the base for this 

architecture. A partial architecture of the MAS we built 

is presented in figure 1. The boxes represent agents and 

the narrow black dash lines represent requests/proposals 

made. The larger black lines represent the interaction 

between agents regarding negotiation and distributed 

problem-solving process. The narrow gray lines 

represent interaction within a hierarchy of agents and the 

normal black lines represent the interactions after a 

solution is found. It is important to clarify that Fig. 1 

represents only one instance of the MAS. The MAS was 

developed using JADE [16] as a development platform 

and as the run-time environment that provides the basic 

services for agents to execute. 

 

 
 

Fig. 1. MAS architecture 

 

Considering the agent and multi-agent system 

characteristics as specified in [17] and [18], the 

following ones make us adopt this paradigm to the 

AOCC problem: 

Autonomy: MAS models problems in terms of 

autonomous interacting component-agents, which are a 

more natural way of representing task allocation, team 

planning, and user preferences, among others. In Fig. 1 

the PaxManager, AircraftManager and CrewManager 

agents (among others) are agents that can choose to 

respond or not to the requests according to their own 

objectives.  

Agents are a Natural Metaphor: The AOCC is 

naturally modelled as a society of agents cooperating 

with each other to solve such a complex problem.  

Reactivity: Agents are able to perceive and react to 

the changes in their environment. The Monitor agent in 

Fig. 1 is an example of such an agent. 

Distribution of resources: With a MAS we can 

distribute the computational resources and capabilities 

across a network of interconnected agents avoiding 

problems associated with centralized systems. Airline 

companies of some dimension have different operational 

bases. We use a MAS for each operational base, taking 

advantage of this important characteristic. Due to the 

social awareness characteristics of some of our agents 

(for example, Monitoring agent in Fig. 1) they are able 

to distribute their tasks among other agents with similar 

behaviour. 

Modularity and Scalability: A MAS is extensible, 

scalable, robust, maintainable, flexible and promotes 

reuse. These characteristics are very important in 

systems of this dimension and complexity. Our MAS is 

able to scale in terms of supporting more operational 

bases as well as in supporting different algorithms to 

solve specific problems.  

Concurrency/Parallelism: Agents are capable of 

reasoning and performing tasks in parallel. This 

provides flexibility and speeds up computation. The 

CrewSimAnneal, CrewCBR and CrewHillClimb agents 

in Fig. 1 are examples of concurrent agents. 

Additionally and according to [19] “if control and 

responsibilities are sufficiently shared among agents, the 

system can tolerate failures by one or more agents”. Our 

MAS can be totally or partially replicated in different 

computers. If one or more agents fail, the global 

objective is not affected. 

Legacy Systems: The AOCC needs information that 

exists in obsolete but functional systems. We can wrap 

the legacy components in an agent layer, enabling them 

to interact with other software components. 

In Fig. 1 each one of the agents Monitoring, 

PaxManager, AircraftManager, CrewManager and 

Supervisor has specific associated roles in the AOCC.  

The Monitoring agent monitors the operational plan 

looking for events that may represent any of the usual 

three problem dimensions, that is, aircraft, crew and/or 

passenger problems. In case there are other instances of 
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this agent, they recognize and interact with each other, 

splitting the monitoring task. For example, if each 

instance corresponds to an operational base, each one 

will monitor the corresponding operational plan. This is 

one example of the social-awareness characteristics of 

our agents. The agent is autonomous in the sense that it 

will consider an event as a problem only if the event has 

certain characteristics. 

The PaxManager agent has the responsibility to find 

solutions for passenger problems. The AircraftManager 

and CrewManager agents have the responsibility for 

finding solutions for aircraft and crew problems, 

respectively. These agents are autonomous in the sense 

that they can choose not to respond to the information 

received from the Monitor agent, i.e., if the problem is 

not related with their field of expertise or if they do not 

have local resources to solve that problem. These agents 

have similar social-awareness characteristics of the 

Monitor agent. These agents may decide to participate 

with their expertise in the integrated and distributed 

problem solving approach of the system.  

The AircraftManager and CrewManager agents 

manage a team of specialized agents [10]. Each team 

should have several specialist agents, each one 

implementing a different problem solving algorithm, 

making them heterogeneous regarding this 

characteristic. The ACTabuSearch agent, ACCBR agent 

and ACHillClimb agent implements algorithms 

dedicated to solve aircraft problems and present the 

candidate solutions they find to the AircraftManager 

agent. The CrewSimAnneal agent, CrewHillClimb agent 

and CrewCBR agent implements algorithms dedicated to 

solve crew problems and present the candidate solutions 

to the CrewManager.  

The agent Supervisor is the only one that interacts 

with a human user of the AOCC. The Supervisor agent 

presents the solutions to the human supervisor, ranked 

according to the criteria in use by the airline (usually 

total operational cost), including details about the 

solution to help the human to decide.  

All agents are able to act and observe the 

environment that is represented by the Operational 

database. This database includes information regarding 

the flight, aircraft and crew schedule as well as airport 

and company specific information.  

III.1. Protocols and Decision Mechanisms 

The protocols we use are the following FIPA
1
 

compliant ones: 

Fipa-Request: This protocol allows one agent to 

request another to perform some action and the 

receiving agent to perform the action or reply, in some 

way, that it cannot perform it. Fipa-request is used in 

 
1 http://www.fipa.org 

interactions between the Monitor, PaxManager, 

AircraftManager and CrewManager agents. 

Fipa-Query: This protocol allows one agent to 

request to perform some kind of action on another agent. 

It is used in the interactions that involve PaxManager, 

AircraftManager, CrewManager and Supervisor agent. 

Fipa-Contract.net: In this protocol, one agent takes 

the role of manager which wishes to have some task 

performed by one or more other agents and further 

wishes to optimize a function that characterizes the task. 

We use a simplified version of this protocol in the 

interactions that entail the AircraftManager and its 

specialized agents, i.e., ACTabuSearch, ACCBR and 

ACHillClimb; and CrewManager and its specialized 

agents, i.e., CrewSimAnneal, CrewHillClimb and 

CrewCBR. 

Our system uses negotiation at two levels. The first 

level is the Manager Agents level, i.e., between 

PaxManager, CrewManager and AircraftManager 

agents. At this level the agents cooperate so that an 

integrated solution can be found. We define an 

integrated solution as one that considers the impact on 

the three dimensions of the problem, that is, aircraft, 

crew and passengers. Each manager agent looks for 

possible implications of a specific problem in their field 

of expertise and uses that information to help the other 

agents to fine-tune the parameters when looking for 

solutions. With this simple algorithm we are able to 

have a distributed problem solving approach to the 

problem. As of the writing of this paper, we do not have 

this level completely implemented.  

The second level is the Specialist Agents level or 

Team level, i.e., between each manager agent and the 

specialist agents of the team. At this level we have used 

a simplified fipa-contract.net [20], [21].  

 

 
 

Fig. 2. Simplified contract.net protocol 

 

Fig. 2 shows the simplified contract.net protocol 
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applied to the CrewManager team (for simplicity only 

the interaction between CrewManager and one of the 

specialist agents is shown). After receiving a request 

from the Monitoring agent and case the CrewManager 

agent decides to reply, a Call for Proposal (cfp) is issued 

to initiate the negotiation process. 

Please note that the content of the FIPA-ACL 

message is a serialized Java object, that contains the 

event description, as well as the deadline for receiving 

an answer (propose or refuse) and the deadline for 

receiving the candidate solution (i.e., the 

CrewSimAnneal agent needs to send a candidate 

solution before a specific period of time). The 

CrewSimAnneal agent may choose to answer refuse or 

propose. In our approach the CrewSimAnneal propose 

performative only means that it will look for a candidate 

solution according to the conditions of the cfp. The 

CrewManager agent will automatically answer back 

with an accept-proposal. It is here that we have 

simplified the contract.net protocol to speed-up the 

communication between our agents. In our case, the 

answer we get from specialist agents is a simple yes or 

no, because we want all available agents (i.e., that are 

not busy looking for candidate-solutions for other 

requests) to work in parallel to find candidate solutions. 

Because of that we do not need to choose between all 

the answers received. If there is a problem during the 

execution of the task, the CrewSimAnneal agent issues a 

failure performative stating the reasons for the failure, in 

the serialized Java object included in the message 

content. If the agent is able to perform the task with 

success, it will issue an inform-result performative that 

includes the serialized object with the candidate 

solution. 

At the team level, the manager agent needs to select 

the best solution from the candidate solutions that were 

found by the specialist agents. Once the participant 

agent has completed the task (for example, agent 

CrewHillClimb in Figure 1), it sends a completion 

message to the initiator (agent CrewManager in Figure 

1) in the form of an inform-result performative, with the 

details of the candidate solution including the Total 

Operational Cost. The manager agent sorts in 

descendant order all candidate solutions received by 

total operational cost and selects the first one. As of the 

writing of this paper, we use the Total Operational Cost 

as the only criteria for the selection. Other criteria, like 

AOCC Global Performance, are being tested but we do 

not have any results at this moment. Section III.2 details 

the criteria used at this level. 

III.2. Operational Costs 

The Total Operational Cost (tc) of a specific solution 

includes Direct Operational Costs (dc) and Quality 

Operational Costs (qc) and is given by Equation 1. In 

this section we will detail the direct operational costs. 

The quality costs will be explained on section III.3. 

 

               (1) 

 

Coefficient β is used to define the weight of quality 

costs. Direct Operational Costs (dc) of a specific 

solution are costs that are easily quantifiable and are 

related with the operation of the flights, namely, Crew 

Costs (cc), Flight Costs (fc) and Passenger Costs (pc). It 

is given by Equation 2. 

 

                         (2) 

 

The Crew Cost (cc) (Equation 3) for a specific flight 

includes the salary costs of all crew members (Salary), 

additional work hours to be paid (Hour), additional 

perdiem days to be paid (Perdiem), hotel costs (Hotel) 

and extra-crew travel costs (Dhc). 

 

  (3) 

 

 

The Flight Cost (fc) (Equation 4) for a specific flight 

includes the airport costs (Airp), i.e., charges applied by 

the airport operator like approaching and taxing; service 

costs (Service), i.e., flight dispatch, line maintenance, 

cleaning services and other costs; average maintenance 

costs for the type of aircraft that performs the flight 

(Maint); ATC en-route charges (Atc); and fuel 

consumption (Fuel), i.e., fuel to go from the origin to 

the destination (trip fuel) plus any additional extra fuel 

required. 

 

                 (4) 

 

 

The Passenger Cost (pc) of the delayed passengers 

for a specific flight includes airport meals the airline has 

to support when a flight is delayed or cancelled (Meals), 

hotels costs (PHotel) and any compensation to the 

passengers according to regulations (Comp). The 

Passenger Cost of the delayed passengers for a specific 

solution is given by Equation 5. 

 

                   (5) 
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IV. Quality Operational Costs 

The Airline Operations Control Centre (AOCC) has 

the mission of controlling the execution of the airline 

schedule and, when a disruption happens (aircraft 

malfunction, crewmember missing, etc.) find the best 

solution to the problem. It is generally accepted that, the 

best solution, is the one that does not delay the flight and 

has the minimum direct operational cost. Unfortunately, 

due to several reasons (see [22] for several examples), it 

is very rare to have candidate solutions that do not delay 

a flight and/or do not increase the operational cost. From 

the observations we have done in a real AOCC, most of 

the times, the team of specialists has to choose between 

candidate solutions that delay the flight and increase the 

direct operational costs. Reasonable, they choose the 

one that minimize these two values.  

IV.1. Perception of Quality Costs 

Also from our observations, we found that some 

teams in the AOCC used some kind of rule of thumb or 

hidden knowledge that, in some cases, make them not 

choose the candidate solutions that minimize the delays 

and/or the direct operational costs. For example, 

suppose that they have disruptions for flight A and B 

with similar schedule departure time. To solve the 

problem, they have two candidate solutions: one is to 

delay flight A in 30 minutes and the other would delay 

flight B in 15 minutes. The direct operational costs for 

both candidate solutions are the same. Sometimes they 

would choose to delay flight A in 15 minutes and flight 

B in 30 minutes. We can state that flights with several 

business passengers, VIP’s or for business destinations 

correspond to the profile of flight A in the above 

example. In our understanding this means that they are 

using some kind of quality costs when taking the 

decisions, although not quantified and based on personal 

experience. In our opinion, this knowledge represents an 

important part in the decision process and should be 

included on it. 

IV.2. Quantifying Quality Costs 

To be able to use this information in a reliable 

decision process we need to find a way of quantifying it. 

What we are interested to know is how the delay time 

and the importance of that delay to the passenger are 

related in a specific flight. It is reasonable to assume 

that, for all passengers in a flight, less delay is good and 

more is bad. However, when not delaying is not an 

opinion and the AOCC has to choose between different 

delays to different flights which one should they choose? 

We argue that the decision should take into 

consideration the passenger’s profile(s) of the specific 

flight and not only the delay time and/or operational 

cost. For quantifying the costs from the passenger point 

of view, we propose the following generic approach:  

 

1) Define the existing passenger profile(s) in the flight. 

2) Define a delay cost for each passenger in each profile. 

3) Calculate the quality costs using the previous steps. 

 

Most likely, every airline company will have a 

different method to define the passenger profile in a 

specific flight. Most of the airlines will just consider one 

or two profiles (for example, business and economy). To 

get the number of passengers that belong to these 

profiles is very easy. Airline companies can use the 

flight boarding information to calculate this number. In 

section V we present a real example of a company that 

used three profiles.  

Most of the airline companies will choose to use a 

fixed delay cost value to each passenger of each profile. 

These numbers can reflect the perception of the costs 

from the point of view of the company or can result 

from a statistical analysis of the company information. 

In our opinion and that is one of the main contributions 

of our approach, we think that this cost should be 

calculated from the passenger point of view. This 

implies to use a formula to calculate the costs of each 

profile, that represents this relation. In section V we 

show how a real airline company used a passenger 

survey to obtain formulas to calculate the cost of each 

passenger profile. 

Giving the above we believe that the quality costs 

should result from the relation between the number of 

passenger profiles in the flight and the delay cost for 

each passenger from their point of view, expressed by 

Equation 6. 

 

               (6) 

 

In our MAS we are prepared to get this information 

dynamically and for the specific flight(s) involved in the 

problem.  

V. Airline Company Case Study 

This section presents the use of the quality 

operational costs approach we proposed in section IV to 

the airline company that we are observing. We start by 

showing how we get the passenger’s profiles, then how 

we get the formulas that express the cost for each 

passenger in the profile(s) and, finally, an example of 
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the quality operational costs for a specific flight. 

V.1. Defining the Passenger Profiles 

The final goal in this real example is to be able to 

have passenger profiles to every flight in the company, 

regarding the delay cost from the point of view of the 

passengers. To get this information, we have done a 

survey to several passengers on flights of the airline 

company. Besides asking in what class they were seated 

and the reason for flying in that specific flight, we asked 

them to evaluate from 1 to 10 (1 – not important, 10 

very important) the following delay ranges (in minutes): 

less that 30, between 30 and 60, between 60 and 120, 

more than 120 and flight cancellation. From the results 

we found the passenger profiles in Table 1. 

 
TABLE I 

PASSENGER PROFILES 

Profiles Main characteristics 

Business 

Travel in first or business class; VIP’s; Frequent 

Flyer members; Fly to business destinations; More 

expensive tickets. 

Pleasure 
Travel in economy class; Less expensive tickets; Fly 

to vacation destinations. 

Illness 

Stretcher on board; Medical doctor or nurse 

travelling with the passenger; Personal oxygen on 

board or other special needs. 

 

 

For the profiles in Table I to be useful, we need to be 

able to get the information that characterizes each 

profile, from the airline company database. We found 

that we can get the number of passengers of each profile 

in a specific flight from the boarding database, using the 

information in Table II. 

 
TABLE II 

BOARDING INFORMATION 

Profiles Relevant fields for profiling 

Business 
#C/CL pax; #VIP’s; #Freq. Flyer; #Pax according 

ticket price; Departure or arrival = business. 

Pleasure 
#Y/CL pax; #Pax according ticket price; Departure 

or arrival = vacation. 

Illness #Pax special needs; Stretcher on board=yes. 

 

V.2. Defining the Passenger Cost Formulas 

Besides being able to get the number and 

characterization of profiles from the survey data, we are 

also able to get the trend of each profile, regarding delay 

time/importance to the passenger. Plotting the data and 

the trend we got the graph in Fig. 3 (x – axis is the delay 

time and y – axis the importance). 

If we apply these formulas as is, we would get quality 

costs for flights that do not delay. Because of that we re-

wrote the formulas. The final formulas that express the 

importance of the delay time for each passenger profile 

are presented in Table III.  

 

 
 

Fig. 3. Case study trend formulas for the profiles 

 

It is important to point out that these formulas are 

valid only for this particular case and express the 

information we have from this specific survey data. Our 

goal is to update this information every year, using the 

annual company survey, and obtain different formulas 

according to flight destinations, flight schedules and/or 

geographical areas. 

 
TABLE III 

CASE STUDY FINAL QUALITY COST FORMULAS 

Profile Formula 

Business y = 0.16*x2+1.39*x 

Pleasure y = 1.20*x 

Illness y = 0.06*x2+1.19*x 

 

V.3. Example 

Using a real example from the scenario in section VI, 

let’s calculate the quality operational costs for the 

following flight (assuming 10 as the coefficient to 

convert to monetary costs): Flight 103 will be delayed 

30 minutes at departure. It has 20 passengers in the 

business profile (B), 65 in pleasure profile (P) and 1 in 

the illness profile (I). Applying the formulas in Table 

III, the cost of 30 minutes delay for each passenger in 

each profile is: 

 

Bcost-103 = 0.16*302+1.38*30 = 185.4 

Pcost-103 = 1.2*30 = 36 

Icost-103 = 0.06*302+1.19*30 = 89.7 

 

The quality operational cost for the flight 103 with a 

delay of 30 minutes is: 

QCcost-103 = 10*(20*185.4+65*36+1*89.7) = 61377 

VI. Scenarios and Experiments 

To evaluate our approach we have setup a scenario 

that includes 3 operational bases (A, B and C). Each 

base includes their crewmembers each one with a 
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specific roster. The data used corresponds to a real 

airline operation of June 2006 of base A. We have 

simulated a situation where 15 crewmembers, with 

different ranks, did not report for duty in base A. A 

description of the information collected for each event is 

presented in Table IV. 

 
TABLE IV 

INFORMATION COLLECTED FOR EACH EVENT 

Attribute Description 

Event ID 
A number that represents the ID of the event. 

For tracking purposes only 

Duty Date Time 
The start date and time of the duty in UTC 

for which the crew did not report. 

Duty ID 
A string that represents the ID of the duty for 

which the crew did not report. 

Flt Dly Flight delay in minutes. 

C/Pax Number of passengers in business class. 

Y/Pax Number of passenger in economy class 

End Date Time 
The end date and time of the duty in UTC for 

which the crew did not report. 

Ready Date Time 
The date and time at which the crew member 

is ready for another duty after this one. 

Delay 
The delay of the crewmember. We have 

considered 10 minutes in our scenario. 

Credit Minutes 
The minutes of this duty that will count for 

payroll. 

Crew Group 
The crew group (Technical = 1; Cabin = 2) 

that the crewmember belongs to. 

Crew Rank 
CPT = Captain; OPT = First Officer; CCB = 

Chief Purser; CAB = Purser. 

Crew Number The employee number. 

Crew Name The employee name. 

Base ID 
The base where the event happened. We 

considered all events in base A. 

Open Positions 
The number of missing crews for this duty 

and rank. We used a fixed number of 1. 

 

 

The events did not happen at the same day and each 

one corresponds to a crewmember that did not report for 

a specific duty in a specific day. Table V (at the end of 

the paper) shows the data for each of the events created. 

As you can see we have omitted the information 

regarding Delay, Base ID and Open Positions because 

we have used fixed values as indicated in Table IV. For 

example, the 10
th

 event corresponds to the following 

situation: Crew Peter B, with number 32 and rank CPT 

(captain) belonging to the crew group 1 (technical 

crew), did not report for the duty with ID 1ZRH12X 

with briefing time (duty date time) at 15:25 in 15-06-

2006. This flight did not delay on departure and has 5 

passengers in business class and 115 in economy class. 

The event was created after a 10 minutes delay of the 

crewmember in reporting for duty and happened at base 

A. It is necessary to find another crewmember to be 

assigned to this duty. The duty ends at 09:30 on 17-06-

2006 and the crewmember assigned to this duty will be 

ready for another one at 21:30 in 17-06-2006. The duty 

will contribute with 1318 minutes (21h58) for the 

payroll. The new crewmember must belong to the same 

rank and group. After setting-up the scenario we found 

the solutions for each crew event using three methods. 

VI.1. Experimental Methods 

In the first method (human) we used one of the best 

users from the AOCC, with current tools available, to 

find the solutions. The user uses software that shows the 

roster of each crewmember in a Gantt chart for a 

specific period. The user can scroll down the 

information, filter according to the crew rank and base, 

and sort the information by name, month duty, etc. Each 

user has a specific way of trying to find the solutions. 

However, we have observed that, in general, they follow 

these steps: 

 

1. Open the roster for a one month period, starting two 

days before the current day. For example, let’s 

suppose that the current day is 7th of June of 2006, 

they open the roster from the 5th of June until the 4th 

of July. 

2. Filter the roster by crew rank and base, where the 

base is equal to the base where the crew event 

happened and crew rank is equal to the crewmember 

rank that did not report for duty. 

3. Order the information by month duty, in an ascendant 

order and by seniority in a descendant order. 

4. Visually, they scroll down the information until they 

found a crewmember with an open space for the 

period of time that corresponds to the duty to be 

assigned. This period of time takes into consideration 

the start and end time of the duty and also the time 

required for resting (ready date time). 

5. If they do not found a crewmember in the base 

specified, they try to find it in another base, filtering 

the information accordingly.  

6. They assign the duty to the crewmember with less 

credit hours. 

 

The data collected using this method is presented in 

Table VI. We point out that the data in columns marked 

with an asterisk where calculated manually, according to 

the equations presented in section III. The reason for 

this is that the information system that is available for 

the users does not include information related with any 

kind of costs. 

In the second method (agent-no-quality) we have 

used our approach but with β=0 in Equation 1 (Total 

Operational Cost), i.e., although we calculate the 

Quality Operational Cost as indicated in Equation 6 we 

did not considered this value in resolution as well as in 

the decision process. The data collected is presented in 

Table VII. 
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In the third method (agent-quality) we have used our 

approach but with β=1 in Equation 1, i.e., considering 

the Quality Operational Cost in the resolution as well as 

in the decision process. The Quality Operational Cost 

was calculated using two passenger profiles (business 

and economy classes) and with α=0,1. We used the first 

two formulas in Table III to calculate the delay cost of 

each passenger in business and economy profile, 

respectively. The data collected is presented in Table 

VIII. 

VII. Results and Discussion 

Table IX shows a comparison of the results obtained 

through the above methods. We point out that in method 

1 (human) we did not calculate the quality costs, and in 

method 2 (agent-no-quality) we did calculate the quality 

costs but they were not used to find the best solution, 

although we use that value for comparison purposes. 

From the results obtained we can see that on average, 

method 3 (agent-quality) produced solutions that 

decreased flight delays in aprox. 36%. Agent-quality is, 

on average 3% slower than agent-no-quality in finding a 

solution and produces solutions that represent a decrease 

of 23,36% on the total operational costs, when 

compared with agent-no-quality.  

From the results (Table IX) we can see that our 

approach obtains valid solutions faster and with fewer 

direct operational costs when compared with the current 

method used in a real airline company (human). Agent-

no-quality represents a decrease of aprox. 45,5% and 

agent-quality a decrease of aprox. 41%. Agent-quality 

has a higher direct operational cost than agent-no-

quality because it uses the quality operational cost in the 

decision process. If we read this number without any 

other consideration, we have to say that the goal of 

having less direct operational costs was not achieved. 

An 8% increased on direct operational costs can 

represent a lot of money. However, we should read this 

number together with the flight delay figure. As we can 

see, although agent-quality has increased the direct 

operational costs (when compared with agent-no-

quality) in 8% it was able to choose solutions that 

decrease, in average, 36% of the flight delays. This 

means that, when there are multiple solutions to the 

same problem, agent-quality is able to choose the one 

with less operational cost, less quality costs (hence, 

better passenger satisfaction) and, because of the 

relation between quality costs and flight delays, the 

solution that produces shorter flight delays. 

From this conclusion, one can argue that if we just 

include the direct operational costs and the expected 

flight delay, minimizing both values, the same results 

could be achieved having all passengers happy. In 

general, this assumption might be true. However, when 

we have to choose between two solutions with the same 

direct operational cost and delay time, which one should 

we choose? In our opinion, the answer depends on the 

profile of the passengers of each flight and on the 

importance they give to the delays (quality operational 

cost), and not only in minimizing the flight delays and 

direct operational cost. Agent-quality takes into 

consideration this important information when making 

decisions. This is the reason why we think that one of 

the main contributions of our work is the generic 

approach to quantify the passenger satisfaction 

regarding delaying a flight, from the passenger point of 

view, presented in section IV. It is fair to say that we 

cannot conclude that our MAS will always have this 

behaviour. For that we need to evaluate a higher number 

of scenarios, at different times of the year (we might 

have seasonal behaviours) and, then, find an average 

value.  

Additionally, we found that the cooperation between 

different operational bases has increased with our 

approach, because we evaluate all the solutions found 

(including the ones from different operational bases 

where the event happened) and we select the one with 

less cost. In human, they choose the first one they find 

with less credit hours, usually from the same base where 

the event was triggered. This cooperation is also 

possible to be inferred from the costs by base. In Table 

IX is possible to see that the direct operational costs of 

base C using human represents only 7,58% of the costs 

of all bases, whilst in agent-no-quality and agent-quality 

it represents 88,77% and 51,73%, respectively. The 

same is possible to be inferred from the other bases 

(although with different figures). This means that our 

MAS uses more resources from other bases than the 

base where the problem happened (base A). 

VIII. Conclusion and Future work 

In this paper we describe our agent-based approach to 

the airline operations recovery problem, including the 

reasons that make us adopt an agent and multi-agent 

system (MAS) paradigm. We have detailed our MAS 

architecture, including: (i) agents and protocols as well 

as some agent characteristics like autonomy and social-

awareness, and (ii) decision mechanisms, including the 

costs criteria and negotiation protocols used. One of the 

major contributions of our work is a way of quantifying 

quality costs that, we believe, represents better the 

passenger satisfaction and allows the airline company to 

include this important parameter when taking 

operational decisions. Using data from a real airline 

company, we tested our approach and discussed the 

results obtained by three different methods. We have 

shown that our approach is able to select solutions that 

contribute to a better passenger satisfaction and that 
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produce shorter flight delays when compared with 

methods that only minimize direct operational costs. 

We are working on several improvements. Some of 

them are already implemented. However, we did not 

perform, yet, enough tests to have meaningful results. 

These are our current and future goals: 

- Improve autonomy and learning characteristics of the 

Monitor agent, so that he is able to consider new 

events (or change existing ones) according to the 

experience he gets from monitoring the operation, 

without relying exclusively on the definition of events 

created by the human operator. 

- Working on a protocol at the Manager Agent team 

level that allows a better coordination and improves 

the distributed problem solving characteristics of our 

approach. For example, including in each team, 

knowledge provided by other teams to improve the 

objective function of each specialist agent, with 

parameters of the other dimensions (aircraft, crew and 

passenger). 

- Solving problems learning by example, applying 

Case-Based Reasoning (CBR). 

- Increase robustness of future schedules by applying 

the knowledge gathered from learning by example. 

- Study the behaviour and compare the results, of 

several problem solving algorithms, including the 

ones that implement heuristics to specific problems. 

The idea is to classify the algorithms according to 

their success rate in solving specific types of 

problems in this domain. 
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TABLE V 

EVENT DATA USED FOR TESTING 

Duty Date 

Time 
Duty ID 

Flt 

Dly 

C 

Pax 

Y 

Pax 

End Date 

Time 

Ready Date 

Time 

Cred 

Min 

Crew 

Grp 
Rank 

Crew 

Nr 
Crew Name 

05-06 07:25 1ORY149S 0 7 123 05-06 13:35 06-06 01:35 370 2 CAB 80 John A 

05-06 07:25 1ORY149S 10 11 114 05-06 13:35 06-06 01:35 370 2 CAB 45 Mary A 

05-06 07:25 1ORY85P 0 10 112 05-06 13:35 06-06 01:35 370 1 CPT 35 Anthony  

15-06 04:10 2LIS24X 30 0 90 16-06 16:15 17-06 04:15 1757 2 CAB 99 Paul M 

15-06 04:10 3LIS25X 25 3 77 15-06 09:20 15-06 21:20 632 2 CAB 56 John B 

15-06 12:50 2LHR63P 5 25 85 16-06 20:45 17-06 08:45 1549 1 CPT 57 Paul S 

15-06 12:50 2LHR63P 0 20 95 16-06 20:45 17-06 08:45 1549 1 OPT 53 Mary S 

15-06 14:15 1LHR31P 0 23 52 15-06 20:55 16-06 08:55 843 2 CCB 23 Sophie 

15-06 15:25 2LHR19P 10 27 105 16-06 20:45 17-06 08:45 1341 2 CCB 34 Angel 

15-06 15:25 1ZRH12X 0 5 115 17-06 09:30 17-06 21:30 1318 1 CPT 32 Peter B 

25-06 05:20 1LIS16S 20 3 97 25-06 15:05 26-06 03:05 585 2 CAB 20 Paul G 

25-06 05:20 1LIS16S 5 2 108 25-06 15:05 26-06 03:05 585 2 CAB 10 Alice 

25-06 05:20 1LIS158T 0 4 92 25-06 15:05 26-06 03:05 585 2 CAB 15 Daniel 

25-06 06:15 3LIS174S 0 1 129 27-06 16:15 28-06 04:15 1258 2 CAB 71 George 

25-06 14:20 4LIS50A 0 2 83 28-06 19:40 29-06 07:40 219 1 OPT 65 Allan 

 

 
TABLE VI 

DATA COLLECTED (PARTIAL) AFTER USING METHOD 1 (HUMAN) 

Duty ID Base ID Crew Grp Rank Hour Pay (*) Perdiem Pay (*) Quality Op. Cost Op. Cost (*) 

1ORY149S A 2 CAB 0,00 72,00 0 72,00 

1ORY149S B 2 CAB 0,00 72,00 0 86,40 

1ORY85P A 1 CPT 942,90 106,00 0 1048,90 

2LIS24X A 2 CAB 939,00 144,00 0 1083,00 

3LIS25X B 2 CAB 0,00 72,00 0 86,40 

2LHR63P B 1 CPT 777,00 212,00 0 1186,80 

2LHR63P B 1 OPT 0,00 148,00 0 177,60 

1LHR31P A 2 CCB 687,65 72,00 0 759,65 

2LHR19P B 2 CCB 0,00 144,00 0 172,80 

1ZRH12X C 1 CPT 0,00 212,00 0 296,80 

1LIS16S A 2 CAB 0,00 72,00 0 72,00 

1LIS16S C 2 CAB 0,00 72,00 0 100,80 

1LIS158T B 2 CAB 0,00 72,00 0 86,40 

3LIS174S A 2 CAB 1051,60 216,00 0 1267,60 

4LIS50A A 1 OPT 246,40 296,00 0 542,40 

Totals    4644,55 1982,00 0 7039,55 

 

 

 

 

 

 

 

 

 

 

 



 

António J. M. Castro, Eugénio Oliveira 

Copyright © 2009 Praise Worthy Prize S.r.l. - All rights reserved                          International Review on Computers and Software, Vol. 4, n.4 

 

 
TABLE VII 

DATA COLLECTED (PARTIAL) AFTER USING METHOD 2 (AGENT-NO-QUALITY) 

Duty ID Base ID Crew Grp Rank Hour Pay Perdiem Pay Quality Op. Cost Direct Op. Cost 

1ORY149S A 2 CAB 0,00 72,00 0 72,00 

1ORY149S B 2 CAB 0,00 72,00 501,31 86,40 

1ORY85P B 1 CPT 0,00 106,00 0 127,20 

2LIS24X C 2 CAB 563,40 62,00 1561,76 875,56 

3LIS25X B 2 CAB 0,00 72,00 1877,73 86,40 

2LHR63P C 1 CPT 0,00 212,00 658 296,80 

2LHR63P A 1 OPT 0,00 144,00 687,62 144,00 

1LHR31P B 2 CCB 229,17 72,00 0 361,40 

2LHR19P B 2 CCB 0,00 144,00 788,78 172,80 

1ZRH12X C 1 CPT 0,00 212,00 0 296,80 

1LIS16S A 2 CAB 0,00 72,00 961,95 72,00 

1LIS16S C 2 CAB 0,00 72,00 301,48 100,80 

1LIS158T B 2 CAB 0,00 72,00 0 86,40 

3LIS174S C 2 CAB 411,00 93,00 0 705,60 

4LIS50A B 1 OPT 0,00 296,00 449,84 355,20 

Totals    1203,57 1773,00 7788,47 3839,36 

 

 

 
TABLE VIII 

DATA COLLECTED (PARTIAL) AFTER USING METHOD 3 (AGENT-QUALITY) 

Duty ID Base ID Crew Grp Rank Hour Pay Perdiem Pay Quality Op. Cost Direct Op. Cost 

1ORY149S A 2 CAB 0,00 72,00 0 72,00 

1ORY149S B 2 CAB 0,00 72,00 501,31 86,40 

1ORY85P B 1 CPT 0,00 106,00 0 127,20 

2LIS24X C 2 CAB 503,50 144,00 1060,92 906,50 

3LIS25X C 2 CAB 0,00 72,00 1420,78 100,80 

2LHR63P B 1 CPT 102,90 212,00 272,10 377,88 

2LHR63P B 1 OPT 37,22 144,00 0 217,46 

1LHR31P B 2 CCB 229,17 72,00 0 361,40 

2LHR19P B 2 CCB 0,00 144,00 788,78 172,80 

1ZRH12X C 1 CPT 0,00 212,00 0 296,80 

1LIS16S A 2 CAB 0,00 80,00 593,30 80,00 

1LIS16S C 2 CAB 0,00 80,00 144,34 112,00 

1LIS158T B 2 CAB 0,00 72,00 0 86,40 

3LIS174S C 2 CAB 411,00 93,00 0 705,60 

4LIS50A A 1 OPT 138,83 288,00 0 426,83 

Totals    1422,62 1863,00 4781,53 4130,07 
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TABLE IX 

SUMMARY OF THE RESULTS OBTAINED BY EACH METHOD 

 Human  % Agent-no-quality % Agent-quality % 

Base of the solution:       

- From crew event base (A) 7 47% 3 20% 3 20% 

- From base B 6 40% 7 47% 7 47% 

- From base C 2 13% 5 33% 5 33% 

       

Time to find solution (avr sec) 101 100% 25 24,75% 26 25,74% 

       

Flight delays (avr min):   11 100% 7 63,64% 

- Base A   14 40% 7 30% 

- Base B   9 26% 4 17% 

- Base C   12 34% 12 52% 

       

Total direct operational costs 7039,60 100% 3839,36 54,54% 4130,07 58,67% 

- Base A 4845,55 92,42% 288,00 11,23% 578,83 14,02% 

- Base B 1796,40 34,26% 1275,80 49,77% 1429,54 34,61% 

- Base C 397,60 7,58% 2275,56 88,77% 2121,70 51,37% 

       

Total quality operational costs   7788,47 100% 4781,53 61,39% 

- Base A   1649,57 21,18% 593,30 12,41% 

- Base B   3617,66 46,45% 1562,19 32,67% 

- Base C   2521,24 32,37% 2626,04 54,92% 

       

Total operational costs   11628,01 165% 8911,60 126,6% 

- Base A   1937,57 16,66% 1172,13 13,15% 

- Base B   4088,42 35,16% 2991,73 33,57% 

- Base C   4796,80 41,25% 4747,74 53,28% 
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