Optimal Treesfor General Nonlinear Network Flow
Problems. A Dynamic Programming Approach

Dalila B. M. M. Fontes
Faculdade de Economia da Universidade do Porto
Adress: Rua Dr. Roberto Frias, 4200-464 Porto, Portugal
Phone: 351-225 571 100, fax: 351-225 505 050
Email: fontes@fep.up.pt

March 2005

Abstract

In this paper, we describe a dynamic programming approatihdaptimal trees to the single-
source minimum cost network flow problem with general nadincosts. This class of problems is
known to be NPHard and there is a scarcity of methods to address them. The tdgarpreviously
developed have considered only two particular types of ftwettions: “staircase” and “sawtooth”.
Here, a dynamic programming approach to find optimal tredes, ¢an be used with any kind of
separable and additive cost function, is proposed. Cortipntd experiments were performed using
randomly generated problems and the results reportedyfalt and medium size problems, indicate
the effectiveness of the proposed approach.

keywor ds Dynamic programming, network flows, optimal trees, general nonlineas cos

1 Introduction

The main feature defining the complexity of Minimum Cost Network Flow ProbleiGNFPs) is the
type of cost function for each arc. In this sense, MCNFPs can beetivilsto four categories with
increasing complexity, namely: linear, convex, concave, and genenéihear. Linear MCNFPs, have
constant marginal arc costs and can be solved in polynomial time [2]. &dGNFPs, which have
nondecreasing marginal arc costs, involve the minimization of a convextivgjunction over a convex
feasible region, defined by the network constraints. Therefore, bdptienum is also a global optimum.
Although harder than linear MCNFPs, these problems are still “easy to"4@eConcave MCNFPs
have nonincreasing marginal arc costs and are much harder thantteipfdCNFPs. The complexity
of this type of problems arises from minimizing a concave function over ascdi@asible region, which
implies that a local optimum is not necessarily a global optimum. Although coMd@M-Ps are known
to be NPhard [8] (even for the simplest version), they do exhibit some special matheratozerties
that make them more tractable than general nonlinear MCNFPs [7]. Foeatrdiscussion on general
concave MCNFPs, see for example [3, 5] for approximate methods a6§ifgf exact methods.
General nonlinear MCNFPs have arc costs that are neither conveconoave such that no con-
vexity or concavity properties can be explored in the determination of an dohaion. This type of
problems is also known as indefinite or discontinuous MCNFPs. Many pabpticblems involve some
sort of discontinuity in cost functions. For example, transport of pagses typically include a fixed
cost proportional to the number of vehicles (fuel, drivers, insurgaed thus if the flow is in number of

passengers, then the cost function is in the form of a “staircase”. Antyipe of cost function, known as
“sawtooth” may arise in goods distribution as costs are usually made up ofynalazost, that typically
decreases with quantity and a fixed cost that can introduce discontinditigamtity “breakpoints”. A
cost function that is concave up to a certain value and convex afteswaag also appear in production
settings, for example due to market reaction for demand of a raw material.

To the best of our knowledge no optimization methods have been reporteditethture for general
nonlinear MCNFPs. EXxisting literature considers only specific types affanstions, namely staircase
[11, 10] and sawtooth [11] cost functions. Lamar in [11] proposesltess the MCNFP with sawtooth
or staircase arc costs by transforming the problem into a concave MCNREIR expanded network.
(This transformation is based on the fact that any arbitrary cost functinie rewritten as a summation
of convex and concave functions.) However, as the resulting MCNFfisedl over a much larger
network, this transformation is only useful for very small problems. Riégadim and Pardalos [10]
obtained good quality solutions for the nonconvex piecewise linear MCN#3; solve linear problems
that are recursively updated by using the previous solution. At eadtiderthe feasible domain is
reduced by a contraction rule. A recent survey on piecewise linear MGNincluding staircase and
sawtooth cost functions is given in [9].

In this work, we have decided not to restrict the type of cost functiongtodmsidered, but rather
the network configuration to be searched for. We describe an algoritfinddhe best solution to
the general nonlinear MCNFPs among tree shaped solutions. We fodteesrsince they are a basic
structure in combinatorial problems and represent a fundamental eleneetdrige number of graphic
theoretical problems. On the one hand, they are of considerable impodartbeir own right and have
many planning and design applications in a variety of network problems. Cuailtiee hand, there are
many network flow algorithms which are based on finding optimal trees, batHiaal objective or as
an intermediate step. A detailed study on optimal trees can be found in [18]al§brithm described
here is based on Dynamic Programming (DP) and is an adaptation of araepgpmviously developed
for concave MCNFPs [4].

2 Problem description and formulation

Our problem consists of finding an optimal tree for the general nonlin€aXKP. Consider a directed
networkG = (W, A) whereW is a set ofn + 1 vertices containing the source vertex andemand
vertices and4 is a set ofim directed arcs. Vertices 1 tohave a nonnegative integer deman@nd the
supply at the source verté matches the commaodity required by thelemand vertices. Flow on each
arc (4, j) has uppemw;; and lowerl;; limits. A general nonlinear and nonnegative cost funcggnis
assigned to each arc. The cost of sendingits of flow through ar¢i, j) is given byg;;(r) and satisfies
9:5(0) = 0.

We developed a DP model to find a tree network and corresponding flmtstkat demands are
satisfied at minimum cost. The formulation proposed is independent of thetyst functions con-
sidered and of the number of nonlinear arc costs. Also, the cost fusctiay be neither differentiable
nor continuous, having only to be separable and additive.

Considerase$ C W and avertex € S. Let{5’, S’} be one partition of sef, whereS’ C S\ {z}
and S’ is the complement of’ in the setS, that isS” = S — S’. For each possible sét, let z € S’
be the root vertex of a directed tree spanning theSseind letr = 3, ¢, r; be the total commodity
required by the demand vertices in $&t

Let f(S’,) be the minimum cost of supplying all demand vertice§'invith the required commod-
ity available at vertex through a directed tree rootedat The minimum cost of supplying a st
from vertexz ¢ S’ with the required commodity made available at some vertexc S’ satisfying
l.. < r < u,, is found by determining the best combination of the minimum cost directed tré of
rooted at vertex € S’ with the cost of ardz, z), that is

min {F(S,2) + gz (1)}
lacz;f"ﬁuxz

By definition, the minimum cost incurred in supplying, through a tree, the réngpdemand ver-
tices of setS not in S from z is given by f (5, z). Thus, the minimum cosf(S, z) of supplying all
demand vertices iy, with the commodity available at € S through a directed tree rooted atis
obtained by examining all possible subsgts_ S \ {z}, which is given by

f(S,z) = S/g}qi\%x} {f (S5 z)+ min [F(S",2) + gz (r)] | 1)

lez<r<ugz

wherer = 3. o 7;.
Initial conditions are provided by

0, ifS={x}
oo, otherwise.

riso={ @)

Recursion (1) applies for ali C W and allx € S. Hence, the cost of the optimal tree supplying all
demand vertices in sét’ from the source vertek is given byf (W, t), if one exists.

An illustration is given in Figure 1, which shows a possible partition of$%es possible directed
tree inS’ rooted at vertex and a flow pattern of supplying’ from vertexz.

w

Figure 1: A flow pattern of supplying sétwith the commodity available at vertexthrough a directed
tree.

3 Implementation of the DP algorithm

A pure forward DP algorithm is easily derived from the DP recursion &ayegating all the states of a
particular stage one by one. Such implementation may result in considerattke afacomputational
effort either when complete enumeration of the state space is not requinetien some states are not
feasible. In the latter case, the infeasibility of a state is only discovereditfias been generated.
Thus, we have implemented the DP formulation based on the idea of gradupindirg the state
space graph using a backward-forward procedure on each lajfee state space. Its main advantage
is that the expansion of the state space graph is based upon the inforneddiant to the part of the
graph which has already been generated. Therefore, states whidotdeasible for the problem are
not computed, as only states which are needed for the computation of ttiersalte considered. The
algorithm is dynamic as it detects the needs of a particular problem andessfecordingly.

States at stage one are either nonexistent or initialized as in equation €3lgnithm starts from
the final statg W, ¢t) and while moving backward visits, without computing, possible states until a state
already computed is reached. Then, the procedure is performed iseaeweler, i.e. starting from the
state last identified in the backward process, it goes forward througputed states until a stat8, x)
is found which has not yet been computed. At this point, again it goesaaadkuntil a computed
state(S’, z) is reached. This procedure is repeated until the final $idte) is reached with a value
that cannot be bettered by any other alternative solution. The main adeanftthis backward-forward
recursive algorithm is that only intermediate states needed are visitedaandHese only the feasible
ones that may yield a better solution are computed. As will be shown latter orgyesage of 21% to
25% of the states are computed.

After initialization, which is given by equation (2), the optimal tree cé6lV,¢) is obtained by
calling the recursive functio@omput¢W, t).

Computés, =)

If f(S,z)# 00 then return f(S,z) to caller
Set min = oo
For each S'CS
Cal I Compute(S\ S, x)
If f(S\S z)>min then get another subset S
For each ze€ 9
If (z,2) ¢ A then get another vertex z
r=2 ey Ti
If r>wu,, O r<l,, then get another vertex z
If f(S\S,2)+gs.(r)>min then get another vertex z
Cal | Compute(5’, 2)
If f(S\S,2)+gu.(r)+ (S, 2) >min then get another vertex =z
min = f(S\ §',2) + gaz (r) + f (5, 2)
Store information on subsetS’, vertexz, flow=r, and f(S,z)= min.
End for
End for
Return f(S,x)

At the end of the procedure, ff(W,t) = oo then no tree network exists satisfying the flow limits;
otherwisef (1, t) gives the cost associated with an optimal tree. The solution structure, i.ardhe
used and the amount of flow routed through these arcs, is obtained tyraive routine that backtracks
through the information stored during the computation of intermediate states.

The complexity of the DP algorithm is, in the worst case, of the of@dén2™). As expected, the
complexity increases exponentially with the number of demand vertices. Othiirehand, it should be
noted that the DP model can be applied to MCNFPs with arbitrary cost fusatidhout deteriorating
its performance. As it will be shown in Section 4, the algorithm behaviour isgaddent of the type
and number of nonlinear arc costs.

4 Computational results

The algorithm presented in this paper was implemented in Fortran and compallsteraluated on
a 200MHz Pentium PC with 64 MB of RAM by solving a set of randomly generéést problems.
The problems considered are amongst the most difficult problems as alhave cost functions that
are neither convex nor concave. Three different types of costifins are considered: type G1 and

type G2 are variations of the fixed-charge cost function where disaoti¢is other than at the origin
are introduced and type G3, which have arc costs that are initially corgal/éhen convex having a
discontinuity at the break point. Types G1 and G2 correspond to the sd stdiecase and sawtooth
cost functions, see [9], in our case with two segments.

07 |f T = 07
9ij(r) = § —aiyr? + bir + cij if r <R,
aijr® + bjjr +c;j +k otherwise,

wherea;; = 0 for G1 and G2k = b;; for G1, andk = —b;; for G2 and G3.
A graphical representation of the three cost functions consideredas @i Figure 2.

Type G1 Type G2 Type G3

1000

900 -

»
S
3

800 -
700

IS
8
8
)

©
&
8
)

600
500

N
S
3

400 -

Cost—g(r)

Cost—g(r)
Cost—g(r)

300 |-

)
n
S
3

‘s,

200

100 ee®

o
o
o

L L
15 20 0 15 20

10
Flow — r

Figure 2: Types of general nonlinear cost functions considered.

The problems data can be downloaded from the OR-Library [1] and aubjbrdescription of the
generation procedure is provided in [5]. For each type of cost fumfitte groups (groups 1 to 5 in [1])
of problems were considered, each group containing three problemdsstaf the same size. Problem
group is mainly defined by the expected ratio between the variable costafigat cost '/ F’), which
was set to 0.01, 0.1, 1, 2, and 10. The valueiafias set to 50% of the total demasd Problem size,
given by the number of vertices+ 1, was set to 10, 12, 15, 17, and 19.

Overall, computational experiments were carried out on 225 unconstraneblem instances (15
instances were solved for each problem size and each type of cosbfyrand the computational results
are presented in the following section.

Table 1 summarizes the results for all test problems solved using the DP algai@bcribed in
this paper. The figures shown in this table were obtained as average$Sopeoblem instances of a
given problem size and cost function type. In order to show evengarogvidence that the methods
performance is independent of cost function type we also give thétgeshiained for the same set of
problems considering linear cost functions().

Two measures of performance were computed for each problem: Timesthputational time
(h:mm:ss) required to find an optimal solution; afig,,,-'the percentage of the state space that is
actually computed by the DP algorithm.

The results reported show that a significant reduction in the state spaogesiion has been
achieved for all problems (only an average of 21% to 25% of states have tmmputed). On the
other hand, the computational time increases exponentially with problem sizeertNeless, as ex-
pected, the computational time is independent of the cost function typewdamcomparing general
nonlinear and linear costs. The algorithms performance, can also beethge the graph of Figure 3,
which displays the computational time versus problem size for each typeoiucation.

no. of states computed
total no. of states < L00%-

1
Scomp -

Size Linear Cost Type G1 | Cost Type G2 | Cost Type G3
N Time Scomp | Time Scomp | Time Scomp | Time Secomp
10 | 0:00:01 22.72| 0:00:01 24.10| 0:00:01 24.15| 0:00:01 23.85
12 | 0:00:07 22.66| 0:00:05 22.18| 0:00:08 23.37| 0:00:08 23.18
15 | 0:03:24 22.14| 0:03:49 22.60| 0:04:02 22.61| 0:03:52 21.51
17 | 0:35:50 22.19| 0:38:30 22.69| 0:40:32 22.69| 0:39:15 22.63
19 | 5:15:141 21.39| 5:44:45 21.05| 5:45:14 21.06| 5:45:36 21.3

Table 1: Computational performance for each problem size and cagidorype.

350 T T T T T T T T

N

a

o
T

Time (minutes)
=
o
o
T

50 G2 -—-x—-
7 G3 k-
Linear--a
0 L 1 1 1 1
10 12 15 17 19
Problem Size

Figure 3: The effect of problem size on computational time for each aastibn type.

5 Conclusions

In this paper we presented a DP methodology for finding optimal tree-nefviorgeneral nonlinear
MCNFPs. In fact, the cost functions do not have to be differentiableeaotinuous. Also, they might
be neither convex nor concave having only to be separable and additive

Not many work has been reported in literature involving MCNFPs with nonliagacosts that are
neither convex nor concave. The works found, although searcbimgnfy solution structure, address
only staircase and sawtooth cost functions.

Optimal trees are of importance since they constitute the simplest form of hketvoch can be
used for distribution. Furthermore, even when a more complex networlig teught of, a tree is still
of great importance either as a starting point or as building block.

The algorithm implementation is based on the idea of gradually expanding thesgéate graph
using a backward-forward procedure on each layer of the state.spae of its main advantages is that
the expansion of the state space graph requires information relating onky pathof the graph which
has already been generated. A large number of randomly generatgdaigleims of varying size and
complexity was used to evaluate the algorithms performance and the reseltshwaun it to be effective
at solving small and medium size problems only (as time requirements growengly).

References

[1] J. E. Beasley. Or-Library. http://www.brunel.ac.uk/depts/ma/resgal@imfo.html.

[2] D. P. Bertesekas.Network Optimization: Continuous and Discrete Modekthena Scientific,
1998.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

R. E. Burkard, H. Dollani, and P. H. Thach. Linear approximations dynamic programming ap-
proach for the uncapacitated single-source minimum concave cost kétlawiproblem in acyclic
networks.Journal of Global Optimization19:121-139, 2001.

D. B. M. M. Fontes, E. Hadjiconstantinou, and N. Christofides. Aaiyit programming approach
for solving single-source uncapacitated concave minimum cost netwavkpiloblems. 2003.
Under Revision.

D. B. M. M. Fontes, E. Hadjiconstantinou, and N. Christofides. UWgpminds for single source
uncapacitated minimum concave-cost network flow proble¥etworks 41:221-228, 2003.

D. B. M. M. Fontes, E. Hadjiconstantinou, and N. Christofides. Abraand-bound algorithm for
concave network flow problems. 2004. Submitted.

G. M. Guisewite. Network problems. In R. Horst and P. M. Pardaddgprs,Handbook in Global
Optimization pages 506-648. Kluwer Academic, 1994.

G. M. Guisewite and P. M. Pardalos. Algorithms for the single-sourcapacitated minimum
concave-cost network flow problerdournal of Global Optimization3:245-265, 1991.

D. Kim. Piecewise linear network flow problems. In C. A. Floudas antll PPardalos, editors,
Encyclopedia of OptimizatioKluwer Academic Publisher, 2003.

D. Kim and P. M. Pardalos. A dynamic domain contraction algorithm faraonvex piecewise
linear network flow problemsJournal of Global Optimizationl7:225-234, 2000.

B. W. Lamar. A method for solving network flow problems with genemhlmear arc costs. In
D.-Z. Du and P. M. Pardalos, editoldetwork optimization Problem$Vorld Scientific, 1993.

T. L. Magnanti and L. A. Wolsey. Optimal trees. In M. O. Ball, T. Laghanti, C. L. Monma, and
G. L. Nemhauser, editordletwork Modelschapter 9. Elsevier, 1995.

