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UNMAXIMIZED INCLUSION TYPE CONDITIONS FOR NONCONVEX
CONSTRAINED OPTIMAL CONTROL PROBLEMS ∗

M. d. R. de Pinho1, M. M. A. Ferreira2 and F. A. C. C. Fontes3

Abstract. Necessary conditions of optimality in the form of an unmaximized Inclusion (UI) are de-
rived for optimal control problems with state constraints. The conditions presented here generalize
earlier optimality conditions to problems that may be nonconvex. The derivation of UI type condi-
tions in the absence of the convexity assumption is of particular importance when deriving necessary
conditions for constrained problems. We illustrate this feature by establishing, as an application, op-
timality conditions for problems that in addition to state constraints incorporate mixed state-control
constraints.
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Introduction

In this paper we derive necessary conditions of optimality involving unmaximized Inclusion-type conditions
for optimal control problems with pure state constraints and we report on some main applications. These
subsume and substantially extend the results in [6], [8], [5] and [3].

The problem of interest is:

(P)



Minimize g(x(0), x(1)) +
∫ 1

0

L(t, x(t), u(t))dt

subject to
ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [0, 1]

h(t, x(t)) ≤ 0 a.e. t ∈ [0, 1]
u(t) ∈ U(t) a.e. t ∈ [0, 1]

(x(0), x(1)) ∈ C.

Here g : Rn × Rn → R, L : [0, 1]× Rn × Rm → R, f : [0, 1]× Rn × Rm → Rn, h : [0, 1]× Rn → R are given
functions, C ⊂ Rn × Rn a given set and U : [0, 1] ⇒ Rm is a given multifunction.

First order necessary conditions for the optimal control problem (P) when the data may be nonsmooth have
undergone continuous development. Such conditions, written in the form of maximum principles, are based on
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2 An Euler-Lagrange Inclusion for Nonconvex Optimal Control Problems

the generalizations of the concept of the “subdifferential” of convex functions, to larger function classes. We
refer to these extended optimality conditions as the “nonsmooth” maximum principle.

For (P) the nonsmooth maximum principle (see e.g. [12]) asserts that for a local minimizer (x̄, ū) there exist
a function p ∈ W 1,1, a nonnegative measure µ representing an element in C∗ and a scalar λ ≥ 0 such that

µ{[0, 1]}+ ||p||L∞ + λ > 0, (0.1)
(−ṗ(t), ˙̄x(t)) ∈ co ∂x,pH(t, x̄(t), ū(t), q(t), λ) a.e. (0.2)

max
u∈U(t)

H(t, x̄(t), u, q(t), λ) = H(t, x̄(t), ū(t), q(t), λ) a.e. (0.3)

(p(0),−q(1)) ∈ λ∂g(x̄(0), x̄(1)) + NC(x̄(0), x̄(1)) (0.4)
γ(t) ∈ ∂̄xh(t, x̄(t)) µ− a.e. (0.5)

supp{µ} ⊂ {t ∈ [0, 1] : h(t, x̄(t)) = 0} (0.6)

where H is the Hamiltonian for (P),

H(t, x, u, p, λ) = p · f(t, x, u)− λL(t, x, u) (0.7)

and q is defined as

q(t) =

{
p(t) +

∫
[0,t)

γ(s)µ(ds) t ∈ [0, 1)
p(t) +

∫
[0,1]

γ(s)µ(ds) t = 1. (0.8)

In the above conditions ∂g denotes the limiting subdifferential of g with respect to its arguments, NC denotes
the limiting normal cone to C, and co ∂x,pH denotes the Clarke subdifferential of H with respect to x and p.
We also make use of the subdifferential ∂̄xh. These concepts from nonsmooth analysis are defined in the next
section.

Conditions (0.1) to (0.6) were initially obtained in [2] with the use of Clarke’s subdifferential and normal
cones in (0.4). The transversality conditions (derived for problems without state constraints) were refined in
the present form (as shown in (0.4)) in [9] (see also [10]). The full result as stated above is given in [12].

For standard optimal control problems (when the state constraint is not present) it has been highlighted that
the normal form of the nonsmooth maximum principle alluded above fails to provide sufficient conditions for
linear-convex problems, in contrast to the analogous maximum principle applicable to problems with differen-
tiable data. In [6] a weak nonsmooth maximum principle is proposed for standard optimal control problems
which provides, in the normal form, sufficiency to linear-convex nonsmooth problems. It is formulated as an
unmaximized Inclusion type condition, (denoted in what follows simply as UI and also known in the literature
as Euler Lagrange Inclusion-type conditions) involving a joint subdifferential of the Hamiltonian in the (x, p, u)
variables. Noteworthy these UI type conditions have some relevant applications. For example, consider the
problem (P) when the constraint h(t, x(t)) ≤ 0 is absent and mixed constraints of the form

b(t, x, u) = 0, d(t, x, u) ≤ 0

are added. Such are called optimal control problems with mixed constraints. The UI-type conditions for standard
optimal control problems have been used as an intermediate step to establish a strong maximum principle ([8])
and a weak maximum principle ([5])) for those problems, under some regularity assumptions on the functions
b and d. Of interest is the fact that the weak maximum principle for problems with mixed constraints also
involves UI type conditions ([5]). Additionally, UI-type conditions for standard optimal control problems has
been successfully used to derive necessary conditions for problems with differential algebraic equations (DAE’s)
(see [7]).

The main shortcoming of the UI-type conditions reported in [6] and its subsequent applications is the inability
to deal with problems involving pure state constraints. A first attempt to extend the result in [6] to cover problem
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(P) was made in [3]. Here UI-type conditions are derived for (P) by assuming that the velocity set

{(L(t, x, u)), f(t, x, u)), u ∈ U(t)} (0.9)

is convex for all (t, x) ∈ [0, 1] × Rn. Although these conditions are also sufficient for linear convex problems
the convexity assumption (0.9) prevents its application to problems with mixed constraints and problems with
DAE’s even when the convexity assumption on the velocity set is imposed on the original data. Thus, the
generalization in [3] proved to be quite poor.

In this paper we prove UI-type conditions for (P) by not requiring the velocity set to be convex. This alone
is a significant improvement on [3]. Moreover, in the absence of the convexity assumption our main result has
an important role as an analytical tool in generalizing optimality conditions provided in [8], [5] and [7] to cover
problems that additionally incorporate pure state constraints. The proof of UI-type conditions we report in
here requires techniques quite different and more demanding than those used in [3]. Central to the proof of
our main result is the construction of a mini-max problem with convex “velocity set” in which the constraint
functional

max
t∈[0,1]

h(t, x(t))

appears in the cost. The application of the result in [3] to this auxiliary problem and the use of relaxation
techniques similar to those in the proof of Proposition 9.5.4 in [12], yield multipliers for the maximum principle
for the original problem.

1. Preliminaries

Here and throughout, B represents the closed unit ball centered at the origin, | · | the Euclidean norm or the
induced matrix norm on Rm×k. The Euclidean distance function with respect to A ⊂ Rk is

dA : Rk → R, y 7→ dA(y) = inf {|y − x| : x ∈ A}.

We make use of the following concepts from nonsmooth analysis. A vector p ∈ Rk is a limiting normal to a
set A of Rk at a point x in A if there exist pi → p and xi → x, and a sequence of positive scalars {Mi}, such
that, for each i ∈ N,

pi · (x− xi) 6 Mi|x− xi|2 for all x ∈ A.

The limiting normal cone to A at x, written NA(x), is the set of all limiting normals to A at x. Given a
lower semicontinuous function f : Rk → R ∪ {+∞} and a point x ∈ Rk such that f(x) < +∞, the limiting
subdifferential of f at x, written ∂f(x), is the set

∂f(x) :=
{
ζ : (ζ,−1) ∈ Nepi {f}(x, f(x))

}
,

where epi {f} =
{
(x, η) : η > f(x)

}
denotes the epigragh set .

The above concepts of limiting normal cone and limiting subdifferential were first introduced in [9]. The full
calculus for these constructions in finite dimensions is described in [10] and [11].
In the case that the function f is Lipschitz continuous near x, the convex hull of the limiting subdifferen-
tial, co ∂f(x), coincides with the Clarke subdifferential, which may be defined directly. Properties of Clarke
subdifferentials (upper semi-continuity, sum rules, etc.), are described in [2].

We also make use of the subdifferential ∂̄xh defined as

∂̄xh(t, x) := co
{

lim ξi : ξi = ∇xh(ti, xi)∀i and (ti, xi)
h→ (t, x)

}
. (1.10)
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For an optimal control problem, such as (P) or (Q), a (Lebesgue) measurable function u : [0, 1] → Rm such
that u(t) ∈ U(t) for almost every t ∈ [0, 1] is called a control function. An absolutely continuous function x
(x ∈ W 1,1) satisfying ẋ(t) = f(t, x(t), u(t)) a.e. is called a state trajectory (corresponding to u). A pair (x, u)
comprising a state trajectory x and a control u with which it is associated is called a process. A process is
called admissible if it satisfies all problem constraints, namely end points constraint (x(0), x(1)) ∈ C, the state
constraint h(t, x(t)) ≤ 0 for all t ∈ [0, 1], and in the case of problem (Q), also the mixed state-control constraint
0 = b(t, x(t), u(t)) a.e. t ∈ [0, 1].

An admissible process (x̄, ū) is a local minimizer for this problem if there exists a parameter δ̄ > 0 such that

g(x(0), x(1)) +
∫ 1

0

L(t, x(t), u(t))dt ≥ g(x̄(0), x̄(1)) +
∫ 1

0

L(t, x̄(t), ū(t))dt (1.11)

for all admissible processes (x(t), u(t)) which satisfy

| x(t)− x̄(t) |≤ δ̄, (1.12)

and it is a weak local minimizer if it satisfies (1.11) over admissible processes satisfying

| x(t)− x̄(t) |≤ δ̄, | u(t)− ū(t) |≤ δ̄ a.e. (1.13)

It is worth mentioning that local minimizers as defined above correspond to strong local minimizers in the
problem reformulation via differential inclusions.

Let us consider the optimal control problem (P). The following hypotheses, which make reference to a
parameter δ > 0 and a reference process (x̄, ū), are imposed:

H1 The function t → [L, f ](t, x, u) := (L(t, x, u), f(t, x, u)) is Lebesgue measurable for each pair (x, u) and
there exists a function K in L1 such that∣∣[L, f ](t, x, u)− [L, f ](t, x′, u′)

∣∣ 6 K(t)[|x− x′|2 + |u− u′|2]1/2

for x, x′ ∈ x̄(t) + δB, and u, u′ ∈ ū(t) + δB a.e. t ∈ [0, 1].
H2 The multifunction U has Borel measurable graph and

Uδ(t) := (ū(t) + δB) ∩ U(t)

is closed for almost all t ∈ [0, 1].
H3 The endpoint constraint set C is closed and g is locally Lipschitz in a neighbourhood of (x̄(0), x̄(1)).
H4 For x ∈ x̄(t) + δB the function t → h(t, x) is continuous and there exists a scalar Kh > 0 such that the

function x → h(t, x) is Lipschitz of rank Kh for all t ∈ [0, 1].

Assume additionally that the convexity assumption (CH) holds:

CH The velocity set

{(L(t, x, u), f(t, x, u)) : u ∈ U(t)}

is convex for all (t, x) ∈ [0, 1]× Rn.

The following unmaximized Inclusion for optimal control problems, a simple variation of the result provided
in [3], will be used.

Proposition 1.1. Let (x̄, ū) be a weak local minimizer for problem (P). Assume that H1–H4 and CH are
satisfied. Then, there exists an absolutely continuous function p : [0, 1] → Rn, integrable functions ξ : [0, 1] → Rm
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and γ : [0, 1] → Rn, a nonnegative Radon measure µ ∈ C∗([0, 1], R), and a scalar λ > 0 such that

µ{[0, 1]}+ ||p||L∞ + λ > 0, (1.14)
(−ṗ(t), ˙̄x(t), ξ(t)) ∈ co ∂H(t, x̄(t), q(t), ū(t), λ) a.e. t ∈ [0, 1], (1.15)

ξ(t) ∈ co NU(t)(ū(t)) a.e. t ∈ [0, 1], (1.16)
(p(0),−q(1)) ∈ NC(x̄(0), x̄(1)) + λ∂g(x̄(0), x̄(1)), (1.17)

γ(t) ∈ ∂̄xh(t, x̄(t)) µ-a.e. , (1.18)
supp{µ} ⊂ {t ∈ [0, 1] : h (t, x̄(t)) = 0} , (1.19)

where H and q are defined as in (0.7) and (0.8).

Proof. This is simple variation of a result provided in [3] for which the endpoint constraints are separate, of
the type x(0) ∈ C0 and x(1) ∈ C1, with C0, C1 ⊂ Rn. Problem (P) is easily converted into one with separate
endpoint constraints by considering an additional state y ∈ Rn with dynamics ẏ(t) = 0 and modifying the
endpoint constraints to:

(x(0), y(0)) ∈ C,

(x(1), y(1)) ∈ {(x, y) ∈ R2n : x = y}.
The application of the UI conditions of [3] to the resulting problem and simple manipulations yield the desired
result. �

2. Main Result

In this section we state the main result of this paper, namely a weak maximum principle for problem (P)
covering cases when the velocity set is nonconvex.

The following theorem mainly states that the assertions of Proposition 1.1 remain valid when the convexity
assumption CH is dropped. We also sharpen the necessary conditions by replacing the subdifferential ∂̄xh (as
defined in (1.10)) by a possibly more refined one ∂>

x h, defined as

∂>
x h(t, x) = co

{
ξ : ∃ (ti, xi)

h→ (t, x) : h(ti, xi) > 0∀ i, ∇xh(ti, xi) → ξ
}

. (2.20)

Theorem 2.1. Let (x̄, ū) be a weak local minimizer for problem (P). Assume that, for some δ > 0, H1–H4 are
satisfied. Then there exists an absolutely continuous function p : [0, 1] → Rn, integrable functions ξ : [0, 1] → Rm

and γ : [0, 1] → Rn, a nonnegative Radon measure µ ∈ C∗([0, 1], R), and a scalar λ > 0 such that conditions
(1.14)-(1.19) of Proposition 1.1 hold with ∂>

x h(t, x) replacing ∂̄xh(t, x̄(t)).

3. Applications

The removal of the convexity assumption on (0.9) is of particular importance when deriving necessary con-
ditions for problems that in addition to state constraints incorporate mixed state-control constraints.

As mentioned in the introduction, the UI type conditions for standard optimal problems proved in [6] were
successfully applied to derive necessary conditions for constrained optimal control problems under certain reg-
ularity assumptions. Noteworthy, the weak maximum principle involving UI-type conditions in [6] was used to
derive not only UI-type conditions for other problems but also strong forms of the maximum principle (applied
to local minimizers). For optimal control problems involving differential algebraic equations (DAE’s) of index
one (see [1] for the definition of index for DAE’s) a strong maximum principle and a weak maximum principle
involving UI-type conditions are proved in [7]. For optimal control with mixed constraints a strong maximum
principle is derived in [8] assuming a certain “interiority ” assumption on the mixed constraints and, in [5],
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UI-type conditions are validated assuming the full rankness of the derivatives with respect to the control of the
function defining the mixed constraints. In [8] and [5] some differentiability with respect to the state and/or
the control variable of the functions defining the mixed constraints is imposed. As mentioned in [8] optimal
control problems involving DAE’s of index higher than one can sometimes be reformulated as problems with
mixed constraints. Systems involving DAE’s are of interest since there are many applications for such dynamic
models in process systems engineering, robotics, etc. See [1] and [7] in that respect.

The derivation of the results in [7], [8] and [5] follows a simple and common approach. Different regularity
assumptions imposed on the data of the problem under consideration permit the association of an auxiliary
problem with the original problem. In all the three cases the auxiliary problem is a standard optimal control
problem to which the UI-type conditions obtained in [6] apply.

It is then reasonable to hope that UI-type conditions for problem (P) can also be successfully applied to
generalize the necessary conditions of optimality in [7], [8] and [5] to cover problems involving additionally pure
state constraints. Following the approach used in [7], [8] and [5] the idea would be of associating with the
original problem an auxiliary problem of the form

(Paux)



Minimize g(x(0), x(1)) +
∫ 1

0

L̃(t, x(t), w(t))dt

subject to
ẋ(t) = φ(t, x(t), w(t)) a.e.

0 ≥ h(t, x(t)) a.e.

w(t) ∈ W (t) a.e.

(x(0), x(1)) ∈ C.

where w is the new control variable taking values in the control set W (t).
Unfortunately it turns out that, even when convexity is imposed on the original data, Proposition 1.1 cannot

be applied to (Paux). This is due to the fact that the velocity set of (Paux)

{(L̃(t, x(t), w(t)), φ(t, x(t), w(t))) : w ∈ W (t)}

fails to be convex . Theorem 2.1, by validating the conclusions of Proposition 1.1 in the absence of convexity
assumption is then the true successor of the result in [6], since it can be used as an intermediate step to derive
necessary conditions of optimality for problems involving not only mixed constraints or DAE’s but also pure
state constraints.

In this section we illustrate this feature by deriving a maximum principle for a problem with both state
constraints and mixed constraints. The problem of interest is:

(Q)



Minimize g(x(0), x(1)) +
∫ 1

0

L(t, x(t), u(t))dt

subject to
ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [0, 1]

0 = b(t, x(t), u(t)) a.e. t ∈ [0, 1]
h(t, x(t)) ≤ 0 a.e. t ∈ [0, 1]

u(t) ∈ U(t) a.e. t ∈ [0, 1]
(x(0), x(1)) ∈ C.

in which b : [0, 1]× Rn × Rm → Rk, and m ≥ k.
A weak maximum principle for a particular case of problem (Q) in the form of UI type conditions is reported

in [4]. A set of hypotheses comprising a full rank condition permits the construction of an auxiliary problem to
which Theorem 2.1 applies.
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Next we derive a strong maximum principle for (Q) (not involving UI-type conditions) using Theorem 2.1 as
an intermediate step. In this respect a new set of assumptions, which make reference to a parameter δ > 0 and
a reference process (x̄, ū), are imposed on the data of (Q):

HQ1
(
L(·, x, ·), f(·, x, ·), b(·, x, ·)

)
are L × B measurable for each x.

HQ2 There exists an integrable function Kf,L such that, for almost every t ∈ [0, 1], (L(t, ·, u), f(t, ·, u)) is
Lipschitz continuous on x̄(t) + δB for u ∈ U(t) with Lipschitz constant Kf,L(t).

HQ3 b(t, ·, u) is a continuously differentiable function with Lipschitz constant Kb on x̄(t)+δB for all u ∈ U(t)
and almost all t ∈ [0, 1].

HQ4 There exists a η > 0 such that

ηB ⊂ b(t, x̄(t), U(t)) for a.e. t ∈ [0, 1].

HQ5 Graph of U is a Borel measurable set.
In addition we assume that

HQ6 The set
{(`, v) : ` > L(t, x, u), v = (f(t, x, u), b(t, x, u)), u ∈ U(t)}

is convex for each t ∈ [0, 1].

Observe that HQ1, HQ2 and HQ5 are less restrictive hypotheses than their counterparts H1, H2. HQ3 is
relevant for the definition of the multiplier ρ associated with b. A special feature of the above hypotheses is the
interiority assumption HQ4. For details we refer the reader to [8]. Also HQ6 is essential as illustrated through
example in [8].

It is of interest to note that Theorem 2.1 holds for weak local minimizers but the following theorem is a
necessary condition in the form of strong maximum principle which holds for local minimizers.

Theorem 3.1 (Maximum Principle for Problem (Q)). Let (x̄, ū) be a local minimizer for (Q). Assume that,
for some δ > 0, hypotheses HQ1-HQ6, H3 and H4 are satisfied. Let the Hamiltonian be

HQ(t, x, p, ρ, u, λ) = p · f(t, x, u) + ρ · b(t, x, u)− λL(t, x, u)

Then there exist p ∈ W 1,1([0, 1]; Rn), ρ ∈ L1([0, 1]; Rk) γ ∈ L1([0, 1]; Rn), a nonnegative Radon measure µ ∈
C∗([0, 1], R), and λ ≥ 0 such that, for almost every t ∈ [0, 1],

(i) µ{[0, 1]}+ ||p||L∞ + λ > 0,
(ii) −ṗ(t) ∈ co ∂xHQ(t, x̄(t), q(t), ρ(t), ū(t), λ), a.e.
(iii) HQ(t, x̄(t), q(t), ρ(t), ū(t), λ) = max

u∈U(t)
HQ(t, x̄(t), q(t), ρ(t), u, λ), a.e.

(iv) (p(0),−q(1)) ∈ NC(x̄(0), x̄(1)) + λ ∂g(x̄(0), x̄(1)),
(v) γ(t) ∈ ∂>

x h(t, x̄(t)) µ-a.e. ,
(vi) supp{µ} ⊂ {t ∈ [0, 1] : h(t, x̄(t)) = 0} ,

where q is as in (0.8).

As in [8] this theorem can be easily generalized to cover inequality mixed constraints.
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Proof. Here we give an outline of the proof. Many steps are omitted since they consist on repeating the same
arguments used in [8]. Mainly the definition of the auxiliary problem (R) below follows exactly the steps in [8].
The pure state constraint 0 ≥ h(t, x(t)) does not play any role in Step 0 and Step 1 below.

We prove the theorem when L ≡ 0. This restriction can be removed by state augmentation techniques.
Details are omitted.

Step 1: We verify the conclusions of the Theorem under the hypothesis that

H* There exists a cf ∈ L1 and a scalar cb such that

| f(t, x̄(t), u) | ≤ cf (t) and | b(t, x̄(t), u) |≤ cb

for all u ∈ U(t) and almost every t ∈ [0, 1].

This condition can be removed by reasoning along the lines of the proof of Theorem 5.1.2. of [2].
Step 2: The interiority condition HQ4 and a measurable selection theorem allow us to choose control

functions {u1, . . . , uk} and {v1, . . . , vk} such that the matrices

B1(t, x) := (∆b(t, x, u1(t)), . . . ,∆b(t, x, uk(t))),
B2(t, x) := (∆b(t, x, v1(t)), . . . ,∆b(t, x, vk(t))).

where ∆b(t, x, u) = b(t, x, u)− b(t, x, ū(t)), satisfy, for all x ∈ x̄(t)+ε′B (for some ε′) and almost every t ∈ [0, 1],

B−1
1 (t, x) ≥ 0, B−1

2 (t, x) ≤ 0.

Furthermore there exists a constant mb such that

| B−1
1 (t, x̄(t)) |≤ mb, | B−1

2 (t, x̄(t)) |≤ mb.

Next a finite collection of control functions {wi}M
i=1 (which includes ū) is chosen. Let β be a measurable

function such that β(t) ∈ S where

S =

{
(β1, . . . , βM ) ∈ RM : βi ≥ 0, i = 1, . . . ,M,

M∑
i=1

βi ≤ 1

}
.

Set γ1, γ2, α1, α2 : [0, 1]× Rn × S → Rk as

γ1(t, x, β) := max
{
−b(t, x, ū(t))−

∑M
l=1 βl∆b(t, x, wl(t)), 0

}
,

γ2(t, x, β) := min
{
−b(t, x, ū(t))−

∑M
l=1 βl∆b(t, x, wl(t)), 0

}
,

where the max and min are taken componentwise, and

α1(t, x, β) = B−1
1 (t, x)γ1(t, x, β), α2(t, x, β) = B−1

2 (t, x)γ2(t, x, β).
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One may prove that α1(t, x, β) ≥ 0, α2(t, x, β) ≥ 0 and

b(t, x, ū(t)) + B1(t, x)α1(t, x, β) + B2(t, x)α2(t, x, β) (3.21)

+
M∑
l=1

βl∆b(t, x, wl(t)) = 0

where (t, x, β) ∈ [0, 1]× Rn × S. Finally define the matrices

F1(t, x) := (∆f(t, x, u1(t)), . . . ∆f(t, x, uk(t))),

F2(t, x) := (∆f(t, x, v1(t)), . . . ,∆f(t, x, vk(t))).

and a function
φ(t, x, β) = f(t, x, ū(t)) + F1(t, x)α1(t, x, β) + F2(t, x)α2(t, x, β)+∑M

l=1 βl∆f(t, x, wl(t)).

It turns out that φ(·, x, β) is measurable and that φ(t, ·, ·) is Lipschitz continuous, near (x̄(t), 0).
Step 3: For some ζ > 0 consider the following problem

(R)



Minimize g(x(0), x(1))
subject to

ẋ(t) = φ(t, x(t), β(t)) a.e.

h(t, x(t)) ≤ 0 for all t
β(t) ∈ Sζ a.e.

(x(0), x(1)) ∈ C.

where Sζ = S ∩ (ζB). The convexity assumption HQ6 together with (3.21) guarantee that (x̄, β̄ ≡ 0) is a weak
local minimizer of (R) for a sufficiently small ζ (see [8]).

The Hamiltonian for (R) is HR(t, x, p, β) = p · φ(t, x, β). Problem (R) satisfies the conditions under which
Theorem 2.1 is applicable. It asserts the existence of λ ≥ 0, an absolutely continuous function p : [0, 1] → Rn,
integrable functions π : [0, 1] → Rk and γ : [0, 1] → Rn, a nonnegative Radon measure µ ∈ C∗([0, 1]; R) such
that

µ{[0, 1]}+ ||p||L∞ + λ = 1, (3.22)

(−ṗ(t), ˙̄x(t), π(t)) ∈ co ∂HR(t, x̄(t), q(t), 0) a.e. , (3.23)

π(t) ∈ co NSζ
(0) a.e. t ∈ [0, 1], (3.24)

(p(0),−q(1)) ∈ NC(x̄(0), x̄(1)) + λ∂g(x̄(0), x̄(1)), (3.25)

γ(t) ∈ ∂>
x h(t, x̄(t)) µ-a.e. , (3.26)

supp{µ} ⊂ {t ∈ [0, 1] : h (t, x̄(t)) = 0} , (3.27)

where q is defined as in (0.8).
Step 4: Estimating the subdifferentials of φ we may deduce that for almost every t ∈ [0, 1]

(−ṗ(t), π(t)) ∈ {co∂x q · f(t, x̄(t), ū(t))}
×{q ·∆f(t, x̄(t), w1(t)), . . . , q ·∆f(t, x̄(t), wM (t))}
+{ρ · ∇xb(t, x̄(t), ū(t))}
×{ρ ·∆b(t, x̄(t), w1(t)), . . . , ρ ·∆b(t, x̄(t), wM (t))} (3.28)
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where, for some L∞ functions M and N ,

ρ(t) := −M(t)
(
B−1

1

)T (t)FT
1 (t)q(t)−N (t)

(
B−1

2

)T (t)FT
2 (t)q(t)

and F1, F2, B−1
1 and B−1

2 are evaluated at (t, x̄(t)). Introducing the Hamiltonian

H(t, x, p, ρ, u) := p · f(t, x, u) + ρ · b(t, x, u)

and also noting that NSζ
(0) = {(ρ1, . . . , ρM ) : ρi ≤ 0} we obtain from (3.28) that

−ṗ(t) ∈ co ∂xH(t, x̄(t), q(t), ρ(t), ū(t)) (3.29)

and
q ·∆f(t, x̄, wi) + ρ∆b(t, x̄, wi) ≤ 0

for i = 1, . . . ,M , that is,

Maxu∈Û(t){H(t, x̄(t), q(t), ρ(t), u)} = H(t, x̄(t), q(t), ρ(t), ū(t)) a.e.

in which Û(t) =
⋃M

i {wi(t)}.
Step 5: The final step of the proof is to show that this last relationship remains true when we replace Û(t)

by U(t) and the removal of the interim hypothesis H*. Details can be found in [2] and [8]. �

4. Proof of the Theorem 3.1

Once again, we prove the theorem when L ≡ 0. This restriction can be removed by state augmentation
techniques. Details are omitted. The Hamiltonian considered is then simply

H(t, x, p, u) := p · f(t, x, u).

We start by noting some additional properties that the data of problem (P) satisfy and that will be of use
later.

Let ε = min{δ̄, δ}, where δ̄ > 0 is as in (1.13). By H1 and H2 the following conditions are satisfied:
AH1: There exists an integrable function φ such that for almost all t ∈ [0, 1]

| f(t, x, u) | ≤ φ(t)

for all (x, u) ∈ (x̄(t), ū(t)) + εB.
AH2: The set f(t, x, Uε(t)) is compact for all x ∈ x̄(t) + εB.
Indeed, φ, as defined in AH1, can be chosen to be K(t)ε+ | ˙̄x(t) | .

The proof breaks into steps. First, we derive necessary conditions of optimality for the following ‘minimax’
optimal control problem in which the constraint functional maxt∈[0,1] h(t, x(t)) appears in the cost:

(R)


Minimize g̃(x(0), x(1),maxt∈[0,1] h(t, x(t)))
over x ∈ W 1,1 and measurable functions u satisfying
ẋ(t) = f(t, x(t), u(t)) a.e.,
u(t) ∈ Uε(t) a.e.,
(x(0), x(1)) ∈ C0 × Rn,

in which (besides the previously specified data), C0 ⊂ Rn is a given closed set and g̃ : Rn × Rn × R → R is a
given function.
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Proposition 4.1. Let (x̄, ū) be a weak local minimizer for (R). Assume that the data for problem (R) satisfies
hypotheses H1 – H4 and G below:

G: g̃ is Lipschitz continuous on a neighbourhood of

(x̄(0), x̄(1), max
t∈[0,1]

h(t, x̄(t)))

and g̃ is monotone in the z variable, in the sense that
z′ ≥ z implies g̃(y, x, z′) ≥ g̃(y, x, z),

for each (y, x) ∈ Rn × Rn.
Then there exists an absolutely continuous function p : [0, 1] → Rn, integrable functions ξ : [0, 1] → Rm and
γ : [0, 1] → Rn, a nonnegative Radon measure µ ∈ C∗([0, 1], R) such that

(−ṗ(t), ˙̄x(t), ξ(t)) ∈ co ∂H(t, x̄(t), q(t), ū(t)) a.e. , (4.30)
ξ(t) ∈ co NU(t)(ū(t)) a.e. t ∈ [0, 1], (4.31)

(p(0),−q(1),
∫

[0,1]

µ(ds)) ∈

∂g̃(x̄(0), x̄(1), max
t∈[0,1]

h(t, x̄(t))) + NC0(x̄(0))× {0, 0} (4.32)

supp{µ} ⊂ {t : h(t, x̄(t)) = max
s∈[0,1]

h(s, x̄(s))}, (4.33)

γ(t) ∈ ∂̄xh(t, x̄(t)) µ- a.e., (4.34)

Here

q(t) =

{
p(t) +

∫
[0,t)

γ(s)µ(ds) if t ∈ [0, 1)
p(1) +

∫
[0,1]

γ(s)µ(ds) if t = 1.

Proof. By adjusting ε > 0 we can arrange that (x̄, ū) is minimizing with respect to processes (x, u) satisfying
the constraints of (R) and also ‖x− x̄‖L∞ ≤ ε and ‖u− ū‖L∞ ≤ ε. Define

Q := {x ∈ W 1,1 : x(0) ∈ C0, ẋ(t) ∈ f(t, x(t), Uε(t))}.

By the Generalized Filippov Selection Theorem (see e.g. [12, Thm. 2.3.13]), x̄ is a minimizer for the problem{
Minimize g̃(x(0), x(1),maxt∈[0,1] h(t, x(t)))
over arcs x ∈ Q satisfying ‖x− x̄‖L∞ < ε.

In view of the Relaxation Theorem (see e.g. [12, Thm.2.7.2]), any arc x in the set

Qr := {x ∈ W 1,1 : x(0) ∈ C0, ẋ(t) ∈ cof(t, x(t), Uε(t))}

which satisfies ||x− x̄||L∞ < ε can be approximated by an arc y in Q satisfying ‖y− x̄‖L∞ < ε. The continuity
of the mapping

x → g̃(x(0), x(1), max
t∈[0,1]

h(t, x(t)))

on a neighbourhood of x̄ (with respect to the supremum norm topology) asserts that x̄ is a minimizer for the
optimization problem {

Minimize g̃(x(0), x(1),maxt∈[0,1] h(t, x(t)))
over x ∈ Qr and ‖x− x̄‖L∞ < ε.
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Set z̄ := maxt∈[0,1] h(t, x̄(t)). By the Generalized Filippov Selection Theorem and Carathéodory’s Theorem,
and in view of the monotonicity property of g̃,

{x̄, ȳ ≡ g̃(x̄(0), x̄(1), z̄), z̄, (ū0, . . . , ūn) ≡ (ū, . . . , ū), (λ0, λ1, . . . , λn) ≡ (1, 0, . . . , 0)}

is a local minimizer for the optimization problem

Minimize y(1)
over x ∈ W 1,1, y ∈ W 1,1, z ∈ W 1,1

and measurable functions u0, . . . , un, λ0, . . . , λn satisfying
ẋ(t) =

∑
i λi(t)f(t, x(t), ui(t)), ẏ(t) = 0, ż(t) = 0 a.e.,

(λ0(t), . . . , λn(t)) ∈ Λ, ui(t) ∈ Uε(t), i = 0, . . . , n a.e.,
h(t, x(t))− z(t) ≤ 0 for all t ∈ [0, 1],
(x(0), x(1), z(0), y(0)) ∈ epi{g̃ + ΨC0×Rn×R}.

Here
Λ := {λ′0, . . . , λ′n : λ′i ≥ 0 for i = 0, . . . , n and

∑
i

λ′i = 1},

ΨA is the indicator function of a set A and (λ0, . . . , λn), (u0, . . . , un) are regarded as control variables. Since the
velocity set is convex, this is a problem to which Proposition 1.1 is applicable. We deduce existence of absolutely
continuous functions p1 : [0, 1] → Rn, p2 : [0, 1] → R, p3 : [0, 1] → R, integrable functions ξj : [0, 1] → Rm,
j = 0, 1, ..., n, η : [0, 1] → Rn+1, and γ : [0, 1] → Rn, a nonnegative Radon measure µ ∈ C∗([0, 1], R), such that

µ{[0, 1]}+ ||(p1, p2, p3)||L∞ + λ > 0, (4.35)
(−ṗ1(t),−ṗ2(t),−ṗ3(t), ˙̄x(t), ˙̄y(t), ˙̄z(t), ξ0(t), . . . , ξn(t)), η(t)) ∈ (4.36)

co ∂H̃(t, x̄(t), ȳ(t), z̄(t), q1(t), p2(t), q3(t), (ū(t), . . . , ū(t)), (1, 0, . . . , 0)) a.e.
ξi(t) ∈ co NUε(t)(ū(t)) a.e. t ∈ [0, 1], i ∈ {0, . . . , n} (4.37)
η(t) ∈ co NΛ(1, 0, . . . , 0) a.e. t ∈ [0, 1], (4.38)
(p1(0),−q1(1), p3(0), p2(0)) ∈ ∂Ψepi{g̃+ΨC0×Rn×R}(x̄(0), x̄(1), z̄, ȳ), (4.39)

−p2(1) = λ, (4.40)
−q3(1) = 0, (4.41)
supp{µ} ⊂ {t : h(t, x̄(t)) = z̄},
γ(t) ∈ ∂̄xh(t, x̄(t)) µ - a.e., (4.42)

where

H̃(t, x, y, z, p1, p2, p3, (u0, . . . , un), (λ1, . . . , λn)) = (p1, p2, p3) ·

(∑
i

λi(t)f(t, x, ui), 0, 0

)
,

q1(t) =

{
p1(t) +

∫
[0,t)

γ(s)µ(ds) t ∈ [0, 1)
p1(t) +

∫
[0,1]

γ(s)µ(ds) t = 1,

and

q3(t) =

{
p3(t)−

∫
[0,t)

µ(ds) t ∈ [0, 1)
p3(t)−

∫
[0,1]

µ(ds) t = 1.

Since H̃ is independent of y and z we have

−ṗ2 = 0 and − ṗ3 = 0.
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Estimating the Clarke’s subdifferential of

Ĥ(t, x, p1, (u0, . . . , un), (λ1, . . . , λn)) = p1 ·
∑

i

λif(t, x, ui),

at the point (x̄(t), q1(t), (ū(t), . . . , ū(t)), (1, 0, . . . , 0)), and appealing to the sum and product rules (Thms. 5.4.1
and 5.4.2 of [12]) we are led to

co ∂Ĥ ⊂
n∑

i=0

co ∂x,p1,(u0,...,un),(λ0,...,λn)[λi p1 · f(t, x, ui)].

For each i ∈ {0, . . . , n}, the product rule (Theorem 5.4.2 in [12]) allows us to deduce that

co ∂x,p1,(u0,...,un),(λ0,...,λn)[λi p1 · f(t, x, ui)] ⊂

{(
λiµi, λif(t, x, ui), (0, . . . ,

ith position︷︸︸︷
λiνi , . . . , 0), (0, . . . ,

ith position︷ ︸︸ ︷
p1 · f(t, x, ui), . . . , 0)

)
:

(µi, νi) ∈ co ∂x,u p1 · f(t, x, ui)
}

Relationship (4.36) therefore yields

(−ṗ1(t), ˙̄x(t), ξ0(t)) ∈ co ∂x,p1,u[q1(t) · f(t, x̄(t), ū(t))], (4.43)

η(t) =
(
q1(t) · f(t, x̄(t), ū(t)), . . . , q1(t) · f(t, x̄(t), ū(t))

)
,

ξ1(t) ≡ . . . ≡ ξn(t) ≡ 0.

Observe that the multiplier η defined above satisfies (4.38).
Conditions (4.39) to (4.41) imply (using the definition of limiting subdifferential)

(p1(0),−q1(1),
∫

[0,1]

µ(ds)) ∈ λ∂g̃(x̄(0), x̄(1), z̄) + NC0(x̄(0))× {(0, 0)}. (4.44)

From the above relationships, we deduce that (p1, µ, λ) 6= 0. But in fact λ > 0. This is because, if λ = 0, then
by (4.44) µ = 0 and by (4.40)-(4.41) p2 = p3 = 0. Now, again by (4.44) p1(1) = 0 and by (4.43) p1 ≡ 0, an
impossibility. By scaling the multipliers we can arrange that λ = 1. Finally we can identify p1 and ξ0 with the
p and ξ from the proposition we want to prove. Reviewing our findings, we see that all the assertions of the
proposition have been proved. �

The next stage is to get the necessary conditions as mentioned in Theorem 2.1. We use Proposition 4.1
but we allow a general end-point constraint. We shall also sharpen the necessary conditions, replacing the
subdifferential ∂̄xh by the more refined subdifferential ∂>

x h.
Consider the set

W := {(x, u, e) : (x, u) satisfies ẋ(t) = f(t, x(t), u(t)), (4.45)
u(t) ∈ Uε(t) a.e., e ∈ Rn, (x(0), e) ∈ C and ‖x− x̄‖L∞ ≤ ε} (4.46)

and define dW : W ×W → R

dW ((x, u, e), (x′, u′, e′)) = |x(0)− x′(0)|+ |e− e′|+
∫ 1

0

|u(t)− u′(t)| dt .
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Choose εi ↓ 0 and, for each i, define the function

g̃i(x, y, x′, y′, z) := max{g(x, y)− g(x̄(0), x̄(1)) + ε2
i , z, |x′ − y′|}.

Now consider the optimization problem

Minimize {g̃i(x(0), e, x(1), e, max
t∈[0,1]

h(t, x(t))) : (x, u, e) ∈ W}.

We omit the straightforward verification of the following properties of the metric space (W,dW ):
(i) dW defines a metric on W , and (W,dW ) is a complete metric space,
(ii) If (xi, ui, ei) → (x, u, e) in (W,dW ) then ‖xi − x‖L∞ → 0,
(iii) The function

(x, u, e) → g̃i(x(0), e, x(1), e, max
t∈[0,1]

h(t, x(t)))

is continuous on (W,dW ).
Notice that

g̃i(x̄(0), x̄(1), x̄(1), x̄(1), max
t∈[0,1]

h(t, x̄(t))) = ε2
i .

Since g̃i is non-negative valued it follows that (x̄, ū, x̄(1)) is an ‘ε2
i -minimizer’ for the above minimization problem.

According to Ekeland’s Theorem, there exists a sequence {(xi, ui, ei)} in W such that for each i,

g̃i(xi(0), ei, xi(1), ei, max
t∈[0,1]

h(t, xi(t)))

≤ gi(x(0), e, x(1), e, max
t∈[0,1]

h(t, x(t)))

+εidW ((x, u, e), (xi, ui, ei)) (4.47)

for all (x, u, e) ∈ W and also
dW ((xi, ui, ei), (x̄, ū, x̄(1))) ≤ εi. (4.48)

The condition (4.48) implies that ei → x̄(1) and ui converges to ū in the L1 norm. We can arrange by
subsequence extraction that ui converges to ū almost everywhere. From the properties of f it follows that
xi → x̄ uniformly.

Define the arc yi ≡ ei. Then yi → x̄(1) uniformly.
We can express the minimization property (4.47) as follows: (xi, yi, wi ≡ 0, ui) is a local minimizer for the

optimal control problem

(Ri)



Minimize g̃i(x(0), y(0), x(1), y(1),maxt∈[0,1] h(t, x(t)))
+εi[|x(0)− xi(0)|+ |y(0)− yi(0)|+ w(1)]

over x, y, w ∈ W 1,1 and measurable functions u satisfying
ẋ(t) = f(t, x(t), u(t)), ẏ(t) = 0, ẇ(t) = |u(t)− ui(t)| a.e.,
u(t) ∈ Uε(t) a.e.,
((x(0), y(0), w(0)) ∈ C × {0}.

Notice that the cost function of (Ri) satisfies assumption G of Proposition 4.1, thus this is an example of the
optimal control problem to which Proposition 4.1 applies. We deduce existence of pi ∈ W 1,1, di ∈ Rn, ri ∈ R,
µi ∈ C⊕ and integrable functions γi, ξi satisfying

(−ṗi(t),−ḋi(t),−ṙi(t), ẋi(t), ẏi(t), 0, ξi(t))

∈ co ∂Hi(t, xi(t), yi(t), 0, qi(t), di(t), ri(t), ui(t)) a.e. t ∈ [0, 1]

ξi(t) ∈ co NUε(t)(ui(t)) a.e. t ∈ [0, 1] (4.49)
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(pi(0), di(0), ri(0),−qi(1),− di(1),−ri(1),
∫

[0,1]

µi(dt))

∈ NC×{0} × {0, 0, 0, 0}+ ∂ {g̃i(x, y, x′, y′, z)

+εi[|x− xi(0)|+ |y − yi(0)|+ w]}

(4.50)

where the last gradient is calculated at the point

(xi(0), yi, wi(0) = 0, xi(1), yi, wi(1) = 0, zi = max{h(t, xi(t))})

supp{µi} ⊂ {t : h(t, xi(t)) = max
s∈[0,1]

{h(s, xi(s))} },

γi(t) ∈ ∂̄xh(t, xi(t)) µ−a.e.

The Hamiltonian Hi is defined as

Hi(t, x, y, w, p, d, r, u) := p · f(t, x, u) + r|u− ui(t)|,

and in the above relationships qi := pi +
∫

γiµi(ds). To derive these conditions, we have identified p, d, and r
as the adjoint variables associated with the x, y and w variables respectively.

Observe that
co ∂Hi(t, x, y, w, p, d, r, u) ⊂ co ∂ [p · f(t, x, u)] + co ∂ [r|u− ui(t)|]

= {(a, 0, 0, b, 0, 0, c) : (a, b, c) ∈ co ∂x,p,up · f(t, x, u)}
+ {(0, 0, 0, 0, 0, |u− ui(t)|, re) : e ∈ co ∂u|u− ui(t)|} .

We have

co ∂Hi(t,xi(t), yi(t), 0, qi(t), di(t), ri(t), ui(t)) ⊂
{(a, 0, 0, b, 0, 0, c + riβi) : ||βi|| ≤ 1 and (a, b, c) ∈ co ∂H(t, xi(t), qi(t), ui(t))}

So, ḋi(t) = 0 and ṙi(t) = 0. Let us say then di(t) ≡ di and ri(t) ≡ ri, constants. We also have that

(−ṗi(t), ẋi(t), ξi(t)) ∈ co ∂H(t, xi(t), qi(t), ui(t)) + (0, 0, riβi) (4.51)

with ||βi|| ≤ 1.
From condition (4.50) we deduce that

(pi(0), di, ri,−qi(1),−di,−ri,

∫
[0,1]

µi(dt)) ∈ NC × Rn × {(0, 0, 0, 0)}

+{(a, b, 0, c, d, 0, e) : (a, b, c, d, e) ∈ ∂g̃i(xi(0), yi(0), xi(1), yi(1),max{h(t, xi(t))})
+εi [B ×B × {0} × {(0, 0)} × {1} × {0}]

which implies that

(pi(0), di,−qi(1),−di,

∫
[0,1]

µi(dt)) ∈ NC × {(0, 0, 0)}+

∂g̃i(xi(0), yi(0), xi(1), yi(1),max{h(t, xi(t))}) + εi (B ×B)× {(0, 0, 0)} (4.52)
and

ri = −εi

From condition (4.52) we deduce that {‖µi‖T.V }, {di} and {pi(1)} are bounded sequences. By (4.51) {pi}
is uniformly bounded and {ṗi} and {ξi} are uniformly integrably bounded. We deduce that, following a subse-
quence extraction,
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pi → p uniformly, di → d, ξi → ξ in the L1 norm,
and

µi → µ, γiµi(dt) → γµ(dt) weakly∗,
for some p ∈ W 1,1, d ∈ Rn, ξ ∈ L1, µ ∈ C⊕ and some Borel measurable function γ, as i →∞. Furthermore

supp{µ} ⊂ {t : h(t, x̄(t)) = max
s∈[0,1]

h(s, x̄(s))}

and
γ(t) ∈ ∂̄xh(t, x̄(t)) µ−a.e.

Write q = p +
∫

γµ(ds).
By subsequence extraction we can have {ξi} converging to ξ almost everywhere.
A convergence analysis along the lines of the proof of Theorem 3.1 in [3] and an appeal to the upper semi

continuity properties of limiting subdifferentials and normal cones allow us to pass to the limit in relationships
(4.51) and (4.49). There results

(−ṗ(t), ˙̄x(t), ξ(t)) ∈ co ∂H(t, x̄(t), q(t), ū(t)) a.e. t ∈ [0, 1],

and
ξ(t) ∈ co NUε(t)(ū(t)) a.e. t ∈ [0, 1],

Let us now analyse the transversality condition (4.52). An important implication is that

g̃i(xi(0), yi(0), xi(1), yi(1), max
s∈[0,1]

h(s, xi(s))) > 0 (4.53)

for all i sufficiently large. This is because, if g̃i = 0 for some sufficiently large i,

xi(1) = yi(1) = yi(0), (xi(0), xi(1)) ∈ C, max
s∈[0,1]

h(s, xi(s)) ≤ 0,

‖xi − x̄‖L∞ ≤ ε, ‖ui − ū‖L∞ ≤ ε

and
g(xi(0), xi(1)) ≤ g(x̄(0), x̄(1))− ε2

i ,

in violation of the optimality of (x̄, ū) (see the definition of g̃i).
Define

zi = max
s∈[0,1]

h(s, xi(s)).

We verify the following estimate for ∂g̃i:

∂g̃i(xi(0), yi(0), xi(1), yi(1), zi) ⊂{
(a, b, e,−e, c) ∈ Rn × Rn × Rn × Rn × R : (4.54)

∃ λ̃ ≥ 0 such that λ̃ + |e| = 1 and

(a, b, c) ∈ λ̃ ∂ max{g(x, y)− g(xi(0), yi(0)) + ε2
i , z
}
|(xi(0),yi(0),zi). (4.55)

There are two cases to consider:

Case (a): xi(1) = yi(1). In this case (by (4.53))

g̃i(x, y, x′, y′, z) = max{g(x, y)− g(xi(0), yi(0)) + ε2
i , z}
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near (xi(0), yi(0), xi(1), yi(1), zi). Consequently (4.55) is true with e = 0.

Case (b): xi(1) 6= yi(1). In this case, from the Chain Rule,

∂|x− y| |(xi(1),yi(1))∈ {(e,−e) : |e| = 1}.

Inclusion (4.55) then follows from the Max Rule for limiting subdifferentials.
Again by the Max Rule,

∂ max{g(x, y)− g(xi(0), yi(0)) + ε2
i , z}|(xi(0),yi(0),zi)

⊂ {(α∂g(xi(0), yi(0)), (1− α)) : α ∈ [0, 1]}, (4.56)

and we deduce from (4.52) and (4.55) that there exist λ̃i ≥ 0 and αi ∈ [0, 1] such that

(pi(0), di,−qi(1),−di,

∫
[0,1]

µi(dt)) = (c1, c2, 0, 0, 0) + (a, b, e,−e, c) + εi(b1, b2, 0, 0, 0)

where
(c1, c2) ∈ NC(xi(0), yi(0)),

|e|+ λ̃i = 1,

(a, b, c) = λ̃i(αig1, 1− αi), g1 ∈ ∂g(xi(0), yi(0)),
b1, b2 ∈ B.

This implies that 
pi(0) = c1 + a + εib1

di = c2 + b + εib2

−qi(1) = e
−di = −e∫
[0,1]

µi(dt) = c

and from this we get
di = −qi(1)
λ̃i + |qi(1)| = 1
||µi||TV = c = λ̃i(1− αi)
(pi(0),−qi(1)) ∈ NC(xi(0), yi(0)) + αiλ̃i∂g(xi(0), yi(0)) + εi(b1, b2)

Observe also that
µi = 0 if zi ≤ 0,

by (4.52), since zi ≤ 0 implies

g̃i(x, y, x′, y′, z) := max{g(x, y)− g(x̄(0), x̄(1)) + ε2
i , |x′ − y′|}

for (x, y, x′, y′, z) near (xi(0), yi(0), xi(1), yi(1), zi) which in turns implies αi = 1, and consequently ‖µi‖T.V. = 0.
Now choose λi = αiλ̃i. It follows from the above relations that

1 = λ̃i + |qi(1)| = λ̃iαi + λ̃i(1− αi) + |qi(1)| = λi + ‖µi‖T.V. + |qi(1)| (4.57)

Along a subsequence λi → λ, for some λ ≥ 0.
In the limit as i →∞ we obtain from the relations above the conditions

(p(0),−q(1)) ∈ λ∂g(x̄(0), x̄(1)) + NC(x̄(0), x̄(1))
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and
λ + ‖µ‖T.V. + |q(1)| = 1.

Surveying these relationships we see that the proposition is proved, except that ∂̄xh replaces ∂>
x h. To attend to

this remaining detail we must examine two possible outcomes of the sequence construction we have undertaken.

(A): maxt∈[0,1] h(t, xi(t)) > 0 for at most a finite number of i’s. For this possibility µi = 0 for all i sufficiently
large, by (4.52) and (4.53). Then the preceding convergence analysis gives µ = 0 and γ ∈ ∂>

x h(t, x̄(t)) µ - a.e.,
trivially.

(B): maxt∈[0,1] h(t, xi(t)) > 0 for an infinite number of i’s. Now we can arrange, by a further subsequence
extraction, that

max
t∈[0,1]

h(t, xi(t)) > 0 for all i. (4.58)

We have
supp{µi} ⊂ {t : h(t, xi(t)) = max

s∈[0,1]
h(s, xi(s))}

and, since the inequality (4.58) is strict, the condition γi ∈ ∂̄xh(t, xi(t)) can be replaced by the more precise
relationship

γi(t) ∈ ∂>
x h(t, xi(t)) µi - a.e.

The fact that we can arrange, in the limit, that

γ(t) ∈ ∂>
x h(t, x̄(t))

now follows from Prop. 9.2.1 in [12].
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