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ABSTRACT

A new enhanced strain element, based on the definition of extra compatibles modes of deformation added to
the standard four-node finite element, is initially presented. The element is built with the objective of
addressing incompressible problems and avoiding locking effects. By analysing at the element level the
deformation modes which form a basis for the incompressible subspace the extra modes of deformation are
proposed in order to provide the maximum possible dimension to that subspace. Subsequently another new
element with more degrees of freedom is formulated using a mixed method. This is done by including an
extra field of variables related to the derivatives of the displacement field of the extra compatible modes
defined previously. The performance of the elements proposed is assessed in linear and non-linear situations.
Copyright ( 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The improvement of the performance of low-order quadrilateral elements, namely in the presence
of incompressible deformations, have been, in the recent years, an important issue of discussion,
despite the fact that some good solutions are already available and adopted in many general
purpose finite element programs. The main reason lies in the fact that low-order elements are
preferred in large-scale computations, involving very often adaptive mesh refinements, which are
very often associated to the solution of practical engineering problems, as those encountered in
metal-forming applications.

Nevertheless, incompressible or near incompressible behaviour has been a source of problems
for finite element analysis with low-order elements as they tend to present a locking response on
those conditions. In different fields as linear and non-linear elasticity, viscous incompressible fluid
flow or plastic deformation those problems were early detected.1—4



Mixed formulations, based on sound mathematical grounds, when properly implemented,
solved the problem with the disadvantage of introducing more variables. Reduced and selective
reduced integration techniques, although initially taken as useful tricks, were the first irreducible
form solutions for locking problems. Later Malkus and Hughes5 established the equivalence of
mixed formulations and selective reduced integration techniques of penalty formulations, under
certain conditions. Later the B-bar method was introduced6,7 which avoided the necessity of
reduced integration and in which the shape function derivatives related to the volumetric
response were replaced by approximations resulting from a mixed formulation. Some heuristic
methods were even established in order to determine the ability of an element to perform well,
based on the definition of a constraint ratio.6—8 Alternative solutions were also obtained with the
so-called incompatible modes of deformation introduced initially for bending,9,10 that also
behaved well in incompressible problems. Other routes exploiting the ideas of developing
a stabilization matrix orthogonal to linear displacement fields to achieve flexural super-conver-
gent solutions for the incompatible mode elements,11 by introducing the so called c-projection
operator were also developed.12

César de Sá and Owen13,14 analysed, at the element level, the subspace of incompressible
deformation that result from the finite element solution and made clear how, under certain
circumstances, the locking occurs. It was also shown that the constraint ratios may give wrong
indications to evaluate a possible locking condition.

Simo and Rifai15 introduced the concept of enhanced strain element built from an initial three
field mixed formulation. The enhanced strain field is associated with variables that can be
eliminated at element level. With this approach locking is avoided and good accuracy is achieved
even with coarse meshes. They also defined the conditions on which this approach should be built
and how it could include the method of incompatible modes. The element proved to behave well
even for inelastic materials and later the concept was extended for geometrically non-linear and
3D finite deformation problems.16,17

Other contributions in the development and application of the enhanced strain concept can be
found in more recent works.18—21 However, de Souza Neto et al.21 showed that, despite the
benefits introduced by the enhanced strain element, when solving practical elastic and elastoplas-
tic problems having particularly highly strained compressive regimes, some spurious hourglass
patterns may develop.

A new simple low-order element was therefore proposed by de Souza Neto et al.22 in which
a multiplicative split of the deformation gradient into deviatoric and volumetric contributions is
performed. These contributions are evaluated at the Gauss points and at the centroid similarly to
the B-bar method. This element showed good behaviour in problems involving nearly incom-
pressible hyperelasticity and finite multiplicative plasticity and also the ability to capture strain
localisation phenomena.

Another interesting approach was presented by Wriggers and Hueck in References 23 and 24,
unifying the concepts of incompatible modes and stabilisation.

In this paper the analysis of the subspace of incompressible deformation associated to the
standard four-node element and developed by César de Sá and Owen13,14 is reviewed and
utilized to explain the success of some of the different elements proposed. Based on this insight
into the locking phenomenon and using similar frameworks to the incompatible modes element
and Simo and Rifai’s enhanced strain element new elements for incompressible problems are
proposed. These elements are based on extra compatible modes of deformation and its robustness
in dealing with incompressible problems is assessed.
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Figure 1. Space of admissible solutions and subspace of incompressible deformations

2. INCOMPRESSIBILITY AND LOCKING

The incompressible problem may be stated as a constrained minimization of a functional. In
simple terms, we want to obtain, in the linear space of admissible solutions º, the displacement
field u that minimizes the total energy of the system, with the restriction of belonging to
a subspace of º, which we may name as the subspace of incompressible deformations ILº.

Using the Lagrange multiplier method the problem is transformed into the minimization of the
unconstrained augmented functional:

n (u, j)"P)
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2
s : e d)!P)

b · u d)!P!p

t · ud!!P)
j div(u) d) (1)

in which s is the deviatoric stress tensor, e is the deviatoric strain tensor, b and t are the body force
and surface traction vector functions and the Lagrange multiplier j may be identified with the
hydrostatic pressure p.

When a finite element solution is established the spaces º and I are approximated by finite
dimensional spaces ºh and Ih. The two field finite element solution, given by the variational
principle associated with equation (1), is obtained by
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in which f h is the vector of applied forces and K is the deviatoric stiffness matrix.
The incompressible constraint, that is obtained from the variation of the functional on p, is

represented by the second set of equations on (2)

Quh
"0 (3)

and defines the subspace of incompressible deformations Ih as

Ih"Muh
3ºh : Quh

"0N (4)

The solution uh should then lie on the null space of Q, i.e. in the subspace of incompressible
deformations Ih, and therefore be a linear combination of the elements of a given basis of Ih. But
Ih is a finite-dimensional approximation space to I and therefore may not be able to reproduce all
the possible solutions. Locking occurs when, for a given set of boundary conditions, the expected
solution does not belong to Ih.13,14 In this case the solution is whether the trivial one to equation
(3), i.e. uh"0 or only a linear combination of the components of a projection of the ‘exact’
solution on Ih, which may be a crude approximation. Different elements, for a given mesh, will
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offer different approximations to the subspace of incompressible deformations and therefore
different abilities to reproduce these type of situations.

3. BASES FOR THE SUBSPACE OF INCOMPRESSIBLE DEFORMATIONS

On the assumption of the equivalence theorem of Malkus and Hughes,5 a clear illustration of the
last statements was given by César de Sá and Owen13,14 by showing, for the cases of a single
linear element, with full and selective reduced integration, the mechanism of locking, in the
context of infinitesimal strains. A brief summary of some results for a 2-D situation on m—g
co-ordinates is recalled next and summarized in Figures 2 and 3.

In order to characterize Ih a basis was determined by imposing the incompressible constraint at
each Gauss point. For the full integration case Ih is a subspace of dimension five determined by
the equation
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and

rank(Q)"3'nullity(Q)"5 (8)

For the selective reduced integration equation (5) defines Ih as a subspace of dimension seven,
which is the maximum allowed as the dimension of the space of all admissible solutions is eight,
and may be written as
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In this case we have

rank(Q)"1'nullity(Q)"7 (10)

The comparison between two possible bases for those spaces, represented in Figure 2, shows
clearly that the vectors on the basis of the full integration solution do not span the extra vectors of
the basis of the selective reduced solution, b

6
and b

7
. Therefore, any attempt to obtain those

deformation patterns by conditioning the boundary conditions and applied forces results inevi-
tably in a locking situation, as is presented in Figure 3. The same would happen, for full
integration, in any other case in which the expected deformation field would have important
components in these two extra basis vectors.
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Figure 2. Basis for the incompressible deformation subspace (one element mesh)
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Figure 3. Tests: I—locking test; II—no locking test. Constraint ratio: r

In Figure 3 is also recalled13,14 how the constraint ratio r defined in Reference 7 may give
wrong indications of possible locking situations.

4. NEW ELEMENTS FOR INCOMPRESSIBILITY

It is interesting to see that if Ih is defined in the same manner for the different solutions to locking
referred, namely the incompatible modes element, the B-bar element or the enhanced strain
element the result is similar to that in the element with selective reduced integration, i.e. a similar
seven-dimensional subspace is obtained, despite the fact that they are formulated in different
ways. Bearing that in mind, we will try to formulate some new elements designed to deal with
incompressibility, for 2-D problems, by assuming that the two extra modes of deformation,
b
6

and b
7
, should be reproducible.

4.1. The Qi5 element

This new element will be built by adding two extra compatible modes of deformation in the
definition of the displacement field using the same framework as in the definition of the
incompatible modes element. However, in this case, the Jacobian matrix does not have to be
evaluated at the centre of the element, as we will see later.

In order to illustrate the methodology followed let us recover the locking test in Figure 3 and
suppose that is possible to obtain the displacement field represented in Figure 4. If the displace-
ment field is only defined from the standard expansion in terms of bilinear shape functions the
divergence of the displacement field is never equal to zero at the Gauss points, as shown in
Figure 4.
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Figure 4. Locking test. Div(uh) at the Gauss points of the b
6

mode of deformation with full integration

Figure 5. Additional compatible modes

Therefore, the extra modes to be included should provide the possibility of div(u) be equal to
zero at the Gauss points in an incompressible situation. This can be achieved by considering the
extra compatible displacement field uha, so that, at the element level (Figure 5):
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Figure 6. Locking test with additional degrees of freedom

These extra compatible displacement field consist on an internal movement leaving the
displacement at the element sides equal to zero and the components of ae may be viewed as
internal variables which may be associated to displacements of the central point. However, as in
the case of incompatible modes element, their contribution should not be considered when
evaluating the element body force vectors. It is interesting to note that this methodology leads to
a similar procedure developed by Dvorkin and Vassolo.25

These extra modes of deformation allow the divergence of the displacement field to equal zero
at the Gauss points for adequate values of the components of ae. Their contribution for the
div(uh), in local co-ordinates, is
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In the locking test of Figure 4 if we assign the following values to the new variables:
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then + ) uh"0 at the Gauss points, as it is illustrated in Figure 6.
Following the f.e.m. standard methodology then we may define

e"e
d
#ea"[Be

d
Bea]C

de

ae D (16)

Be
d
"

LN
i

Lx
0

0
LN

i
Ly

LN
i

Ly

LN
i

Lx
K
i/1,4

, Bea"

LNa
Lx

0

0
LNa
Ly

LNa
Ly

LNa
Lx

(17)

Taking in account the following relations:
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then Bea takes the form
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It is interesting to note that this element passes the patch test for arbitrary configurations with
no need of referring the inverse of the Jacobian to the central point of the element, as in the cases
of the incompatible modes or the enhanced strain elements. This is due to the fact that, in this
case, the following relation:
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is satisfied,7,10 which is not case for incompatible modes or the enhanced strain elements.
In Section 5 this element is assessed on various examples. As it will be shown it does not lock

but its performance may not be as good as the enhanced strain element in bending dominated
problems or in extreme incompressible conditions. This fact is not unexpected as the advantage of
the Qi5 element of having less degrees of freedom than the QM6 may, otherwise, mean less ability
to model those stringe conditions in non regular meshes. Therefore a new element based on the
Qi5, but with more degrees of freedom will be developed in the next section.

4.2. The Qi6 element

This element designed is inspired in the works of Simo and Rifai15 and Simo and Armero16 and
will be based on the Qi5 element developed in the previous section.

The crucial idea here is to include, via a mixed formulation, an extra field of variables related to
the space derivatives of the displacement field. Thus, the actual displacement gradient matrix H, is
obtained by adding to the compatible part of the Jacobian matrix of the displacement field Ju,x an
enhanced part Ju8 ,x as follows:

H"Ju,x#Ju8 ,x (24)

Therefore the actual deformation gradient Fa is obtained from the compatible one F as

Fa"F#Ju8 ,x"I#Ju,x#Ju8 ,x (25)
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For a 2-D problem equation (24) reads:
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For a mixed finite element solution four extra ae
ij

variables, associated to this new field, are
added to each element to obtain the terms in Ju8 ,x. In order to satisfy the constant nominal stress
field condition, which is closely related to the satisfaction of the classical patch test,15,16 without
having to scale the Jacobian matrix from centroid of the element to the Gauss points, the same
derivatives of the shape function defined for the Qi5 element are used to represent the terms of the
enhanced displacement gradient, as follows:
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Hence, the following equation may be written:
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The strain field at the element level is defined by
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The extra variables are eliminated in the assembling process by a substructuring technique, as in
the enhanced assumed strain method.15

It is noteworthy that the constant nominal stress field condition referred above is satisfied due
to the fact that:
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BI ea j dmdg"0 (32)

5. ELEMENTS ASSESSEMENT

In this section the performance of the elements proposed is assessed, especially near to the
incompressible limit and comparisons are made with other elements referred above, in particular
with:

(a) the Q4—standard bilinear element;
(b) the SRI—the previous element with reduced integration on the volumetric terms;
(c) the QM6—incompatible modes element,10 equivalent to the assumed strain element of

Simo and Rifai,15 the original Q1/E4;
(d) the B-bar0—B-bar formulation,7 with an approach that generalizes the selective reduced

integration;
(e) the B-bar—B-bar formulation,7 with an approach that generalizes the mean-dilatation

formulation.

5.1. Beam bending

In this standard test,7 the beam represented in Figure 7(a) is subjected to the following
boundary conditions:

Displacement:
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The traction boundary conditions are those encountered in simple bending theory for a canti-
lever beam.
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Figure 7. Finite element model for the beam bending problem

Only half of the domain is modelled due to anti-symmetry conditions and the mesh used is
depicted in Figure 7(b). Plane strain conditions were assumed.

The analytical solution for the vertical displacement is
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in which E is the Young’s modulus and t is the Poisson’s ratio and for the reference node (see
Figure 7(b)) we have
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To normalize the results the Young’s modulus may be defined as a function of the Poisson’s ratio
to give for the tip vertical displacement the value v(16,0)"1 as
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The ratio of the Lamé parameters:

j
k
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t
2(1!2t)

(41)

tends to infinity as the Poisson’s ratio approaches 0)5. In Figure 8 the behaviour on this situation
is compared for different elements.

As it may be seen, the performance of the standard four-node element is very poor. The
incompatible modes element, the proposed Qi5 and Qi6 elements, the SRI element and the B-bar
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Figure 8. Vertical displacement of the reference node

approaches maintain their accuracy even for large ratios of j/k. The Qi6 and QM6 elements have
a similar performance, with excellent results, particularly for j/k)1010.

5.2. Cook+s membrane

In this example a clamped tapered panel is subjected to an in-plane shearing load using several
mesh configurations.26 This problem is usually utilized to ascertain good coarse mesh accuracy in
bending problems and insensitivity to mesh distortion exhibited by different proposed elements
(Figure 9).

The problem is solved assuming linear elasticity for two different values for the Poisson’s ratio
near to the incompressible limit. The simulation is performed under plane strain conditions and
the values of the material constants for elastic cases are

E"240)565; t"0)4999 or t"0)4999999

The vertical displacement of the top edge node is plotted against different mesh configurations
for all the elements proposed, B-bar formulations and QM6 element in Figures 10 and 11.

For t"0)4999 all formulations appear to converge to the same answer, and meshes with more
than 20]20 elements give for all formulations a similar result. However the B-bar, selective
reduced integration approaches and the Qi5 element, require finer meshes.

For t"0)4999999 only the SRI, the Qi5, the Qi6 and the B-bar appear to converge to the same
answer. Furthermore, only these formulations show a completely insensitivity to mesh distortion.
However, and with 20]20 elements all formulations have the same result although the B-bar
approaches require much finer meshes.
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Figure 9. Cook’s membrane problem

Figure 10. Displacement of Cook’s membrane problem (t"0)4999)

5.3. Extension of a double edge notched specimen

This test was introduced by Nategaal et al.4 to demonstrate the spurious response of standard
displacement models in highly constrained plane strain elastoplastic problems. A perfect plastic
von Mises model is assumed, and the values of the material constants are taken as

p
y
"0)243, E"70, t"0)3

where p
y
is the uniaxial yield stress.
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Figure 11. Displacement of Cook’s membrane problem (t"0)4999999)

Figure 12. Double edge notched tension specimen

The simulation is carried out by displacement controlled load steps at the left side of the
specimen. A 5]15 mesh (Figure 12) is used to model a quarter of the problem using symmetry
boundary conditions. Each displacement step corresponds to:

*d"
1

2

p
y
¼

E

In Figure 13 the total extensional load versus the normalized horizontal deflection (Ed/p
y
¼),

where d is the displacement at the left side (30 time steps), is represented.
It is clear, the convergence of Qi6, QM6, Qi5 and SRI to the analytical solution, while the Q4

exhibits locking.
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Figure 13. The load-deflection plots of double edge notched tension

5.4. ¸ocking problem

In this example, we try to reproduce the locking test of Section 3 using a 2]2 finite element
mesh and examine the performance of the Qi6 and the QM6 elements when some element
distortion is imposed (Figure 14).

5.4.1. Dislocation of the central node. In this case, the central node position is changed causing
the distortion of the mesh. In Figure 15, for a Poisson’s ratio of t"0)3, the errors of the
displacement of nodes 1 and 9, relatively to those obtained with a regular mesh are represented.
The proposed Qi6 element shows a better performance in this compressible situation.

For near incompressible situations the same errors on nodes 1 and 9 are represented in Figure
16. In Figure 17 the values obtained for the displacement of node 7, which is zero for a regular
mesh, are shown. The proposed Qi6 element has a much better performance on near incompress-
ible situations than the QM6.

5.4.2. Rotation about the central node. In this example the mesh is distorted by rotating the
interior sides of the elements about the central node. For a near incompressible situation Figure
18 shows the variation on the displacement of node 7, which should be zero, for different values
of the rotation angle. The proposed Qi6 element gives the correct value whilst the QM6
element shows a very poor performance. In Figure 19, for the same situation the error on the
displacement of node 1 is represented. Again, it is evident the better performance of the proposed
Qi6 element.
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Figure 14. Finite element model for the locking test

Figure 15. Error on nodes 1 and 9 with t"0)3

6. CONCLUSIONS

Two new elements were proposed. The Qi5 was designed with the same methodology of the
incompatible modes element but is based on compatible modes and has only two extra degrees of
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Figure 16. Error on nodes 1 and 9

Figure 17. Displacement of node 7
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Figure 18. Displacement on node 7 with Log(j/k)"9

Figure 19. Error on node 1 with Log(j/k)"9

freedom. The Qi6 was designed following a similar methodology to the enhanced strain mixed
method. These elements showed a good performance in different incompressible situations and in
particular the Qi6 element is more accurate than the original enhanced strain element in distorted
meshes.

The elements proposed have only been tested in geometrically linear problems. The generaliz-
ation of the ideas behind the implementation of these elements into the large strain field will be
the next step of this work.
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