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Abstract

Scientific literature is prolific both on exact and on heireisblution methods developed to solve
optimization problems. Although the former methods havenaliisputable theoretical value
when it comes to solve large realistic combinatorial optetion problems they are usually as-
sociated with large and even prohibitive running times. e methods, do not guarantee to
determine a global optimal solution for a problem but areallglable to find a good solution
rapidly, perhaps a local optimum, and require less comjaualtresources. Ant Colony Opti-
mization (ACO) algorithms belong to a class of heuristicsdabon the behaviour of nature ants.
These algorithms have been used to solve many combinabptiatization problems and have
been known to outperform other popular heuristics such a®tBeAlgorithms. Therefore, we
believe that the number of ACO based algorithms will corgita grow for a long time. The
contribution of this work is to provide the reader with a soffconsultation guide for devel-
oping ACO algorithms, by presenting a collection of dififerapproaches that can be found in
literature, regarding the ACO building blocks.
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1 Introduction

The idea behind ant algorithms is to adapt and use their corimation style which has been
proven to be so good in nature, rather than truly mimic theabehur of real ants. Artificial
ants can then be seen and described as communicating abaritgyssome characteristics of
the real ants, but also incorporating other charactesiticwhich there is no parallel in nature,
(Solimanpur et al, 2004). The overall characteristics dratwnakes them fit to solve problems,
if not optimally, at least by finding very good solutions. Aatdoraging ant spends all its life
travelling between its nest and some food source. It doethantcome as a surprise that the first
problem solved with an ant algorithm, called Ant System (A&s the Travelling Salesman
Problem (TSP), a well-known combinatorial problem, whéeeghortest route (path) that visits
exactly once each city of a given set of cities, starting ardirey at the same city, is to be found.

The very good results that were being achieved with ant algos pointed to the broadening
of the definition ofpaththerefore allowing for the use of this method to solve othrebfems.
Some adaptations of the algorithm had to take place, raguiti the so called Ant Colony
Optimization metaheuristic, which is based on the ant sysfiéhe definition of the ACO meta-
heuristic, as a series of generic guidelines that could beeasily adapted to almost all types
of combinatorial optimization problems, allowed a boosthe use of this methodology and in
the number of researchers and publications in the areae 8wen, ACO procedures have been
applied to solve a broad set of problems, including: Netwddw Problems (Monteiro et al,
2012), Network Design Problems (Rappos and Hadjiconstanti2004), Assignment Prob-
lems (Shyu et al, 2006; Bernardino et al, 2009), Facilityatam Problems (Baykasoglu et al,
2006; Chen and Ting, 2008), Transportation Problems (Mus# €010; Santos et al, 2010),
Covering Problems (Lessing et al, 2004; Crawford and Ca2606; Mehrabi et al, 2009), Lo-
cation Problems (Pour and Nosraty, 2006), just to mentioaliew in the area of combinatorial
optimization. Curiously enough, although the TSP was tisé fiiroblem to be solved by the AS
and ACO metaheuristics, it still inspires researchers siscGarcia-Martinez et al (2007), for
instance, that have recently used ACO to solve a bi-crifE8R or Tavares and Pereira (2011)
that use the TSP to test an evolving strategy to update plogretnails.

Although in general ACO algorithms achieve very good resuhere are cases where an hy-
bridization with other heuristics or metaheuristics, @®¥o be necessary. Therefore, in the
past few years authors have developed hybrid algorithmedsst ACO and Local Search (Pour
and Nosraty, 2006), Simulated Annealing (Bouhafs et al620Post Processing Procedures



(Crawford and Castro, 2006), and even with Genetic Algarglas is the case of (Altiparmak
and Karaoglan, 2007). This allowed ant algorithms to achmyen better results in problems
too complex to be solved by a single heuristic method.

In the following section we will explore, in detail, the firstt algorithm, that was called the Ant
System. Afterwards, we review some of the large number ef@sting works that have been
developed ever since. We focus our attention mostly in wtrks have introduced modifica-
tions and extensions to the so-called building blocks of AQgdrithms. This is made with the
purpose of showing alternative methods, that worked weth wpecific optimization problems,
so that the reader who is developing an ACO algorithm caryeasiceive its utility and how
to adapt it for the problem at hand.

2 Ant Colony Principles

Ant Colony Optimization principles are based on the nathedlaviour of ants. In their daily
life, one of the tasks ants have to perform is to search fod fao the vicinity of their nest.
While walking in such a quest, the ants deposit a chemicatanbe callegpheromonen the
ground. This is done with two objectives. On the one handlaia ants to find their way back
to the nest, such as Hansel and Gretel in the fairytale. Anthemther hand, it allows other
ants to know the way they have taken, so that the others clfthiem. The curiosity is that,
because hundreds or even thousands of ants have this beh&wooe could see the pheromone
laid in the ground as a kind of light, the ground would be adangtwork with some of the arcs
brighter than the others. Within the paths created by thaseveould surely be the shortest path
between the nest and the food source. This behaviour carebeasea kind of communication
between the ants. If the path has a large concentration ebptoe, this is probably due to its
shorter length that allowed ants to travel faster, resglitina larger number of travels through
the path therefore with much more ants depositing pheromoné Furthermore, over time
the pheromone evaporates and thus its concentration redlice more time it takes for the ant
to travel from the nest to the food source and back to the tiestnore time the pheromones
have to evaporate. This system is thus based both on thevpdsiédback, i.e. depositing of
pheromone attracts other ants to use the same path whicinerdlase the pheromone quan-
tity, and on negative feedback, i.e. dissipating of the pimeme through evaporation leads to
lower levels of pheromone thus discouraging other antseDleourg et al (1990) and Goss et al
(1989) performed some experiences with real ants and theyendible to show that foraging
ants can find the shortest path between their nest and some&dawnce, by the use of a chem-
ical substance called pheromone, that they deposit whilkinga After these experiments the
authors proposed a stochastic model to describe what tliegliserved. This was the first step
leading to an optimization algorithm based on the foragielgdviour of ants. Some years later,
Dorigo et al (1996) developed the first foraging ants algonitvhich was calleént Systenand
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that was firstly proposed to solve the travelling salesmablpm.

2.1 Ant System

The objective of the travelling salesman problem is to firelghortest route between a set of
cities, starting and finishing in the same city, going thioad cities without visiting each city
more than once. This problem is very easily adapted to treeafléhe Ant System due to their
similarity in concepts: find the shortest path between twiafsan a graph.

An AS algorithm considers a single ant colony with artificial ants cooperating with each
other. Before the algorithm starts to run each arc linking tiifferent cities is given a certain
quantity of pheromone,. This is usually a very small value just enough to ensure tthat
probability of each arc to be chosen is different from zerlsoAthe ants are created.

The algorithm has two main phases, the construction of tagdolution and the pheromone
update. Other important decisions have to be made beforntisecan start finding a solution,
such as defining the structure (representation) of theisalur the initial pheromone quantity
to be given to each arc. These questions will be discussdtefuahead.

At each iteration each ant is randomly placed in a city, froamget ofn cities. That city will be
the starting point of the tour that is to be constructed byattie A solution to the TSP can be
represented by a set afconsecutive cities. Therefore, at each step of the corgiruthe ant
has to choose, with a given probability, the next city to ¢tda.

This choice is made by usingteansition rule the short expression faandom proportional
transition rule that uses a combination of attractiveness of the city, Wwiscgiven by the
heuristic information),; of the problem, and of the fitness of the move, i.e. past usalgeh

is given by the pheromone quantity. The transition rule quantifies the probability of a@nt
positioned at cityi, travelling to cityj and it is given by:

[Tij (t)]a ) [Uij]ﬁ
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wheren,;, the heuristic informationor visibility of arc (, j), is the inverse of the distance

between cityi and cityj, i.e.
1

Mg = I’ (2)
1j

JF is the set of cities not yet visited by antvhile at cityi, anda andg are parameters weighting
the relative importance of the pheromone and of the heaiigibrmation, respectively.

Therefore, the closest cities, that is, the ones that theaansee from where it is standing, will



have a higher visibility value, whereas the others will havewer one.

The valuesy and are two tunable parameters that weight the pheromone iafttsmand the
heuristic information on the transition rule.

After building the solutions the pheromone values in the ame updated. The update is done
in two phases. Just before the ants can deposit pheromoie iart¢s of their solution, the
algorithm applies amvaporation ratep, with p €]0, 1], to the pheromone present at each arc,
see equation (3).

7i;(t) = (1 = p) - 75 (). 3)

This operation simulates the natural process of evapaoratieventing the algorithm from con-
verging too quickly (all ants constructing the same tour getting trapped into a local op-
timum. The value of the evaporation rate indicates theiweamportance of the pheromone
values from one iteration to the following one. dftakes a value near 1, then the pheromone
trail will not have a lasting effect, potentiating the exgalbon of the solutions space, whereas a
small value will increase the importance of the pheromongemtiating the exploitation of the
search space near the current solution.

The lengthS* of each tour is then calculated and the ants will be allowestefmosit pheromone
in every arc of their tour. The pheromone quantity to be dipdsn each arc is proportional
to the quality of the solution of each ant and to the numbemnts & incorporate that arc in its
solution, as can be seen in equations (4) and (5).

m

ATi(t) =Y ATh(L), (4)

k=1

if (7, ) belongs to the solution of a
Ak = { srp T BJ)belond t (5)

0 otherwise,

whereQ is a positive proportionality parameter asit(¢) is the length of the tour constructed by
antk at iterationt. For small problem instances, this update leads to a remuofithe search
space thus converging to one where the optimal solution coets will have the highest
values in the matrix. However, for large instance problensknown that stagnation is likely
to happen, driving the solution to a suboptimal solutioheathan to an optimal one. This is
why pheromone evaporation is so important.

The previous steps are performed until some stopping iiités reached, which can be a fixed
number of iterations, as was the case, but it can also be ttiegsef a bound on running time
or even the number of solutions evaluated.



The best values for the parameters used in ant algorithmenddpoth on problem characteris-
tics and on the strategy chosen for searching the solutacesf herefore, before setting values
for the parameter, decisions on the search strategy havenmabde. Then, the algorithm must
be run several times in order to establish the values of thenpeters which tend to perform

better.

3 Ant Colony Optimization

Meanwhile, some improvements were inserted into the AS sisctihe introduction of elitist
ants into the colony (Dorigo et al, 1996), the ranking of gi@slinheimer et al, 1997), and
the bounding of the allowed accumulated pheromone in eatth(B4itzle and Hoos, 1997).
Nevertheless, the most important development is the gegmriof the Ant Colony Optimiza-

tion Metaheuristic by Dorigo and Di Caro (1999) and Dorigak{1999). The ACO, which

is described in Algorithm 1, is made of general guidelingstfi@ development of algorithms
based on foraging ants to solve combinatorial optimizagpiaiblems.

Algorithm 1 Pseudo-code for Ant Colony Optimization.
1: Initialize parameters
2: Initialize pheromone trails
3: Create ants
4: while Stopping criteria is not reachetd
5. Let all ants construct their solution
6
7
8

Update pheromone trails
Allow Daemon Actions
. end while

The main difference from the basic structure of the AS atfariis the introduction of ®ae-
mon The daemon can perform problem specific operations oralezgd operations, which use
global knowledge of the solutions, thus having a very aciveéimportant role in the algorithm.
Note that in contrast to the AS no global knowledge is usedesgach ant deposits pheromone
in its solution despite what the other solutions are likeisTi a task that has no equivalence
in the nature. The daemon can, for example, control the dgigiof each solution or give
an extra pheromone quantity to the best solution found fiegrbeginning of the algorithm or
to the best solution in the current iteration. These lastatpmns were already mentioned in
previous algorithms but never attributing its respongiptb a main entity in the colony.

Another important feature, frequently used by authors drbased algorithms is the introduc-
tion of Local Search procedures following the construcbbthe solutions. This is an optional

feature that has been proved to be very important in the éaptm of the search space near to
good solutions, leading almost always to better perforraamd the ACO.



3.1 Thebuilding blocks of an ACO

ACO algorithms have a set of characterising features thrabeaonsidered as their step stones.
These features must always be specified, preferably, whearidang the algorithm:

method chosen to construct the solution,

heuristic information,

pheromone updating rule,

transition rule and probability function,

parameters values, and

termination condition.

It becomes obvious that the combination of the differenmégues, that can be developed for
each of them, result in a large diversity of ant colony alidnis, each of which more adequate
to a certain class of problems. Within the vast literatureérensubject, different proposes can
be identified to either improve earlier results or simplyatve a new type of problems. In this
section, and for each of these building blocks, we reviewesofrthe extremely large number
of techniques previously proposed, since it is impossibledck all the work that has been
done ever since the early stages of ant algorithms. Noresthahe reader is always referred to
the works that will be discussed in this section, for furttetails, as well as to the references
therein.

3.1.1 Constructing a solution

The construction of a solution, along with its representatis one major issue of an ant algo-
rithm, as it is with any other heuristic method, since it wifluence the rest of the procedures to
be defined. Thus, it plays a crucial role on the success ofitfugithm. Besides, it is common
knowledge that it has a great effect on the running time ofAG© algorithm (Neumann and
Witt, 2010). Therefore, if the construction is badly chagée probability of a bad performance
is high.

Regarding the solution construction, a critical deciseowihether to allow or not that unfeasible
solutions are constructed. This decision alone, can haxeraeoutcomes, such as:

¢ allowing the construction of unfeasible solutions and tbexating an extra procedure to
fix them. This may involve too much of running time effort justfix the solution;



¢ allowing the construction of unfeasible solutions and tdestarding or penalizing un-
feasible solutions. In this case, it may happen that the murmbusable solutions is too
small (or even nonexistent), and thus the algorithm comgequickly to a suboptimal so-
lution. Even if this is not the case, if there are several tran#s being violated then it is
too hard to use the penalties since they are of differentreaind thus may have opposite
behaviours;

¢ ifonly feasible solutions are allowed, then the constarcprocedure may be too complex
leading to large running times.

The construction of a solution is influenced by many aspsctsh as the problem being solved
and the constraints to be considered, the representataseoHor the problem, the investigator
preferences, and so on.

Alaya et al (2004) solve a Multidimensional Knapsack praoblehere a decision on a subset
of objects, satisfying a few resource constraints, has tmaége in order to maximize the total
profit. The solution for this problem only requires the cleoaf a subset of objects to be intro-
duced in the knapsack, with no order specified, and can thegpbesented as a string of object
identifiers. Each ant starts the construction of their smuby randomly choosing an object
to be put in the knapsack. Then, objects are added to themullly using a transition rule
as defined in equation (1), as long as they do not violate asguree constraint. This way a
feasible solution is always obtained.

Rappos and Hadjiconstantinou (2004), in order to designddge connected flow networks,
use two types of ant colonies sharing information about thleéromone levels. This problem
is about configuring a network in order to satisfy demand spgeovided that an extra arc is
considered to keep the network flowing in the case that onbehtcs in the network fails.
The solution for this problem is constructed in two phasashef which solved by a different
type of ants. One ant colony is inhabitated by flow ants anather colony by reliability ants.
The number of flow ants is the same as the number of demand aodeslthough they all
start constructing their solution from the source nodeheat is assigned to reach just one
specific demand node. When all flow ants have constructed plaeiial solutions, reaching
their demand node destination, the network is created. Ewestep involves the reliability
ants whose objective is to decide upon the extra arc, cadligability arc, to be added to the
solution. For every flow ant a reliability ant is created asdatiated with each arc visited by
the flow ant. Therefore, for each flow ant there is a set of béiig ants, as many as arcs in
the solution of the flow ant. The objective of a reliabilitytasto find an alternative path from
the root node to the same destination node of the flow ant @sdsiit does not use a particular
arc, from the ones used in the solution of the flow ant. This Adlgorithm provides a single
feasible solution at each iteration, which is only entirdgfined when all partial solutions of
the flow ants have been assembled together, and the extraward by the reliability ants is



identified.

Baykasoglu et al (2006) solve a dynamic facility layout peob, where each ant has to de-
cide, for each period, the location of the: departments considered. The authors use a string
with sizet x n to represent the final solution, where the fitstonsecutive values identify the
department locations for the first period, the secaencbnsecutive values give the locations
for the second period, and so on. Therefore, to construclhgi@o, all an ant has to do is to
chooset x n elements of the typdepartment locationaccordingly to the pheromone levels,
and provided that, within a time period, department locatioms repeated, thus guaranteeing
the construction of a feasible solution.

Partitioning and covering problems are solved with ACO &thms by Crawford and Castro
(2006). In this case, given a set of columns and rows, thecoigeis to choose a subset of
columns covering all rows while minimizing cover costs. T¢wution is represented by a
subset of columns. This implies a different approach, froendnes we have been mentioning
before, because the solution components are representeadieg and not by arcs, a fact that
simplifies the calculations. The construction is straighwfard. Each ant starts with an empty
set of columns. Then, the ant adds columns one at the timedlmspheromone values, until
all rows are covered. Solutions constructed in this way, maminfeasible in the partitioning
case because a row may be covered by more than one columnisTwlay post processing
procedures, that will try to eliminate redundant columms,added afterwards in order to turn
unfeasible solutions into feasible ones.

In a transportation problem withv supply nodes and/ demand nodes, it is known that a
solution has, at mosty + M — 1 arcs. This observation allows Altiparmak and Karaoglan
(2006) to decide on allowing each ant in their algorithm taabke to chooseéV + M — 1 arcs

to construct a feasible solution. Each ant starts by rang@mbosing an arc from the set of
available arcsA, and proceeds the construction by adding, one at the timeagthaining arcs
by using pheromone information. The arcs in the set of altbaecs to be chosen to enter
the solution is defined by the demand and supply nodes that maivexceeded already their
demand and supply, respectively. In this case the sensethlofigpaot applied since arcs are
chosen arbitrarily as long as they satisfy demand and sugpigtraints.

The Single Source Capacitated Facility Location Problesdsdwith the location of a set of
facilities, with a limited capacity on the supply, and thioeation of a single facility to each
customer so as to satisfy customer demands and minimiZdectigess. Chen and Ting (2008)
propose an algorithm to solve it which integrates an Ant @plBystem with two types of ants,
location ants and assignment ants. Therefore, there ardiffeoent solution representations
and constructions. Location ants select the facilitiese@pened, and their solutions are not
uniform, in the sense that each ant can open a different nuafili&cilities, according to:



_ Ez d;
o= {Zj@j/m)

where f, is the number of facilities to be opened by ant/; is the demand of customéy s;

is the supply on nodg, m is the number of available locations for the facilities, and a
pre-specified integer constant with a value between thedinst of the sum in equation (6) and
m. After selecting the facilities to be opened, assignmet# assign each customer to one and
only one facility but they do not acknowledge, at least irs thhase, whether the solution is
feasible or not, from the supply capacity point of view. Thdaasible solutions are dealt with
by using penalties, in the local search phase.

J + U0, 7], (6)

3.1.2 Visbility Information

The heuristic information, also known as visibility, is axtra information available to the ant
algorithm which is usually referred to as a kind of local imf@tion. Originally used as the
inverse of the length of the arc between two cities in the TiSRs suffered several mutations
throughout the hundreds of approaches that have been gededince then.

Lessing et al (2004) studied the influence of the heurisfarmation, also called the visibility
value, in the performance of ant algorithms when solving@wtering Problems (SCPs). Two
types of heuristic information are studied, static heigistformation, where the values are
calculated only once, at the beginning of the algorithm, dyremic heuristic information, in
which case the values are calculated at each construcéprosteach ant, as in the case of the
ant-density algorithm. The different heuristic infornuativalues used are based on the Column
Costs,

1
n; = C_jv (7)
the (normalized) Lagrangean Costs
1
= . 8
T}] C]? ( )
the Cover Costs,
card;(S
nj = 7(;]-( ), (9)
J

wherecard;(S) is the number of rows covered by a colurin

(normalized) Lagrangean Cover Costs,

card;(S)

nj = o (10)
J
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Marchiori and Steenbeck Cover Costs,

1
= 11
"= GG, 5) -
wherecuv(7, S) is the sum, for all rows covered by colunibut not covered by any other column
in S\ {;j}, of the minimum cover costs;

Marchiori and Steenbeck Lagrangean Cover Costs with Nozew[Costs,

1
= 12
= (Gl ) 42
and finally lower bounds, where the heuristic informationdolumnj is the inverse of the cost
of the lower bound obtained by tentatively adding coluimn

Each of these heuristic information types was tested with éafferent ant algorithms, and the
results obtained suggest that different types of heuiisiicmation should be used for different
types of ant algorithms.

Reimann and Laumanns (2006) use savings values as thetleeufisrmation instead of the
usual inverse of the arc cost,

Mij = Sij, (13)

in an ACO algorithm to solve Capacitated Minimum Spanningelproblems. The savings
Si;j = cio + coj — ¢;; are related to the cost difference obtained by merging theees of node

1 and j, previously linked directly to the source node In this case, the larger the savings
associated to an arc the higher probability of that arc beahlgcted.

A Capacitated Fixed-Charge Location problem aims at degidin the supply facilities that
must be opened such that they can satisfy all the customenarakat the lowest possible
cost. Venables and Moscardini (2006) developed an ACO balggatithm that defines and
uses the information of a matrix called the total opportnitatrix 7;;. This matrix uses the
sum of the differences between the cost of each(arg), that isc;;, and bothc;.; the lower
supplying cost from facility andC;;- the lower supplying cost to customgrsuch thatl;; =
(cij—cij=)+(cij — ;). Atthe end, the visibility is set to be the facility visitiii and is defined
as the sum on the customers index of the total opportunity cos

U ZTij- (14)
j=1

The lower thel;; the higher the visibility and probability of an arc to be ceos

In the work of Altiparmak and Karaoglan (2007) the heurigtiormation is based on the con-
cave nature of the arcs costs in the Transportation Probdebetsolved. In this case, the
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heuristic information takes into account not only the cdghe arcc;; but also the flow of that
arcz;;, that is the unit transportation cost

1
" el V) (15)
Pour and Nosraty (2006) have solved the NP-hard planitiatcation problem with an ACO
algorithm. In this problem, there is a set of existing fdigB p; and a set of locations where
new facilitiesz; are to be located and the objective is to locate these nelitilssi such that
the sum of the costs between the facilities is minimized, each location is assigned a single
facility. In this algorithm, the heuristic information usby the authors is defined as the inverse
of the product of distance and costsf; between existing facility and all new facilitiest;,

taking the form of
1

Mij = :
Tt d;
This way, nearest and lower cost facilities have a betteristauivalue.

(16)

The Minimum Weight Vertex Cover problem is solved by Shyu le(2904) with an ACO
algorithm where the heuristic information is defined forrpaif the typenode, ant). In it, the
heuristic information is defined as the local preferencemfiato choose nodeé to enter the
solution, and it translates into the ratio between the nurabarcs linked to node but not yet
covered by ank and the weight of nodg. Being thus defined, this heuristic information is not
static because its value changes with each step of the gotistr of the solution, and also from
solution to solution, since ants may construct differetatsons.

Crawford and Castro (2006) calculate the value of the hairiformation in a dynamic fash-
ion, to solve Partitioning and Covering problems. At eadpsif the construction of the so-
lution, the algorithm computes the heuristic informatianthe per unit cost of covering an
additional row, as given bellow

e .
ny = _]7 (17)
Cj
wheree; is the number of additional rows that are covered by npaéen it is added to the
partial solution already constructed.

In the Cell Assignment Problem a set of cells must be linkealdet of switches such that each
cell is associated to exactly one switch, however switchag be linked to several cells. Shyu
et al (2006) define two heuristic information matrices, @ast of the usual single one, to be
used in an ACO algorithm developed to solve the Cell AssigntrReoblem. These matrices are
associated with the choice of to which switch to move to wieeated at a certain cell, and vice-
versa. On the former, the decision uses a heuristic infoom&tinction based on the inverse of
the partial costs. This heuristic information is dynamiecsi whenever an are;, s;) linking
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a cellc; and a switchs; is included in the partial solution, the heuristic value fleat arc will

be updated with the inverse of the partial solution cost tanged to the moment. This update
is performed at each step of the construction procedurerefdre, the higher the partial cost
the lower the value of the heuristic informatign ,,. Whenever an ant is located at a certain
switch it must choose to which cell to move to. In order to dotle heuristic information used
is the call volume associated with each cell, thusis defined for cells rather than for arcs.
Therefore, the larger the cell volume the higher the valuefheuristic, thus favouring cells
with high call volumes to be handled first.

3.1.3 Pheromone Bounds

At some point on the run of an ACO algorithm, the values of therpmones in the components
of the solution, let us say arcs, may be extremely small, atmphibiting the choice of those
arcs, or extremely large which will lead to the constructadrthe same solution, over and
over again. To prevent that from happening one might setruapé a lower bounds on the
pheromones. The first work to introduce this mechanism wkigZ1® and Hoos, 1997), and the
authors define the following pheromone bounds:

1
ar - ) 18
s = (18)

where the pheromone upper boung,. depends not only on the evaporation rateut also on
the total cost of the best solution found so Hr,

Tmax(l - pdec)
(% - 1)pdec

Tmin =

: (19)

where the pheromone lower boung;,, depends on the value af,..., on the the numbet of
the components of the solution, and on the probability ofstmutting the best solutiopy,..,
which is a value to be set.

Therefore, whenever a new global best solution is foung, must also be updated.

Venables and Moscardini (2006) and Altiparmak and Karao{@®07) both define the upper
boundr,,..., as in equation (18). The minimum pheromone value allowegilisn by a fraction
of the maximum pheromone value allowed,

Tmin — Tmax/aa (20)

wherea is a parameter value given by the size of the problem botheémibrk of Venables and
Moscardini (2006) and in the work of Altiparmak and Karaag{@007). It is easy to see that
Tmin @NAT,,4, @re not static values changing whenever a new best solstimund.
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Another mechanism also based on pheromone trails is théfidation of stagnation. Altipar-
mak and Karaoglan (2007) use a two phase reinitializatiber®e. On the one hand, if more
than 50% of the arcs in a transportation network have phenenvalues equal te,,;,, then
Tmaz @NAT,,;, are updated according to the global best solution and allegah the pheromone
matrix are set tor,,,... On the other hand, if the global best solution has not beelategd
for 50 iterations, then 10% of the population is randomlyayated and will replace the worst
solutions.

Blum and Blesa (2005) propose an ACO algorithm to solve edgightedk-cardinality tree
problems, where the pheromone values are in the intgfval, following the HyperCube
Framework defined by Blum et al (2001). In order to define arblesealue for each limit,
the minimum and maximum pheromone values are as given irtiequa1l).

[Tmins Tmaa] = [0.001,0.999] . (21)

The algorithm also incorporates a so-called convergeraterfaf, defined in equation (22), in
order to estimate the degree of convergence of the system,

> T

a€A(Sy)

cf = , (22)

k - Tmax

wherek is the cardinality of the problemd is the set of arcs belonging to the béstardinality
tree of the iterations,,.. is the already defined maximum pheromone value, and fingllg
the pheromone of are. By definitioncf is a value always between 0 and 1, and the cloger
is to 1, the closer is the system to convergence becausedhalplity to construct agaif;, is
closer to 1. When this happens pheromone values and thedbesbs are reset.

Bui and Zrncic (2006), which address degree-constrainegirim Spanning Trees, define
the maximum and the minimum value allowed for pheromoneldéevased on the differences
between the cosV/ of the most expensive arc and the cosbf the cheapest arc, as follows

(M —m)+ (M —m)

Tonaz = 1000 - (23)

and M3
Tmin = —5— (24)

Whenever an arc exceeds,, itis not reset ta,,.., as usual, but rather adjustedrig,. —Tf;l”,
wherer;7"* is the initial pheromone value for aft; j) and is given by = (M —c;;) 4 (M —
m)/3. In a similar way;;; = Tmin +T§}”t whenever the pheromone value goes unggr. This
way, as some of the original information is maintained itdpected that the ant still recognizes

good arcs and bad arcs.
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Bin et al (2009) use lower and upper bounds for the pheromahgs in the arcs of the routes
found by the ants, for the vehicle routing problem, which dependent on the distandg,
between the central supply nod@and each customer nodeThe bounds are given by

Q

[Tmirn Tmax] = Q )
> doi Y 2dy;

where( is a parameter. These bounds are calculated only once, atthening of the al-
gorithm. The algorithm incorporates a mutation operatora isimilar fashion to genetic al-
gorithms, to try to include arcs other than the ones with éigtheromone value, chosen by
influence of the probability function. Given two parent ted@om a solution, two customers,
one from each tour, are randomly selected and exchangekis Ibperation turns out to result
into unfeasible solutions, then they are fixed by using airggamechanism. Thus, two new
feasible solutions are always created.

(25)

3.1.4 Pheromone Update

In the definition of the ACO metaheuristic the pheromone tpthas been defined to be per-
formed after all the ants have constructed their solutidttsiough it is the recommended/sug-
gested method, it has not been proven to be the best choiedl fooblems. In fact, different
pheromone update schemes have been provided in the Irexdiffering in three key aspects:
the moment at which pheromones are updated, the pheromamtitguo be deposited and
evaporated, and which ants are allowed to deposit pheromdheir trails.

The work of Talbi et al (2001) is one of those cases where anrgltive approach has proven to
achieve good results. In order to solve a Quadratic AssigmfPeblem, the pheromone update
instead of reinforcing the components of the best solutbamd, as is usually done, reinforces
every solutionF'(.S) taking into account both the value of the best§*)) and the value of the
worst (£'(S™)) solutions found, as follows

F(57) — F(5)

— _ T P

The intention is to weaken the reinforcement, preventingiakgconvergence, due to the un-
usual large number of ants depositing pheromone on theitisos.

A different approach is that of Rappos and Hadjiconstanti(®004) that was developed to
design flow networks that are two-edge connected, thatas,cn continue to satisfy the cus-
tomers demands if any single arc in the network is removedirigan consideration the nature
of the problem, the authors decided to make a distinctiowdeh two types of pheromone val-
ues associated to each arc. Ofigj;), is called thearc trail and is related to the fixed cost that
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has to be paid for using that arc. The other dfig;;), is called theflow trail and is related to
the cost of the flow passing through the arc. Flow ants, whichdetected and reinforce both
pheromone types, are created, as well as reliability amés,can only detect and reinforce arc
pheromone. In each iteration a single solution is produgethé flow ants, and then the solu-
tion is made reliable by adding an extra arc by the religbdiits. Both flow trails and reliability
trails are updated, at the end of the corresponding congtnyghase, by initially performing a
reduction on the pheromone of all arcs. Then, each religlaitit adds:

AT, (ij) = - (27)
bi;
to each arc on its solution, regarding the arc pheromonk Wwhereb;; is the fixed cost to be
incurred by using ar¢i, j). Each flow ant adds the following quantities to the arc and flow
pheromone trails, respectively, on the arcs of its solutmmovided that fixed-costs are only

paid once

. 1 . 1
AT, (ij) = 0 and ATy(ij) = e

ij 1j &g

(28)

wherec;; is the cost per unit flow and; is the demand of nodg The reason why reliability
ants to not deposit pheromone on flow trails is straightfodytne extra arc that they add to the
solution does not carry any flow.

In a work by Alaya et al (2004), where multidimensional kreglsproblems are solved, the
pheromone update is done in such a way that the quantity degpas each component of the
solution includes information about the difference betvtee objective function value of the
best solution of the iteratiof’(S*) and of the global best solutiafi(S*),

1

Aty = _
T T F(SY) — F(S*)

(29)

Therefore, the closer the solution is to the global besttswiu the higher the quantity of
pheromone deposited.

Two pheromone updating rules are proposed in (Shyu et a$})2@0global and a local one.
On the one hand, at the end of each iteration, and after extipioiis applied, the pheromone
present on the nodes of the incumbent solutiinare reinforced with a quantity inversely
proportional to the total weight of the nodes in the solution

1
ZjES* wj

On the other hand, the local pheromone updating rule is egglach time the ant adds a node
into its solution and is given by

16



7= (1 =) + 70 (31)

wherery is the initial pheromone laid in every node apds the evaporation rate applied locally.
This latter rule has the objective of preventing the antdwégs choosing the most significant
node. Eswaramurthy and Tamilarasi (2009) have also useadiksglobal and local updating

rule but considering arcs instead of nodes. It should beadtthat while Shyu et al (2004)
solve the Minimum Weight Vertex Cover problem, Eswaranmyghd Tamilarasi (2009) solve

the Job Shop Scheduling problem.

Solimanpur et al (2005), have also considered depositing iploeromone in the components
of the solutions closer to the global best solution. In thase; they allow not only the best ant
in the iteration to deposit pheromone but also all other.ahte amount of pheromone to be
deposited by ant is given by

(32)

where['(S*) is the solution of ank, and) is a scaling factor that must be chosen appropriately
such that a quick convergence to a local optima may be avoitéd method clearly encourages
search along the vicinities of the global best solution mhbpe that a better one can be found
nearby.

According to the value defined in equation (22), Blum and 8IEX005) define a pheromone
updating rule rewarding three solutions: the best soluiticthe current iteratior;’, the best
global solution to the momerft!’, and the restart-best solutigti®, that is, the best solution
found at the restart of the algorithm. The reinforcemenhéntnot based on the fitness of the
solution, that is, the corresponding value of the objedtinection, but rather on the value of a
convergence factarf, see equation (22), which is computed at every iteratiorthEd these
three solutions is attributed a different weidhy, k., andk,;, defined in the same manner as
above, such that their sum equals 1. The schedule the autheesapplied is dependent on
cf in such a way as to increase the valueipf and decrease the value attributedktpwith

the increase off, if ¢f < 0.99. The value of the evaporation rate parameter is also dynamic
decreasing with the increase©f. When a global convergence has been reached, that is, when
cf > 0.99 then the only solution being updatedsgb since a reset of the algorithm is to be
made, and this is the only solution to be maintained. Theghene values are updated, as
well, initially by evaporating a percentage of the pherompnesent in each arc, and then by
adding the following pheromone quantity in each arc,

0 = k0 (S, a) + kd(S50, a) + kg (ST, a), (33)
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whered(Sy, a) = 1 if arc a belong to the solution treg,, and0 otherwise.

Following the work of Bin et al (2009), Yang et al (2007) useaaitrweight pheromone updating
strategy based on the ant-density algorithm, in the ImmtoMeO used to solve the Vehicle
Routing Problem. The idea behind it is to incorporate botaland global information about
solutions. Therefore, every ant, representing a singleeraeposits pheromone in its solution
components, following .
Q D — d;;

AT = T XL X mi < D
where( is the usual proportionality constant paramefeis the sum of the lengths of all tours
in the solution K is the total number of routes in the solutidd? is the length of touk;, d;; is
the distance between customiemd customey, andm” is the number of customers visited in
routek. Note that, a solution is only entirely defined when all reutenstructed are assembled.

(34)

The first componen}(?(—L, the global pheromone increment, depends on the totalHerighe
solution and on the number of tours, and it represents a comipe between the total cost and

DF —d,.
the number of vehicles used. The second com on%m—” , the local pheromone increment,
L i mt x D g
uses the contribution of af¢, ;) to thekth tour, which increases af; decreases.

3.1.5 Transition Rule and Probability Function

This may be considered the characteristic that has lessredffrom the evolution of ant algo-
rithms. Its initial structure, as given in equation (1), isiast always used in the works of the
researchers in the area. Nonetheless, different metheddlezn introduced mainly associated
to the high complexity of the problem to be solved.

The probability distribution used by Bouhafs et al (20063atculate the probability of visiting
customer; when in customet, in a Capacitated Location-Routing problem, also incoapes
the savings valug;;, for visiting customey from custome:

k (735 (0]« [m3;]° -+ [vig]
Pr(t) = 35
A ST R )

where J¥ is the set of costumers not yet visited by a@nin its solution and that, by being
chosen, do not violate any constraint. The savings valuerngpcited once at the beginning of
the algorithm as follows

Yij = dio + dio — g - dij + f - |dio — dojl, (36)

whereg and f are parametersl;; is the distance between nodeandj, and0 is the starting
node.

Afshar (2005) proposes a new transition rule for ant colopgmaization algorithms, that is
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given by:

at;i(t) + Bni;
> jesrlomii(t) + Bi]
The strategy is defined to prevent a domination of the phenenti@ils in the ants decision, by
incorporating an additive form instead of the usual muktgive form. This way, the author
expects both pheromone and heuristic information to havecéwe role in the decision. This
new transition rule comes with a modification of the heusistilue, which is a simple scaling
procedure given by:

Pj(t) = (37)

s _ My
making every value to be between zero and one regardlesslotepn size, a difficulty which
was already mentioned before.

A probability function based on the one developed by Maraga899) for the Quadratic As-
signment problem is used within an algorithm developed teessingle row layout problems
by Solimanpur et al (2005). The function also presents antigeddcheme but eliminates the
necessity of the parametgrassociated to the heuristic value

at;i(t) + (1 — a)n;;
> jesrlomii(t) + (1 — a)ny]
In this case, itis clear that must be a number between zero and one, and not any positive num
ber as was the case of the original method. Therefore, if osleas to prioritize the pheromone
information one is implicitly decreasing the importanceloé heuristic information, and vice-
versa, and there is only one value for which they have the sasrght, which i0.5.

Pj(t) = (39)

Blum and Blesa (2005) introduced some changes to the ti@msiile defined for the Ant
Colony System (ACS), earlier developed by Dorigo and Gandir (1997), in order to solve
k-minimum spanning tree problems. An ant starts its solubymandomly choosing the first
arc to enter the solution tree. Then, at each step of thewmtisin, the next ara to be added is
chosen deterministically if < 0.8, and probabilistically if; > 0.8, according to equation (40):

arg min {L fa € ANH(Stl)} if g <0.8
w(a)

l if ¢ > 0.8,

(40)

a =

wherer, is the pheromone in akg w(a) is the weight of are, Ay (S;—1) is the set of all arcs
that do not belong to solutiofi,_; and have exactly one end-point$h_;, and where
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Ta/w(l Ta//wa’ if a € ANH(St—l)
B ST 1)

0 otherwise.

This rule, assigns equal weight to the pheromone and thestieuralues, hereby represented
by 1/w,, by eliminating parameters andg from the exponents of the pheromone and heuristic
values respectively. Given that the probabilistic rulengydriggered whenever a random num-
berq > 0.8, the search for solutions is in 80% of the cases usually careted on relatively
good areas.

3.1.6 Parameter Values

The setting of an ant based algorithm can take a long timehi@ae in order to produce some
useful results. Furthermore, a set of parameter valueslbé@ascabe defined:

e o - parameter related to the weight of the pheromone condentran the probability
function;

e (3 - parameter weighting the relative importance of heurisfiarmation in the probability
function;

p - pheromone evaporation rate, where|0, 1], measures the information that is to be
transported to the next iteration;

e () - parameter weighting the quantity of pheromone to be dégdsn each component
of the solution;

e 7 - initial pheromone value to be deposited in every solutiomponent, to guarantee
that every one of them has, at least, a small probability ofdoehosen;

e number of ants in the colony;

e stopping criterion - the number of iterations to be perfaintbee number of solutions to
be evaluated, maximum allowed running time, and so on.

For each algorithm developed, there can be other parantetbesset, for example, if bounds
are imposed on the pheromone valueg,.a parameter, as well as, the limit values have to be
defined. There are other cases where differences in thetdefiof the probability function, or
the type of ant used, require more parameters. We feel thet th no need to report on these
parameters in a section of their own as they tend to be unmuesaich algorithm. Nonetheless,
almost every work that was reviewed in this paper reportat@hried several combinations of
parameter values before choosing the ones to be used.

20



3.2 Booksand Surveys

Reviews are very important, specially when someone isstpon a new research area. There-
fore, we could not finish this work without referring to sonfelte detailed and comprehensive
reviews. For a good review on early Ant Colony Optimizatiastdrical applications we re-
fer to (Cordon et al, 2002). The reader may also find the rewkMullen et al (2009) very
interesting, since the authors review the application ¢fadgorithms in fields such as digital
image processing, data mining and other machine learncignigues. In this work we have
omitted multi-criteria combinatorial optimization praphs. A good work reviewing this type
of problems is provided by Garcia-Martinez et al (200h)eve the authors, besides providing
a survey on previous works also solve a set of instances diittigteria TSP with several ACO
algorithms, in order to be able to compare them and discessaharacteristics.

Although a little out-of-date, due to the large number of kexthat have seen the broad daylight
after they have been published, (Bonabeau et al, 1999) amag@and Stitzle, 2004) are still
very important references regarding ant based algoritpnosjding excellent explanations on
ant algorithms and their evolution. The first book gives usiaight on the general social insect
behaviour with particular emphasis on ant algorithms. Huwead book is fully dedicated to ant
colony algorithms and surveys several applications of AQ€eiveral fields, such as scheduling,
machine learning and bio-informatics. In addition, it atkscusses some theoretical findings
and is an excellent guide to everyone who wishes to implee@ralgorithms.

4 Conclusion

The class of combinatorial optimization problems is prolii NP-hard problems. But, al-
though some small instances of such problems can be solvk@wact methods, heuristics are
more adequate to solve large instances as they usually aeéss$ computational resources.
Ant Colony Optimization is a metaheuristic initially defothéo solve problems within the class
of combinatorial optimization, although its frontiers ledeng been overcome. In this work, we
have presented a collection of different approaches timbedound in the literature, regarding
the ACO building blocks. The algorithms that were reviewasidhbeen used to solve all sorts
of problems, but mainly problems within the combinatoriptimization class. Our objective
is to provide a list of alternative methods that can be use@&éch ACO feature, in order to
facilitate the identification of the most adequate techaigusimply to inspire an investigator
that is thinking on developing his own ACO algorithm.
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