NEW INDEX TRANSFORMS OF THE LEBEDEV- SKALSKAYA TYPE

S. YAKUBOVICH

ABSTRACT. New index transforms, involving the real part of the modified Bessel function of the first kind as
the kernel are considered. Mapping properties such as the boundedness and invertibility are investigated for these
operators in the Lebesgue spaces. Inversion theorems are proved. As an interesting application, a solution of the
initial value problem for the second order partial differential equation, involving the Laplacian, is obtained. It is
noted, that the corresponding operators with the imaginary part of the modified Bessel function of the first kind
lead to the familiar Kontorovich- Lebedev transform and its inverse.

1. INTRODUCTION AND PRELIMINARY RESULTS

Let f(x), g(7), x € Ry, T € R be complex -valued functions. The main goal of this paper is to investigate
mapping properties of the following index transforms of the Lebedev-Skalskaya type [1], involving the
modified Bessel function of the first kind in the kernel, namely,

(Ff)(z) = ﬁ)/ e/?Re [zif (12“)} f(x)dx, tER, (1.1)
0

~ cosh(nt
(Gg)(x):ﬁﬂﬂ/:Re [1” (12‘)} %7 xeRy, (1.2)

where i is the imaginary unit and Re denotes the real part of a complex -valued function. The modified
Bessel function of the first kind 7, (z) [2], Vol. II satisfies the differential equation

d*u  du
2 24,2
' = _(z =0. 1.3
Coa iy (ZZ+Vv)u (1.3)
It has the asymptotic behavior
et T 3r

Iy(z) = \/27Z[1+0(1/Z)],z%oo, -5 <argz< = (1.4)

and
Iv(2) = O(|z*¢"), z = 0. (1.5)

The modified Bessel function of the first kind has the following series representation
fd (Z /2)2k+v

IV(Z):,;]M(HVH)

,z,veC, (1.6)

where I'(z) is Euler’s gamma function [2], Vol. I. Hence with the reduction formula for the gamma function
[2], Vol. T we find for Rev > 0

Ck+v+1)|=C(v+1)1+V)2+V)...(k+V)| >k!T(v+1)]
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and we derive from (1.6)

nd ReV oo
1y (2)] < e Ve y° CRIDPRY v (2125 5 (21/2)*
v(@)] < Sk D+ v+1)] ~ ICv+ 1) &~ (k)2

R
< plel-Imvargz (|Z|/2) <
- C(v+ 1)’
coming up to the following inequality for the modified Bessel function of the first kind

I2| Rev |z|-Imvargz
L, < [ = —— z,veC. 1.7
In the mean time, another solution of the equation (1.3) is the Macdonald function Ky (z) [2], Vol. IT
T
K, =— | -1 . 1.8
V0 = 3y 0~ Q) (18)
In particular, letting v =i, T € R,z =x > 0, we find from (1.8)
T
K; =————Im]] 1.9
() =~ ey e () (19)

and this function is the kernel of the classical Kontorovich-Lebedev transform [1], [3]. Correspondingly,

taking into account the value
T
ri+it)|=,/——
P +)l \/ sinh(z7)’

sinh(7T)

inequality (1.7) takes the form

lliz(x)] < €* ,x>0,TeR. (1.10)

On the other hand, appealing to relation (8.4.22.5) in [4], Vol. III, we find the following Mellin-Barnes
representation for the modified Bessel function of the first kind

x xy 1 e T(s+v)I(1/2—5)
e Ly (7)  2m/Ti /y—ioo L(v+1-s)

1
5 x*ds, —Rev < y< 3 (1.11)

Lemma 1. Let x > 0,7 € R. Then the following Mellin-Barnes integral representation of the kernel in
(1.1),(1.2) takes place

VT o—/2Re [Ii (f)] —w, () 1 /7+i°° D(s+it)[(s—it)[(1/2—35)
Y

, 1
x%ds, 0<y< X

cosh(77) 2 T2 Sy T(s)[(1—ys)
(1.12)
Proof. In fact, taking (1.11) with v = i1, we have
—/2Re [1- (f)] 1 /Yﬂ"” [(s+it)[(1—it—s)+T(s—it)[(it+1—3)
"\2/) T dnymi Jy—ice [(1—it—s)T(it+1—ys)
x T(1/2—s)x"*ds. (1.13)

Meanwhile, employing the reflection formula for the gamma function [2], Vol. I and elementary trigono-
metric formulae, we find
1 /7’“"" I'(s+it)I'(1—it—s)+T(s—it)(it+1—s)
AT\/Ti Jy—io I1—it—s)Lit+1—y)

I'(1/2—s)x"%ds
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_Vm ot [sin(z(s+iT)) +sin(m(s —iT))] T(1/2—5)
47 Jy—i sin(z(s+it))sin(n(s —it))[(1 —it —s)[(iT+1—5)

_ cosh(rx7) /7’“""
Y

x%ds

[(s+it)[(s—it)sin(ws)[(1/2 —5) x *ds

- 2m? VT Sy—ico
cosh(xT) /7’“‘” ['(s+it)[(s—it)['(1/2—3s) oy
= x%ds.
2a/Ti Jy—ieo L(s)I'(1—s)
Hence, combining with (1.13), we arrive at the equality (1.12), completing the proof of Lemma 1. ]

Equality (1.12) can be used to calculate for all x > 0 the Fourier cosine transform [5] by 7 of the kernel
in (1.1).
Lemma 2. Let x,y > 0. Then the following index integral converges absolutely and has the value

/Omm Re [Iir (%)} dr — \/iexmcosh(y/Z) ¥a (1; %; —xcosh? (;)) 7 (1.14)

where 1 F\ (a; b; z) is the Kummer confluent hypergeometric function [2], Vol. L.

Proof. The absolute convergence of the integral in the left-hand side of (1.14) follows immediately from the
inequality (1.10). Hence, multiplying both sides of (1.12) by cos(7y) and integrating over R, we appeal to
reciprocal formulae via the Fourier cosine transform (cf. formula (1.104) in [1])

- BN O
/0 DT —im) eos(@)dT = 0 Res >0, (1.15)
T(s+it)[(s—it) = 12"2(2sl) /O B 002;)1258)/)2) dy, (1.16)

and reverse the order of integration in the obtained right-hand side of (1.12). It is indeed possible due to the
Fubini theorem and the inequalities

T (s+it)[(s—it)| < W(2f572+1)\ [c1+cals| ], Res >0, T € R\{0}, (1.17)
IC(s+it) (s —it)| < [T(25)|B(V,7), (1.18)

where cy,c; are absolute positive constants and B(a,b) is Euler’s beta-function [2], Vol. 1. We note that
inequality (1.17) can be easily obtained via integration by parts twice in (1.16). Hence with the use of the
Stirling asymptotic formula for the gamma-function [2], Vol. I it guarantees the absolute convergence of the
corresponding iterated integral. Thus, recalling (1.15), the duplication formula for the gamma- function [2],
Vol. I, we calculate the integral via Slater’s theorem [4], Vol. III in terms of the Kummer function to find

[ Sl (- [

cosh(rt 2mi F(s 1 —s

/2 “=I(s - s
= Z);n/yfm i +1F/(21)1:(s1)/2 )(xcoshz(y/Z)) ds

_ X X2 .%._ 2(Y
\/;e cosh(y/2)1F 1,2, xcosh (2) .
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Corollary 1. Let x > 0,7 € R. The kernel (1.12) of the Lebedev-Skalskaya type transform (1.1) has the
integral representation

2 °° 3
Yo (x) = % / cos(Ty)cosh(y/2) 1 Fi (1; 5 —xcosh? (2)) dy, (1.19)
0
where the integral converges absolutely.

Proof. The proof is immediate from the inversion formula for the Fourier cosine transform and asymptotic
behavior of the Kummer function at infinity (cf. [2], Vol. I)

1Fi(a; by —2) = 0(27%), z— oo,

which guarantees the absolute convergence of the integral (1.19) because the integrand is continuously dif-
ferentiable as a function of y € R... ]

Employing the Mellin-Barnes representation (1.12) of the kernel W¢(x), we will derive an ordinary dif-
ferential equation whose particular solution is ¥ (x). Precisely, it is given by

Lemma 3. The kernel W (x) is a fundamental solution of the following second order differential equation
with variable coefficients

2y AV, (x
2 T T i 2 —
P (140 (2+r)qlf 0. (1.20)

Proof. Recalling the Stirling asymptotic formula for the gamma-function, we see that for each 7 € R the
integrand in (1.12) behaves as (s = Y+ it)
I(s+it)[(s—it)[(1/2—5)
[(s)[(1—s)
This circumstance allows to differentiate repeatedly with respect to x under the integral sign in (1.12). Hence

with the reduction formula for the gamma-function, a simple change of variables and the Cauchy residue
theorem, we obtain the chain of equalities

= T2 1 ] = oo, (1.21)

g T oy
=g gk 1 TN T2
g [ R
P [ Ty
~(F-7) g [ Ry

_ (32’“ _12) Weln) (2 W),

Hence after fulfilling the differentiation we arrive at (1.20), completing the proof of Lemma 3.
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2. BOUNDEDNESS AND INVERSION PROPERTIES OF THE INDEX TRANSFORM (1.1)

In order to investigate the mapping properties of the index transform (1.1) we will use the Mellin trans-
form technique developed in [3]. Precisely, the Mellin transform is defined, for instance, in Ly (R, ), 1 <
p < 2 (see details in [5]) by the integral

= /wa(x)x“'fldx, (2.1)

being convergent in mean with respect to the norm in L, (v —ieo, v +ie0), g = p/(p — 1). Moreover, the
Parseval equality holds for f € Ly ,(Ry), g € Li—y 4(Ry)

V+tico
=— *(5)g" (1 —s)ds. 2.2
| r@etar= o [ ) 1 - syas 22)
The inverse Mellin transform is given accordingly
L —d 2.3
0= 5 [ o, 23)

where the integral converges in mean with respect to the norm in Ly ,(Ry)

1fllvp = ( | If(X)I”xVP’dx> " (2.4)

In particular, letting v = 1/p we get the usual space L;(R,). Further, denoting by C(R.) the space of
bounded continuous functions, we have

Theorem 1. The index transform (1.1) is well-defined as a bounded operator F : Li(Ry) — C(R) and
the following norm inequality takes place

I\Ff||C(R>ESH£\(Ff)(T)IS\/Ellf\ll- (2.5)
TE
Moreover, if the Mellin transform (2.1) of f satisfies the condition
f(s) . _ 1
L,(1—Vv—ijoo,1— 0 -, 1 <2 2.
T —) p(1—V—ico, 1 —vV+i ),O<v<2, <p<2, (2.6)
then
(EAE) = s [ Rl (v8)] KR p ), 7)
where |
1 SV fr(g)
- s 2.
oW =g /H,l-m T—s" 9% (28)

integral (2.8) converges with respect to the norm in Li_y 4(Ry), ¢ = p/(p—1) and the index transform
(2.7) is the Lebedev transform with the modified Bessel functions as the kernel [6].

Proof. The proof of the norm inequality (2.5) is straightforward from (1.1) and inequality (1.10). The
continuity of (F f)(t) follows from the absolute and uniform convergence of the corresponding integral. In

fact, we derive
\/E —x/2
EN@IS oiem b 7 ke ()70l

h(rm
<\ o V2 [ lpwlax < VAl
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Hence we arrive at (2.5). Further, the asymptotic formulae for the modified Bessel function of the first kind
(1.4), (1.5) and the Macdonald function (1.8) [2], Vol. 1I yield that for each fixed T > O the kernel in (2.7)
has the behavior

Re [Iiz (v/x)] Kiz(Vx) = O(logx), x — 0,

Re [ (V)] Kie(v) = 0 (=) v+ =

Hence this kernel belongs to the space Ly ,(Ry), 0 < v < %, 1 < p < 2. Now by condition (2.6) and
Theorem 86 in [5] we have (see (2.8)) ¢ € Li_y4(R4), g=p/(p—1).
In the meantime, recalling (1.4), (1.5), we find

e~ /2Re [1,»7 (%)} —0(1), x 0,

Rl (5)] =0 () v

Hence the kernel of (1.1) belongs to Ly ,(R.) and f*(1—s) € L,(V —ice, v 4 ic0) via condition (2.6). Indeed,
we have
"V+ico ‘1 )p 4 1 —Vico - . » |ds|
—s s| = —s NP =
[ wraapast= [T r oF T o
1—v+ico |ds|
<[T(v p/ W<
ST [P E
This means, that f € Ll,v_,q(]RJr) and integral (1.1) converges absolutely. Moreover, Theorem 87 in [5],
the Parseval identity (2.2), integral representation (1.12) and relation (8.4.23.23) in [4], Vol. III lead to the
equalities

1 /V+i°° [(s+it)[(s —it)[(1/2—s)

FH® =52 RO s

cosh (1) / Re [Iic (vx)] Kiz(vx) @(x)dx,

where @ is defined by (2.8) and both integrals converge absolutely. This gives (2.7) and completes the proof
of Theorem 1.
d

The inversion formula for the transform (1.1) is established by
Theorem 2. Under conditions of Theorem 1 let also the Mellin transform f*(s) be analytic in the strip
1/2 <Res<3/2and

f(s)
I(1—ys)

Then, assuming that the index transform (1.1) satisfies the integrability condition (F f)(7) € Li (R4 ; 1e™*d7),
it has the following inversion formula for all x > 0

1 ) ] T /2
xf(x) = ﬂff/ cosh(wtT) | 2F» (1, 5; 1+it; 1—irt; x> —mRe [I,T(ZH

where the corresponding integral converges absolutely.

1
€L,(1—v—ico,1 =v4ico)NLi(1 =V —ico, 1 —VHioco), |V|< X (2.9)

(Ff)(r)dt
(2.10)
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Proof. The additional condition (2.9) and analyticity of f*(s) in the strip Re s =1 —v € (1/2,3/2) imply
via the Cauchy theorem that integral (2.8) does not change when we shift the contour within the strip.
Meanwhile, the Lebedev expansion theorem [6] for the index transform (2.7) says thatif ¢ € Lz 41 ((0,1))N
Ls/4,1 ((1,00)), then for all x > 0 the following inversion formula holds

/qu)(y) - f / Tsinh(277)K2 (v/3) (F ) (2)d. (2.11)

However, since ¢(x) € Li_y 4(R), we let 1/4 < v < 1/2 and use the Holder inequality to get the estimate

/ oWl dx < gl ( / 1x<”—1/4>p—1dx)l/p _ elhve
0 - “\Jo [(v—1/d)p]r =7

which guarantees the assumption ¢ € L34 ((0,1)). On the other hand, letting —1/2 <v < —1/4, we find

°° o 1/p
Vidx < ||g||- / virap-ig) = @l
/1 lo(x)|x'*dx < ||@|]1 V,q<l x . v LT <

and we have @ € Ls )4 ((1,00)). Therefore, substituting the value of ¢ by the integral (2.8) in the left-hand
side of (2.11), we change the order of integration, appealing to Fubini’s theorem. Hence, calculating the
elementary inner integral, using the reduction formula for the gamma-function and elementary substitutions,
we deduce
1 1—Vv+ico f*(s) s 1 Vtieo f*(l —s) 1
= ds = — ——x'ds, —— < v <0.
/ o0y =—55 /l,v,iw re—s" “ 7 2m /v,iw Tlt+s) " " 72

Therefore, combining with (2.11), we arrive at the equality

! / A Ul R / Tsinh(277)KA(VE)(F ) (t)de (2.12)
— X . .
27i Jy—iee T(1+35) ﬂz\f
The integral in the right-hand side of (2.12) converges absolutely due to the imposed condition (F f)(7) €
L1 (R ;te™d7) and the Lebedev inequality for the Macdonald function (cf. [3], p. 99)

—1/4
X

|Kic (x)] < —==—=—=—=, x,7>0. (2.13)
sinh(77)

Indeed, we have for all x > 0
/ Tsinh(277) K2 (VR | (F ) (7)| de < 2 /4 / 1 |(Ff)(7)|dT < oo. (2.14)
0 0

Hence, returning to (2.12), we apply to the both sides of this equality the Laplace transform with respect to
x [5]. Changing the order of integration in the left-hand side of the obtained equality by the Fubini theorem
and calculating the inner integral, it gives the result

1 v+:oof* E 1 V+ieo 7 . 1
— Ydsdy = —— “(1—s)xds = =), x>0
il < sty =g [ P s =t p (5 ). x

by virtue of (2.3) and the condition f *(s) € Li(1 — v —ioo, 1 — v +ioo), which follows immediately from
(2.9). Therefore, for all x > 0 we derive the formula

xlz f<)1€) _ nzi\/% / T / " zsinh(277)K2 (\/3) (F ) (7)ddy

= [ eSO (D)) (@), 0.15)
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where
K(x,7) = /0 e K2 (\/5) dy, x,7 > 0 (2.16)

and the interchange of the order of integration is allowed by Fubini’s theorem and the estimate (2.14). Our
final goal is to calculate the integral (2.16), which is absent in [4], Vol. II. To do this we appeal again to the
Parseval equality (2.2) and relation (8.4.23.27) in [4], Vol. III and the Slater residue theorem [4], Vol. III.
Hence we deduce (0 <y < 1)
- L e (=)
w K2 dy=—+ [(s+it)l
e KR dy= g [T —in Wm)

r
" _|! (4x) """ I(—it) 1Ay ! +it; 1+2it; 0_ (4x)" T'(it)
2xsinh(nT) |2 2 x

1 1 1 1 1
X 1F1 <2—lT, 1—217, x> +E 2F2 (17 E, 1+lT, l—lT, x>:| .

However, employing relation (7.11.1.5) in [4], Vol. III, the latter Kummer functions can be expressed in
terms of the modified Bessel functions of the first kind. Precisely, we obtain

1 1 ‘ 1
v <2iir; 1+2ir; x) =T(14it)(4x) e/ Py, <2x> (2.17)

Hence after substitution of this expression and straightforward simplifications we get finally the value of the
kernel (2.16), namely,

K(x,7) ” 7l el (2 Le(n Y vin—in !
=— il =— ]| —= =; ity 1—it; — | |.
. 2xsinh(wt) |sinh(ze) | \2x )| 722\ 2 ’ "X

Returning to (2.15) and changing 1/x on x, we end up with the inversion formula (2.10), completing the
proof of Theorem 2.

]

3. THE INDEX TRANSFORM (1.2)

In this section we will examine the boundedness and invertibility conditions for the operator (1.2). As
we see, it represents a different transformation, where the integration is realized with respect to the index of
the modified Bessel function of the first kind. Such integrals are, generally, unusual and have no common
technique to evaluate. This is why the mapping properties of the transform (1.2) and its inversion formula
could give such a method of their evaluation and a source of new formulas.

We begin with

Theorem 3. The index transform (1.2) is well-defined as a bounded operator

G : Li(R; [cosh(nT)]"'/2dt) = C(R})

and the following norm inequality holds

||GgHC(R+) < \/EHgHL] (R;[cosh(xT)]~1/2d1)" (31)
Besides, if (Gg)(x) € Ly 1(R4), 0 < v < 1/2, then for all x > 0
= (Gg)t) , /2 /°" (xy\_g(D)
/0 X+t di=me _mKw (2) cosh(nf)dt' (3-2)
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Proof. In fact, taking (1.2) and using (1.10), we find

|g(7)|dT |d7: / tanh(zt) |g(7)|dT
e (3)] Feosh(z]
" (2) COSh 7L'T f COSh 7'[17

(Gow|<vae? [

—o0

< f|‘g||L| R;[cosh(nt)]~1/2d7)"

This proves (3.1). When (Gg)(x) € Ly 1 (Ry), 0 < v < 1/2, we take the Mellin transform (2.1) from both
sides of (1.2) and change the order integration by Fubini’s theorem in the right-hand side of the obtained
equality. Indeed, from the definition (1.6) of the modified Bessel function of the first kind and similar to
(1.7), (1.10) we derive the inequality

X x sinh(7T)
2V <k (2)/ —=2 , ,
I”(z)‘—lo(z) p x>0,7eR (3.3)

Therefore, taking into account asymptotic formulas (1.4), (1.5), we have

/ ™ l‘efJC/Z/ ‘Re[n’(2>” (de

S/x x/21 / _lg(@)ldz <o, 0<V<1/2.
0

A\ /cosh (m7)

Hence, appealing to Lemma 1, we get

()T (1 — 5)(Gg)*(s) = [(1/2—s) /_ Z T(s+i7)[(s — i) g(7)dr. (3.4)

Meanwhile, relation (8.4.2.5) in [4], Vol. III and the Parseval identity (2.2), which still holds for the limit
case p = | under conditions of the theorem yield

o [ R - s(ee as= [T gy o )

270 Jv—ioo 0
Consequently, employing relation (8.4.23.5) in [4], Vol. III, we obtain from (3.4), (3.5)
= (Gg)(t 1 vtie o
/ (Ge)lr) dt = —/ F(1/2—s)x75/ I(s+it)[(s—it) g(7)dtds
0 v —oo

X+t 27 Jy—io

_ x/2 / <x) g(T) dt

=Vme o Kie 2/ cosh(zt)
where the interchange of the order of integration in the right-hand side of the latter equality is justified by
Fubini’s theorem with the use of the inequality (1.100) for the Macdonald function in [1], p. 15, relation

(8.4.23.1) in [4], Vol. III and the estimate

V-ico
/ ID(1/2s)x~ y/ (s +it)[(s — it) g(7)| dlds]
V—ico

V—+ico o
:2/ \r(1/2—s)x—S|/
V—ico —oo

V+ico oo oo
< Zx*"/ |F(1/2—s)ds|/ Ko (20055ﬁ)y"71dy/ e 21T |g(1)|dT < oo,
v 0 e

—joo

| Kz,»f@fy)yf—ldy\ 8(0)ldelds]

where 0 < v < 1/2 and § is chosen from the interval [z /4, 7 /2) to satisfy the condition g € L; (R; [cosh(77)]~/2d1).
Thus we established equality (3.2) and completed the proof of Theorem 3.
|
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The inversion theorem for the index transform (1.2) is given by the following result.

Theorem 4. Let g(z/i) be an even analytic function in the strip D = {z € C: |Rez] < a < 1}, g(0) =
g'(0) =0, g(z/i) = 0o(1), |Imz| — oo uniformly in D. Then under conditions of Theorem 3 for all x € R the
inversion formula holds for the index transform (1.2)

h © ['|T(& — 14 ix)[>xsinh 3
g(x) = lim cos (nx)/ [ (e + ix)[Pxsinh(zx) i) (1,—8; 2—e—ix; 2—€+ix; t)
e—0 \/ﬁ 0

ny/rT(e—1/2) 2
—x ' Im [Sm(l;);((:ﬁ)lx))} } (Gg)(t) dr, (3.6)

where the limit is pointwise.

Proof. Indeed, recalling (3.2), we multiply its both sides by e >/2K;, (y/2)y¢~" for some positive € € (0,1)
and integrate with respect to y over (0,c). Hence we obtain

[ [ an - [ G [ e o0

The interchange of the order of integration in the left-hand side of (3.7) can be motivated by Fubini’s theo-
rem, employing the generalized Young inequality
L b)” 1 1 1
a7+72ﬂ’ a7b7p7q7r>0a —t+-=-. (38)
P 9 r p q r
In fact, from (1.2), (1.10) and the condition g € L (R; [cosh(rt)]~'/2d) it follows that (Gg) (1) = O(1), t —
0. Now, letting in (3.8) a = (y/q)"/?, b= (t/p)"/4, we get

) q/(p+q) q p/(p+q)
y41> () + () ya/ (P +a)yp/(p+a),
q p

Hence, choosing positive p, ¢ such that 0 < g/(p+¢q) < €, we find the estimate

[ () [N gy [ (3) o [ LD gy

y+t
oo w o0 1
/2| (Y 8*1/ 1Ge)(®)] < / 2k (2 ye—a/ (pra)—1 / ~p/(p+4q)
+/0 e ’ ,X(2>y 1 Yt dtdy_CO e 0(2))1 dyot dt

+/ e 2K (X)y“'dt/ [(Gg)(r)[t¥~'dr < o,
0 2 1

where C is an absolute positive constant. Thus it guarantees the change of the order of integration in the
left-hand side of (3.7). Then calculating the inner integral, employing formula (2.16.7.6) in [4], Vol. II and
relation (2.17), we derive the equality

P (YN et [T yy _ &(7) /"" IC(e—1+ix)] 3 . .
Ki (2 Kie(2) =2 drdy= | |mo T R (1,2 —e;2—e—ix; 2—e+in;
/0 ’ (2)y /_m ”(2)cosh(m') = [ T(e—1/2) 22\ p &orermemetmt

AT e/? 2 ( L (t/2) I (t/2) )] (Gg)(t) dt. (3.9)

2isinh(mx) \sin(m(e —ix))  sin(m(e +ix))

In the meantime, employing (1.9) and the evenness of g, the left-hand side of (3.9) can be written as follows

0 (G [ (3) ammay




Lebedev- Skalskaya Type Transforms 11

:27ri./0‘wK,~ (%)ysfli/j:olz (2) sign((zz/y?z)dz dy. (3.10)

On the other hand, according to our assumption g(z/i) is analytic in the vertical strip 0 < Rez < a, g(0) =
£'(0) = 0 and tends to zero when |Im z| — oo uniformly in the strip. Hence, appealing to the inequality for
the modified Bessel function of the first kind (see [3], p. 93)

IL(y)] < Ire(y) €™/, 0 < Rez < ,

one can move the contour to the right in the latter integral in (3.10). Then

o [ [ (3) e

o [T (YN et (O vy 8(z/i)
—27171/0 K; (2)y /mim IZ(Z) sin(277:z)dzdy' (3.11)

Now Rez > 0, and in the right-hand side of (3.11) it is possible to pass to the limit under the integral sign
when € — 0 and to change the order of integration due to the absolute and uniform convergence. Therefore
the value of the integral (see relation (2.16.28.3) in [4], Vol. IT)

© dy 1
./0 Kix(y)lz(y)7 21z

leads us to the equalities

e [T (V) et [T (V) 8/
23627”/0 ki <2>y /,iwlz(Z) sin(Zﬂz)dZdy

Otieo i —Q—ioo Qoo .

. g(z/i) </ ) g(z/i) dz
=2z / S d7=T + —_ . 3.12
" oo (x2 +72) sin(27z) T\ e i (z—ix) zsin(27z) (3.12)

Hence conditions of the theorem allow to apply the Cauchy formula in the right-hand side of the latter
equality in (3.12). Thus

o oo . 2 2
timoi [k (2)0e ! [T (3) B gy 2SO e
0 —ioo

£—0 2 2/ sin(27z) ~ xsinh(27x)’

Finally, combining with (3.9), we arrived at the inversion formula (3.6) and complete to proof of Theorem
4,
O

Remark 1. When the passage to the limit under the integral sign is allowed in (3.6), the inversion formula
takes the form ( (Gg)(r) = G(¢) )

_ cosh(mx) [* xel/? ¢ 1 3 . .
8w =—7 I [tsmhmx)Re[’m(z)]‘WZFZ L2 atit

xG(t) dt. (3.13)
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4. INITIAL VALUE PROBLEM

The Lebedev- Skalskaya type transform (1.2) can be successfully applied to solve an initial value problem
for the following second order partial differential equation, involving the Laplacian

0 d 1
Va2 +y? Au—i—xa—Z—l—ya—Z—i—Eu:O, (x,y) € R%\{0}, (4.1)

where A = ;—xzz + aa—; is the Laplacian in R?. Indeed, writing equation (4.1) in polar coordinates (r,8), we
end up with the equation

AL Y (I A I ) 42
or? rJr 8r+r2392+2ru 0 (4.2)

Lemma 4. Ler g(7) € L; (R;e(ﬁ_l/z)md’c) , B € (0,2x). Then the function

2%u {1 }814 1 %u 1
+

r

u(r,0) = Vre? /ZRe [I,-T (5)}

e%g(1)dt

cosh(zt)’ (43)

satisfies the partial differential equation (4.2) on the wedge (r,0) : r >0, 0 < 0 < B, vanishing at infinity.

Proof. In fact, the proof follows immediately from the direct substitution (4.3) into (4.2) and the use of
(1.20). The necessary differentiation with respect to » and 0 under the integral sign is allowed via the
absolute and uniform convergence, which can be justified, recalling the inequality (1.10) and the integrability

condition g € L, (R;ew*'/z)‘f‘dr) , B € (0,27) of the lemma. Finally, the condition u(r, 8) — 0, r — oo is
due to the asymptotic formula (1.4) for the modified Bessel function of the first kind. ]

Now, as a direct consequence of Theorem 4 and Remark 1, we will formulate the initial value problem
for equation (4.2) and give its solution.

Theorem 5. Let g(x) be given by formula (3.13), where G(t) satisfies conditions of Theorem 4. Then
u(r,0), r>0, 0< 0 < B by formula (4.3) will be a solution of the initial value problem for the partial
differential equation (4.2) subject to the initial condition

u(r,0) = G(r).
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