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Abstract 

 

 

This dissertation describes the thermodynamic and optical study of 16 fluorene 

derivatives, 4 fluorenone derivatives and 3 naphthalene derivatives, some of which were 

synthesized for this purpose. 

Differential scanning calorimetry analysis was performed in order to detect transitions 

between condensed phases and to determine their enthalpies and temperatures of 

transition. 

The crystalline vapor pressures of all the compounds studied were measured using 

the Knudsen mass-loss effusion method and/or a static method based on capacitance 

manometers. The latter method also allowed the measurement of the liquid vapor pressures 

of some of the compounds, enabling phase diagram representations. Sublimation and 

vaporization properties (standard molar enthalpy, entropy and Gibbs energy) were 

determined from the vapor pressure dependency with temperature, and occasionally using 

also Calvet microcalorimetry.  

The standard molar enthalpies of formation in the crystalline phase, were derived from 

the standard massic energy of combustion, at T = 298.15 K, measured by combustion 

calorimetric techniques for some of the compounds studied. For these compounds, the 

combination of the standard molar enthalpies of formation in the crystalline phase and the 

standard molar enthalpies of sublimation yielded the standard molar enthalpies of formation, 

in the gaseous phase. The determined results enabled the evaluation of the thermodynamic 

stability of the compounds by means of the Gibbs energy of formation, in crystalline and 

gaseous phases. 

After convenient tests on a new apparatus, fluorescence spectroscopic 

measurements were performed to determine the fluorescence quantum yield and emission 

properties of the compounds studied.  
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Resumo 

 

 

Nesta dissertação é descrito o estudo termodinâmico e ótico de 16 derivados do 

fluoreno, 4 derivados da fluorenona e 3 derivados do naftaleno, alguns dos quais foram 

sintetizados neste trabalho. 

Calorimetria diferencial de varrimento foi realizada com os objetivos de detetar as 

transições entre as fases condensadas e determinar as respetivas temperaturas e entalpias 

molares de fusão padrão. 

As pressões de vapor da fase cristalina de todos os compostos estudados foram 

medidas utilizando o método de efusão de Knudsen e/ou um método estático baseado em 

manómetros de capacitância. O método estático também permitiu a medição pressões de 

vapor da fase líquida de alguns dos compostos, possibilitando a representação dos 

respetivos diagramas de fase. As propriedades de sublimação e vaporização (entalpia, 

entropia e energia de Gibbs molar padrão) foram determinados a partir da dependência da 

pressão do vapor com a temperatura e, ocasionalmente, usando também microcalorimetria 

Calvet. 

As entalpias molares de formação padrão na fase cristalina, foram derivadas a partir 

de energias mássicas de combustão padrão, a T = 298.15 K, determinadas por calorimetria 

de combustão para alguns dos compostos estudados. Para estes compostos, a 

combinação das respetivas entalpias molares de formação padrão na fase cristalina com 

as entalpias molares de sublimação padrão permitiu o cálculo das entalpias molares de 

formação padrão, na fase gasosa. Estes resultados permitiram a avaliação da estabilidade 

termodinâmica dos compostos por meio da energia de Gibbs de formação, das fases 

cristalinas e gasosas.  

Após testes convenientes a um novo aparelho, as propriedades de emissão dos 

compostos estudados, incluindo o rendimento quântico de fluorescência, foram 

determinadas por espectroscopia de fluorescência. 
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1.1. Aim of the study 

 

The present study is mainly focused on the evaluation of the volatility of fluorene, 

fluorenone and naphthalene derivatives (figure 1.1), as well as the characterization of their 

fluorescence properties, and on the measurement of the thermodynamic stability of some 

of them.  

 

 

a) b)  c) 

 

Figure 1.1. Structure formulae and numbering of fluorene (a), fluorenone (b) and naphthalene (c). 

 

 

Fluorene and naphthalene are polycyclic aromatic hydrocarbons (PAHs) while 

fluorenone is an oxygenated polycyclic aromatic hydrocarbon (OPAH) that may result from 

the oxidation of fluorene. The relative abundance of PAHs in atmospheric air, water vapor 

and particulate matter is to a large extent conditioned by their volatility [1]. The knowledge 

of accurate vapor pressure and water solubility is fundamental to assess the dispersion and 

permanence of these compounds in the atmosphere as well as their accumulation in living 

beings and in soils, sediments and underground waters [2]. A compound’s volatility is also 

very important from the industrial point of view. The quantification of vapor pressures is 

often required for the planning and monitoring of various industrial processes [3], as well as 

for optimizing storage conditions of hazardous substances according to safety standards. 

The vapor pressures and thermodynamic properties of derivatives of fluorene and 

fluorenone have been studied over the past 50 years, mostly since the last decade [4-10]. 

Their low volatility hinders the accurate experimental determination of their vapor pressures 

and, consequently, the derived thermodynamic properties. So, data on thermodynamic 

properties of these compounds is scarce and often inaccurate. The quality of the currently 

available experimental thermochemical and thermophysical data for these compounds is 

also lessened by the frequent use of samples with purity levels much lower than what would 

be recommended. Vapor pressures results determined by effusion methods using low-purity 

samples (ca. 95 %) are still being published nowadays [8,9], which contribute to the lack of 
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reliability of vapor pressure results of several of these compounds. Apart from these 

examples, the availability of reliable vapor pressure data fortunately continues to grow, and 

with it the possibility to establish estimation methods for predicting vapor pressures of 

aromatic compounds, as the ones suggested by Chickos and Hosseini [11], Coutsikos [12], 

Crampon [13], and more recently by Monte and collaborators [14,15]. 

The assessment of the thermodynamic stability of PAHs is also of great importance 

when evaluating the reactivity of these compounds. It is a powerful tool for predicting 

chemical reactions leading to their degradation, namely its eventual oxidation or hydrolysis. 

Also, PAH derivatives are commonly applied on optoelectronic devices, whose durability 

depends to great extent on the thermodynamic stability of its components.  

When considering the design of new photoluminescent materials, one of the main 

properties that significantly affects the performance of these devices is the quantum yield 

(QY) in the solid state [16], in addition to their chemical and thermal stability and volatility. 

Furthermore, the characterization of the luminescent properties of PAHs is also very useful 

to selectively detect and identify these pollutant compounds in the environment, using highly 

sensitive analytical techniques [17-20]. 

 

 

1.2. Compounds studied  

 

PAHs constitute one of the main classes of persistent organic pollutants that are 

harmful to living beings. Several of them appear in the USEPA (United States 

Environmental Protection Agency) priority pollutant list [21] and also in the list of priority 

regulated substances by the European Union [22]. PAHs are originated from a variety of 

natural and anthropogenic sources. Their major sources in the environment are related to 

human activities, being mainly associated with oil spills, gas exploration, industrial waste 

and incomplete combustion of coal, other fossil fuels and organic matter [1,23,24]. Most 

have relatively low vapor pressures and therefore tend to accumulate in soil and sediments, 

water and animal tissue [25]. They are often resistant to biological degradation and are not 

efficiently removed by conventional physicochemical methods [26]. 

PAHs may induce genotoxic effects in humans and some have been proved to be 

carcinogenic and potentially tumorigenic [27,28]. PAHs can be “activated” by light irradiation 

to form highly reactive oxidized species [29,30], which can cause various adverse health 

effects, such as premature aging, acute and chronic respiratory and inflammatory 

conditions, among others. As carcinogen compounds, several PAHs have been frequently 

studied, giving particular attention to nitro-PAHs [31], such as 2-nitrofluorene listed as 
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‘‘possibly carcinogenic to humans’’ by the International Agency for Research on Cancer 

[32], and halogenated PAHs, mainly the chlorinated ones [33]. Some PAHs are susceptible 

to oxidation and photo-degradation in the presence of light. 9-Fluorenone, for example, may 

occur as the result of aerobic oxidation in position 9 of fluorene [34]. 

Fluorene, fluorenone and naphthalene derivatives have important applications in a 

variety of areas. They are widely used as precursors in peptide synthesis [35,36], in active 

ingredients for drugs and pharmaceuticals [37], base materials for organic dyes [38-40], 

organic semiconductor materials for the application in the field of organic electronics [41-

44], etc.  

The use of PAHs derivatives due to their semiconductor properties has exponentially 

increased in the past decades. Presently, fluorene, fluorenone and naphthalene derivatives 

as well as their derived oligomers and polymers have been successfully used as active 

components on a new generation of electronic devices such as organic light emitting diodes 

(OLEDs) and organic solar cells (OSCs), drawing the attention of the scientific and 

technological communities, evidenced by a great number of diverse studies published in 

literature [45-49]. 

Due to their aromatic structures, several PAHs show intrinsic fluorescence emission 

in the UV and blue spectral regions [50]. In general, red and green emitting OLEDs have 

proven to be more efficient in terms of luminescence and durability. Nowadays there is a 

pressing demand for new organic compounds with high chemical and thermal stabilities and 

high fluorescence efficiency for blue emitting OLEDs [51]. The structure of fluorene and 

fluorenone add rigidity to the derived oligomers and polymers improving their thermal and 

morphological stability and consequently their durability. One of the problems that occur in 

blue emitting materials is called “green emission defect” [49], due to the appearance of an 

additional undesirable low energy “green emission band” which reduces the emission 

efficiency and prevents the emission of pure blue color [52,53]. Occasionally, fluorene-

based polymers are not sufficiently stable, while smaller PAHs building molecules, as well 

as being easier to purify and characterize, are generally more thermally stable [54,55]. 

Functionalizing fluorene and fluorenone molecules with electron donor/acceptor 

substituents, or  chromophore groups with good thermal and chemical stability, can help 

to achieve blue emitting materials that can be applied in OLEDs [46,49,56,57].  

Recent developments in organic photovoltaics devices (OPVs) sensitized with 

chromophores demonstrated greater efficiency and lower costs compared to crystalline 

silicon technology that has been dominant in terms of commercial production. Fluorene 

derivatives have been used successfully as components in this type of voltaic cells [58-61], 
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and a growing industrial interest on these compounds is expected in addition to its use as 

OLEDs.  

The development of oligomeric and polymeric hybrids of fluorene with triphenylamine, 

carbazole, quinoline and pyrene [62-65], among others, has proved to be successful in 

overcoming the problems associated with thermal and chemical stability of some OLEDs 

and OPVs components and simultaneously allows the modulating and customization of the 

material’s optoelectronic properties. 

The compounds covered in this work are listed in table 1.1 and can be separated into 

three classes, according to the core molecule: 

 Fluorene derivatives with substituents in positions 2, 2,7 and 9; 

 Fluorenone derivatives with substituents in positions 2 and 2,7; 

 Naphthalene derivatives with substituents in positions 2,6. 

 

The selected fluorene and fluorenone derivatives are substituted at its most 

electronegative centers - positions 2 and 2,7 - granting the highest linearity and, therefore, 

conjugation efficiency. Additionally, some fluorene derivatives substituted in position 9 were 

also studied. Later in the course of this project, the study was further extended to some 

alkyl derivatives of naphthalene in positions 2,6. 

Most of the compounds were acquired commercially, but a few were synthesized in 

the present work employing methods described in the literature for similar compounds. The 

detailed description of these procedures can be found in section 2.3. After conveniently 

purified, the synthesized compounds were identified by Nuclear Magnetic Resonance 

(NMR) and mass spectroscopy. 
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Table 1.1. Compounds covered in this work and respective origin a. 

Compound Origin Compound Origin 

FLUORENE DERIVATIVES 

2-Fluorenecarboxaldehyde  2,7-Dichlorofluorene  

2-Aminofluorene  2,7-Dibromofluorene  

2-Nitrofluorene  2,7-Diiodofluorene  

2-Fluorofluorene  9-Fluorenecarboxylic acid  

2-Bromofluorene  9-Phenyl-9-fluorenol  

2-Iodofluorene  9-Benzylidenefluorene  

2,7-Di-tert-butylfluorene  9-Fluorenemethanol  

2,7-Difluorofluorene  9-Chlorofluorene  

FLUORENONE DERIVATIVES 

2-Aminofluorenone  2,7-diNitrofluorenone  

2-Hidroxifluorenone  2,7-diBromofluorenone  

2-Fluorofluorenone    

NAPHTHALENE DERIVATIVES 

2,6-Diethylnaphthalene  2,6-Di-tert-butylnaphthalene  

2,6-Diisopropylnaphthalene    

a , acquired commercially; , successfully synthesized in the present work. 

 

 

 

1.3. Methods used  

 

The following experimental methods used for determining the thermodynamic and 

luminescence properties have been applied in this work: 

 

Differential Scanning Calorimetry (DSC) 

The compounds were analyzed by DSC in order to determine the temperatures of 

fusion and the standard molar enthalpies and entropies of fusion. This calorimetric study 

also allowed the detection of eventual transitions between crystalline phases and the 

determination of the respective temperatures and enthalpies of transition.  
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Measurement of vapor pressures 

The measurement of vapor pressures at different temperatures was carried out using 

a Knudsen effusion method and/or a static method based on capacitance manometers. 

Together with estimated heat capacities, the vapor pressure results allow the determination 

of standard molar enthalpies, entropies and Gibbs energies of sublimation (and sometimes 

also vaporization) at reference temperatures.  

 

Calvet microcalorimetry 

For a few compounds, the standard molar enthalpies of sublimation were also 

obtained by Calvet microcalorimetry.  

 

Combustion calorimetry 

For the compounds with enough available quantity of purified sample, the standard 

massic energies of combustion were determined by combustion calorimetry in static or 

rotating bomb, depending on the compound’s chemical composition. From the determined 

standard massic energy of combustion, the standard molar enthalpy of formation in the 

crystalline phase at the temperature 298.15 K was derived.  

 

Photoluminescence spectroscopy 

The study of fluorescence spectral properties and quantum yield of some of the 

compounds studied was performed by fluorescence spectroscopy. The fluorescence 

emission wavelength, relative emission intensity and absolute quantum yield were 

determined in powder form and also in solution for some of the compounds studied, using 

a fluorescence spectrophotometer.  
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2.1. Introduction 

 

The progress of this work lead to the study of compounds that were not commercially 

available or that were too expensive to purchase in the necessary amounts. Within this 

framework, halogenated derivatives in positions 2, 9 and 2,7 of fluorene, as well as in 

positions 2 and 2,7 positions of fluorenone, were obtained by organic synthesis, using 

adaptations of procedures published in the literature. Figure 2.1 shows a general scheme 

of the starting materials and the final molecules synthesized in the course of this work.  

Each synthetic procedure was initially tested in microscale and after a satisfactory 

outcome of this initial test, the procedure was adapted to a bigger scale and repeated until 

the necessary amount of compound was obtained. The details of the materials, 

instrumentation and synthetic procedures used will be described as follows, as well as the 

techniques used for product characterization. 

 

 

2.2. General information 

 

 

2.2.1. Reagents and solvents 

 

The starting materials and other additional reagents used in the synthesis of fluorene 

and fluorenone derivatives, presented in figure 2.1, were acquired commercially from 

Sigma-Aldrich (3, 6, 9, 14) and TCI Chemicals (1, 12) and used without additional 

purification. The solvents used were pro analysis (p.a.) grade and also commercially 

acquired from Merck, Sigma-Aldrich, Carlo Erba, Alfa Aesar and Fluka. 

 

 

2.2.2. General procedures and instrumentation 

 

The progression of the synthetic reactions was monitored by thin layer 

chromatography (TLC) using aluminum plates pre-coated with silica gel 60 F254 (Merck) with 

layer thickness of 0.2 mm. For analytical control, several elution systems were used: diethyl 

ether/petroleum ether (in various proportions), petroleum ether/dichloromethane (in various 

proportions), hexane/dichloromethane (8:2), dichloromethane/methanol (9:1), hexane/ethyl  
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Figure 2.1. General scheme of the starting materials and the final molecules synthesized in the course of this work (crossed 

arrows represent non-successful synthetic paths). 
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acetate (in various proportions). The spots in the chromatographic plates were visualized 

under UV light (254 and/or 366 nm). Silica gel 60 (0.040 - 0.063 mm) (Carlo Erba) was used 

as stationary phase for the purification by flash column chromatography. The mobile phases 

used, as well as the volumetric proportions of each component when mixtures were used, 

will be specifically mentioned for each compound. 

Reagents were weighed on a Kern ABJ-NM/ABS-N balance. Microwave assisted 

synthesis was performed in a Biotage Initiator 2.5 synthesizer. Solvents were evaporated 

under reduced pressure using a Bϋchi Rotavapor R-210 and synthesized samples were 

dried in a MTI Corporation vacuum oven, at a temperature of 323 K. 

The synthesized compounds were identified by nuclear magnetic resonance (NMR) 

and mass spectrometry (MS). The 1H NMR and 13C NMR data were acquired, at room 

temperature, on a Brüker AMX 400 spectrometer operating at 400.15 MHz and 101.0 MHz, 

respectively. Electron impact mass spectrometry (EI-MS) was carried out on a VG 

AutoSpec instrument. Additional details regarding the spectroscopic characterization, as 

well as the spectroscopic data, are presented in section C of the annexes.  

 

 

2.2.3. Synthetic yields and purity degrees 

 

The purity degree and synthetic yield of each isolated compound are presented after 

the description of the respective synthetic procedure. The (mass fraction) purity degrees 

were determined by gas-liquid chromatography (GC) and are related to the isolated 

compounds, before further purification by sublimation under reduced pressure (section 

3.1.1.). The synthetic yields were calculated as the ratio, in percentage, of the obtained 

molar amount of isolated compound to that theoretically predicted by stoichiometric 

calculation, based on the amount of the limiting reagent. 
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2.3. Synthetic procedures 

 

 

2.3.1. Halogenated fluorene derivatives 

 

2.3.1.1. 2,7-Difluorofluorene 

 

The synthesis of 2,7-difluorofluorene (2) was performed by Balz-Schiemann reaction 

[1] (reaction 2.1), according to a procedure described in the literature [2]. 

 

 

 (2.1) 

 

 

To a solution of 2,7-diaminofluorene (1) (1.55 g, 7.9 mmol) in tetrahydrofuran (15 mL), 

protected from the light, 15 mL of tetrafluoroboric acid (HBF4, 48 wt. % in H2O) was added. 

Then, a saturated aqueous solution of sodium nitrite (NaNO2) (1.47 g, 17 mmol) was added 

dropwise at a temperature between 278 and 283 K. After addition, the mixture was stirred 

for 30 min, then filtered and washed with a 5 % HBF4 solution, methanol and finally with 

diethyl ether. The crude product, the bis-diazonium salt, was thoroughly dried in a vacuum 

oven at 323 K. It was then mixed with boiling xylenes and heated for 30 min yielding a dark 

tar like residue. After cooling to room temperature, the residue was triturated with diethyl 

ether. The solvent was evaporated and the resulting residue was purified by flash column 

chromatography (diethyl ether/petroleum ether 3:7). The collected fractions were monitored 

by TLC and the ones containing the desired product were combined and evaporated to 

dryness. 

 

Purity: 0.891 

Synthetic yield: 68.3 % 
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2.3.1.2. 2,7-Dichlorofluorene 

 

Fluorene can undergo chlorination at its most electronegative centers yielding 2,7-

dichloro derivatives [3]. In this work, 2,7-dichlorofluorene (4) was synthesized from fluorene 

(3) using N-chlorosuccinimide (NCS) in acetonitrile and hydrochloric acid (HCl) (reaction 

2.2), following the procedure proposed by Perumattam et al. [3].  

 

 

 

(2.2) 

 

 

To a solution of fluorene (3) (2.01 g, 12 mmol) and NCS (3.87 g, 29 mmol) in 

acetonitrile (15 mL), stirred at a temperature between 278 and 283 K, concentrated HCl (1.4 

mL) was added dropwise. After the exothermic reaction stopped, the mixture was stirred for 

4 h at room temperature. The resulting precipitate was filtered and dissolved in 

dichloromethane. The solution was then washed with 5 % sodium bicarbonate (NaHCO3) 

solution (2 × 10 mL). The organic phase was dried over anhydrous sodium sulphate 

(Na2SO4), filtered, and evaporated to dryness originating a pale yellow powder. The product 

was recrystallized from ethanol yielding white needles.  

 

Purity: 0.976 

Synthetic yield: 65.0 % 

 

 
2.3.1.3. 2,7-Diiodofluorene 

 

2,7-Diiodofluorene (5) was synthesized by the iodination of fluorene (3) with iodine 

(I2) in the presence of iodic acid (HIO3) and sulfuric acid (H2SO4) (reaction 2.3), following 

the procedure of Anémian et al. [4] with minor modifications. 

 

 

 

(2.3) 
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A solution of fluorene (3) (2.04 g, 12 mmol), I2 (2.27 g, 8.9 mmol), HIO3 (1.06 g, 6.0 

mmol), concentrated H2SO4 (0.7 mL) and chloroform (2 mL) in acetic acid (15 mL) was 

warmed at 353 K for 5 h. The resulting precipitate was filtered and dissolved in chloroform. 

The solution was then washed with an aqueous solution of sodium dithionite (Na2S2O4, 

0.5M) to remove the remaining iodine (2 × 10 mL). The organic phase was dried over 

anhydrous Na2SO4 and evaporated to dryness.  A pale yellow product was obtained and 

then recrystallized from ethyl acetate yielding white needles.  

 

Purity: 0.979 

Synthetic yield: 91.7 % 

 

 

2.3.1.4. 2-Chlorofluorene 

 

Along this work, the synthesis of 2-chlorofluorene (7) was also attempted following 

different procedures described in the literature [5-8]. Although, for different reasons, the 

compound was not obtained, the attempts performed so far are described as follows. 

 

Procedure I 

Initially, following the procedure described by Muathen [5], the chlorination of fluorene 

(3) was attempted using a combination of tin(IV) chloride (SnCl4) and lead(IV) acetate 

(Pb(OAc)4) under mild conditions (reaction 2.4).  

 

 

 

(2.4) 

 

 

Lead(IV) acetate (0.68 g, 1.5 mmol) was added portion wise over 5 min to a vigorously 

stirred solution of fluorene (3) (0.26 g, 1.5 mmol) and tin(IV) chloride (0.5 mL, 4.3 mmol) in 

anhydrous ethyl acetate (7.5 mL). The mixture was stirred for 20 min and then diluted with 

ethyl acetate (7.5 mL). The resulting solid was filtered off and the filtrate washed 

successively with 1M HCl solution (2 × 10 mL) and 5 % NaHCO3 solution (2 × 10 mL). The 
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organic phase was dried over anhydrous Na2SO4, evaporated to dryness and recrystallized 

from ethyl acetate. 

The 1H NMR analysis of the product showed a mixture of several components, from 

which it was not possible to isolate 2-chlorofluorene. Several elution systems were tested 

and the mixture was further purified by flash column chromatography (dichloromethane/n-

hexane 2:8). The collected fractions were monitored by TLC and the ones expected to 

contain the desired product were combined and evaporated to dryness. The 1H NMR 

analysis of the product obtained by flash column chromatography showed again a mixture 

of components. 

 

Procedure II 

After the outcome of procedure I, the chlorination of fluorene (3) using alumina-

supported copper(II) chloride as reported by Kodomari et al. [6] was attempted. The authors 

described the successful chlorination of fluorene with the formation of 2-chloro and 2,7-

dichlorofluorene in high yields (reaction 2.5). 

 

 

 (2.5) 

 

 

Alumina-supported copper(II) chloride was prepared by adding neutral alumina (10 g, 

0.1 mol) to a solution of copper(II) chloride (7 g, 0.05 mol) in 15 mL of water. The water was 

evaporated at 353 K under reduced pressure and the resulting reagent was dried at 373 K 

overnight. To prepare 2-chlorofluorene (7), activated alumina (8 g) was added to a solution 

of fluorene (3) (0.2 g, 1.2 mmol) in chlorobenzene (30 mL). The mixture was stirred 

vigorously for 2h at 403 K. The activated alumina was filtered out and washed with 

chlorobenzene (10 mL). The combined filtrate was evaporated to dryness to yield the 

synthesized product. 

Even though the results reported by the authors were replicated, the isolation of 2-

chlorofluorene was not successful as the 1H NMR spectra of the product revealed the 

presence of a mixture of two compounds that were identified as the mono and dichlorinated 
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derivatives. Even when the reaction time was reduced, there was always the formation of a 

small amount of 2,7-dichlorofluorene. In addition, other solvents (toluene and dioxane) have 

been used but the reaction had the same outcome. The separation of the two derivatives 

by column chromatography was not successful as they present similar polarities and the 

same retention factor in TLC, although several elution systems were tested. The separation 

of the two chlorinated derivatives was also attempted by reduced pressure sublimation, 

however the two derivatives present similar volatilities and their separation was 

unsuccessful even at low temperatures.  

 

Procedure III 

The synthesis of 2-chlorofluorene (7) was also attempted by Sandmeyer reaction 

using 2-aminofluorene (6) as starting material. In this reaction, a primary aromatic amine is 

treated with concentrated HCl and NaNO2 to produce a diazonium salt, which is then 

converted to an aryl halide, under copper(I) catalysis [9]. 

The procedure used for the synthesis of 2-chlorofluorene (reaction 2.6) was adapted 

from a literature procedure used for the synthesis of p-chlorotoluene [7]. 

 

 

(2.6) 
 

 

To a solution of 2-aminofluorene (6) (0.20 g, 1.1 mmol) in tetrahydrofuran (4 mL), 

concentrated HCl (1 mL) was added while stirring. The solution was thoroughly cooled in 

an ice bath and a saturated aqueous solution of NaNO2 (0.10 g, 1.4 mmol) was added 

dropwise with vigorous stirring while keeping the temperature under 278 K. A few minutes 

after completing this addition, copper(I) chloride (CuCl) (0.15 g, 1.5 mmol) dissolved in 

concentrated HCl (1 mL) was added. The mixture was removed from the ice bath, allowed 

to slowly warm to room temperature and then heated for 1 h at 333 K. 

After cooling to room temperature, the reaction mixture was washed with aqueous 

sodium hydroxide (NaOH) (2 M, 2 × 10 mL) and water (2 × 10 mL). The organic phase was 

dried over anhydrous Na2SO4 and evaporated to dryness. The resulting residue was purified 

by flash column chromatography (diethyl ether/petroleum ether 0.5:9.5). The collected 
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fractions were monitored by TLC and the ones expected to contain the desired product were 

combined and the solvent evaporated. 

After work-up, it was observed that the reaction unexpectedly yielded a mixture. It was 

possible to identify one of the products as 2-chlorofluorene by the 1H NMR spectra, 

however, it was not possible to identify the other constituent from the NMR spectra or gas 

chromatography analysis. The mixture components were, again, not possible to separate 

using the already mentioned methods. 

One of the byproducts of this reaction can be the phenol derivative [7], resulting from 

a competing reaction with the water in the reaction mixture. This hypothesis, however, was 

not consistent with the obtained spectral results. 

Lastly, no alteration of the product composition was observed when different 

experimental conditions were used, such as the reaction temperature after CuCl addition or 

the stoichiometric amount of CuCl. 

 

Procedure IV 

Since the chlorination of fluorene by previously described methods was not 

successful, another synthetic approach not involving fluorene or a derivative of fluorene as 

a starting material was considered. Instead, the synthesis of 2-chlorofluorene (7) can be 

performed by the Pd-catalyzed cyclization of 4'-chloro-2-phenylbenzylchloride (8) (reaction 

2.7), using the procedure proposed by Hwang et al. [8]. As the starting material is not 

commercially available, the synthetic strategy described by reaction 2.8 was developed in 

order to obtain it. 

 

 

 

(2.7) 

 

 

(2.8) 
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Step I of this strategy was attempted by Suzuki-Miyaura cross-coupling reaction [10, 

11]. In Suzuki-Miyaura reactions, organohalides react with organoboranes originating 

coupled products using a palladium catalyst and base. 

For this reaction, 2-chlorobenzaldehyde (18) (0.23 mL, 2.0 mmol), (4-chlorophenyl) 

boronic acid (19) (0.32 g, 2.0 mmol), sodium carbonate (0.24 g, 2.3 mmol) and the Pd 

catalyst, PdOAc2 (11 mg, 0.05 mmol), were mixed with dimethylformamide (4 mL) and water 

(2 mL). The mixture was agitated for 5 min at room temperature and then heated under 

reflux until complete consumption of the aldehyde. Upon completion, the reaction mixture 

was filtered with a cotton plug, to discard the palladium residue, and washed with aqueous 

NaOH (2 M, 2 × 10 mL) and HCl (1M, 2 × 10 mL). The organic layer was dried over 

anhydrous Na2SO4 and evaporated to dryness. The resulting residue was purified by flash 

column chromatography (dichloromethane). The collected fractions were monitored by TLC 

and the ones expected to contain the desired product were combined and the solvent 

evaporated. 

This step was unfortunately not successful, as the spectral data indicates a mixture 

of components not easy to identify. This synthesis was repeated using different 

experimental conditions such as microwave heating (at different temperatures and different 

reaction times), solvents and bases, with no improvement.  

Alternatives to step I involving organobromides as starting materials instead of 

organochlorides were considered (reaction 2.9), however, due to time restrictions, the 

synthesis of this compound and its cyclization could not be pursued.  

 

 

 

(2.9) 

 

 

2.3.1.5. 9-Chlorofluorene  

 

Alcohols react with hydrogen halides, yielding the corresponding alkyl halide through 

an acid catalyzed nucleophilic substitution. By treating 9-fluorenol (9) with concentrated 

HCl, 9-chlorofluorene (10) was obtained (reaction 2.10), following the procedure in the 

literature [12].  
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(2.10) 

 

 

A solution of 9-fluorenol (9) (2.05 g, 11.3 mmol) in water (100 mL) and concentrated 

HCl (25 mL) was heated for 15 min to 333 K. After this time, the mixture was removed from 

heating and cooled in an ice bath to induce the precipitation of the product. The precipitate 

was filtered and washed with ice cold water. The resulting product was dissolved in 

dichloromethane and then washed with aqueous NaOH (2 M, 2 × 10 mL) to neutralize any 

traces of the concentrated acid. The organic phase was dried over anhydrous Na2SO4, 

filtered and evaporated to dryness yielding a pale yellow powder. The product was 

recrystallized from ethanol yielding translucent needles.  

 

Purity: sample not analyzed before further purification. 

Synthetic yield: 84.5 % 

 

 

2.3.1.6. 9-Iodofluorene  

 

In this work, the synthesis of 9-iodofluorene (11) was attempted following different 

procedures described in the literature [13,14]. Even though the compound was not obtained, 

the two attempts performed so far are described as follows. 

 

Procedure I 

The synthesis of 9-iodofluorene (11) from 9-fluorenol (9) was attempted through an 

adaptation of the procedure published by Hajipour et al. [13]. The authors have described 

the solvent-free iodination of alcohols with iodine (I2) and triphenylphosphine (Ph3P), using 

microwave heating (reaction 2.11). 

 

 

 

(2.11) 
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In a mortar, a mixture of 9-fluorenol (9) (0.25 g, 1.4 mmol), iodine (0.34 g, 1.3 mmol) 

and triphenylphosphine (0.37 g, 1.4 mmol) was ground with a pestle to a homogeneous 

mixture. The reaction mixture was transferred to a microwave reaction vial, sealed, and 

irradiated for 5 min at 373 K. After this reaction period, the resulting mixture was diluted in 

dichloromethane and filtered to remove any solid residue. It was then washed with aqueous 

Na2S2O4 (0.5M, 2 × 10 mL) to remove the excess iodine, and water (2 × 10 mL). The organic 

layer was dried over anhydrous Na2SO4, filtered and evaporated to dryness.  

It was confirmed by TLC of the obtained product that the starting material was 

completely consumed and a new product was formed. It was isolated by column 

chromatography (dichloromethane/methanol, 9:1), and identified by NMR as the byproduct 

triphenylphosphine oxide. 

 

Procedure II 

For the second attempt, the synthesis of 9-iodofluorene from 9-chlorofluorene by 

Finkelstein reaction (reaction 2.12) was tried, following the procedure described by 

Baughman et al. [14]. This reaction features the displacement of chloride using sodium 

iodide (NaI) in acetone solution and the formation of the respective alkyl iodide. 

 

 

 

(2.12) 

 

 

Sodium iodide (0.26 g, 1.3 mmol) and 9-chlorofluorene (0.33 g, 2.2 mmol) were 

dissolved in acetone (15 mL) and allowed to reflux for 3 days. The reaction mixture was 

cooled and flooded with diethyl ether (15 mL). Any precipitate was filtered off and the ether 

solution was washed with water (2 × 10 mL). The organic layer was dried over anhydrous 

Na2SO4, filtered and the solvent evaporated. The reaction yielded a mixture of two 

components that were separated by column chromatography (diethyl ether/petroleum ether, 

3:7). The collected fractions were monitored by TLC, combined according to composition 

and the solvent evaporated. None of the isolated components were identified as 9-

iodofluorene by 1H and 13C NMR. One of the components was identified as 9-fluorenone, 

while the other component was not possible to identify by the NMR spectral data. 

Due to time restrictions, the synthesis of these compounds was not revisited. 
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2.3.2. Halogenated fluorenone derivatives 

 

Halogenated fluorenone derivatives were synthesized from the respective 

halogenated fluorenes by air oxidation, using a base-catalyzed reaction in the presence of 

a phase-transfer catalyst, Aliquat® 336, also known as Starks' catalyst [9] (reaction 2.13). 

The general procedure was validated by synthesizing 9-fluorenone (R1 = R2 = H) from 

fluorene, and after a satisfactory outcome of this initial test, the procedure was adapted to 

synthesize 2-bromofluorenone (13), 2-iodofluorenone (15), 2,7-dichlorofluorenone (16) and 

2,7-diiodofluorenone (17).  

 

 

 (2.13) 

 

 

To a solution of the halofluorene (1mmol) in toluene (10 mL), aqueous NaOH (10M, 

10 mL) was added. The mixture was stirred vigorously while 6 drops of aliquat were added. 

The mixture was kept under agitation for further 30 min After this period, the organic layer 

was separated and washed with aqueous HCl (1M, 2 × 10 mL) and brine (2 × 10 mL). The 

organic phase was dried over anhydrous Na2SO4 and evaporated to dryness yielding a 

bright yellow powder, characteristic of fluorenone derivatives. The resulting products were 

purified by flash column chromatography (dichloromethane/petroleum ether 4:6). The 

collected fractions were monitored by TLC and the ones expected to contain the desired 

product were combined and evaporated to dryness. 

 

Purities: (13) 0.983; (15) 0.961; (16) 0.975; (17) 0.981. 

Synthetic yields: (15) 55.9 %; (16) 58.1 %; (17) 76.7 %. Negligently, the obtained mass of 

(13) after synthesis was not registered which prevented the yield calculation. 
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3.1. Purification and characterization 

 

 

3.1.1. Purification methods 

 

With the exception of the synthetized compounds, all the other ones studied in this 

work were commercially acquired from Sigma-Aldrich Co., Tokyo Chemical Industry and 

Acros Organics, with a degree of purity ranging between 0.97 and 0.99 according to the 

information available in the respective certificates of analysis provided by the suppliers. 

The high sensitivity of the techniques used in this work demands the use of samples 

with a high degree of purity. All the compounds studied in this work, solid at room 

temperature, were routinely purified by successive sublimation under reduced pressure (ca. 

1 Pa) until a convenient degree of purity was achieved. Additionally, when proved 

necessary, some of the compounds were further purified by successive recrystallization in 

an adequate solvent and, afterwards, thoroughly dried and sublimed under reduced 

pressure. 

 

 

3.1.2. Purity analysis 

 

The purity monitoring throughout the purification process and the determination of the 

mass fraction of impurities of the purified samples was performed by GC. This analysis was 

performed on an Agilent 4890D chromatograph, equipped with a HP-5 semi-capillary 

column (15 m length, 0.53 mm inner diameter and 1.5 m film thickness), whose stationary 

phase consists of 0.05 diphenyl and 0.95 dimethylpolysiloxane (mole fraction). 

The signal detection at the end of the column is carried out by a flame ionization 

detector (FID), under a flow of hydrogen (0.47 cm3s–1). The mobile phase consists of 

compressed air, used as carrier gas (5.1 cm3s–1), and nitrogen, as auxiliary gas (0.50 cm3 

s–1). The HP GC Chem Station Rev software, supplied by the manufacturer, displays the 

detected signal in real time, which is proportional to the mass of ionized material in the 

detector. 

A sample of the compound to be analyzed was dissolved in a suitable solvent 

(spectroscopic grade), and injected into the chromatograph (about 1 L). To allow the 

solvent to be vaporized and quickly detected, the sample is kept at an initial predefined 

temperature during a stabilization period of 1 minute, followed by a heating ramp at 0.17 
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Ks–1 to a final predefined temperature kept constant during a suitable period of time to 

ensure that the sample is completely eliminated from the column. Chromatographic 

conditions, such as the injector and detector temperatures, as well as the initial and final 

predefined oven temperatures were optimized according to the characteristics of each 

compound. 

All data regarding the source of the compounds (acquired or synthesized), lot number 

and respective degree of purity certified by the supplier (when acquired), purification details 

and the final degree of purity of the compounds studied are fully presented in chapter 4. 
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3.2. Calorimetric methods 

 

 

3.2.1. Differential calorimetry 

 

 

3.2.1.1. Introduction to differential calorimetry 

 

Differential thermal analysis by calorimetric methods provides qualitative and 

quantitative information on the change of physical properties of a substance associated with 

processes that result in release or absorption of heat as a function of temperature. In this 

group of methods are included calorimetric methods like differential scanning calorimetry 

(DSC) and Calvet microcalorimetry. 

Calorimetric differential analysis is extremely versatile, allowing the direct 

determination of temperatures and transition enthalpies in condensed phases, the 

measurement of temperature-dependent properties such as heat capacity, detection of 

thermal decomposition processes, identification of different polymorphic forms, etc, on a 

vast diversity of materials such as liquid crystals, drugs, biological materials, metals, 

polymers, glass and ceramics, etc. [1]. 

In differential measuring systems, the calorimeter’s signal depends on the difference 

between the responses of a reference and a sample to a temperature variation. The 

advantage of the differential principle is that disturbances to the system, with the exception 

of those occurring in the sample, affect both the sample and the reference equally and are 

compensated by the difference between the individual signals. Differential calorimeters also 

present the advantages of being easy to work with, the experiments are fast, require only 

small amounts of sample (about 5-10 mg), can be performed at temperatures significantly 

above ambient and allow the study of “slow” reactions, which are outside the normal 

operating range of most adiabatic calorimeters. These advantages, however, have some 

costs in terms of accuracy, yielding results generally less accurate than the corresponding 

measurements by adiabatic calorimetry [2]. 

Two general types of differential calorimeters must be distinguished, according to their 

operation principle [3,4]: 

• Power compensation calorimeters, where the output signal of the calorimeter is 

proportional to the difference between the heat flow rates supplied to the sample and 

the reference, in separate furnaces; 
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• and Heat flux calorimeters, where the temperature difference between the sample 

and reference, in the same furnace, is directly converted in a difference in potential, 

proportional to a difference in heat flow rate to the sample and to the reference.  

Differential calorimeters can be operated in a dynamic (non-isothermal) mode, where 

the sample is subjected to heating and/or cooling, or in an isothermal mode, in which the 

temperature is maintained constant. 

Both types of differential calorimeters and modes of operation were used in this work 

to determine phase transition properties. The respective apparatuses and experimental 

procedures will be described as follows (sections 3.2.1.2 and 3.2.1.3). 

 

 

3.2.1.2. Power compensation calorimetry: Differential scanning calorimeter 

 

A power compensation calorimeter, simply schematized in figure 3.1, consists of two 

identical microfurnaces, thermally decoupled, one containing the sample (S) and other the 

reference (R), each associated to a temperature sensor (1) and a heating resistance (2) 

controlled by independent electrical circuits. 

 

 

 

 

Figure 3.1. General schematic representation of a power compensation calorimeter (S. sample furnace; R. reference furnace;                 

1. temperature sensors; 2. heating resistances; 3. sample crucible; 4. reference crucible). 

 

 

The samples are enclosed in crucibles (3), made of high thermal conductivity 

materials (e.g., aluminum, copper), which may or may not be hermetically sealed, 

depending on the type of application. The selection of the appropriate crucibles depends on 

the characteristics of the sample to be analyzed and the properties to be determined. The 

reference generally consists of an empty crucible (4) with a mass as similar as possible to 
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that of the sample crucible. During the experiments, a purging gas (e.g., helium, argon, 

nitrogen) is flowed through the furnaces at a constant rate to ensure that the ambient 

conditions are as uniform as possible in all experiments. 

During a thermal characterization study, the same heating power is supplied to both 

furnaces in order to change their temperature in accordance to a preset heating rate. If there 

is ideal thermal symmetry between both furnaces, their temperature is the same. When 

thermal asymmetry occurs, after the release or consumption of heat due to a certain 

physical or chemical process in the sample, the system compensates the temperature 

difference, adjusting the heat flow rate by Joule heating (in the mW range) through a heating 

resistance, to reduce the difference between the temperature of the sample and reference 

furnaces. 

 

 

3.2.1.2.1. Typical thermogram and treatment of experimental results 

 

DSC results are usually displayed as thermal analysis curves, or thermograms, in 

which the instrument signal, heat flow rate, is plotted as a function of time and temperature. 

In the absence of any changes in the sample, the sample and reference furnaces are at the 

same temperature and heat flow rate is approximately constant, establishing the baseline. 

The baseline is related to the heat capacity of the sample in the absence of phase 

transitions, and its good definition is crucial for the reproducibility and accuracy of 

experimental results. 

Prior to heating, the sample is subjected to an isothermal period to reach equilibrium 

with the furnace conditions. The sample is then heated, according to a preset heating rate, 

and when a thermic transformation occurs, the resulting change in heat flow rate causes a 

deviation from the baseline in the form of a peak. In the DSC experiments performed in the 

present work, a negative deviation corresponds to an endothermic process (e.g., melting), 

whereas a positive deviation corresponds to an exothermic process (e.g., crystallization). 

Figure 3.2 represents a typical thermogram of an endothermic process based on a 

dynamic method, showing the temperature ramp (dashed line) and the heat flow rate, , 

associated with the occurring transitions (solid line). To characterize the transition 

associated to the peak, it is necessary to define the onset temperature and area of the peak, 

which are respectively related to the temperature and enthalpy of transition. The transition 

temperature, Ttr, is the onset temperature defined by the intersection between the tangent 

that follows the downslope of the peak and the extrapolated baseline. The heat associated 

to the process is determined by the area of the peak, defined from the interpolation of the 
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baseline connecting the beginning and end of the transition. Assuming that the experiment 

occurs at constant pressure, the measured heat corresponds to the change in enthalpy 

during the process.  

The difference between the baseline before and after the transition will depend on 

the change in heat capacity of the sample with temperature. In the case of figure 3.2, they 

are nearly collinear, which means that the sample transformation occurs with no significant 

change in heat capacity. 

 

 

 
 

Figure 3.2. Schematic representation of a typical power compensation DSC thermogram. 

 

 

3.2.1.2.2. Calibration  

 

The calorimeter’s signal does not depend solely on the occurring thermal process but 

also on a number of factors inherent to the calorimeter, namely heating rate, thermal 

conductivity of the crucible material, nature and flow of the purge gas, etc. To account for 

thermal gradients between the crucibles, the sample and the reference, it’s crucial to 

carefully calibrate the apparatus [5]. 

In order to achieve reproducibility and accuracy of the results, it is necessary to 

perform the calibration in terms of temperature and in terms of heat flow. The aim of this 

calibration is to assign the correct values of temperature and heat flow rates to those 

indicated by the instrument. Therefore, the determined calibration constants are factors of 

 ndo  

  

 onset 

  
  

  

 
 m

→
  

   min  



FCUP 

3. Experimental methods 

37 

 

proportionality between quantities measured by the device and the actual values. Because 

the calibration constants are complex and generally unknown functions of various 

parameters, the calibration experiments should be carried under the same experimental 

conditions used for the sample experiments. 

The recommended calibration method for a dynamic operated DSC involves the 

determination of the temperature of fusion of several standard substances for thermal 

analysis, as some of those recommended by Sabbah et al. [6], over the temperature range 

of the equipment and using various heating rates. 

A number of the recommended temperature standards have well established 

enthalpies of transition, allowing both temperature and enthalpy calibration to be performed 

simultaneously.  

 

 

3.2.1.2.3. Description of the apparatuses 

 

Two differential scanning calorimeters were used in this work, both with power 

compensation in a dynamic mode. Initially, a DSC 141 SETARAM calorimeter was used. 

Later this apparatus was replaced by a PerkinElmer Diamond Pyris 1 calorimeter. The 

detailed description and mode of operation of both apparatuses can be found in the 

respective manuals provided with the devices [7,8].  

DSC studies were carried out using hermetically sealed aluminum crucibles (30 or 50 

L capacity) and a flow of nitrogen used as purging gas. For some of the compounds studied 

in the SETARAM calorimeter, it was necessary to use a pressed aluminum disk between 

the crucible and the lid to ensure its tightness. 

The calibration of both calorimeters was performed by other researchers, using high 

purity reference materials and test substances (details in table 3.1) and the same heating 

rate and aluminum crucibles used in the sample study.  

In case of the SETARAM calorimeter, the heat flow and temperature scales of the 

calorimeter were calibrated independently, at a 2 Kmin‒1 heating rate. The heat flow scale 

was calibrated using indium and the temperature scale was calibrated by measuring the 

melting temperature of indium, tin, benzoic acid, o-terphenyl, 4-methoxybenzoic acid and 

lead [9]. In case of the PerkinElmer calorimeter, the power and temperature scales of the 

calorimeter were calibrated simultaneously, at 2, 5 and 10 Kmin‒1 heating rates, by 

measuring the melting temperature of the following substances [10]:  naphthalene, benzoic 

acid, diphenylacetic acid, triphenylene, perylene, o-terphenyl 1,3,5-triphenylbenzene, 4-

methoxybenzoic acid and anthracene. 



38 FCUP  

3. Experimental methods 

 

Table 3.1. Reference materials used for the calibration of temperature and enthalpy of fusion (literature data collected from 

ref. [6], unless otherwise indicated). 

Calibrant fus

K

T
 

o

fus m fus

1

( )

kJ mol

H T





 Classification 

Indium 429.75 3.29 ± 0.1 Primary standard 

Tin 505.08 7.17 ± 0.4 Primary standard 

Naphthalene 353.35 19.06 ± 0.8 Primary standard 

Benzoic acid 395.50 18.06 ± 0.4 Primary standard 

Diphenylacetic acid 420.41 31.27 ± 0.4 Secondary standard 

Triphenylene 471.02 24.74 ± 0.8 Secondary standard 

Perylene 551.25 31.87 ± 0.8 Secondary standard 

o-Terphenyl 329.35 [11] 17.19 ± 0.01 [12]  Test substance 

1,3,5-Triphenylbenzene 447.9 [13] 32.4 ± 1.3 [12] Test substance 

4-Methoxybenzoic acid 456.43 [5] 28.33 ± 0.14 [14] Test substance 

Anthracene 488.93 [15] 29.4 ± 0.1 [12] Test substance 

Lead 600.61 [5] 4.78 ± 0.2 [5] Test substance 

 

 

3.2.1.2.4. Experimental procedure 

 

In each experiment, two aluminum crucibles, very close in mass, are used. A small 

sample (5 to 10 mg) of pulverized crystalline compound is placed in one of the crucibles, 

while the other is kept empty for reference.  

Once prepared and sealed, both crucibles are accurately weighed (Mettler Toledo 

XS105, ±110‒5 g or Mettler Toledo UMT2, ±110‒7 g). The amount of sample is determined 

by the difference in mass of the crucible containing the sample and empty. The crucibles 

are placed in their respective measuring chambers and the desired temperature program is 

set. For each compound, four to six independent thermal scans were performed on fresh 

samples under a constant flow of nitrogen, starting at room temperature to about 15 K above 

the melting temperature, at a heating rate of 2 Kmin‒1, and then cooled back to room 

temperature. The recorded thermogram is analyzed, using the instrument’s dedicated 

software, to compute the onset temperatures and the enthalpies of occurring condensed 

phase transitions. After the scan, the sample crucible is weighed again to ensure that no 

mass loss occurred during the experiment. The absence of decomposition and the 

thermodynamic reversibility of the condensed phase transitions is confirmed by a second 

run with the same sample recrystallized in situ. 
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3.2.1.3. Heat flux calorimetry: Calvet microcalorimeter 

 

In heat flow calorimeters, the heat associated with a given process occurring in a 

reaction vessel – calorimetric cell – is exchanged by conduction with a heat sink kept at a 

constant temperature – an isothermal block – where they are inserted.  

Tian [16] was one of the first scientists to use the heat conduction principle for 

constructing calorimeters. Later, Calvet [17,18] developed a calorimeter based on twin Tian 

systems, symmetrically placed inside an isothermal block, providing an effective 

compensation for irregular heat effects. Its theoretical and operating principles are fully 

described in the literature [19,20]. 

Calvet microcalorimeters are particularly suited for the study of slow reactions and the 

measurement of very small amounts of energy, hence the designation ‘microcalorimeter’. 

They can be divided into two groups: high temperatures calorimeters applied to slow 

thermal processes, phase transitions and heat capacities determinations, and the low-

temperature calorimeters for the study of biological processes. Calvet microcalorimeters, 

however, have the downsides of having much longer response times and very slow heating 

and cooling rates, when compared to a DSC for example. 

The Calvet microcalorimeter, as shown in figure 3.3, is basically composed of two 

identical calorimetric cells, placed in symmetrically arranged cavities in a large metal block 

(1). The process under study occurs in the sample cell (2), while the other cell operates as 

a reference (3). The heat transfer between the cells and the isothermal block is monitored 

by high thermal conductivity thermopiles containing large numbers of identical 

thermocouples, connected in series, regularly arranged around the calorimetric cells.  

 

 

 
 

Figure 3.3. General schematic representation of a heat flux Calvet microcalorimeter (S. sample cavity; R. reference cavity;              

1. isothermal block; 2. sample cell; 3. reference cell; 4. thermopiles; 5. differential connection between thermopiles). 
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The thermopiles (4) act as the measuring sensor of the temperature difference 

between the outer surface of the calorimetric cell and the inner surface of the isothermal 

block and, simultaneously, as a thermal bridge between the cells and the isothermal block. 

The thermopiles of the two calorimetric cells are connected in opposition (5) so that the 

measured output signal is a difference in potential generated by the two thermopiles. The 

resulting heat flow, directly proportional to the temperature gradient between the two 

calorimetric cells, is compensated by Peltier effect (for exothermic processes) or Joule 

heating (for endothermic processes), in order to keep the temperature constant. 

The experimental procedure commonly used for this type of calorimetry, known as the 

“drop calorimetric technique”, was developed by Skinner et al. [21] for the determination of 

enthalpies of sublimation. In this procedure, a known mass of sample contained in a small 

glass capillary at room temperature is dropped into the sample cell of the calorimeter. To 

compensate the thermal disturbance produced by dropping the glass capillary into the 

sample cell, a similar but empty capillary is simultaneously dropped into the reference cell. 

This allows the determination of the heat associated solely with the process taking place in 

the sample cell. This technique has been adapted to the study of liquid compounds by 

Ribeiro da Silva and colleagues [22] in order to determine molar enthalpies of vaporization.  

In this calorimetric technique, the processes do not occur under equilibrium 

conditions, which can compromise the accuracy of the experimental results. Studies by 

Skinner et al. [21] showed that the results obtained by microcalorimetry Calvet can differ up 

to 5 % from the results derived from vapor pressures determined by the Knudsen mass-

loss effusion method. For the Calvet microcalorimeter used in this work [23], it was 

concluded that the uncertainty of the method may be better than 2 %, however conditioned 

by the compound’s purity and thermal stability, the appropriate choice of the reference 

compounds used in calibration (section 3.2.1.3.2), and the uncertainty introduced by the 

enthalpic corrective term, o

298.15 K m(g).T H  

 

 

3.2.1.3.1. Typical thermogram and treatment of experimental results 

 

The study of the thermal process occurring in the calorimeter is performed by 

measuring the heat flow, , over time, defining a thermogram similar to the curve illustrated 

in figure 3.4.  
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Figure 3.4. Schematic representation of a typical Calvet microcalorimetry thermogram. 

 

 

After thermal equilibrium is reached between the cells and the calorimetric block, held 

at a predefined temperature T, the initial baseline is defined. When the capillary tubes are 

simultaneously dropped at room temperature (ca. 298 K) in the respective calorimetric cells, 

the first endothermic peak is observed due to the heating of the sample from 298 K to the 

temperature of the calorimeter, if T is smaller than the temperature of fusion of the 

compound. If T is larger than the temperature of fusion, the first endothermic peak includes 

the heating of the sample from 298 K to the temperature of the calorimeter as well as the   

enthalpy of fusion. Once the capillaries reach thermal stability inside the calorimeter, the 

system is evacuated and the sample is rapidly removed from the calorimetric cell originating 

a second endothermic curve in the thermogram.  

The enthalpy variation of the total process, g,

cr/l,298.15 K m

T H , can be determined from the 

integration of the total area under the baseline of the thermogram. This thermogram 

includes the following enthalpic contributions: 

 Thermal disturbances produced by dropping the glass capillaries into the calorimetric 

cells; 

 Heating of the glass capillaries and sample, in the condensed state, from 298 K to the 

temperature of the calorimeter; 

 Phase transition(s). 

Endo 
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The determination of the standard molar enthalpy of sublimation or vaporization, at 

the reference temperature T = 298.15 K, is obtained from the experimental result

g,

cr/l,298.15 K m

T H , according to the thermodynamic cycle shown in figure 3.5. 

 

 

 

 

Figure 3.5. Representative thermodynamic cycle of the processes occurring during a Calvet microcalorimetry sublimation or 

vaporization experiment. 

 

 

The standard molar enthalpy of sublimation or vaporization, at the reference 

temperature T = 298.15 K, can then be determined from the following expression: 

 

 g o g, o o

cr/l m cr/l,298.15K m 298.15K m298.15 K (g)T TH H H      (3.1) 

 

where the term o

298.15K m

T H (g) corresponds to the thermal adjustment of the enthalpy, in the 

gaseous state, and can be estimated by computational methods or by group additivity 

methods derived from the data of Stull et al. [2]. 

 

 

3.2.1.3.2. Calibration 

 

Temperature calibration 

The calibration of the temperature of the isothermal block of the calorimeter, 

performed by other investigators [23], was achieved by establishing a relation (given by 

Compound (cr/l), 

298.15 K, 105 Pa 

Compound (g), 

T, 0 Pa 

Compound (g), 

298.15 K, 0 Pa 

g o

cr/l m(298.15 K)H

o

298.15 K m 298.15 K
(g) 

T
T

pH c dT  g, o

cr,298.15K m

T H
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expression 2.2) between the actual temperature of the calorimetric cells, measured by a 

PT100 temperature sensor calibrated against a SPRT temperature probe (25 ; Tinsley, 

5187A), and that indicated by the Setaram G11 controller. 

 

θreal/oC = 1.0054 θG11/oC ‒ 3.822 (3.2) 

 

Blank calibration 

Because the mass of the capillaries (sample and reference) is not exactly the same, 

the heat capacities of the capillary tubes do not cancel each other totally, and their 

contributions are not negligible for the total enthalpy change. Therefore, to account for the 

difference in mass of both capillaries and, also, the different sensibilities of the two 

measuring cells, the additional enthalpic contribution is determined through blank 

experiments, at various temperatures, where empty capillary tubes of similar masses are 

simultaneously dropped into both calorimetric cells. 

For the calorimetric system used, blank experiments were performed by other 

investigators [23], using capillaries with masses ranging between (20 and 30) mg. 

Expression 3.3 was used for the determination of the enthalpic blank correction, 

corr (blank)H , as a function of the temperature difference between the calorimetric cell and 

the temperature 298.15 K, and the masses of the reference, mref, and empty sample 

capillary tubes, mexp  a = ‒20.3902, b = ‒0.88204, c = 0.816818, d = 1.814894 [23]). 

 

 corr exp ref(blank)/mJ ( /mg) ( /mg) ( /K) 298.15H a b m c m d T         (3.3) 

 

Calorimeter calibration  

The entrance of the calorimetric cells is not covered by thermocouples. Through this 

small uncovered area some thermal leakage can occur by convection and radiation 

processes. In order to account for this and other heat transfer processes, calibration 

experiments are performed, under the same conditions carried out in the experiments with 

the compounds under study, to determine a proportionality factor, kcal, between the heat 

involved in the reaction and the area of the thermogram obtained experimentally, according 

to equation 3.4. 

 

g, o

cr/l,298.15K m

cal g, o

cr/l,298.15K m

( )
(cal)

T

T

H
k T

H





 (3.4) 
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The standard substance selected as calibrant should present volatility comparable to 

that of the compound under study, within the experimental temperature range. In this work, 

the calibration was performed using recommended primary standard substances [6], 

anthracene and naphthalene, whose molar enthalpies of sublimation are rigorously 

established (table 3.2). The average calibration constant, at the temperature T, kcal, used 

in the calculation of enthalpies of sublimation of the studied compounds is determined as 

the mean of at least six agreeing values. 

 

 

Table 3.2. Reference materials used for the calibration of the Calvet microcalorimeter. 

Calibrant fus

K

T
 

Temp. range

K
 

g o

cr m

1

(298.15 K)

kJ mol

H





 Classification 

Naphthalene 353.35 [250 - 353] 72.6 ± 0.6 [6] Primary standard 

Anthracene 488.93 [338 - 360] 100.4 ± 0.4 [23] Primary standard 

 

 

3.2.1.3.3. Description of the apparatus 

 

The calorimetric system used is based on a commercial high temperature Calvet 

microcalorimeter Setaram HT1000D, in isothermal mode, which can be operated from room 

temperature to 1.3103 K, using the drop calorimetric technique referred to above. Both the 

apparatus and technique have been previously described in the literature [23]. 

The complete system, schematized in figure 3.6, includes, in addition to the Calvet 

microcalorimeter (A), a pumping system (B) and a glass vacuum line (C), which will be 

briefly described as follows. 

 

Calvet microcalorimeter 

The Calvet microcalorimeter Setaram HT1000D consists of an inner isothermal metal 

block of high heat capacity (1) externally lined with ceramic material (2), containing two 

identical cavities in which the calorimetric cells (3) are introduced. The base of each cavity 

is surrounded by a thermopile (4) composed of 496 thermocouples (Pt-Pt/Rh) connected in 

series and radially arranged around each cavity. 

The temperature of the metal block is regulated by a Setaram G11 control system, 

which also has the function of amplifying and registering the electronic signal from the 

thermocouples. The temperature is programmed through the Setaram 3.20 software, 
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installed in an interfaced computer that is also used for the data acquisition, graphical 

representation of the thermogram in real time, and for the related calculations. 

 

 

 
 

Figure 3.6. Schematic representation of the complete Calvet microcalorimeter: A. Calvet microcalorimeter Setaram HT1000D 

(1. isothermal metal block; 2. ceramic lining; 3. calorimetric cells; 4. thermopile); B. Vacuum pumping system (5. rotary pump; 

6. oil diffusion pump; 7. Pirani gauge; 8. Penning gauge); C. Vacuum line (9. Liquid nitrogen glass trap; 10. isolation teflon 

valve; 11. air inlet teflon valve; 12. pyrex vessel; 13. kanthal cylinder; 14. Inner pyrex tube). Image adapted from ref. [23]. 

 

 

Vacuum pumping system 

The pumping system consists of an Edwards RV5 rotary pump (5), which is used both 

for pre-evacuating the system and for backing the Edwards Diffstak 63 oil diffusion pump 

(6). An Edwards APG-M Pirani gauge (7) is used to measure the pressure of the system 

during the pre-evacuation process and an Edwards AIM-S Penning gauge (8) is used to 

measure the pressure kept throughout the sublimation process.  

 

Vacuum line and calorimetric cells 

The twin calorimetric cells are connected to the vacuum pumping system through a 

glass line that includes a liquid nitrogen trap (9) to condense the sublimated samples 

preventing contamination of the pumping system. Between the trap and the calorimetric 

cells, there are two valves, one allowing the isolation of the pumping system (10) and the 
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other used to admit air in the system (11) for restoring the atmospheric pressure. All glass 

connections in the system are made of greaseless spherical joints from Young. 

The calorimetric cells (3) consist of long inlet tubes made of pyrex® glass that extend 

to the inside of the thermal block ending in small vessels (12), cylindrical in shape. The 

vessels are tightly fitted into cylinders made of kanthal® (iron-chromium-aluminum alloy 

used for high-temperature applications) (13), which promote good thermal contact between 

the calorimetric vessel and the isothermal block. The calorimetric cells are equipped with 

inner tubes (14), through which the capillaries are dropped, easy to remove and clean 

without removing the calorimetric cells, and therefore without significant disturbance to the 

thermal equilibrium, allowing multiple consecutive experiments. 

 

 

3.2.1.3.4. Experimental procedure 

 

In each experiment, a pair of glass capillary tubes (Marienfeld Superior, ext = 1.5 -1.6 

mm), sealed at one end, with a mass difference between them inferior to 0.1 mg, was 

selected and accurately weighed (Mettler Toledo UMT2, ±110‒7 g). A pulverized sample of 

a crystalline compound (3 to 5 mg) is placed in one of the capillaries while the other is kept 

empty as a reference. The capillary containing the sample is weighed again and the amount 

of sample is determined by the difference in mass. Preliminary experiments were performed 

to determine the appropriate experimental temperature for each compound. 

After thermal equilibrium is reached between the cells and the calorimetric block, the 

capillary tubes are simultaneously dropped at ca. 298 K in the respective calorimetric cells. 

The system is then sealed and once the capillaries reach thermal stability inside the 

calorimetric cells, the system is evacuated and the sample is spontaneously removed by 

sublimation. When the signal returns to the baseline and the experiment is finished, the 

pumping system is isolated and air is slowly admitted in the system. The acquired data is 

processed using the instrument’s dedicated software, to compute the experimental enthalpy 

changes. 

When the experimental study of the compound is finished, this procedure is repeated 

at the same experimental temperature for the calibration using capillaries filled with a 

selected calibrant.  
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3.2.2. Combustion Calorimetry 

 

 

3.2.2.1 Introduction to combustion calorimetry 

 

Combustion calorimetry is one of the most precise and accurate calorimetric 

techniques for the determination of enthalpies of formation of organic compounds in a 

condensed state [24,25]. The calorimetric study of a combustion reaction allows the 

measurement of the amount of energy, at constant volume, associated to the complete 

oxidation of a compound under controlled experimental conditions. The combustion must 

occur rapidly, with no side reactions, and originate identifiable and quantifiable products, as 

well as an amount of energy per mass unit easily measurable. Rigorous characterization of 

the initial and final states of each calorimetric experiment ensures the reproducibility and 

reliability of the experimental results.  

The calorimeters used in the combustion study are frequently of the isoperibol type, 

and consist of a calorimetric vessel in controlled thermal contact with its surroundings ‒ a 

thermostatic bath ‒ which is kept at a constant temperature, independent of the course of 

the experiment. The heat flow between the calorimeter vessel and the surroundings is 

allowed, though limited, and accurately controlled to ensure that the amount of heat 

exchanged between them is proportional to the respective temperature difference, following 

Newton's law of cooling. 

The combustion reaction takes place in a reaction chamber located within the 

calorimetric vessel ‒ a combustion bomb ‒ and consists of a sealed metal container with 

thick walls, suitable to withstand high pressures, where the combustion reaction is triggered 

by the ignition of a fuse in a pressurized oxidizing atmosphere, to promote a fast and 

complete reaction. The heat released in the reaction is calculated from the temperature rise 

of the calorimetric fluid (water or other high thermal conductivity fluid) placed inside the 

calorimetric vessel, where the sealed combustion bomb is immersed during the combustion 

process. 

The selection of the appropriate system and procedure for the calorimetric study of a 

certain compound will depend, above all, on its composition and, consequently, the nature 

of the combustion products formed. In the case of organic compounds constituted of carbon, 

hydrogen, oxygen and/or nitrogen, combustion calorimetry in a static bomb is the suitable 

method, leading generally to a rapid and complete combustion reaction with simple and 

easily-defined products. 
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Organic compounds with other elements, such as sulfur or halogens, present 

additional difficulties due to the corrosive nature of some of their combustion products and 

the difficulty to characterize unambiguous the final state of the combustion process. For this 

type of compounds, combustion calorimetry in a rotating bomb, internally lined with 

corrosive resistant materials such as platinum or tantalum, is the appropriate method. This 

type of calorimeter allows the rotation of the bomb in two orthogonal axes, after the complete 

combustion of the sample till the end of calorimetric experiment. The presence of a suitable 

bomb solution, in combination with the rotation movement to wash the inner walls of the 

bomb, promotes the complete dissolution of the combustion products and a homogeneous 

oxidation state of the species in the bomb content, facilitating its analysis and accurate 

characterization. 

The apparatuses and experimental procedures for both methods will be described in 

more detail ahead in this work (section 3.2.2.3). 

 

 

3.2.2.1.1. Combustion of organic compounds containing bromine 

 

In this work, some organic compounds containing bromine were studied by rotating 

bomb combustion calorimetry. 

The combustion reaction of brominated organic compounds with empirical formula 

CaHbOcNdBre, in oxygen atmosphere, yields reaction products containing bromine in 

different proportions and in different oxidation states: (3 to 10) % of HBr and (90 to 97) % 

of Br2 [25], according to the reaction represented by chemical equation (3.6). 

 

   a b d e 2c

4a
O

b
C H N Br cr   O g   

4

   
 

 

       2 2 2 2

b d e
a CO g   H O l   N g   Br g

2 2 2
    

(3.6) 

 

Bjellerup [26] was the pioneer in using rotating bomb combustion calorimetry for the 

study of organic compounds containing bromine, using a bomb solution of arsenic(III) oxide 
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as a reducing agent to promote the conversion of the molecular bromine to bromide ion, 

according to the reaction in equation 3.7, 

 

2 3 2 2 2 5

e e e e
 As O (aq)  Br (l,g)  H O(l)   As O (aq)

4 2 2
      e HBr(aq)

4
   (3.7) 

 

in order to achieve a homogeneous and well-defined final state, with hydrobromic acid as 

the only combustion product containing bromine: 

 

     ca b d e 2 2

4a b 2c e
C H N Br cr   O g   H O

e(2n 1) b
O

2
 l

4

         
   

   

     2 2 2

d
 a CO g   N g   e HBr·nH O l

2
    

(3.8) 

 

The hydrobromic acid formed in the combustion process reacts with the platinum 

crucible and fittings, though to a very small extent, dissolving it in the bomb solution. So it 

is necessary to account for the energy contribution associated with the side reaction 3.9. 

 

2 2 4 2(s)  H PtBr H O
1

4 HBr (aq)  O (g)  Pt (aq
2

l)) (     (3.9) 

 

 

3.2.2.2. Theoretical and technical basis of the method 

 

 

3.2.2.2.1. Variation of temperature in adiabatic conditions 

 

In a combustion calorimetric experiment, the heat involved in the combustion process 

will cause a variation in the calorimeter’s temperature. The temperature variation during a 

combustion experiment on an isoperibol system is typically represented by the thermogram 

schematized in figure 3.7. The calorimetric curve can be divided into three distinct periods: 

the initial and final periods, where temperature variation is due mainly to the heat transfer 

between the calorimeter and the surroundings, and the heat of stirring; and the main period, 

where there is a sudden rise in temperature fundamentally due to the combustion reaction 

taking place within the bomb.  
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Figure 3.7. Typical curve of the calorimetric temperature versus time during a combustion experiment. 

 

 

The observed temperature rise during the combustion experiment, corrected for 

adiabatic conditions, Tad, is determined from Tf - Ti, taking into consideration the heat 

exchange between the calorimetric vessel and the surroundings and the heat produced by 

the stirring of the calorimetric fluid. These effects are taken into account with a corrective 

term, ΔTcorr, in the calculation of the variation of temperature in adiabatic conditions, 

according to expression 3.10, Ti and Tf being, respectively, the calorimeter temperature at 

the start and end of the main period. 

 

 ad f i corrT T T T      (3.10) 

 

The thermal corrective term can be determined following the method described by 

Coops et al. [27], which assumes the variation in temperature caused by heat of stirring of 

the calorimetric fluid, u, as being constant throughout the experiment and the variation in 

temperature due to heat transfer between the calorimeter and the surroundings is 

proportional the difference between the temperatures of the calorimeter, T, and 

surroundings, Ts, according to the Newton's cooling law. 

Ti 
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The temperature variation of the calorimeter, during the initial and final periods, can 

be translated by expression 3.11, where k is a cooling constant of the calorimetric system. 

 

   s

d
k

d

T
u T T

t
 (3.11) 

 

After an infinite period of time, and considering k and Ts as being constant, the 

calorimeter temperature will tend to a constant limit value, T∞, called convergence 

temperature (temperature of the calorimetric fluid after an infinite time, with constant stirring 

at a controlled speed). Then the system reaches an equilibrium state in which the 

temperature variation rate is canceled, (dT/dt) = 0, and consequently: 

 

 sku T T   (3.12) 

 

Replacing u in the equation 3.11: 

 

 d
k

d

T
T T

t
   (3.13) 

 

Defining gi and gf, as the values of (dT/dt) at the average temperatures iT  and fT  of 

the initial and final periods, respectively, then k and T∞ can be defined by the expressions 

3.14 and 3.15, respectively: 

 

i f

f i

k
g g

T T





 (3.14) 

i f i f f i
i f

i fk k

g g g T g T
T T T

g g



    


 (3.15) 

 

During the initial and final periods, temperature variations as a function of time are not 

linear, but in fact defined by exponential curves, as a result of the secondary thermal effects 

mentioned above. However, a linear behavior can be assumed when considering relatively 

short periods of time. The error introduced by this approximation is not relevant and can be 

eliminated if the same calculation method and experimental period intervals are employed 

in both the calibration and compound combustion experiments. This approach allows the 
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determination of gi and gf values, by the least squares regression method, from linear 

functions T = f(t) adjusted to (t, T) values in the initial and final periods. 

The corrective term, Tcorr, for the secondary thermal effects that occur during the 

main period can be determined by the integration of equation 3.13, according to the mean 

value theorem: 

 

     
f

i

corr m f ik  d k

t

t

T T T t T T t t        (3.16) 

 

where Tm is the mean temperature of the main period, which can be determined by: 

 

f

i

m

f i

1
 d

t

t

T T t
t t


   (3.17) 

 

However, the determination of Tm using equation 3.17 is not possible because there 

is no known simple analytical expression T = f(t) to express the temperature rise during the 

main period of a calorimetric experiment. Therefore, Tm is obtained by numerical integration 

using Regnault-Pfaundler method, also called the trapezoid rule [27,28], which allows the 

determination of the area under the curve that defines the main period by dividing it into an 

appropriate number of trapezoids, in order to obtain a good geometric approximation of the 

area. To each trapezoid corresponds a mean temperature ( '

mT , ''

mT , '''

mT …  and Tm 

corresponds to the weighted average of the mean temperature values of all trapezoids: 

 

' '' '''

m m m
m

...

...

aT bT cT
T

a b c

  


  
 (3.18) 

 

where a, b, c, ... are the lengths of the base of each trapezium corresponding to regular 

time intervals between consecutive temperature measurements.  

 

 

3.2.2.2.2. Variation of temperature in adiabatic conditions in rotating bomb 

combustion calorimetry 

 

When considering rotating bomb calorimetry, since the bomb rotation is initiated 

during the main period, the temperature variation of the calorimeter during final period 
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cannot be translated by expression 3.11 because it is necessary to consider an additional 

factor that differentiates it from the initial period, corresponding to the heat of rotation, r, 

constant over time. The temperature variation of the calorimeter during the final period can 

then be translated by the expression: 

 

 s

f

d
k

d

T
u r T T

t

      
 

 (3.19) 

 

Consequently, the convergence temperature of the final period is not coincident with 

that obtained in the initial period. Considering (dT/dt) = 0, T = T∞,i for the initial period and T 

= T∞,f for the final period, and solving equations 3.11 and 3.19 in order to u and r, 

respectively: 

 

 ,i sku T T   (3.20) 

 ,f ,ikr T T    (3.21) 

 

Replacing u and r in expressions 3.11 and 3.19: 

 

 ,i
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k

d

T
T T

t


    
 

 (3.22) 

 ,i
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d

T
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

    
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 (3.23) 

 

For rotating bomb combustion calorimetry, we must also account for the heat 

produced by the rotation of the bomb, at a constant speed, in the calculation of ΔTcorr: 

 

   
r f

i r

corr ,i ,fk  d k  d

t t

t t

T T T t T T t        (3.24) 

 

considering tr as the instant when the bomb rotation is initiated and maintained until the end 

of the experiment, so that:  

 

   
r f

i r

i f d  d

t t

t t

T T t T T t     (3.25) 
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As demonstrated by Good et al. [29], if the bomb rotation is initiated when the 

temperature rise is about 63 % of the total temperature variation observed in the main 

period, the calorimeter temperature variation due to the heat generated by the rotation of 

the bomb is included in the correction for the other thermal effects. Keeping the rotation of 

the bomb until the end of the experiment, besides promoting the equilibrium and 

homogeneity of the final state, also has the advantage of allowing the detection of any 

eventual malfunctions of the rotation mechanism, resulting in an erratic convergence 

temperature. Admitting that the temperature variation during the main period is exponential, 

the value of the mean temperature, Tm, can be calculated as: 

 

 m f i0.63T T T   (3.26) 

 

 

3.2.2.2.3. Calibration of the calorimeter: Energy equivalent calculation 

 

The calibration of the calorimetric system establishes the relation between the 

temperature variation and the energy inherent to a combustion reaction, and allows the 

determination of the energy equivalent of the calorimeter, E, defined as the amount of 

energy that must be supplied to the calorimeter and its contents to raise its temperature by 

one unit, 

 

ad

Q
E

T



 (3.27) 

 

where Q is the amount of heat necessary to produce the corrected temperature variation 

ΔTad.  

The energy equivalent of a bomb calorimeter, determined by supplying an accurately 

known amount of energy to the system under study and measuring the corresponding 

temperature rise, can be determined by two methods: an electrical calibration, by the 

dissipation of an accurately known quantity of electrical energy by Joule heating effect; and 

a chemical calibration, by the combustion of a precisely known mass of a standard 

substance, whose massic energy of combustion was accurately determined by a certified 

laboratory [27]. 

In this work, the determination of the energy equivalent of the calorimetric systems 

used was performed by chemical calibration using the recommended thermochemical 

standard, benzoic acid, reproducing as closely as possible the experimental conditions used 



FCUP 

3. Experimental methods 

55 

 

in the compound combustion experiments, in order to minimize/eliminate eventual 

systematic errors.  

The energy equivalent of the calorimeter, E, translated by the sum of the heat 

capacities of all its components, is generally taken as the sum of two parts: the energy 

equivalent of the calorimeter with the empty combustion bomb, cal, and the energy 

equivalent of the bomb contents. During a combustion experience, there is a change of the 

calorimeter’s content due to the conversion of reactants to products, with different heat 

capacities. Therefore, there is a need to define two equivalents of bomb content: for the 

initial state, i, with the bomb containing only the reactants; and for the final state, f, with 

the bomb containing only the products formed. The energy equivalent of the calorimeter 

can then be defined for the initial and the final states, according to: 

 

i cal iE     (3.28) 

f cal fE     (3.29) 

 

The values of εi and εf for each calibration experiment are determined by the sum of 

the heat capacities of the components of the bomb, respectively, before and after 

combustion reaction, by the following expressions [27]:  

 

           i 2 i 2 2 2 2 i 2O O H O,l H O,l H O,g H O,gv p vC n c m C n      

(3.30) 
           iBA BA fuse fuse Pt Ptp p pc m c m c m   

and 

           f 2 f 2 2 2 2 f 2O O CO CO H O,g H O,gv v vC n C n C n      

(3.31) 
       fPt Pt sol solp pc m c m  

 

In these expressions: 

Cv(O2), Cv(CO2), 

Cv(H2O,g)  

represent, respectively, the molar heat capacity, at constant volume, of 

oxygen, carbon dioxide and water vapor; 

cp(H2O,l), cp(BA), 

cp(fuse), cp(Pt), 

cp(sol)
 

represent, respectively, the specific heat capacity, at constant pressure 

of liquid water, benzoic acid, cotton fuse, platinum and final bomb 

solution; 

ni(O2), ni(H2O,g)
 

represent, respectively, the initial amount of oxygen and water vapor; 
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m(H2O,l), m(BA), 

mi(Pt), m(fuse)
 

represent, respectively, the initial masses of liquid water, benzoic acid, 

platinum and cotton fuse; 

nf(O2), n(CO2,g), 

nf(H2O,g)
 

represent, respectively, the final amounts of oxygen, carbon dioxide and 

water vapor; 

mf(Pt), m(sol) represent, respectively, the final masses of platinum and final bomb 

solution. 

 

The determination of cal, from the calibration experiments, is based on the following 

thermochemical cycle: 

 

 

 
 

Figure 3.8. Thermochemical cycle for the calculation of the energy equivalent of the calorimeter, εcal. 

 

 

from which the following expression was deduced: 
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

          
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(3.32) 

 

A correction of εcal will be required when the mass of water placed in the calorimeter 

vessel differs from the reference mass of water, according to,  

 

     cal cal 2 2corr H O,l H O,lpC m    
 (3.33) 
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in which Cp(H2O,l) is the heat capacity of liquid water at constant pressure and Δm(H2O,l) 

is the difference between the net mass of water placed in the calorimetric vessel and the 

reference mass. 

For calibration experiments, the variation of internal energy associated to the 

isothermal bomb process, ΔU(IBP), at T = 298.15 K, includes the energetic contributions 

due to the combustion of benzoic acid and cotton fuse, and other side reactions: 

 

           3IBP BA HNO fuse ign carbU U U U U U          
 (3.34) 

 

In this expression: 

(BA)U  is the variation of internal energy associated to the combustion of benzoic 

acid, given by the product of the mass of benzoic acid by the respective 

certified value of massic energy of combustion: ΔU(BA) = m(BA) 

Δcu(BA,cert); 

3(HNO )U  is the variation of internal energy associated to the formation of a nitric acid 

aqueous solution of 0.1 moldm−3 from N2 (g), O2 (g) and H2O (l), described by 

the chemical equation: 1/2 N2 (g) + 5/4 O2 (g) + 1/2 H2O (l)  HNO3 (aq), with  

 o

m 3HNOU = −59.7 kJmol−1 [30];  

(fuse)U  is the variation of internal energy associated to the combustion of the cotton 

fuse (empirical formula CH1.686O0.843) given by the product of the mass of fuse 

by the standard massic energy of combustion of cotton, cuo(cotton) = −16240 

Jg−1 [27];  

(ign)U  is the energy supplied for the ignition, calculated as: 2 2

i f(ign) ½ ( ),U C V V   

where C is the capacitance of the capacitor and Vi and Vf are, respectively, 

the initial and final voltages of the capacitor; 

(carb)U  is the variation of internal energy associated to the combustion of carbon soot 

formed in case of an incomplete combustion, cuo(carb) = −33 kJg−1 [27]. 

 

The calorimetric systems used in this work were calibrated by combustion of benzoic 

acid NBS Standard Reference Material® 39j, with the certified massic energy of combustion, 

Δcu(BA,cert) = –(26434 ± 3) Jg–1 [31], for the following certification conditions: 

• the combustion reaction is referred to 298.15 K; 

• the sample is burned in a bomb of constant volume in pure oxygen at an initial 

pressure of p = 3.04 MPa at a temperature of 298.15 K; 
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• the mass of benzoic acid and water, expressed in grams, added to the bomb before 

combustion is numerically equal to three times the internal volume of the bomb, 

expressed in liters.  

When deviations occur to the experimental conditions described above, the massic 

energy of combustion, Δcu(BA,cert), can be corrected by multiplying the certified value by a 

corrective factor, f [27]: 

 

   6 2(H O)(BA)
1 1 10 197 3.04 42 3 30 3 45 298.15

mm
f p T

V V

                     
 (3.35) 

 

where p is the initial oxygen pressure (MPa), V is the internal volume of the combustion 

bomb (dm3), T is the temperature the combustion reaction refers to (K), m(BA) is the mass 

of burned benzoic acid (g) and m(H2O) is the mass of water placed inside the bomb (g). 

This corrective factor can be applied without appreciable error [27] for the following ranges 

of experimental conditions: 2.03 MPa < p < 4.05 MPa; 2 gdm−3 < m(BA)/V < 4 gdm−3; 2 

gdm−3 < m(H2O)/V < 4 gdm−3 and 293.15 K < T < 303.5 K. 

 

 

3.2.2.2.4. Combustion auxiliaries 

 

Combustion aids are substances that may be useful in a calorimetric study to start or 

moderate the combustion reaction. Auxiliary substances are primarily used to promote the 

occurrence of complete combustion reactions, preventing the formation of undesired side 

products [32], like carbon residue. To this end, these substances must be easily 

combustible and present a rigorously known combustion energy. 

They may also be important in controlling the stoichiometry of the combustion 

reaction, for example, as a source of hydrogen in the combustion of substances with low 

molecular fraction of this element. Additionally, in the study of liquid compounds, the 

substance used as combustion aid can also be used to enclose the sample during the 

experiment. 

Among the most common combustion aids are benzoic acid, hydrocarbons (such as 

n-hexadecane) and polymers (such as polyethylene and polyester, commercially known as 

melinex®).  
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3.2.2.2.5. Standard massic energy of combustion: Washburn corrections 

 

After determining the energy equivalent of the calorimeter, εcal, it is possible to 

calculate the variation of internal energy for the isothermal bomb process, U(IBP), from 

the value of ΔTad, in experimental conditions and at the reference temperature T = 298.15 

K, by the following expression: 

 

       cal ad i i f f corrIBP corr 298.15 298.15U T T T T                (3.36) 

 

As mentioned above, the values of the equivalent energy, i and f, are calculated by 

the sum of the heat capacities of the bomb contents, respectively, before and after 

combustion, by expressions similar to 3.30 and 3.31, but now taking into account the mass 

and heat capacity of the compound under study and eventual auxiliary substances. 

In experiments on a static bomb combustion calorimeter, the sample ignition is 

performed at the temperature Ti = 298.15 K, and it is sufficient to define f, as the term i(Ti 

‒ 298.15) of the previous equation is annulled. On the other hand, for the rotating bomb 

combustion calorimeter, the temperature of ignition is planned so that Tf is as close as 

possible to 298.15 K so that the term f(298.15 – Tf – Tcorr) of the above equation is 

minimized. 

The value of U(IBP) determined experimentally, in addition to the energy variation 

associated with the combustion reaction of the compound under study, also includes the 

energy contributions of the combustion of eventual auxiliary substances, side reactions and 

formation of any carbon residue, with both the reactants and the products in the used 

experimental conditions. In order to determine the energy of combustion in the standard 

conditions (p° = 0.1 MPa), cUo, at the reference temperature, it’s necessary to correct the 

experimental value of U(IBP) to the standard state. Washburn developed a calculation 

method, known as the Washburn corrections [33], that allows correction for the standard 

conditions of all energy contributions of the processes carried out in bomb experimental 

conditions. Initially his method was only applicable to compounds containing carbon, 

hydrogen and oxygen. Subsequently, due to the need for determining the standard energy 

of combustion of compounds containing other elements, the method has been developed 

to be employed on a wider range of organic compounds with nitrogen [34], sulfur [35] and 

halogens [36-38] in their composition. 
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The variation of the internal energy associated to the combustion process in the 

experimental conditions to the standard conditions, at the reference temperature of 298.15 

K, can be deduced from the following thermochemical cycle: 

 

 

 

 

Figure 3.9. Thermochemical cycle for deriving the standard energy of combustion,cU
o, at T = 298.15 K. 

 

 

Given the previous thermochemical cycle: 

 

 o

c IBPU U U      (3.37) 

 

where ΔUΣ is the energy variation associated to the Washburn corrections, calculated by: 

 

,f ,iU U U        (3.38) 

 

ΔUΣ,i and ΔUΣ,f are the energy variations associated to the Washburn corrections of 

the initial and final states, respectively. Although individually ΔUΣ,i and ΔUΣ,f can have high 

values, the overall correction calculated by the difference between these two terms is 

relatively small. The main contributions to the energy correction term, are due to the 

following processes [25]:  
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Initial state: 

Compression of the gaseous, liquid and solid phases from 0.10 to 3.04 MPa; 

Vaporization of the water inside the bomb, until saturation of gas phase; 

Dissolution of gaseous O2 and N2 in the liquid phase. 

 

Final state: 

Decompression of the gaseous, liquid and solid phases to 0.1 MPa; 

Removal of gaseous CO2, O2 and N2 from the liquid phase; 

Condensation of the water vapor formed; 

Dilution of the liquid phase to obtain a solution with a reference concentration. 

 

The standard massic energy of combustion of a given compound, Δcu°, at the 

reference temperature, can be calculated from the value of U(IBP) corrected to the 

standard state and the mass of burned compound expressed in grams,  m(cpd): 

 

 
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 
c i r j
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 (3.39) 

 

Considering the compounds studied in this work: 

 

c i
i

U , is the sum of the energetic contributions of the combustion of auxiliary substances: 

 c i
i

(fuse) (aux)U U U      (3.40) 

r j
j

U , is the sum of the energetic contributions of processes and side reactions: 

 r j 3 4
j

22 3(ign) (HNO ) (As H P BrO ) ( )tU U U U U          (3.41) 

 

In addition to the meanings already assigned: 

 

U(aux) is the internal energy variation associated to the combustion of auxiliary 

substances, calculated as: o

c(aux) (aux) (aux)uU m   ; 

2 3(As O )U  is the energetic contribution of the oxidation of the arsenic(III) oxide bomb 

solution according to equation 3.7, determined following the procedure 

described by Hu et al. [39]; 
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2 4H P( )tBrU

 

is the energetic contribution of the formation of H2PtBr4 (aq), according to 

equation 3.9, determined from the mass loss of the platinum crucible and 

its supporting ring and 2f m 4

o (H PtBr ,aq)H ‒ 368.2 ± 0.1  kJmol‒1 [30].  

 

The 2 3(As O )U  and 2 4H P( )tBrU  contributions were only considered for the combustion 

study of the bromine containing compounds. 

 

 

3.2.2.2.6. Standard molar enthalpy of combustion and formation 

 

The standard molar enthalpy of combustion of a compound, o

c mH  , is determined 

from the respective standard molar energy of combustion using expression 3.42, where V 

corresponds to the variation of molar volume of all gaseous species (reactants and 

products) involved in the reaction, at the standard pressure po, and o

c mU  is the standard 

molar energy of combustion. 

 

o o o

c m c mH U p V      (3.42) 

 

o

c mU  is derived from the product of the respective standard massic energy of combustion 

molar mass by the compound’s molar mass, M: 

 

o o

c m cU u M     (3.43) 

 

Considering the molar volumes of solid or liquid species negligible when compared to 

their molar volumes in the gaseous state and assuming that the intervening gaseous 

species present close to ideal behavior, consequently: 

 

o o

c m c mH U nRT      (3.44) 

 

in which R is the gas constant and n is the variation of the amount of substance of the 

gaseous species involved in the combustion reaction.  

Taking into consideration Hess's law and the chemical reaction that represents the 

combustion of a given compound, 
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   o o o

c m i f m i f m
i i

products reactantsH H H        (3.45) 

 

where νn represent the stoichiometric coefficients of the reactants and products involved in 

the reaction. 

The standard molar enthalpy of formation of a compound in the condensed phase can 

be calculated from the values of the standard molar enthalpy of combustion, as long as the 

enthalpies of formation of all the species involved in the reaction are known. 

Thus, from the relation of the previous equation with the equations that represents the 

combustion reaction of compounds of empirical formula CaHbOcNd and CaHbOcNdBre 

(equations 3.5 and 3.8, respectively) studied in this work, it is possible to deduce the 

following expressions for determining the standard molar enthalpy of formation in the 

condensed phase. The values of o

f mH  of the species involved in these reactions were 

taken from literature [40].  
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H H
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 

 
(3.47) 

 

 

3.2.2.3. Description of the combustion calorimetric systems 

 

Along this work, the calorimetric studies were performed in two isoperibol calorimetric 

systems: a static bomb combustion calorimeter, used for compounds containing carbon, 

hydrogen, oxygen and/or nitrogen; and a rotating bomb combustion calorimeter, used for 

halogenated compounds, namely brominated fluorenes. Both calorimetric systems used 

were originally built at the National Physical Laboratory in Teddington, England, and are 

extensively described in the literature [41,42]. They were later transferred to the University 

of Manchester [43,44], and finally to the Faculty of Sciences in the University of Porto where, 

once installed, several adaptations were made to the equipment, as well as the 

automatization of their peripherals [45,46]. 

The calorimetric systems are essentially constituted by the combustion bomb, the 

calorimetric vessel, the thermostatic bath, and a set of peripheral components for inducing 
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the ignition, temperature measurement and data acquisition. These will be briefly described 

as follows, along with a summary of the respective experimental procedures. 

 

 

3.2.2.3.1. Static bomb combustion calorimeter 

 

Static combustion bomb 

The static bomb combustion (A), schematized in figure 3.10, is constructed of 

stainless steel and consists of three mountable parts: the bomb body, the bomb head and 

the sealing ring. The bomb body (B) is internally coated with platinum and has an internal 

volume of 0.290 dm3. The bomb head (C)  is equipped with two twin valves for inlet (1) and 

outlet (2) of gases, and two electrodes, one isolated (3) (through which the electrical 

discharge is made for the ignition of the sample) and other in electrical contact with the 

bomb (4). A tube (5) adapted to the inlet valve directs the oxygen flow to the base of the 

bomb, in order not to avoid disturbing the crucible and its contents during pressurization 

and deaeration of the bomb. To this tube is also adapted the crucible ring holder (6). 

The head is adapted to the body of the bomb and the entire system is closed by 

screwing the sealing ring (D) to the external surface of the bomb body. The hermeticity of 

the bomb is assured by an o-ring placed between the head and the body. 

 

 

 
 

Figure 3.10. Schematic representation of the static combustion bomb (A) and assembling parts: B. body of the bomb; C. head 

of the bomb (side and front views; 1. inlet gas valve; 2. outlet gas valve; 3. isolated electrode; 4. non-isolated electrode; 5. 

tube; 6. crucible ring holder); D. sealing ring. Image adapted from ref. [9]. 
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Calorimetric vessel 

The cylindrical calorimetric vessel (E), represented in figure 3.11, is made of copper 

coated with rhodium. Its lid (7) has a propeller (8) coupled to a motor to ensure the water 

surrounding the combustion bomb, the internal electrical resistance (9) and the temperature 

sensor (10, Thermometrics, standard serial No. 1030, ±110–4 K) is in constant circulation.  

The metal container (11) surrounding the propeller axis, is filled with silicon oil whose 

functions are to prevent loss of water vapor, regulate the propeller rotation movement and 

allow for a small expansion of the air existing in the calorimeter. 

The calorimetric vessel and respective lid are fitted in an isothermal vessel 

constructed of copper and coated on the outside with agglomerated cork. Inside there are 

three metal pillars that support the calorimeter vessel and fix the distance between the 

calorimeter and the side wall and base of the vessel. 

 

 

 

 
Figure 3.11. Schematic representation of the static bomb calorimetric system: A. combustion bomb; E. calorimetric vessel (7. 

calorimeter lid; 8. propeller; 9. internal electrical resistance; 10. temperature sensor; 11. metal container containing silicone 

oil; 12. circular steel support; 13. axis for connection to the agitation motor). Image adapted from ref. [9]. 
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Thermostatic bath 

The isothermal vessel and its head are connected to an external thermostatic bath 

containing a volume of water kept at a controlled temperature of (301.000 ± 0.001) K by a 

temperature controller TRONAC PTC41. The thermostatic bath is equipped with a 

temperature sensor, an auxiliary heating resistance, a cooling coil and a centrifugal pump 

to uniformly pump the water into the isothermal vessel and its head. 

 

 

3.2.2.3.2. Experimental procedure 

 

For the combustion experiment of a solid compound, the sample is pulverized and 

pressed into a pellet form. After the cotton fuse, platinum crucible, sample and eventual 

auxiliary substance are successively and accurately weighed (Mettler AE240, ±110–5 g), 

the sample is carefully assembled in the head of the bomb: the crucible with the sample is 

placed in the ring holder, the two electrodes are connected by a platinum wire (Goodfellow, 

99.99 %, ϕ = 0.05 mm), to which one end of the cotton thread is fastened and the other end 

is carefully placed under the sample pellet, inside the crucible. 

After placing 1.00 cm3 of deionized water inside the body of the bomb, the bomb is 

sealed and degassed twice with oxygen to a pressure of 1.52 MPa, followed by 

pressurization to 3.04 MPa. The bomb is placed inside the calorimetric vessel and the 

necessary electric terminals are connected. The propeller is adapted to the top of the 

calorimeter, which is then positioned inside the isothermal vessel. Approximately 2900.0 g 

(reference mass) of distilled water, used as calorimetric fluid, is weighed (Mettler PM11-N, 

±110–1 g) and added to the calorimeter. The temperature of calorimetric fluid is measured 

in 10 second intervals using a temperature sensor (±110–4 K).  

The temperature is recorded throughout the initial period, and at T = 298.150 ± 0.002 

K, the discharge of electric current of a capacitor (1400 F) through the platinum wire 

causes the combustion of the cotton fuse and the ignition of sample, thus marking the start 

of the main period. The temperature is recorded throughout the main period and until the 

end of the final period. At the end of the experiment, all electrical contacts are disconnected 

and the system is disassembled. The bomb is removed from the calorimetric vessel, to 

proceed to the analysis of the combustion products. Finally, the crucible is calcined. 
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3.2.2.3.3. Rotating bomb combustion calorimeter 

 

Rotating combustion bomb 

The rotating combustion bomb (A), depicted in figure 3.12, is constructed of stainless 

steel and consists of three mountable parts: the bomb body, the bomb head and the sealing 

ring. The bomb head, with all internal fittings made of tantalum, is equipped with two valves 

for inlet (1) and outlet (2) of gases, an electrical contact (3), and two electrodes, one isolated 

(through which the electrical discharge is made for the ignition of the sample) and another 

in electrical contact with the bomb. The bifurcated shape of the non-insulated electrode (4), 

has the additional function of supporting the ring where the platinum crucible (5) is placed 

and allows it to fall after the activation of the bomb’s rotation.  

 

 

 

 

Figure 3.12. Schematic representation of the rotating combustion bomb and calorimetric vessel: A. Combustion bomb (1. inlet 

gas valve; 2. outlet gas valve; 3. electrical contact; 4. crucible holder; 5. platinum crucible; 6. tube; 7. ball bearing system); B. 

Calorimetric vessel (8. stirrer; 9. thermometer hole; 10. electric connections). Image adapted from ref. [46]. 

 

 

There is a tube (6) connected to the inlet valve through which oxygen is introduced 

near the bottom of the bomb, preventing disruption of the contents of the crucible during 

pressurization and deaeration of the bomb. 
The bomb body is internally coated with tantalum (internal volume 0.329 dm3) and 
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longitudinal rotation of the bomb, after appropriate adjustment to the calorimetric vessel. 

The bomb is closed by adapting the head to the body, with an o-ring placed between then, 

and hand tightening the sealing ring by means of a screw system. 

 

Calorimetric vessel 

The calorimetric vessel (B) is a metallic container, internally coated with gold, where 

the combustion bomb is suspended, engaged in the rotation system in an inverted position, 

as shown in figure 3.12. In the inverted position, the valves are kept away from the ignition 

source and protected from the resulting gases while submerged by the bomb solution. 

The vessel is equipped with a stirrer (8) that promotes efficient circulation of the 

calorimetric fluid, whose temperature is measured by a quartz thermometer (Hewlett-

Packard 2804A, ±110–4 K) inserted into hole (9). The vessel is closed and introduced in the 

respective cavity in the thermostatic bath. 

 

 

 

 
Figure 3.13. Global schematic representation of the rotating bomb combustion calorimeter: B. Calorimetric vessel; C. 

thermostatic bath (11. thermostatic bath agitation motor; 12. calorimetric vessel agitation motor; 13. bomb rotation motor; 14. 

water circulation system). Image adapted from ref. [46]. 
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Thermostatic bath  

The thermostatic bath (C), depicted in the global scheme of the calorimetric system 

in figure 3.13, consists of a recipient containing a volume of water kept at a controlled 

temperature of (299.050 ± 0.001) K by a temperature controller TRONAC PTC41. The 

calorimeter vessel is introduced into the respective cavity and the system is closed with a 

lid, where there are a set of holes for the passage of electric connections (10) and the axes 

of the motors responsible for the water stirring (11, 12) and the bomb rotation (13), located 

on a support plate of variable height above the thermostatic bath. The homogeneity of the 

temperature is ensured by a circulation system (14) which circulates water throughout the 

thermostatic bath and inside its lid. 

 

 

3.2.2.3.4. Experimental procedure 

 

For the combustion experiment of a solid compound, the sample is pulverized and 

pressed into a pellet form. The cotton fuse, platinum crucible, sample and eventual auxiliary 

substance are successively and accurately weighed (Mettler AE240, ±110–5 g). With the 

head of the bomb in an inverted position, the sample is carefully assembled inside the 

crucible placed in the ring holder, the two electrodes are connected by a platinum wire 

(Goodfellow, 99.99 %, ϕ = 0.05 mm), to which one end of the cotton thread is fastened and 

the other end is carefully placed under the sample pellet, inside the crucible. 

After placing an adequate volume of arsenic(III) oxide solution  ≈ 0.09 moldm–3), 

measured with a volumetric pipet, inside the body of the bomb, the bomb is then sealed and 

degassed twice with oxygen to a pressure of 1.52 MPa, followed by pressurization to 3.04 

MPa. The calorimetric vessel is placed in its cavity inside the thermostatic bath, the bomb 

is manually inverted and adapted to the rotation mechanism inside the calorimeter vessel. 

All the necessary electric contacts are established between the pump and approximately 

3965.0 g (reference mass) of distilled water, used as calorimetric fluid, are weighed (Mettler 

PM11-N, ±110–1 g) and added to the calorimeter. The lid of the thermostatic bath is closed, 

the quartz thermometer is placed in the respective hole and the motor axis for the agitation 

of the thermostatic bath and rotation of the bomb are properly adapted. 

After reaching thermal equilibrium, the temperature of calorimetric fluid is recorded in 

10 second intervals using a temperature sensor (±110–4 K), throughout the initial period. At 

a predetermined temperature, a discharge of electric current of a capacitor (1288 F) 

through the platinum wire causes the combustion of the cotton fuse and the ignition of 

sample, thus initiating the main period. The rotation of the pump is started when the 
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temperature corresponds to about 63 % of the variation in temperature of the main period, 

and kept till the end of the experiment.  

The temperature is recorded throughout the main period and until the end of the final 

period. At the end of the experiment, all electrical contacts are disconnected and the system 

is disassembled. The bomb is removed from the calorimetric vessel, to proceed to the 

analysis of the combustion products. Finally, the crucible is calcined. 

 

 

3.2.2.3.5. Analysis of combustion products 

 

Carbon dioxide recovery  

The extent of the combustion reaction of a compound is determined by 

the total mass of carbon dioxide produced, after considering the necessary corrections for 

the contributions of combustion auxiliaries (cotton fuse, eventual auxiliary substances...).  

After each combustion experiment, the bomb is connected through the outlet gas 

valve to a carbon dioxide recovery system (figure 3.14), constituted by a U-shaped glass 

tube (A), containing anhydrous magnesium perchlorate to retain the water vapor escaping 

from the bomb, followed by two glass absorption tubes (B) connected in series to a 

manometer (C), containing butyl phthalate as manometric liquid to control the gas output 

flow.  

 

 

 

 

Figure 3.14. Carbon dioxide recovery system: A. U-shaped tube; B. absorption tubes; C. liquid column manometer. 
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The gases contained within the bomb are collected by a gravimetric method, in the 

two absorption tubes containing ascarite® saturated with O2. This material consists of small 

fragments of silica functionalized with sodium hydroxide, which reacts with carbon dioxide 

forming sodium carbonate, according to the chemical equation 3.48. The water vapor 

formed is adsorbed by anhydrous magnesium perchlorate also present in the tubes.  

 

2 2 3 2CO (g)  2 NaOH (s)  Na CO (s)  H O (g)    (3.48) 

 

The gases contained in the bomb are slowly evacuated, until the pressure within the 

bomb equals atmospheric pressure. After that, the bomb is twice pressurized to 1.5 MPa 

with oxygen and again evacuated through the system, to ensure that all the carbon dioxide 

remaining in the bomb is effectively removed. The absorption tubes are accurately weighed 

(Mettler Toledo AT201, ±110–5 g) before and after the recovery process, and the mass of 

carbon dioxide formed is determined. From the ratio between the mass of carbon dioxide 

formed to that calculated from the mass of sample used in each experiment, it’s possible to 

assess the percentage of compound burned. 

 

Unburned compound and / or carbon residue 

After the carbon dioxide recovery, the bomb is opened. In the case there is evidence 

of unburned compound or carbon residue inside the bomb in areas other than the crucible, 

indicative of incomplete combustion reaction, the experiment should be rejected. If the 

carbon residue is confined to interior of the crucible and its mass, determined by accurately 

weighing the crucible before and after calcination (Mettler AE240, ±110–5 g), does not 

exceed 1 mg the experiment can be considered and the energy of combustion associated 

to the determined mass of carbon residue will subsequently be considered in the calculation 

of the energy of the total process. 

 

Analysis of nitric acid 

For the correct calculation of the massic energy of combustion resulting from a 

calorimetric experiment, it is necessary to account for the energy involved in the formation 

of nitric acid. Nitrogen can be found in the bomb as molecular nitrogen, added to the bomb 

as a contaminant of the oxygen used to pressurize the bomb, and/or as a constituent 

element of the compound under study. About 10 % [47] of all the nitrogen present in the 

bomb undergoes oxidation during the combustion process forming nitrogen oxides which, 

in turn, react with the water in the bomb solution forming nitric acid: 
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2 2 2 31/2 N   5/4 O   1(g) (g) (l)  (a/2 qH )O HNO   (3.49) 

 

The remaining 90 % of the nitrogen in the reaction products presents in the elemental 

form. In order to quantitatively determine the amount of nitric acid formed, the crucible and 

the internal surfaces and contents of the bomb are rinsed with deionized water, and the 

amount of nitric acid in the resulting solution is determined by acid-base volumetry using a 

sodium hydroxide solution, in the presence of an indicator (methyl red).  

In case of rotating bomb combustion calorimetry, the amount of nitric acid formed is 

determined by the Devarda method [48]. In this method, the nitrate anion is reduced by 

Devarda's alloy (50 % copper, 45 % aluminum and 5 % zinc) to form ammonia gas, under 

alkaline conditions, according to chemical equation 3.50. 

 

– – –
3 2 2 33 NO 8 Al 5 HO 2 H O 8 AlO 3 (aq) (s) (aq) (l)  (aq) (g)NH    (3.50) 

 

Devarda's alloy and a saturated potassium hydroxide solution are added to the rinsing 

water in a round bottom flask, which is then adapted to a distillation system. The ammonia 

distillate is collected in a flask containing a hydrochloric acid solution  ≈ 0.1 moldm–3) and 

when the distillation is complete, an accurate volume of a sodium hydroxide solution  ≈ 0.2 

moldm–3) is added to the distillate solution. The amount of nitric acid is determined from the 

hydroxide excess, by acid-base back titration with a hydrochloric acid stock solution (0.1000 

moldm–3) using methyl red as indicator, based on the difference in titrant volume in the 

experiment and in a blank test. 

 

Analysis of arsenic(III) oxide 

The amount of the hydrobromic acid formed as a combustion product is determined 

by the extent of the arsenic (III) oxide oxidation reaction, in which the excess of arsenic(III) 

oxide after the combustion process is quantified by iodometry [48], according to the 

chemical equation:  

 

2 2 533 2As O (aq) (aq) 2 H O (l)  As O (a  2 q) I     6 I   4 H (aq)(aq)       (3.51) 

 

The analysis is performed by redox titration using a triiodide solution (0.05 moldm–3) 

as titrant and starch solution as indicator.  

The weight of platinum that reacted with the final bomb solution is determined by 

weighing the platinum crucible at the end of combustion experiment.  
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3.3. Vapor pressure measurement methods 

 

 

3.3.1. Introduction to the study of vapor pressures 

 

Vapor pressure is the pressure exerted by a vapor when in thermodynamic equilibrium 

with its condensed phase (liquid or solid), at a given temperature. In kinetic terms, this 

equilibrium is established when the rate at which condensed phase molecules 

sublime/vaporize equals the rate at which vapor molecules return to the condensed phase 

This rate increases exponentially with temperature. Vapor pressure is also a measure of a 

substance’s volatility and from its variation with temperature it’s possible to determine the 

standard enthalpy, entropy and Gibbs energy of sublimation and/or vaporization. These 

properties can be used to determine other thermodynamic properties, such as the enthalpy 

of formation in the gaseous state and Gibbs energies of formation, either in gas phase or in 

condensed phase. This indirect method for the determination of phase transition properties 

presents advantages over some direct calorimetric methods that, in general, appear to lead 

to less reliable results [49]. Furthermore it can also be useful for performing internal 

consistency of the results to evaluate their reliability [50]. However, the experimental 

techniques require careful control of experimental conditions because eventual errors 

performed during the vapor pressure measurements may strongly affect the calculated 

slopes of the referred to above variation.  

 

 

3.3.1.1. Experimental methods of vapor pressure measurement 

 

The available methods for the experimental determination of vapor pressures can be 

divided into four categories: ebulliometric, gas saturation, effusion and static methods. The 

choice of the appropriate method depends on a number of factors, among which are specific 

characteristics of the compounds under study, such as physical state and volatility. 

 

Ebulliometric methods 

Ebulliometry is used for the study of liquid compounds and is based on the 

dependency of a substance’s boiling temperature with pressure, that is, the temperature at 

which its vapor pressure equals the well-defined pressure of the system in which the 

substance is placed. The devices for the application of this method are called ebulliometers.  
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Gas saturation methods 

In the gas saturation method [51,52], also called transpiration method, a flow of inert 

gas (carrier gas) is slowly passed through the surface of a sample, liquid or solid, over a 

given time interval. The saturated vapor, transported by the carrier gas, is subsequently 

condensed in a cooled trap and quantitatively determined by a suitable method. Correlating 

the amount of condensed vapor at different flow rates of carrier gas, and extrapolating to 

zero flow, it is possible to determine the vapor pressure of the substance in equilibrium 

conditions. 

 

Effusion methods 

In effusion methods, the vapor in equilibrium with its condensed phase flows under 

reduced pressure from an isothermal cell through an effusion orifice of accurately known 

area. The orifice should be sufficiently small so that equilibrium conditions are not 

significantly disturbed. One of the most used effusion methods is the Knudsen mass-loss 

effusion (KMLE). In this method, the amount of substance effused, at a given temperature, 

is related to the vapor pressure through equations, developed by Knudsen, based in the 

kinetic theory of gases. This method will be addressed in detail in section 3.3.2.1. 

 

Static methods 

In static methods, the vapor pressure is measured at constant temperature and under 

equilibrium conditions between the vapor and its condensed phase (crystalline or liquid), 

inside a closed system. Currently the most used techniques are based on modern 

manometers. Due to their high sensitivity, the capacitance diaphragm gauges are the 

frequently used [53,54].This method will be addressed in detail in section 3.3.2.2. 

 

Association of different methods 

By combining methods that are dependent (for example, KMLE) and independent (for 

example, static methods  of the vapor’s molar mass, it is possible to detect and study 

eventual association (formation of dimers, for example) or dissociation processes occurring 

in the gas phase. 

 

 

3.3.1.2. Vapor pressure equations 

 

Several equations have been developed to mathematically describe the dependence 

of vapor pressure with temperature, however, none is universally used by the scientific 
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community. Choosing the most convenient expression will depend, among other factors, on 

the range of the vapor pressures under study. 

The Clausius-Clapeyron, and Clarke-Glew equations, described as follows, are the 

expressions used in this work to correlate vapor pressure with temperature allowing the 

determination of the thermodynamic properties of phase transition between the condensed 

phases and the gas phase. There are, however, several other empirical equations [55], like 

the Antoine equation [56], that enable the correlation of vapor pressure with temperature. 

 

 

3.3.1.2.1. Clausius-Clapeyron equation 

 

In a phase diagram, sublimation and vaporization curves establish the pressure and 

temperature conditions at which the crystalline or liquid phases of a compound are in 

equilibrium with its vapor. For this condition, the chemical potential, μ, is equal in both 

phases. 

 

   cr/l, , g, , p T p T   (3.52) 

 

For one mole of a pure substance, the chemical potential is equivalent to the molar 

Gibbs energy, Gm, and therefore:  

 

   m mcr/l, , g, , G p T G p T  (3.53) 

 

Applying an infinitesimal variation to the system’s pressure, dp, and temperature, dT, 

a new equilibrium will be established between the two phases: 

 

   m mcr/l, d , d g, d , dG p p T T G p p T T      (3.54) 

 

and so, 

 

   m md cr/l d gG G  (3.55) 

 

Knowing that: 

 

m m md d dG S T V p    (3.56) 
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and relating 3.55 and 3.56 for the condensed phase and the gas phase, 

 

       m m m mcr/l d cr/l d g d g dS T V p S T V p      (3.57) 

 

where Sm(cr/l) and Sm(g) are, respectively, the molar entropy of the condensed and gas 

phases and Vm(cr/l) and Vm(g) the respective molar volumes. 

Rearranging equation 3.57, the Clapeyron equation is obtained, 

 

g

cr/l m

g

cr/l m

d

d

Sp

T V





 (3.58) 

 

where g

cr/l mS  and g

cr/l mV  are, respectively, the variations in molar entropy and molar volume 

between the phases in equilibrium.  

In equilibrium conditions, at the temperature T and at the corresponding vapor 

pressure, the molar entropy of sublimation/vaporization is related to the molar enthalpy of 

sublimation/vaporization, according to equation 3.59, 

 

g
g cr/l m
cr/l m

H
S

T


   (3.59) 

 

and equation 3.58 can be transformed into Equation 3.60. 

 

g

cr/l m

g

cr/l m

d

d

Hp

T T V





 (3.60) 

 

Assuming that, for vapor pressures smaller than 0.1 MPa, the gas presents an ideal 

behavior and that the molar volume of the condensed phases is negligible when compared 

to the molar volume of the gas phase (Vm(cr/l) << Vm(g)), g

cr/l mV  is approximately equal to 

Vm(g) and can be calculated as: 

 

 g

cr/l m m g
R T

V V
p


    (3.61) 

 

These approximations allow the transformation of the Clapeyron equation in the 

Clausius-Clapeyron equation. 
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g

cr/l m

2

ln Hd p

dT R T





 (3.62) 

 

For vapor pressure measurements performed in a limited temperature interval, it may 

be assumed that the enthalpy of sublimation/vaporization is approximately constant                 

( g

cr/l( ) 0md H dT  ), allowing the integration of equation 3.62, where p° is a reference 

pressure. 

 

g

cr/l m

o
ln

Hp
a

R Tp

 
     

 (3.63) 

  

Or simply, 

 

o
ln

p b
a

Tp

 
  

 
 (3.64) 

 

Plotting the logarithm of the vapor pressure as a function of temperature, ln(p/Pa) = f(K/T), 

the slope b is related to the enthalpy of sublimation or vaporization (equation 3.66) at the 

mean temperature of the experimental interval, T, and the parameter a is related to the 

molar entropy of sublimation or vaporization, for po = p(T) and temperature T (equation 

3.65). 

 

 g

cr/l m , ( )a S T p T R       (3.65) 
g

cr/l m( )b H T R     (3.66) 

 

 

3.3.1.2.2. Thermodynamic properties at a reference temperature 

 

The Clausius-Clapeyron equation allows the calculation of g o

cr/l m( )H T    for the 

average temperature T of a short experimental interval. The correction for any other 

reference temperature, , different from T may be carried out using the relation translated 

by equation 3.67. 

 

     g o g o

cr/l cr/l cr/l

g o

m m ,m  dp

T

H H T C T T



 

        (3.67) 
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In this equation, g o

cr/l ,mpC  represents the difference between the standard molar heat 

capacities of the gas phase (with assumed ideal behavior), o

,m(g)pC , and the crystalline, 

o

,m(cr)pC , or liquid phases, o

,m(l)pC . If the difference between the standard molar heat 

capacities, at constant pressure, of the condensed and gaseous phases, is constant, the 

integration of equation 3.67 yields: 

 

     g o g o g o

m mcr/l cr/l /l mcr ,pH H T T C            (3.68) 

 

 

3.3.1.2.3. Clarke-Glew equation 

 

For a temperature range greater than 20 K, the Clausius-Clapeyron equation is not 

the appropriate adjustment to the vapor pressure values, since the variation of the 

difference in heat capacity between the gas and condensed phases in the considered 

temperature interval is not null and consequently g o

cr/l mH  varies with temperature according 

to the equation 3.69. 

 

g
g ocr/l m
cr/l ,mp

p

H
d C

dT

 
  

 
 (3.69) 

 

For more extended temperature ranges, one of the most used equations is the Clarke-

Glew equation [57]: 

 

     
g o

cr/l m g o g o

cr/l m cr/l ,mo

1 1
ln 1 lnp

Gp T
R H C

T Tp

  
  

                          
        

 

 
g o

cr/l ,m
2ln

2

pC T T

T T

 
 

                     
 

(3.70) 

 

where: 
p is the vapor pressure at the temperature T; 

p° is a reference pressure (in this work, standard pressure p° = 0.1 MPa); 

 is a reference temperature (in this work,  = 298.15 K); 

g o

cr/l mG  is the standard molar Gibbs energy of sublimation/vaporization; 
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g o

cr/l mH  is the standard molar enthalpy of sublimation/vaporization; 

g o

cr/l ,mpC  is the difference between the standard molar isobaric heat capacities of the 

gas, o

,m(g),pC  and the solid, o

,m(cr),pC  or liquid, o

,m(l).pC  

 

A key advantage of the Clarke-Glew equation is that it may allow determination of

g o

cr/l ,mpC . Assuming, as approximation, that the g o

cr/l ,mpC  variation with temperature is not 

significant, equation 3.70 can be simplified to equation 3.71 and, if accurate experimental 

results are available over a sufficiently large temperature range, a constant value of g o

cr/l ,mpC  

can be derived. 

 

     
g o

cr/l m g o g o

cr/l m cr/l ,mo

1 1
ln 1 lnp

Gp T
R H C

T Tp

  
  

                         
        

 (3.71) 

 

For small intervals of temperature, the third term of the second member of equation 

3.71 may be neglected and the so truncated equation is equivalent to the Clausius-

Clapeyron equation. 

If T = θ, equation 3.71 is reduced to equation 3.72 with which is possible to calculate 

the vapor pressure at any reference temperature θ. 

 

g o
o cr/l m n

( )
l

G
ln p p

R





   (3.72) 

 

Or:  

 

 g o

cr/l m plnG R K     (3.73) 

 

Equation 3.73 is a particular case of the well-known relation between standard Gibbs 

energy and equilibrium constant, where o

p eq( )K p p . 

 

3.3.1.2.4. Thermodynamic characterization of phase transitions: temperature and 

pressure variables 

 

The measurement of vapor pressures at different temperatures for the condensed 

phases of a pure compound enables the construction of its phase diagram. In a phase 
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diagram of a pure substance, vapor pressures are plotted against temperature, defining the 

boundaries between the different phases in equilibrium. 

For a given system, the vapor pressure of two condensed phases is equal at the 

temperature, Ttr, at which they are in equilibrium with the gaseous phase. Thus, considering 

equation 3.71 and the equilibrium between liquid-vapor and crystalline-vapor phases of a 

compound, equation 3.74 allows the determination of the triple point temperature Ttr when 

the values of the related thermodynamic properties of the phase transitions are known. 

 

     
g o
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1 lnp

G T
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T T
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                     
        
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G T
H C
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  
  

                    
      

 

(3.74) 

  

Once Ttr is determined, it is possible to calculate the pressure of the triple point, ptr, 

solving equation 3.71 for T = Ttr: 

 

     
g o

cr/l m g o g otr tr
cr/l m cr/l ,mo

tr tr

1 1
ln 1 lnp

Gp T
R H C

T Tp

  
  

                       
        

 (3.75) 

 

The value of ptr can also be determined directly from the equation 3.72, if  cr/l

g o

m trG T  

is known. Furthermore, from the difference between the standard molar enthalpies of 

sublimation and vaporization, at a certain temperature, it is possible to obtain the standard 

molar enthalpy of fusion. 

 

     l o g o g o

m m mcr cr lH T H T H T      (3.76) 
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3.3.2. Description of the vapor pressure measurement systems 
 

 

3.3.2.1. Knudsen mass-loss effusion method 

 

3.3.2.1.1. Ideal and real effusion processes  

 

KMLE method is mainly used for measuring vapor pressures of pure substances in 

the solid state, in the interval between (0.1 and 1) Pa [58-60]. It was first developed by 

Martin Knudsen [61-63] from the study of isothermal gas flow through cylindrical tubes, at 

reduced pressures that promote molecular flow conditions. Knudsen concluded that, under 

those conditions, the Lambert's cosine law applies to the reflection of the gas molecules 

colliding to the inner wall of the tube, since they are reflected in a direction independent of 

the angle of incidence. The experimental observations of Knudsen were an important 

contribution for the validation the Kinetic Theory of Gases. From his experimental work, 

Knudsen deduced the expression 3.77, which applies to the gaseous flow from a recipient 

with pressure p1 to an adjacent recipient with pressure p2 connected by an orifice of null 

thickness and diameter inferior to a tenth of the mean free path of the molecules. 

 

1 2
1 2

w wm
p p

t d


    (3.77) 

 

In this equation, m is the mass of gas which passes through the orifice over the time interval 

t, d is the density of the gas. w1 and w2 represent, respectively, the orifice and the tube’s 

resistance to gas flow. Considering that the tube width is much greater than that of the 

orifice, w2 is negligible when compared to w1, calculated by equation 3.78 where A0 is the 

area of the orifice. 

 

1

0

2
w

A


  (3.78) 

 

Assuming ideal gas behavior, the relation d = M/RT (where M is the molar mass of 

the gas, T is the absolute temperature and R the constant of gases) is valid. So, if p2 is 

negligible when compared to p1, equation 3.77 can be rewritten as the equation (3.79) 

applied by Knudsen [63] for determining the vapor pressure p1 of a pure substance at the 

temperature T. 
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1

0

2m RT
p

tA M


   (3.79) 

 

 

3.3.2.1.2. Deviations from the ideal conditions 

 

The application of equation 3.79 is only valid under the following conditions: 

• Regime of molecular flow through the orifice; 

• Orifice of null thickness; 

• Thermal equilibrium between the isothermal cell and the sample; 

• Saturated vapor throughout the cell; 

• Collisions between vapor molecules and cell walls obeying the Lambert’s cosine law; 

• Unitary vapor condensation coefficient; 

• Absence of chemical reaction between the sample and the cell; 

• Absence of surface diffusion phenomena. 

Some of the listed ideal conditions cannot be strictly replicated experimentally. The 

conditions used in real experiments may affect the calculated vapor pressure values. It is 

possible, however, to minimize the inherent errors to the deviations from ideal to real 

conditions: 

 

Molecular flow 

Gas flow can be classified into one of three types depending on the pressure and on 

the size of the effusion orifice [64]: 

• Molecular flow, occurs at reduced pressures of the vapor where the intermolecular 

collisions are rare and the flow is only conditioned by the molecular collisions with the 

walls of the orifice; 

• Viscous flow, occurs at high vapor pressures where the intermolecular collisions are 

more frequent than collisions with the walls of the effusion orifice; 

• Transition flow (with characteristics between molecular and viscous flow), occurs at a 

pressure range in which the flow is conditioned by both intermolecular collisions and 

with the orifice’s walls. 

The mean free path, , defined as the average distance covered by a particle between 

collisions with other moving particles, can be calculated the by equation 3.80 [64,65], 

 

2

1

2 n



  (3.80) 
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where n represents the number of molecules per unit of volume and , the diameter of 

molecular collision, a characteristic parameter related to a molecule’s dimensions. 

The accepted limits between types of flow are established by the Knudsen number, 

Kn, defined as the ratio of the mean free path and the diameter of the effusion orifice. 

Accordingly:  

 

Kn > 1, Molecular flow; 1> Kn > 0.01, Transitional flow; Kn <0.01, Viscous flow. 

 

Although there is no unanimity concerning the limit value between transitional and 

molecular flows, in practice it is assumed that the flow is molecular for vapor pressures 

lower than 1 Pa. Some researchers believe that molecular flow regime only occurs when 

the ratio (r/) approaches zero, and consider an additional correction factor, Khp, defined by 

Hiby and Pahl [66] by equation 3.81. 

 

hp

'
1

2

K r
K


   (3.81) 

 

where K' = 0.48. The use of this correction, however, implies the knowledge of , usually 

determined by estimating the diameter of molecular collision.  

Effusion under a non-molecular flow conditions would lead to calculated vapor 

pressures bigger than the actual and, consequently, overestimated enthalpies of 

sublimation [58]. 

 

Probability of transmission 

The vapor’s molecular flow should ideally be carried out through an orifice of null 

thickness. The finite thickness of the real orifices prevents the use of equation 3.79. It is 

therefore necessary to include a parameter that considers the fraction of vapor molecules 

that after collision with the orifice wall are reflected back into the cell. The transmission 

probability factor, wo, accounts for this effect providing an estimate of the probability of 

transmission of vapor molecules through the effusion orifice, according to its geometric 

dimension. So, for real effusion orifices, equation 3.79 leads to equation 3.82. 

 

1

o 0

1 2m RT
p

w tA M


    (3.82) 
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Saul Dushman [64] deduced the expression 3.83 for an approximate calculation of wo 

for short tubes, 

 

 o  1 1 (3 8 )w l r   (3.83) 

 

where l is the thickness of the tube and r its radius. Later, Pieter Clausing [67] developed, 

for the transmission through shorter tubes (orifices), a rigorous mathematical formula, 

whose approximate solution is expressed by equation 3.84. 

 

 o  1 1 ( 2 )w l r   (3.84) 

 

For l/r values smaller than 0.1, values of wo calculated by equation 3.83 are less than 

1 % higher than the values calculated by the expression 3.84 [58]. 

 

Condensation coefficient 

Within the vapor saturated effusion cell, there is a fraction of molecules that 

undergoes condensation after collision with the surface of the condensed phase. Defining 

the condensation coefficient, , as the ratio of molecules that condense after collision with 

the surface of the condensed phase and (1-) as the ratio of molecules that are reflected 

back to the effusion orifice, contributing to the effusion flow, equation 3.79 becomes 

equation 3.85. 

 

1

o 0

1 2m RT
p

w tA M




    (3.85) 

 

The condensation coefficient is usually assumed to be unitary for most solid 

compounds. 

 

Orifice area and equilibrium conditions  

The area of the orifice must be sufficiently small to ensure that the cell is saturated 

with vapor and to minimize the pressure gradient within the cell. Under these conditions the 

vapor effusion rate should be compensated by the sublimation rate. However, for larger 

orifices, the heat absorbed by the sample during the sublimation may not be compensated 

by the heat transfer from the vicinity of the cell to the sample. In this case, self-cooling of 

the sample may occur which will cause the measured vapor pressure to be lower than the 
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effective vapor pressure. The self-cooling effect increases with temperature and leads to 

default errors in sublimation enthalpy values calculated from the pressure-temperature 

relationship [58]. 

 

Surface diffusion 

Langmuir [68,69] and Volmer and Estermann [70] demonstrated that gaseous 

molecules are reflected by the solid surfaces with which they collide, not by a simple bounce 

mechanism, but by a mechanism involving surface diffusion. As a result of collisions, the 

molecules are adsorbed by the inner surface of the cell, move along this surface and, after 

a period of time, suffer desorption or may migrate through the orifice to the outside of the 

cell. 

Surface diffusion coefficient values are difficult to obtain since they depend on the 

nature of the vapor and of the material constituting the cell. The errors inherent to this 

process can be minimized when taking into consideration that the ratio between the 

diffusion flow and the effusion flow increases with decreasing radius and thickness of the 

orifice as well as with decreasing vapor pressure within the cell [58]. 

  

Alteration of vapor molar mass 

The vapor pressure calculated from the equation 3.79 is dependent on the molar mass 

of the effusing vapor. Considering, for example, the occurrence of total dimerization of the 

effusing vapor, the vapor pressure of the dimer, pdim, (the real vapor pressure) would be 

given by equation 3.86, in which M is the molar mass of the monomer. 

 

dim

o 0

1 2

2

m RT
p

w tA M


    (3.86) 

 

If the occurrence of dimerization was ignored, the ratio between the calculated and 

real pressures would be:  

 

mon

o 0 o 0dim

1 2 2
2

1
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p m RT m RT

w tA M w tA Mp

 
      (3.87) 

 

Therefore ignoring this eventual process would result on a calculated vapor pressure larger 

than the real pressure. In the case of partial vapor dimerization, a similar analysis to the 

one above would be performed, by determining an average molar mass if the degree of 

dimerization is known. Dissociation processes can also occur is the gaseous phase, yielding 
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vapor molecules of smaller molar mass and resulting on a calculated vapor pressure smaller 

than the real pressure.  

By comparing the pressures determined by the Knudsen mass-loss effusion method 

with vapor pressures measured using methods that are independent of the vapor’s molar 

mass (like torsion-effusion or static method), it is possible to test the existence of association 

or dissociation in the gas phase under experimental conditions. 

 

 

3.3.2.1.3. Description of the apparatus  

 

The Knudsen effusion apparatus used in this work for the measurement of vapor 

pressures was built and tested in our laboratory. Its detailed description can be found in the 

literature [60], but the most relevant aspects of the equipment and of the respective 

experimental procedure will be described here. 

The apparatus, schematically represented in figure 3.15, allows the simultaneous 

operation of nine effusion cells at three different temperatures, for the determination of 

vapor pressures of crystalline samples in the range of (0.1 to 1) Pa, and in a temperature 

interval within room temperature and 423 K. It’s essentially constituted by a pumping system 

(A), a sublimation chamber (B), a set of peripheral components for the temperature 

measurement and control, and data acquisition (C) and the effusion cells (D). 

  

Pumping system 

The pumping system is constituted by an Edwards RV12 rotary pump (1), which is 

used for pre-evacuating the system and for backing the Edwards Cryo-cooled Diffstack 

CR160 oil diffusion pump (2). 

The system’s pressure is monitored in different points by two  dwards Active Pirani 

APG-M manometers (3) and by an Edwards Active Inverted magnetron AIM-S manometer, 

for high-vacuum (4). All metal-metal joints are ISO KF connections. The pumping system is 

connected to the sublimation chamber through a glass line with a glass-metal connection 

to a flexible tube.  

 

Sublimation chamber 

The sublimation chamber consists of a glass bell jar, with an aluminum lid and base. 

The hermeticity of the glass-aluminum joints is ensured by neoprene L-gaskets, lubricated 

with Apiezon L.  
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The sublimation chamber is connected to the pumping system through a glass 

vacuum line (5) with a glass-metal connection to a flexible metal tube. To prevent the 

sample contamination of the vacuum pumps, the vacuum line includes a glass cold finger 

(6), for liquid nitrogen, adapted to the chamber by a hole in its lid. The sublimation chamber 

sits on a sliding platform to facilitate the connection to the pumping system. 

Inside the sublimation chamber are three separate ovens (7), consisting of cylindrical 

aluminum blocks, each supported by three ceramic pillars (8) that thermally insulate them 

from the base of the chamber. Each oven contains three symmetrically arranged cylindrical 

cavities (9), of dimensions similar to the effusion cells for good thermal contact. 

 

 

 

 

Figure 3.15. Schematic representation of the Knudsen mass loss effusion apparatus: A. pumping system (1. rotary pump;  2. 

oil diffusion pump; 3. Pirani manometers; 4. inverted magnetron gauge); B. sublimation chamber (5. glass vacuum line;  6. 

glass cold finger; 7. aluminum blocks (ovens); 8. ceramic pillars; 9. effusion cell cavities; 10. heating resistances;  11. platinum 

resistance thermometers); C. peripherals for temperature measurement, control, and data acquisition (12. PID temperature 

controllers Omron E5CN; 13. data logger Agilent 34970A). Image adapted from ref. [60,71]. 

 

 

Temperature measurement and control 

The thermostatic system of each oven consists of two circular electrical heating 

resistances Ari Aerorod BXX (10), connected in parallel to a power source and two platinum 

resistance thermometers Pt-100 1/10, calibrated against a SPRT temperature probe (25 ; 

Tinsley, 5187A). The thermometer located near the heating resistances (11a) is connected 

to a PID controller Omron E5CN (12), responsible for the oven temperature control, while 
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the thermometer located at the center of the block, equidistant to the basis of cell cavities 

(11b), is responsible for measuring the accurate temperature of the oven and the respective 

cells, assumed to be in thermal equilibrium with each block. These thermometers are 

connected to an automatic data acquisition system, Agilent 34970A (13), interfaced to a 

computer equipped with an Agilent BenchLink Data Logger software, which processes the 

data and continuously displays the temperature of the ovens, collected at regular intervals 

for the duration of the experience, with a resolution of 10‒3 K. 

 

Effusion cells  

The cylindrical effusion cells and the respective screw caps are made in aluminum. 

Inside each cap there is a thin platinum disc (0.0125 ± 0.0012 mm thickness) with a laser 

perforated effusion orifice in the center, placed between a brass and a teflon® washer that 

are secured in place by a screw thread brass ring.  

 

 

 

 

Figure 3.16. Schematic representation of the ovens inside the vacuum chamber (top view) and of the effusion cell (side and 

top views). Image adapted from ref. [60]. 

 

 

The nine effusion cells are grouped into three series according to effusion orifice 

diameters: series A - small orifices; B - medium orifices; B - large orifices. During the course 

of this work, the effusion cells were subjected to maintenance and the platinum discs were 

replaced. The geometric parameters of both sets of orifices used are presented in the table 

3.3. For the first set of orifices ‒ A, B, C ‒ the transmission probability factor, wo, was 

calculated using equation 3.83. For the second set of orifices ‒ A’, B’, C’ ‒ wo was calculated 

using equation 3.84, using diameter values provided by the supplier. 
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Table 3.3. Diameters, areas and transmission probability factors of the effusion orifices. 

Orifices   (mm) Ao (mm2) wo Aowo 

Small A1 0.800 0.503 0.988 0.497 

 A2 0.805 0.509 0.989 0.503 

 A3 0.800 0.503 0.988 0.497 

 A1’, A2’, A3’ 0.900 0.636 0.986 0.627 

Medium B4 0.992 0.774 0.991 0.766 

 B5 0.999 0.783 0.991 0.776 

 B6 1.004 0.792 0.991 0.784 

 B4’, B5’, B6’ 1.000 0.785 0.988 0.776 

Large C7 1.183 1.099 0.992 1.090 

 C8 1.197 1.125 0.992 1.116 

 C9 1.200 1.131 0.992 1.122 

 C7’, C8’, C9’ 1.120 0.985 0.989 0.974 

 

 

To test the new orifices, experiments were successfully performed with benzoic acid 

and with another compound which had previously been studied by this and/or other 

complementary techniques: benzoic acid and N-methylnicotinamide. These experimental 

results are presented in annex C.2. 

 

 

3.3.2.1.4. Experimental procedure 

 

A properly pulverized sample of the crystalline compound under study is placed and 

pressed inside the effusion cells with a brass piston, in order to achieve a flat surface and 

to ensure good thermal contact. The cells are sealed with the respective caps and then 

weighed on an analytical balance (Mettler AE163, ±0.01 mg). 

After weighing, the cells are lubricated with a thin Apiezon L layer, for improved 

thermal contact, and are introduced inside the respective cavities in the aluminum blocks, 

so that each contains three cells with different effusion orifice size.  

The sublimation chamber is closed with its lid, the cold finger is assembled and fixed 

with a metal clamp. The blocks containing the cells are heated to the desired temperatures 

and, after allowing for thermal stabilization of the cells, the system is vacuum-pumped and 

when the pressure is lower than 1 Pa, the cold finger is filled with liquid nitrogen. A valve 

that enables the connection to the oil diffuser pump is opened and when the pressure in the 
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sublimation chamber is bellow 10‒2 Pa, the effusion time counter is initiated. The pressure 

of the system keeps decreasing toward the ultimate pressure of 510‒4 Pa. 

When the suitable effusion time period is finished, the system is isolated from the 

pumping system, air is slowly admitted in the sublimation chamber and the effusion time 

counter is stopped. The cells are removed from the ovens and thoroughly cleaned to remove 

the Apiezon L. After cooled to room temperature, the cells are weighed to assess the mass 

loss. 

 

 

3.3.2.2. Static method with capacitance manometers 

 

As previously mentioned, a static method was also used in this work for the direct 

measurement of equilibrium vapor pressures of compounds in the solid and/or liquid 

phases.  

Although there are several techniques based on the static method, more recent 

manometric variants employ capacitance diaphragm gauges. In this technique, the 

deflection of a metal diaphragm induced by the pressure of the vapor is related to the 

capacitance variation of a capacitor that includes a flexible electrode – the diaphragm – and 

a set of fixed electrodes. The variation in capacitance is proportional to the measured vapor 

pressure. 

 

 

3.3.2.2.1. Thermal transpiration and other sources of error in a static method 

 

Static methods based on capacitance diaphragm gauges are susceptible to some 

sources of systematic errors. This method is very sensitive to volatile impurities and to 

dissolved or adsorbed gases in the sample. The presence of residual gas in the sample will 

result in overestimated vapor pressure values and underestimated enthalpies of phase 

transition, since the lower vapor pressures are relatively more affected. Therefore, it is 

crucial to thoroughly degas the sample previously to its study, which will ensure the 

consistency of the measured pressure values. 

Another major problem in the use of static methods for measurement of low pressures 

(p < 1 Pa) is the possibility of thermal transpiration, generally negligible for higher pressures. 

When the temperature of the pressure gauge is kept above the temperature of the sample 

to prevent sample condensation inside the gauge, as is the case in the used experimental 

apparatus, thermal transpiration may occur. Tests made on the apparatus used in this study 
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revealed no significant influence of thermal transpiration on measured values, even for 

pressure values near the lower limit of the gauge’s applicability range  0.5 Pa  [53] which is 

essentially due to the relatively large internal diameter of the tubing (int = 17 mm) used in 

the apparatus. 

It is also important to ensure the mechanical and thermal stability of the system. The 

deflection of the diaphragm in response to pressure difference may be in the nanometer 

range, so the used apparatus is equipped with flexible metal tubes to minimize possible 

vibrations which would influence the pressure measurement. The maintenance of the gauge 

at a constant temperature is essential to avoid thermal expansion of its components that 

would lead to changes in the zero and calibration of the gauge, and consequently 

measurement errors. 

 

 

3.3.2.2.2. Description of the apparatus 

 

The static apparatus used in this work was built and tested in our laboratory and is 

reported in detail in the literature [53]. Nevertheless, a description of the main characteristics 

of the equipment and experimental procedure will be presented here.  

This apparatus, schematically represented in figure 3.17, is equipped with 

capacitance diaphragm gauges and was used to measure the vapor pressures of solid and 

liquid samples, above ca. 1 Pa until 1.3103 Pa, in temperature intervals included within (243 

and 473) K. It is essentially constituted by a diaphragm capacitance gauge (A) connected 

to a metallic tubing system (B), a sample cell thermostated at selected temperatures 

controlled by a thermostatic bath (C), a pumping system (D) and a set of peripheral 

components for temperature control and measurement, pressure measurement and 

automatic data acquisition. 

 

Capacitance manometer 

The vapor pressure is directly measured using MKS Baratron capacitance diaphragm 

absolute gauges (A). During this study, two models were used, operating at different 

maximum pressures and at controlled constant temperatures: 

• MKS Baratron 631A01TBEH applicable to measuring vapor pressures up to 1.3102 

Pa at an auto-controlled temperature of 423 K; 

• MKS Baratron 631A11TBFP applicable to measuring vapor pressures up to 1.3103 

Pa at an auto-controlled temperature of 473 K. 
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Figure 3.17. Schematic representation of the static method apparatus: A. Capacitance diaphragm absolute gauge; B. Pressure 

line (1. all-metal angle VAT valves; 2. insulated thermostated box); C. Sample cell and thermostatic bath (3. sample cell; 4. 

double-jacked vessel; 5. platinum resistance thermometer; 6. brass block; 7. thermostatic bath); D. Pumping system (8. 

turbomolecular pump; 9. rotary pump; 10. Pirani manometer; 11. WRG-S manometer; 12. UHV gate valve; 13. glass trap for 

liquid nitrogen; 14.teflon air inlet valves; 15. teflon in-line tap isolation valve). Image adapted from ref. [53,71]. 

 

 

Each capacitance manometer contains two compartments. The lower compartment 

has two chambers – one that receives the vapor of the sample, and the reference chamber. 

The latter contains a system of fixed circular electrodes and a getter which removes residual 

amounts of gas from the evacuate space by absorption or adsorption, maintaining its 

pressure negligible. So, the vapor pressure of the sample is related to the deflection of the 

flexible metal diaphragm, made of Inconel, which separates the two chambers. The upper 

gauge compartment contains the electronic components required to operate the gauge and 

electronic systems for noise reduction, ensuring a good resolution and high sensitivity. The 

manometer is connected to the tubing system by a Swagelok/Cajon VCR connection with 

an 8-VCR-CF DN 16 adapter, in which silver-plated copper gaskets are compressed 

between the ends of the connecting tubes, which facilitates the exchange between the two 

gauges.  

 

 

 

 

 

A 

2 

B 

C 

D 

1 

1 

3 
4 
6 5 

7 

8 

9 

10 

11 
12 

13 

14 15 

14 



FCUP 

3. Experimental methods 

93 

 

Tubing system 

The pressure gauge connects to the sample cell by a line constructed of stainless 

steel tubing with ConFlat DN 16 CF connections and two all-metal angle valves VAT series 

57 (1), operated pneumatically. 

The tubing and the lower compartment of the pressure gauge, are kept in a thermal 

insulated stainless steel box (2) with a removable front. This box is kept at a controlled 

temperature slightly higher than that of the sample, in order to avoid condensation of its 

vapor, but lower than the gauge’s operating temperature. The box is thermostated by air 

forced convection through a heating resistance, by means of a fan, and is controlled by a 

Eurotherm 2116 PID temperature controller connected to a platinum resistance 

thermometer Pt-100 (±0.1 K).  

 

Sample cell and thermostatic bath 

The sample cell (3) consists of a stainless steel tube, closed at the lower end, which 

is connected to the pressure line through one of the electro-pneumatic valves by a metal-

metal 8-VCR connection, described above. The cell containing the sample is introduced in 

a cylindrical cavity of a double-jacked copper vessel (4), responsible for its thermal stability, 

supplied by a constant flow of a thermal fluid (Julabo Thermal H10S oil) whose temperature 

determines that of the sample cell by thermal equilibrium. The temperature of the thermal 

fluid near the sample is measured by a platinum resistance thermometer Pt-100 1/10 (5), 

inserted in a narrow cavity in the thermostated vessel located near the bottom of the sample 

cell. The sample cell and thermometer cavities end in an inner small block of made of brass 

(6), with the function to improve thermal contact between them and the circulating fluid. The 

temperature of the circulating fluid is regulated by a Julabo F33-MW thermostatic bath (7), 

equipped with a cooling system, which allows the temperature control between 253 K and 

473 K (±0.01 K). 

 

Pumping system 

The pumping system is constituted by an Edwards EXT70 turbo-molecular pump (8) 

coupled to an Edwards RV3 rotary pump (9), responsible for the primary vacuum. The 

turbomolecular pump is installed on an Edwards EXPB 1.5 base, equipped with an Edwards 

EXC120 controller and two Edwards AGD pressure gauges connected to an Edwards 

Active Pirani APG-M manometer (10), that measures the pressure at a point between 

pumps, and an Edwards WRG-S manometer (11), that measures the pressure near the exit 

of the turbomolecular pump. 
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At the exit of the turbo-molecular pump, there is also a VAT 010 series valve (UHV 

gate valve) (12), which facilitates the rapid isolation of the pumping system. This valve 

communicates with a glass vacuum line that establishes the connection between the 

pumping system and the pressure line. The glass line includes a glass trap cooled (13) with 

liquid nitrogen, and is equipped with two air inlet ASL1 J. Young valves (14), and a J. Young 

in-line tap SPOR25 isolation valve (15), all made of teflon. 

 

 

 
 

Figure 3.18. Image of the HP-VEE software data acquisition display. 

 

 

Auxiliary and data acquisition systems 

The pressure and temperature experimental data are collected through a data 

acquisition system, Keithley 2700, programmed to read the vapor pressure and the 

temperatures of the sample and of the thermostated box at regular intervals. This data is 

monitored by of an HP-VEE software (figure 3.18) configured for this purpose.  

The Julabo thermostatic bath and the electro-pneumatic valves are also connected to 

the computer, and controlled using respectively the EasyTemp software (v2.2) supplied by 

Julabo Lobortechnik GmbH for programing and controlling the temperature of the circulating 

fluid and ADAM software (v1.1) [72] for automatically operating the electro-pneumatic 

valves.  
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3.3.2.2.3. Experimental procedure 

 

In a typical experiment, the sample cell containing a small amount of sample is 

connected to the tubing system and introduced into the double-jacked thermostatic vessel. 

Prior to vapor pressure measurements, the sample is thoroughly degassed until 

consecutive measurements at a selected temperature deliver consistent pressure results. 

When the degassing process is completed, an experimental temperature is selected and 

the pressure baseline is established with the sample cell closed and the rest of the system 

connected to the pumping system. The sample cell is then opened allowing the capacitance 

manometer to be filled with the sample’s vapor. There is a sudden increase in the pressure 

read by the pressure gauge and, when it stabilizes, the (p,T) data is registered. After the 

vapor pressure is determined, the sample cell is again closed and the pressure returns to 

the baseline. This process is repeated at different temperatures over a chosen temperature 

interval, following increasing and decreasing temperature sequences in order to test the 

quality of results and detect eventual systematic errors caused by insufficient degassing of 

the sample. 
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3.4. Photoluminescence spectroscopy 

 

 

3.4.1. Introduction to photoluminescence 

 

Luminescence is the emission of light (usually in the UV-Vis region) that occurs from 

the deactivation of electronically excited species [73]. The various types of luminescence 

are classified according to the mode of excitation. Fluorescence and phosphorescence are 

particular cases of photoluminescence, in which the mode of excitation is the absorption of 

photons. A molecule, or part of a molecule, that is capable of re-emitting light upon 

absorption of photons is called fluorophore. 

At any electronic energy level, Sn, a fluorophore can exist in a number of vibrational 

energy levels (ν = 0, 1, 2… . At room temperature, most fluorophores occupy the lowest 

vibrational energy level of the ground electronic state, S0. Following light absorption, a 

fluorophore is excited to any of the higher vibrational levels of an excited electronic state. 

The excited state exists for a finite time and then the fluorophore returns to S0 dissipating 

part of its energy through a number of radiative and non-radiative pathways, as is illustrated 

in the simplified Jablonski diagram in figure 3.19. 

 

 

 

 

Figure 3.19. Simplified Jablonski diagram: S0 - ground state; S1 - first singlet excited state; Sn - singlet excited state; T1 - first 

triplet excited state; A - photon absorption; F - fluorescence; P - phosphorescence; VR - vibrational relaxation; IC - internal 

conversion; IS - intersystem crossing. 
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Table 3.4. Possible radiative and non-radiative de-excitation pathways of excited fluorophores and average time scales.  

 Type Transition Time scale / s 

A Absorption  Radiative S1 ĺ Sn 10‒15 

IC 
 

Internal conversion 
 

Non-radiative 
 

Sn ĺ S1, Tn ĺ T1  10‒14–10‒10 

S1 ĺ S0 10‒7–10‒6 

VR Vibrational relaxation  Non-radiative S1, ν = n ĺ S1, ν = 0 10‒12–10‒10 

F Fluorescence  Radiative S1 ĺ S0 10‒9–10‒7 

IS Intersystem crossing  Non-radiative 
S1 ĺ T1, Sn ĺ Tn,  
Tn ĺ Sn 

10‒8–10‒5 

P Phosphorescence  Radiative T1 ĺ S0 10‒2–103 

 

 

The probability of each transition is related to the respective time scale [74] (table 

3.4): the faster the transition, the more likely it is to happen. 

An excited fluorophore in any higher vibrational level of Sn, quickly relaxes to the 

lowest vibrational state of the first excited electronic state with the same multiplicity, S1, by 

vibrational relaxation (between vibrational levels of the same electronic level) and interval 

conversion (between different electronic levels) through collisions with other molecules. 

From S1, a fluorophore may reach S0 emitting radiation through different processes: 

fluorescence and phosphorescence. Owing to the loss of vibrational energy, radiation 

emission will always occur at a lower energy than that of absorption, and therefore at larger 

wavelengths. 

The ground state and first excited state have similar energy spacing between 

vibrational energy levels and, consequently, the absorption and fluorescence spectra are 

approximate mirror images of each other [74]. This mirror-image relationship, however, is 

affected by interactions of the fluorophore in the excited state with the surrounding medium.   

 

 

3.4.1.1. Fluorescence 

 

 From the lowest vibrational level of S1, the fluorophore can return to any of the 

vibrational levels of the ground state, emitting fluorescence radiation [73]. 

 

S1 ĺ S0 + hv (3.88) 

 

Because the emission of fluorescence takes place from the lowest vibrational level of 

S1, the emission maximum and the spectra profile are typically independent of the excitation 
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wavelength. Different excitation wavelengths, however, will produce variations in 

fluorescence emission intensity [75,76]. 

Absorption overlaps fluorescence at the wavelength corresponding to the 0-0 

transition:  S0, ν = 0 ļ S1, ν = 0. It should actually occur at the same wavelength, but in practice 

they rarely coincide, as a result of a small energy loss by the interaction of fluorophore with 

the surrounding environment. Due to energy dissipation, the energy of the emitted photon 

is lower and therefore of longer wavelength then the absorption wavelength. This difference 

in energy/wavelength is known as Stokes shift (gap between the maximum of the first 

absorption band and the maximum of fluorescence emission) [73,74]. 

 

 

3.4.1.2. Phosphorescence  

 

Fluorophores in S1 can also undergo a spin conversion to the first triplet state, T1, 

through intersystem crossing (non-radiative transition between isoenergetic vibrational 

levels belonging to electronic states with different multiplicities). The probability of 

intersystem crossing increases if the vibrational levels of S1 overlap with those of T1. From 

T1, the fluorophore can return to any of the vibrational levels of S0, emitting 

phosphorescence radiation [73]. 

 

T1 ĺ S0 + hv’ (3.89) 

 

Because T1 has smaller energy than S1, phosphorescence spectrum is located at 

longer wavelengths than the fluorescence spectrum.  Since the theoretically forbidden 

excitation to a triplet state is less probable, the return to S0 from T1 will take longer than from 

S1. While fluorescence emission occurs within nanoseconds, phosphorescence lifetime can 

take up to several hours in certain materials [76,77]. 

Phosphorescence in solution at room temperature is not likely to occur because many 

deactivation processes compete with phosphorescence emission (table 3.4), but it can be 

observed at very low temperatures and/or in rigid mediums. Molecules containing heavy 

atoms, such as bromine or iodine, are frequently phosphorescent. In heavy atoms, a spin-

orbit interaction is substantial facilitating intersystem crossing [78]. 
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3.4.2. Excited-state lifetimes and luminescence quantum yield  

 

Two key parameters for fluorophore characterization and comparison are the excited-

state lifetime and the luminescence quantum yield. These parameters can be defined for 

fluorescence and phosphorescence transitions. 

Excited-state lifetime is the average time that a fluorophore remains in an excited 

singlet of triplet state before returning to S0 [75], and can be described as the decrease of 

the number of excited fluorophores in time following excitation. Luminescence quantum 

yield provides a direct measure of the efficiency of the conversion of absorbed light into 

emitted light [79]. The fluorescence quantum yield, F, can be calculated at the ratio of 

photons absorbed to photons emitted through fluorescence [75]: 

 

F

number of photons emmited

number of photons absorbed
   (3.90) 

 

Other processes, however, contribute to the fluorophore deactivation, such as internal 

conversion, intersystem crossing, inter and intramolecular interaction. So, in other words, 

the fluorescence quantum yield can also be associated to the probability of the excited state 

being deactivated to S0 by fluorescence rather than by another non-radiative mechanism, 

 

F

F nr

F
 + 

k

k k
   

(3.91) 

 

where, kF, is the rate constant for fluorescence deactivation, and knr is the rate constant for 

non-radiative deactivation, including all other possible competing deactivation pathways. 

The weaker the competitive processes are, the larger is the de-excitation via fluorescence. 

Fluorophores with quantum yields approaching unity, will be more efficient and display the 

brightest emissions. Fluorophores with quantum yields as low as 0.1, however, are already 

considered fluorescent [80]. 
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3.4.3. Quantification of emission and instrumentation  

 

The radiation emitted by a fluorophore, in solution or in solid phase, can be 

characterized by the emission spectra, quantum yield and lifetime. These properties are 

related to the fluorophore structure and its chemical environment.  

Emission data is usually presented in the form of emission spectra, where emission 

intensity is plotted as a function of emission wavelength (or wavenumber, cm‒1). Energy 

spacing between vibrational levels is illustrated in the emission spectrum by different bands 

corresponding to the vibrational levels of the ground state [81]. Most rigid organic molecules 

have restricted vibrational levels and can show simpler spectra with broader bands devoid 

of vibrational structure. 

Emission spectra can be readily obtained using a conventional spectrometer while 

the determination of lifetime requires time-resolved spectroscopy, where the emission of 

the sample is monitored as a function of time after excitation by a pulse of light. 

Comparatively, emission quantum yields are more difficult to determine, particularly for 

crystalline samples. In general, photoluminescence quantum yields can be determined 

through comparative and absolute methods [79]: 

 In comparative methods, photoluminescence measurements of a sample are 

compared with those of a well characterized standard [82] with optical properties 

closely matching those of the investigated sample under identical experimental 

conditions. The accuracy of these methods depend on the accuracy of the standard 

determination; 

 In absolute methods, the quantum efficiency can be determined by optical methods, 

by directly measuring the portion of absorbed photons emitted as luminescence, or 

by calorimetric methods such as photoacoustic and thermal lensing [83], by directly 

measuring the portion of photons lost by non-radiative recombinations. 

 

 

3.4.3.1. Integrating sphere based methods 

 

In this work, photoluminescence quantum yields were performed using an absolute 

optical technique based on an integrating sphere.  

An integrating sphere is a spherical cavity whose inner surface is coated with a highly 

reflective (diffuse) surface which enables spacial integration of incoming light flux while 

minimizing issues related to the angular dependence of reflection, emission and scattering  

[84]. While conventional fluorescence spectrometers can detect only a certain fraction of 
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the emitted light, those equipped with an integrating sphere detect all light emitted by the 

excited sample, and hence allow for the absolute determination of the fluorescence 

quantum yield [79]. 

By using an integrating sphere, much of the optical anisotropy (dependence 

with the direction of propagation of the radiation) is eliminated by multiple reflections on the 

inner surface of the integrating sphere [85]. For this reason, the use of integrating spheres, 

particularly for the determination of quantum yield on the solid state, is becoming 

increasingly common. Recent commercial instruments based on an integrating sphere are 

found to yield reliable results in various set-ups [85]. 

 

 

3.4.4. Factors affecting accuracy 

 

The accurate characterization of fluorescence can often be difficult and troublesome, 

because it is highly sensitive to changes in environment conditions (temperature, solvent, 

fluorophore interaction with other molecules, etc.) that can distort the emission spectra and 

influence the quantum yield, both in solution and in the solid state. Decrease of fluorescence 

intensity by interaction of the fluorophore in its excited state with the local molecular 

environment is known as quenching. Fluorescence quenching can occur due to the 

presence of oxidizing agents, inner filter effects (as self-absorption) and formation of excited 

state dimers. 

 

Temperature and pH 

At room temperature, most molecules are in the lowest vibrational level of the ground 

state. At higher temperatures, higher vibrational levels of the ground state are populated 

(Boltzmann distribution) and more transitions occur from these levels to higher vibrational 

levels of excited electronic states. This leads to broader absorption and emission spectra 

since the superposition of the different levels blurs most of the fine vibrational structure of 

the band. An increase in temperature also results in a decrease in the fluorescence quantum 

yield and lifetime because non-radiative processes related to thermal agitation are more 

efficient at higher temperatures [73]. Conversely, at lower temperatures, the spectral widths 

are reduced and the spectra shows enhanced vibrational structure [74]. 

When in solution, small changes in pH can also affect the intensity and spectral 

characteristics of fluorescence. As a result, pH sensitive fluorophores in different ionization 

states have distinct absorption and emission spectra in aqueous solution. This principle is 

used in fluorescence sensors for the measurement of pH changes within cells [75]. 
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Solvent polarity and oxygen quenching 

Solution fluorescence emission spectrum and quantum yield strongly depend on the 

polarity of the solvent. A fluorophore on higher vibrational levels of an excited state, loses 

excess vibrational energy to surrounding solvent molecules. The interaction with the solvent 

molecules decreases the energy of the excited fluorophore, reducing the energy separation 

between the ground and excited states. This results in a shift of the fluorescence emission 

to longer wavelengths and an increase of the Stokes shift, which will be more prominent 

with increasing solvent polarity. The polarity of the fluorophore also determines the 

sensitivity of the excited state to solvent effects. Polar and charged fluorophores exhibit a 

far stronger effect than non-polar fluorophores [75].  

When in solution, the presence of trace oxidizing agents, for example, dissolved 

molecular oxygen can severely reduce fluorescence intensity. Oxygen quenching is more 

significant in nonpolar solvents in which oxygen is more soluble than in aqueous solution. 

The dissolved oxygen can be removed by bubbling the solution with an inert non-quenching 

gas such as nitrogen [86,87].  

 

Self-absorption 

Either in solution or in the solid state, if the sample shows significant overlap of the 

absorption and luminescence spectra, some of the photons emitted by the fluorophore may 

be reabsorbed causing a distortion of the shape of the fluorescence spectrum in the overlap 

region [73] and a decrease of the observed fluorescence intensity and inaccurate quantum 

yield values. Self-absorption is unfortunately an undesired consequence of using integrating 

sphere setups, particularly when measuring solid samples [88]. Because a fraction of the 

emitted light is redirected onto the sample, there is a probability of it being reabsorbed. 

These effects can be lessened by using very dilute solutions or by reducing the volume of 

the emissive material if in the solid state. Alternatively, corrections can be applied by 

comparing emission spectra taken inside and outside the sphere.  

 

Impurities and structural effects 

The presence of impurities in the sample (and/or the solvent if in solution) can 

dramatically affect the accuracy of results, increasing or decreasing the fluorescence 

emission depending on the fluorescent nature of the impurity. Fluorescent impurities can 

decrease the sensitivity or even prevent the distinct detection of individual fluorophores.  

Solid state fluorescence properties are sensitive to chemical impurities, structural 

defects and the already referred to above self-absorption of fluorescence, which may cause 
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fluorescence quenching of the material. Single crystals, powders with different size particles 

or even thin film will present distinct fluorescence spectra [89].  

In some cases, however, a trace amount of impurity can act as a doping agent, 

particularly in the solid state, increasing the emission intensity of the fluorophore. In solid-

state electronics, doping is widely used in the manufacture of semiconductors with the 

intention of modulating and enhancing its electrical properties [81,90]. 

 

Excimers and exciplexes 

At higher concentrations and/or in the solid state, a fluorophore in the excited state 

can interact with an unexcited neighbor to form an excited state dimer, called excimer. The 

formation of such excited dimers is short-lived, existing only in the excited state, and is quite 

common in polycyclic aromatic hydrocarbons. The energy change associated with the 

excimer emission is smaller than that of the monomer. Thus, the fluorescence band 

corresponding to excimer emission is shifted to longer wavelengths and does not show 

vibrational structure. Analogous phenomena can also occur as a result of the interaction 

between different molecules in the excited state, forming excited complexes, called 

exciplexes. While excimers are nonpolar, exciplexes are polar species [81]. 

 

Light scattering 

Scattering of excitation radiation, either from solvent molecules (Raman inelastic 

scattering), molecules in solution (Rayleigh elastic scattering) or from small particles in 

colloidal suspension (Tyndall scattering) will lead to radiation intensity fluctuations and to 

inaccurate emission results. 

 

 

3.4.5. Spectroscopic apparatuses 

 

In this work, the UV-Vis absorption spectra were obtained by means of an Agilent 

8453 UV-Vis diode array system, and were used to determine the maximum absorption 

wavelength which was used as the excitation wavelength for the solution fluorescence 

study. The fluorescence spectra and the absolute emission quantum yields (F) of the 

samples, in the solid state (powder form) and in solution, were measured using the absolute 

photoluminescence quantum yield spectrometer Hamamatsu Quantaurus-QY C11347-11. 

The detailed description and mode of operation of both apparatuses can be found in the 

respective manuals provided with the devices [91,92]. 
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The fluorometer is equipped with a 150 W xenon lamp, as a monochromatic light 

source, coupled to a monochromator for wavelength discrimination, an integrating sphere 

as sample chamber, and a multichannel (back-thinned CCD) detector. The apparatus 

allows the excitation of the sample in the wavelength range (250 to 850) nm and the 

photoluminescence measurement in the range (300 to 950) nm.  

 

 

  

 

Figure 3.20. Simple schematic representation of the interior (sectional view) of the integrating sphere of the Hamamatsu 

Quantaurus-QY spectrometer (1. integrating sphere cavity; 2. sample holder for solid samples; 3. quartz cuvette for liquid 

samples; 4. exciting light). Image adapted from ref. [93]. 

 

 

The inner surface of the integrating sphere is made of Spectralon®, a 

polytetrafluoroethylene-based material which has the highest diffuse reflectance of any 

known material over the ultraviolet, visible, and near-infrared regions of the spectrum [94]. 

The integrating sphere is equipped with a sample holder for solid samples located at the 

bottom of the sphere and an attachment for a quartz cuvette for liquid samples at the top 

(figure 3.20). 

The system utilizes dedicated software, U6039-05 Quantaurus-QY (V3.7.0, figure 

3.21), to automatically control the excitation wavelengths, measure fluorescence intensity 

and determine absolute photoluminescence quantum yields. The absolute fluorescence 

quantum yield is determined as the ratio of the number of photons emitted from the excited 

sample to the number of absorbed photons (equation 3.92). The number of absorbed 

1 

2 

3 

4 
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photons is determined from the difference between the incident excitation light intensity of 

the reference and of the absorbing sample, depicted in blue in figure 3.22.  
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Figure 3.21. Image of the U6039-05 software data acquisition display. 

 

 

 

 

Figure 3.22. Example of excitation light and emission spectra on reference and sample (image adapted from ref. [95]). 
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The UV-Vis absorption and fluorescence spectra were acquired at room temperature 

(T ≈ 295   . The fluorescence measurements of the solutions were carried out using a 1 

cm path length quartz cuvette with a tube extension (Hamamatsu A10095-02, figure 3.23-

a), and the fluorescence measurements in the solid state were performed using a quartz 

lidded Petri dish with 17 mm of external diameter (Hamamatsu A10095-03, figure 3.23-b). 

 

 

 (a)   (b) 

 

Figure 3.23. Quartz cuvette (a) and lidded petri dish (b) used for the fluorescence measurements in solution and in the solid 

state, respectively. 

 

 

 

3.4.6. Experimental procedure  

 

 

3.4.6.1. Solution fluorescence 

 

The solutions used for the absorption and fluorescence measurements, with 

concentrations ranging from (110‒6 to 110‒3) moldm‒3, were prepared by rigorous dilution 

of a known mass of compound in cyclohexane (VWR Chemicals, spectroscopic grade).  

The UV-Vis absorption spectra of the solvent background were recorded to define the 

corresponding base line, followed by that of the sample solutions to determine the maximum 

absorption wavelength. 

Just before the fluorescence measurements, each solution was thoroughly 

deoxygenated by bubbling with nitrogen for about 20 minutes to reduce/eliminate oxygen 

quenching. The fluorescence spectra of the solutions were then recorded, in order of 

increasing concentration, using the maximum absorption wavelength determined by UV-Vis 

as the excitation wavelength. 
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3.4.6.2. Solid state fluorescence 

 

For the fluorescence measurements in the solid state, a loose powder sample, 

obtained by milling the sublimed crystals, was placed in a quartz Petri dish and the 

fluorescence spectrum was recorded over a range of excitation wavelengths at regular 

intervals of 10 nm. Whenever possible, the excitation wavelength range was selected in 

accordance with data available in the literature. 

For each compound, three measurements were performed with increasing amounts 

of sample (as represented in figure 3.24) to test the dependence of quantum yield with 

amount of sample and eventual self-absorption effects in the solid phase. 

 

 

 (a)   (b)  (c) 
 

Figure 3.24. Typical amounts of sample used for the solid state fluorescence measurements (approximate percentage of the 

area of the base of the dish covered by powder sample: a. 15 %; b. 40 %, c. 100 %). 
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4.1. Introduction to the experimental results 

 

In this chapter, it is presented all the detailed information regarding the origin and 

purification of the samples for study, as well as, all the experimental results for each 

compound studied, according to table 4.1. The experimental results of the test 

substances are presented in section C of the annexes. 

 

 

Table 4.1. Experimental techniques used to determine thermodynamic and fluorescence properties of each of compound 

studied in this work. 

Compound DSCa CMb CCc VPd FSe 

Fluorene      

Naphthalene      

Fluoranthene      

2-SUBSTITUTED FLUORENES  

2-Fluorenecarboxaldehyde      

2-Aminofluorene      

2-Nitrofluorene        

2-Fluorofluorene      

2-Bromofluorene      

2-Iodofluorene      

2,7-DISUBSTITUTED FLUORENES 

2,7-Di-tert-butylfluorene      

2,7-Difluorofluorene      

2,7-Dichlorofluorene      

2,7-Dibromofluorene      

2,7-Diiodofluorene      

9-SUBSTITUTED FLUORENES 

9-Fluorenecarboxylic acid      

9-Phenyl-9-fluorenol      

9-Benzylidenefluorene      

9-Fluorenemethanol      

9-Chlorofluorene      

     …/… 
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…/…      

 2-SUBSTITUTED FLUORENONES 

2-Aminofluorenone      

2-Hydroxyfluorenone      

2-Fluorofluorenone      

2,7-SUBSTITUTED FLUORENONES 

2,7-Dinitrofluorenone      

2,7-Dibromofluorenone      

2,6-SUBSTITUED NAPHTHALENES 

2,6-diethylnaphthalene      

2,6-diisopropylnaphthalene      

2,6-di-tert-butylnaphthalene      

Test substancesf 

Benzoic acid      

N-Methylnicotinamide      

Pyrene      

a DSC: temperatures and enthalpies of condensed phase transition determined by differential scanning calorimetry; 

b CM: sublimation enthalpies determined directly by Calvet microcalorimetry; 

c CC: massic energies of combustion determined by static or rotating bomb combustion calorimetry; 

d VP: vapor pressures of the condensed phases, determined by the Knudsen effusion method and/or the static method 

based on the diaphragm capacitance gauges; 

e FS: fluorescence properties, determined by fluorescence spectroscopy; 

f Experimental results presented in annex C.2. 

(, performed in this work; , incomplete study; , performed by other researchers.) 

 

 

The experimental results are presented in tables and figures, when applicable. The 

following thermodynamic and fluorescence properties are reported:  

Fusion 

• Melting temperatures, enthalpies and entropies of fusion determined by differential 

scanning calorimetry and, for some compounds, also determined indirectly from 

the enthalpies of sublimation and vaporization;  

Sublimation and vaporization 

• Vapor pressures at different temperatures (determined by the Knudsen effusion 

method and/or the static method) and the derived standard molar (po = 0.1 MPa) 

enthalpies, entropies and Gibbs energies of sublimation and/or vaporization at the 

reference temperatures:  T = 298.15 K, mean experimental temperature and triple 
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point temperature (when applicable); standard (po = 0.1 MPa) molar enthalpies of 

sublimation directly determined by Calvet microcalorimetry, at T = 298.15 K; 

Combustion and formation reactions 

• Standard massic energies of combustion, determined by combustion calorimetry 

and derived standard molar enthalpies of formation in the crystalline phase, at T = 

298.15 K, which combined with the corresponding enthalpies of sublimation, 

enabled the determination of the standard molar enthalpies of formation in the 

gaseous phase; 

Thermodynamic stability 

• Standard molar Gibbs energies of formation in the crystalline and gaseous phases, 

determined from standard molar enthalpies of formation and standard molar 

entropy values; 

Fluorescence properties 

• Fluorescence spectroscopic data and quantum yield of the compounds in solution 

and in powder form, at room temperature. 

 

 

 

4.2. Thermodynamic properties 

 

 

4.2.1. General remarks 

 

Contrary to what was anticipated in the beginning of this project, it was not possible 

to perform a complete thermodynamic study of all the compounds referred to above, 

particularly in what concerns the combustion calorimetry study. 

This highly sensitive technique requires the use of samples with a very high degree 

of purity (ideally >0.999). The purification to the desired degree of some of the 

compounds studied proved to be extremely difficult or, in some cases, impossible with 

the available purification techniques. Consequently, the failure to get enough quantity of 

samples with the minimum degree of purity was the limiting factor that prevented the 

thermochemical study of 2-iodofluorene, 2-hydroxyfluorenone, 2-fluorofluorenone, 2,7-

dinitrofluorenone and 2,7-dibromofluorenone. 

The combustion study of 2-aminofluorenone was attempted, however, the 

compound presented an explosive behavior upon ignition and originated large amounts 
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of non-quantifiable carbon soot in the inner walls of the combustion bomb. Several 

combustion aids and experimental conditions were tested without success and the 

combustion study of 2-aminofluorenone is, so far, incomplete. 

The measurement of the vapor pressures of 2,7-dinitrofluorenone by the Knudsen 

effusion method was tested, using both sets of effusion orifices used throughout this 

work. Both tests yielded vapor pressure results equally scattered and inaccurate, even 

upon repetition. The reason for this behavior was not possible to clarify. 

In the case of the synthesized compounds, its study was conditioned by the amount 

of sample obtained. For the synthesized halofluorenes, it was possible to perform the 

vapor pressure measurements and phase transition studies. For the synthesized 

halofluorenones, only the microscale synthetic test was performed and the amount of 

sample obtained was limited. Macroscale repetitions of these syntheses were required, 

but were not possible due to time limitations in the course of this work. 

For the compounds studied with success, the thermodynamic properties and 

respective uncertainties were derived from the obtained experimental results according 

to the calculations explained in detail the following points. 

 

 

4.2.1.1. Thermodynamic properties of combustion 

 

4.2.1.1.1. Calibration of the combustion calorimetric systems  

 

The energy equivalents, cal, of the used calorimetric systems were determined 

from the combustion benzoic acid (NIST Standard Reference Material 39j), in the 

presence of oxygen at a pressure p = 3.04 MPa and of 1.00 cm3 of deionized water.  

For the static bomb combustion calorimeter, the energy equivalent had previously 

been determined by another researcher [1], cal = (15551.7 ± 1.2) JK‒1, and was 

periodically confirmed in the course of this work. For the rotating bomb combustion 

calorimeter used during this work, calibration experiments were performed without bomb 

rotation and the energy equivalent of the calorimeter, also determined by another 

researcher [2], was cal = (20361.4 ± 0.6) JK‒1. 

The value for the pressure coefficient of massic energy for the compounds studied 

was assumed to be (∂u/∂p)T = –0.2 Jg–1MPa–1 [3], at T = 298.15 K, a typical value for 

most organic compounds. 
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4.2.1.1.2. Massic and molar energies and molar enthalpies of combustion 

 

For the organic compounds of molecular formula CaHbOcNd studied in this work, 

the massic energy, cuo, of the combustion reaction represented by the general chemical 

equation 3.5, was calculated by the procedure given by Hubbard et al. [4]. 

The accuracy of the calorimetric and analytical procedures used for the combustion 

of the organobromine compounds of molecular formula CaHbOcNdBre studied in this work 

(general chemical equation 3.8) has been reported by other researchers [5,6] by 

measuring the standard massic combustion energy of the test substance 4-

bromobenzoic acid, recommended by Bjellerup [7]. The applied standard state 

corrections were calculated by the procedure proposed by Bjellerup [8], and Sellers and 

Sunner [9]. 

In this work, the variation of adiabatic temperature was calculated using the 

LABTERMO software [10], specifically adapted to the each calorimetric system used. 

The standard massic and molar internal energies, and the molar enthalpies of 

combustion of the compounds studied were calculated according to the equations 3.39, 

3.43 and 3.44, respectively, presented in section 3.2.2.2. The uncertainty associated to 

the mean standard massic energy of combustion refers the standard deviation of the 

mean of the independent results, , calculated through equation 4.1, where ͞x is the 

arithmetic average of n experimental results. 

 

2
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( )
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(4.1) 

 

Adopting what was proposed by Rossini [11] and, later on, by Olofsson [12], the 

uncertainty interval associated with the standard molar energies of combustion is twice 

the standard deviation of the mean (±2), of at least six results, ensuring a confidence 

level of 95 %. It was calculated by equation 4.2 and includes the uncertainties associated 

to the energy equivalent, and to the combustion of the calibrant and eventual auxiliary 

substances:  

 

o o o
c m cal c c c

2 22 2

(BA) (aux) (cpd)

o o o

cal cc m c c

2
(BA) (aux) (cpd)

U u u u

uU u u


   


         

                      
 (4.2) 

 

where: 
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cal , 
cal  represent the mean value of the energy equivalent of the 

calorimeter and the corresponding standard deviation of the mean; 

cc (BA)(BA), uu   represent the mean massic energy of combustion of benzoic acid, 

used as calibrant, and the corresponding standard deviation of the 

mean; 

o
c

o

c (aux)
(aux), 

u
u 


  represent the mean massic energy of combustion of auxiliary 

substances and the corresponding standard deviation of the mean; 

o
c

o

c (cpd)
(cpd), 

u
u 


  represent the mean massic energy of combustion of the compound 

under study and the corresponding standard deviation of the mean. 

 

 

4.2.1.1.3. Apparent mass to true mass correction 

 

All the necessary weightings for the combustion experiments were corrected from 

apparent mass values to true mass, under vacuum conditions, using the density, . The 

values of  used, presented for each compound throughout this chapter, were compiled 

from the information contained in commercial catalogs, the literature database of the 

Royal Chemical Society (ChemSpider) [13], Yaws’ book of thermophysical properties 

[14] and other literature sources. When it was not possible to source values in the 

literature, the density of the compounds was determined from the mass and volume ratio 

of pressed pellets of the samples. The pellets were weighed on an analytical balance 

Mettler Toledo AG 245 (with an accuracy of ±10‒5 g) and the dimensions of the tablets 

(diameter, 2r, and height, h) were measured with a manual micrometer, enabling the 

determination of the respective volume V, according to the following expression:  

 

 

 

4.2.1.2. Thermodynamic properties of phase transition  

 

4.2.1.2.1. Temperatures and standard molar properties of fusion 

 

The phase transitions between condensed phases of the compounds studied were 

characterized by DSC. To characterize the transition associated to a peak, the onset 

temperatures and respective enthalpies of transition were determined. The uncertainties 

associated to these properties are twice the standard deviation of the mean of the 

individual results (±2), where  is calculated through equation 4.1. 

V = r2 h  (4.3) 
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4.2.1.2.2. Standard molar enthalpies of sublimation and vaporization 

 

Thermodynamic properties of sublimation or vaporization often refer to the mean 

experimental temperature, T, of the determinations. At the temperature T, the 

standard molar enthalpy of sublimation or vaporization, g o

cr/l m( ),H T    is the change in 

enthalpy of the isothermal process described by: 

 

Compound (cr/l, standard state) Compound (g, standard state)  

 

The standard states referred to in this process can be defined as follows [15]: 

• For a crystalline compound is the state related to its most stable crystalline form, 

at a temperature T and a standard pressure of 0.1 MPa; 

• For a liquid compound, as the state corresponding to the pure liquid, at a 

temperature T and a standard pressure of 0.1 MPa; 

• For a gas, as the state of an ideal gas, at a temperature T and a standard pressure 

of 0.1 MPa, which is enthalpically equivalent to the real gas at the same 

temperature and zero pressure.  

Considering the following thermochemical cycle, expression 4.4 can be deduced 

which relates the standard molar enthalpy of sublimation or vaporization at a given 

temperature T, with the molar enthalpy of sublimation or vaporization at the same 

temperature and at the equilibrium vapor pressure, p(T): 

 

g o g

cr/l m 1 cr/l m 2( ) ( )H T H H T H        (4.4) 

 

 

 

 

Figure 4.1. Thermodynamic cycle for deriving the dependence of the enthalpy of sublimation or vaporization enthalpy with 

pressure. 

H2 H1 

Compound (cr/l),  

T, p = p(T) 

Compound (real g),  

T, p = p(T) 

Compound (cr/l),  

T, p = 0.1 MPa 

Compound (real g),  

T, p = 0 
 g o

cr/l mH T

 g

cr/l mH T
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The H1 and H2 values can be calculated by equations 4.5 and 4.6, where Vm is 

the molar volume, relative to the solid or liquid phases in equation 4.5, and to the gas 

phase in equation 4.6. The contribution of the H1 and H2 terms in equation 4.4 will 

depend on the magnitude of p.  

 

( )

1 m0.1 MPa
( )p

p T

H T V T V dp         (4.5) 

  
0

2 m( )
( )

p T pH T V T V dp         (4.6) 

 

For one mole of a solid or liquid compound, the value of the integrand in equation 

4.5, at T = 298.15 K, is about 10‒1 dm3mol‒1 and can be considered independent of 

pressure [15,16]. Considering p ≈ 0, the maximum value of H1 will be about 10 Jmol‒1 

which comparatively to a typical value of g

cr/l m( )H T  with a magnitude of (104 to 105) 

Jmol‒1, can be neglected for the calculation of g

cr/l m( )H T . 

Similarly, for one mole of a gaseous compound, the value of the integrand in 

equation 4.5, at T = 298.15 K, is between (2-3)10‒2 m3·mol‒1 and approximately 

independent of pressure [15,16]. Since low volatile (crystalline and liquid) organic 

compounds have vapor pressures far inferior than 0.1 MPa, at 298.15 K, the result of the 

difference [(p = 0) – (p = p(T))], is usually very small, and H2 value is negligible when 

compared to H1.  

Considering these approximations, g g o

cr/l m cr/l m( ) ( )H T H T    can be admitted without 

introducing significant errors. 

Throughout this work, solid and liquid vapor pressures were fitted by a truncated 

form of Clarke-Glew equation (3.71), using the software SigmaPlot (version 10.0), in 

order to determine the standard molar thermodynamic properties of sublimation and 

vaporization of the compounds studied at selected reference temperatures: T = 298.15 

K, the mean temperature of the experimental interval, and (when applicable) the triple 

point temperature. The uncertainties associated to the parameters are calculated from 

the standard deviations of the least squares regressions of the fitting.  

For some of the compounds studied, the thermodynamic properties of sublimation 

were obtained by two different methods. In these cases, the weighed mean of both 

results, 
wx , is presented  with the corresponding standard deviation, 

wx , calculated 

through equations 4.7 and 4.8, where xA and xB are the individual values and A and B 

are the standard uncertainties associated to each value [12,17].  
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x x
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     
   

 (4.7) 

2 2
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1 1wx
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

 




 
(4.8) 



 

4.2.1.2.3. Enthalpies of sublimation and vaporization at a reference temperature 

 

The standard molar enthalpy of sublimation or vaporization of a compound at T = 

298.25 K, g o

cr/l m(298.15 K)H , can be related to its standard molar enthalpy of sublimation 

or vaporization at a temperature T, g o

cr/l m( )H T   , by the equation 4.9 (see section 

3.3.1.3.2). 

 

g o g o g o

cr/l m cr/l m cr/l ,m(298.15 K) ( ) (298.15 K ) pH H T T C           (4.9) 

 

In this work, some of the g o

cr/l ,m(298. K)15 pC  values, assumed as constant for the 

considered temperature intervals, were estimated from the standard molar heat 

capacities of the crystalline, o

,m(cr),pC  and liquid phases, o

,m(l)pC , using respectively 

equations 4.10 and 4.11, developed by Chickos et al. [18], 

 

–1 –1 –1 –1g o o

cr ,m ,m298.15 K J K mol 0.75 0.15 (cr, 298.15 K) / J( ) / K molp pC C          

(4.10) 

  

–1 –1 –g o o

l ,m ,m

1 –1298.15 K J K mol 10.58 0.26 (l, 298.15 K) / J( ) / K molp pC C          

(4.11) 

 

or from the standard molar heat capacities of the gaseous phase, o

,m ,  298.1 K(g )5 pC , 

applying rearrangements of these equations, suggested by Monte and collaborators 

[19,20]: 

 

–1 –1 –1 –1g o o

cr ,m ,m298.15 K J K mol 0.9 0.176 (g, 298.15 K) / J( ) K mo/ lp pC C          

(4.12) 
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–1 –1 –1 –1g o o

l ,m ,m298.15 K J K mol 14.3 0.35 (g, 298.15 K) / J( ) / K molp pC C          

(4.13) 

 

In the absence of experimental values of o

,m(cr/l)pC  and of computational values of

o

,m(g)pC , they were estimated from those of fluorene and fluorenone through group 

contribution methods using data of structurally relevant molecules and/or group 

contributions proposed by Domalski and Hearing [21], and Chickos et al. [22], listed in 

table 4.2. For some of the compounds studied, vapor pressures measured over 

temperature ranges larger than 50 K enabled the estimation of a constant value of 

g o

cr/l ,mpC  through the Clarke-Glew equation (3.71). 

 

 

Table 4.2. Data used for the estimation of g o

cr/l ,m(298. K)15 pC  of the compounds studied. 

 

o

,mpC (g, 298.15 K) o

,mpC (l, 298.15 K) o

,mpC (cr, 298.15 K) 

 JK−1mol−1  

Molecules    

Fluorene 173.1 [23] 261.5 [24] 203.13 [25] 

Fluorenone 173.98 [26]   

Benzene 82.44 [27]   

Benzaldehyde 111.7 [28]   

Biphenylmethane   233.5 [29] 

Triphenylmethanol   318.8 [29] 

Triphenylethylene   309.2 [29] 

Cyclopentane 82.8 [30]   

Chlorocyclopentane 98.86 [31]   

Groupsa    

CB-(H)(CB)2 13.61 [21]   

CB-(F)(CB)2 26.10  [21]   

CB-(Cl)(CB)2 29.33  [21]   

CB-(Br)(CB)2 29.65  [21]   

CB-(I)(CB)2 32.70  [21]   

CB-(O)(CB)2 15.86  [21]   

CB-(N)(CB)2 16.07  [21]   

O-(CB)(H) 18.16  [21]   

N-(CB)(H)2 24.35 [21]   

CB(H)  21.8 [22]  

   …/… 
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…/…    

CB-(C)  15.3  [22]  

Cc(H)-(Cc)2(C) b  25.9  [22]  

C(H)2-(C)2  31.9  [22]  

HO-(C)  53.1  [22]  

a According to Benson notation; 

b Subscript ‘c’, adopted in ref. [22] refers to ring atoms (not in Benson notation). 

 

 

4.2.1.2.4. Standard molar entropies and Gibbs energies of sublimation and 

vaporization 

 

The application of the Clarke-Glew equation (3.71) to the experimental vapor 

pressures results at different temperatures yields the determination of g o

cr/l m( )H   and

g o

cr/l m( )G  . The standard molar entropy of sublimation or vaporization, g o

cr/l m( )S  , is easily 

calculated using equation 4.14.  

 

g o g o
g o cr/l m cr/l m
cr/l m

( ) ( )
( )

H G
S 


  

 


 (4.14) 

 

The standard molar Gibbs energy of sublimation or vaporization, g o

cr/l mG , at a 

reference temperature , is a measure of the volatility of a compound at that temperature, 

being related by equation 4.15 to its vapor pressure. 

 

g o o

cr/l m( ) ln( ( ) )G R p p     (4.15) 

 

 

4.2.1.2.5. Calorimetric determination of standard molar enthalpies of sublimation 

 

The experimental uncertainty associated with g o

cr m(298.15 K)H  determined by 

Calvet microcalorimetry, is twice the standard deviation of the mean, calculated by 

equation 4.16, and includes the uncertainties associated to the calibration constant, to 

the standard molar enthalpies of sublimation of the compound under study and of the 

substance used as calibrant. 
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g, og o g o
mcr,298.15Kcalcr m cr m

2 22

( )(298.15 K) (cal, 298.15 K)

g o g, o g o

calcr m cr,298.15K m cr m

2
( )(298.15 K) (cal, 298.15 K)

T Hk TH H

Tk TH H H

   
    
                

 (4.16) 

 

where: 

calcal ( )
( ) , 

k T
k T   represent the mean value of the calibration constant at the 

predefined temperature T, and the corresponding standard 

deviation of the mean; 

g, o
mcr,298.15K

g, o

cr,298.15K m, T

T

H
H 


  represent the standard molar enthalpy of sublimation of the 

compound under study at the predefined temperature T, and the 

corresponding standard deviation of the mean; 

g o

cr m(cal, 298.15 K),H

g o
cr m (cal, 298.15 K)H




 

represent the standard molar enthalpy of sublimation of the 

substance used as calibrant and the corresponding standard 

deviation of the mean. 

 

 

4.2.1.3. Standard molar properties of formation, in crystalline and gaseous 

phases 

 

The standard molar enthalpies of formation, in the crystalline phase, of some 

compounds studied were determined by equations 3.46 and 3.47 (deduced in section 

3.2.2.2). Those equations are based on the standard molar enthalpies of combustion 

and on the standard molar enthalpies of formation of the other species involved in the 

combustion reaction. The values of o

f mH  of these species were taken from the literature 

and are recorded in table 4.3. 

 

 

Table 4.3. Standard molar enthalpies of formation of the product compounds formed in the combustion reactions. 

 
o

f m

1

(298.15 K)

kJ mol

H





 

CO2, g 393.51 ± 0.13 [32] 

H2O, l 285.830 ± 0.040 [32] 

HBr·600H2O, l 120.924 ± 0.005 [32] 

HF·10H2O, l 322.034 ± 0.650 [33] 
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The experimental uncertainty associated to the values of standard molar 

enthalpies of formation include, in addition to the uncertainty associated with the 

standard molar enthalpy of combustion, the uncertainties related to the standard molar 

enthalpies of formation of the products formed in the combustion reaction, calculated 

through equation 4.17, 

 

       o o o o o
f c f m 2 f m 2 f mm 2m

2 2 2 2

i i i(CO ,g(cpd,c (H O,l (HBr 600Hr) (cpd,cr) ) ) )O,lH H H H H
       

     
        

(4.17)   

 

where n represent the respective stoichiometric coefficients of all species in the equation 

that represents the combustion reaction. 

The standard molar enthalpy of formation, in the gas phase, at T = 298.15 K, was 

determined from the standard molar enthalpy of formation, in the crystalline phase, and 

the standard molar enthalpy of sublimation by expression 4.18. 

 

o o g o

f m f m cr/l m(g, 298.15 K) (cr/l, 298.15 K) (298.15 K)H H H      (4.18) 

 

In addition to the standard enthalpies of formation, the standard molar entropies 

and Gibbs energies of formation, in crystalline and gaseous phases were also 

determined. From the standard molar entropy in the gas phase, o

m g, 298.1( )5 KS

(determined by other researchers using computational methods), it was possible to 

determine the standard molar entropies of formation in the gaseous phase, using 

equation 4.19, where all the properties refer to the temperature 298.15 K. 

 

  o o o

f m m i m,i
i

(g) (g)S S S  (4.19) 

 

In this equation, o

i m,i
i

S  is the sum of the standard molar entropies of the 

constituent elements, at standard state, multiplied by the stoichiometric coefficients 

according to the respective equations of formation of the compounds. In table 4.4 are 

listed the standard molar entropy values published in the literature [34], that were used 

in this work. 
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Table 4.4. Standard molar entropy values of the constituent elements. 

Element 
o

m

1 1

(298.15 K)

J K mol

S
  

 

C (graphite) 5.740 

H2 (g) 130.680 

N2 (g) 191.609 

O2 (g) 205.147 

Br2 (l) 152.206 

 

 

Finally, the standard molar Gibbs energy of formation, in both crystalline and 

gaseous phases, were obtained through equations 4.20 and 4.21, respectively, by 

combining the standard molar enthalpies and entropies of formation, where all properties 

refer to T = 298.15 K. 

 

    o o o

f m f m f m(g) (g) (g)G H T S  (4.20) 

 

    o o g o

f m f m cr m(cr) (g)G G G  (4.21) 
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4.2.2. Experimental results 

 
  

4.2.2.1. 2-Substituted fluorenes 

 

4.2.2.1.1. 2-Fluorenecarboxaldehyde 

 
 

 
 

Molecular formula CAS Number Molar Mass Density 

C14H10O 30084-90-3 194.2276 gmol1 1.213 [35] 

 
 

Table 4.5. Source, purification and analysis details of 2-fluorenecarboxaldehyde. 

Source Lot 
Minimum initial 

puritya 
Purification method 

Final mass 
fraction purityb 

Sigma-Aldrich S45338 0.992 
Sublimation under 
reduced pressure 

0.9995 

a Determined by GC, as stated in the certificate of analysis of the manufacturer; 

b Determined by GC. 

 

 

Vapor pressures and thermodynamic properties of phase transition 

 

Table 4.6. Temperatures, molar enthalpies and entropies of fusion of 2-fluorenecarboxaldehyde. 

Exp. 
fusT (onset)  

l o

cr m fus( )H T   
l o

cr m fus( )S T  

K  kJmol1  JK1mol1 

1 357.66  22.11   

2 357.68  22.09   

3 357.59  22.07   

4 357.53  22.01   

5 357.50  21.96   

6 357.69  22.08   

Mean 357.61 ± 0.07  22.05 ± 0.05  61.7 ± 0.1 

Literature a 356 - 358     

a Sigma-Aldrich, MSDS.  
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Table 4.7. Vapor pressures of 2-fluorenecarboxaldehyde determined by the Knudsen effusion method. a 

T / K t/s Orifices 
m / mg  p / Pa 

msmall mmedium mlarge  psmall pmedium plarge pmean 

335.16 21894 A3-B6-C9 4.49 6.86 9.76   0.121 0.120 0.119 0.120 

337.16 16533 A3-B6-C9 4.16 6.29 8.87   0.149 0.146 0.144 0.146 

339.09 21894 A1-B4-C7 6.65 10.32 14.57  0.185 0.186 0.184 0.185 

341.16 17397 A3-B6-C9   14.58     0.226  

341.11 16533 A2-B5-C8 6.36 9.73    0.232 0.230   

343.14 17397 A2-B5-C8   18.35     0.287  

343.08 16533 A1-B4-C7 7.77 11.98    0.287 0.287   

345.09 17397 A1-B4-C7 10.27 15.69 22.41  0.362 0.359 0.360 0.360 

347.16 10254 A3-B6-C9 7.88 11.64 16.68   0.461 0.442 0.443 0.449 

349.11 10254 A2-B5-C8 9.34 14.32 20.14  0.555 0.552 0.539 0.548 

351.09 10254 A1-B4-C7 11.24 17.47 24.92  0.678 0.683 0.685 0.682 

353.10 10263 A2-B5-C8 14.34 22.19 31.42  0.856 0.859 0.845 0.853 

355.09 10263 A1-B4-C7 17.22 26.82 38.83   1.044 1.054 1.072 1.057 

a u(T/K) = ±0.01, u(p/Pa) = ±0.01. 

 

 

1000 (K/T)

2.80 2.84 2.88 2.92 2.96 3.00 3.04

ln
(p

/P
a

)

-3.0

-2.0

-1.0

0.0

 
 

Figure 4.2. Plots of ln(p/Pa) against 1000(K/T) of 2-fluorenecarboxaldehyde: effusion vapor pressures for the different 

effusion orifices - , small; , medium; , large; , literature vapor pressure results [36]. 
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Table 4.8. Standard (po = 0.1 MPa) molar properties of sublimation of 2-fluorenecarboxaldehyde, derived from the vapor 

pressure results determined experimentally and available in the literature. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated value; d Standard deviation of the fit 

defined as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the 

number of adjustable parameters in the Clarke and Glew equation; e Mean temperature; f Calculated from the literature 

vapor pressure results [36] using the value of 
g o

cr ,mpC estimated in this work.  

 

 

The value o

,mpC (g, 298.15K) = 202.36 J·K−1·mol−1, estimated for this compound 

from the o

,mpC (g, 298.15K) values of fluorene [23], benzaldehyde [28] and benzene [27], 

using a group additivity approach according to equation 4.22 and data provided in table 

4.2., was inserted into equation 4.12 yielding the result g o

cr ,mpC = −36.5 JK−1mol−1.  

 

 

(4.22) 

 

In figure 4.2, the experimental vapor pressure results for 2-fluorenecarboxaldehyde 

are represented with the literature vapor pressures previously reported by Goldfarb and 

Suuberg [36]. The literature’s vapor pressure results are systematically smaller when 

compared to those of the present work. The standard molar enthalpy of sublimation, 

reported by Goldfarb and Suuberg, which refers to the mean experimental temperature, 

was corrected to T = 298.15 K, using the g o

cr ,mpC  value estimated in this work, yielding 

the value g o

cr mH (298.15 K) = (101.9 ± 1.6) kJmol1, which is not in agreement with the 

one determined in the present work. These discrepancies may be related to the 

insufficient purity of the samples used by Goldfarb and Suuberg (minimum purity 0.95). 

 

  

 

T / K  / K 

g o

cr m( )G    
g o

cr m( )H    g o  

cr m( ) aS   ( )p  b 
R2 

cr o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, effusion method 

335.16-355.09 
298.15 45.94 ± 0.08  110.1 ± 0.6  215.2 ± 2.0  8.910−4 

0.9998 36.5 0.012 
345.13 e 35.96 ± 0.01  108.4 ± 0.6  209.9 ± 1.7  3.610−1 

Crystalline phase, literature f 

329.9-354.5 298.15 46.21 ± 0.21  101.9 ± 1.6  186.8 ± 8.7  8.010−4 0.9977 36.5 0.048 
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Combustion calorimetry and thermodynamic properties of formation  

 

Combustion equation: 

14 10 2 2 2C H O (cr) + 16 O  (g)  14 CO  (g) + 5 H O (l)  n = ‒2  

 

 

Table 4.9. Standard (po = 0.1 MPa) massic energy of combustion of 2-fluorenecarboxaldehyde, at T = 298.15 K.a 

Exp. 1 2 3 4 5 6 7 

m(CO2, total) / g 1.72227 1.73348 1.67135 1.57191 1.60672 1.66965 1.65070 

m(cpd) / g 0.54141 0.54520 0.52568 0.49392 0.50513 0.52498 0.51910 

m(fuse) / g 0.00296 0.00246 0.00233 0.00314 0.00268 0.00264 0.00246 

Tad / K 1.23774 1.24589 1.20055 1.12888 1.15411 1.19987 1.18478 

f / JK1 14.23 14.23 14.19 14.16 14.14 14.19 14.22 

m(H2O) / g 0.2 0.8 0.9 0.3 0.4 0.2 1.4 

U(IBP) / J 19266.94 19396.89 18691.06 17572.71 17962.09 18676.73 18449.99 

U(fuse) / J 48.07 39.95 37.84 50.99 43.52 42.87 39.95 

U(HNO3) / J 0.20 1.48 0.33 0.48 0.48 0.22 0.18 

U(ign) / J 0.67 0.72 1.09 0.70 0.67 0.69 0.86 

U / J 12.01 12.10 11.61 10.85 11.11 11.60 11.44 

cuo / Jg1 35475.26 35479.38 35461.27 35451.87 35450.24 35471.90 35442.92 

cuo = (35461.8 ± 5.3) Jg1 

% CO2 = (100.011 ± 0.009) % 

a cal = (15551.7 ± 1.2) JK‒1. 

 

 

Table 4.10. Standard (po = 0.1 MPa) molar energy and enthalpy of combustion, and derived standard molar enthalpies of 

formation of the crystalline and gaseous phases of 2-fluorenecarboxaldehyde, at T = 298.15 K. 

 

  

o

c m(cr)U   
o

c m(cr)H   
o

f m(cr)H   
g o

cr mH   
o

f m(g)H  

kJmol1  kJmol1  kJmol1  kJmol1  kJmol1 

6887.7 ± 2.5  6892.6 ± 2.5  45.7 ± 3.1  110.2 ± 0.6  64.5 ± 3.2 
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4.2.2.1.2. 2-Aminofluorene 

 

 

 

 

Molecular formula CAS Number Molar Mass Density 

C13H11N 153-78-6 181.2331 gmol1 1.0458 [14] 

 

 

Table 4.11. Source, purification and analysis details of 2-aminofluorene. 

Source Lot 
Minimum 

initial puritya 
Purification method 

Final mass 
fraction purityb 

Sigma-Aldrich S90850V 0.995 
Sublimation under 
reduced pressure 

0.9998 

a Determined by HPLC (area %), as stated in the certificate of analysis of the manufacturer; 

b Determined by GC. 

 

 

Vapor pressures and thermodynamic properties of phase transition 

 

Table 4.12. Temperatures, molar enthalpies and entropies of fusion of 2-aminofluorene. 

Exp. 
fusT (onset)  

l o

cr m fus( )H T   
l o

cr m fus( )S T  

K  kJmol1  JK1mol1 

1 401.11  23.78   

2 401.07  23.80   

3 400.96  23.78   

4 400.81  23.75   

5 400.85  23.81   

6 400.83  23.92   

Mean 400.9 ± 0.1  23.81 ± 0.05  59.4 ± 0.1 

Literature 397 - 401a     

 404.15 b     

a Sigma-Aldrich, MSDS; 

b Ref. [37], minimum purity 0.98. 
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Table 4.13. Standard (po = 0.1 MPa) molar enthalpy of sublimation of 2-aminofluorene, determined by Calvet 

microcalorimetry. 

Exp. m / mg  T / K 

g, o

cr, 298.15 K m

T H   
o

298.15 K m (g)T H   
g o

cr m (298.15 K)H  

kJmol1  kJmol1  kJmol1 

1 5.21 427.21 140.08  30.26  109.82 

2 4.04 427.21 139.97  30.26  109.71 

3 5.33 427.21 139.91  30.26  109.65 

4 3.68 427.09 141.50  30.23  111.26 

5 3.96 427.13 141.75  30.24  111.51 

Mean  427.17     110.4 ± 1.7 

 

The calorimeter was calibrated with high purity anthracene (details in table 3.2), 

and the calibration constant, kcal, for the mean experimental temperature, T = 427.2 K, 

was found to be kcal = (1.0200 ± 0.0020). The term o

298.15 K m (g)T H  was calculated from 

the integration of the fitting of a 2nd degree polynomial to the 
o

,mpC (g) results calculated 

at the B3LYP/6-31G(2df,p) level of theory [38], between T = (290 and 500) K: 

 

o

,mpC (g) = ‒4.9910‒4T2 + 0.986T ‒ 56.79 (4.23) 

 

 

Table 4.14. Vapor pressures of 2-aminofluorene determined by the Knudsen effusion method. a 

T / K t/s Orifices 
m / mg  p / Pa 

msmall mmedium mlarge  psmall pmedium plarge pmean 

345.16 43616 A3-B6-C9 8.51 13.03 18.36  0.121 0.120 0.118 0.120 

347.13 43616 A2-B5-C8 10.65 16.57 22.81  0.154 0.155 0.148 0.152 

349.17 27013 A3-B6-C9 8.02 12.63 17.39  0.190 0.189 0.182 0.187 

351.15 27013 A2-B5-C8 10.18 15.69 21.44  0.238 0.238 0.226 0.234 

353.10 27013 A1-B4-C7 12.24 18.59 26.12  0.291 0.286 0.283 0.287 

355.17 10816 A3-B6-C9 6.08 9.28 13.21  0.362 0.350 0.348 0.353 

357.13 10816 A2-B5-C8 7.32 11.69 16.42  0.432 0.447 0.436 0.438 

359.16 10989 A3-B6-C9 9.35 14.64 20.02  0.551 0.546 0.522 0.540 

361.13 10989 A2-B5-C8 11.38 17.83 24.59  0.664 0.675 0.647 0.662 

363.10 10989 A1-B4-C7 13.57 21.14 29.22  0.805 0.811 0.789 0.802 

365.09 10229 A1-B4-B6 15.55 24.11 24.29  0.994 0.997 0.981 0.991 

a u(T/K) = ±0.01, u(p/Pa) = ±0.01. 
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Figure 4.3. Plots of ln(p/Pa) against 1000(K/T) of 2-aminofluorene: effusion vapor pressures for the different effusion 

orifices - , small; , medium; , large. 

 

 

Table 4.15. Standard (po = 0.1 MPa) molar properties of sublimation of 2-aminofluorene, derived from the experimental 

vapor pressure results. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated value; d Standard deviation of the fit 

defined as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the 

number of adjustable parameters in the Clarke and Glew equation; e Mean temperature. 

 

 

The value of 
o

,mpC (g, 298.15K) = 192.85 JK1mol1, calculated at the B3LYP/6-

31G(2df,p) level of theory [38], was inserted into equation 4.12, yielding the result  

g o

cr ,mpC  = –34.8 JK1mol1.  

 

 

  

T / K  / K 

g o

cr m( )G    
g o

cr m( )H    g o  

cr m( ) aS   ( )p  b 
R2 

cr o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, effusion method 

345.16-365.09 
298.15 48.97 ± 0.06  112.3 ± 0.4  212.4 ± 1.4  2.810–4 

0.9999 34.8 0.007 
355.13e 37.05 ± 0.01  110.3 ± 0.4  206.3 ± 1.1  3.610–1 
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Combustion calorimetry and thermodynamic properties of formation  

 

Combustion equation: 

13 1 2 21 2 2 (cr) + 15.75 O  (g)  13 C H N CO  (g) + 5.5 H O (l) + 0.5 N  (g)  

n = ‒2.25 
 

 

Table 4.16. Standard (po = 0.1 MPa) massic energy of combustion of 2-aminofluorene, at T = 298.15 K.a 

Exp. 1 2 3 4 5 6 

m(CO2, total) / g 1.12520 1.29003 1.63814 1.63504 1.55207 1.55451 

m(cpd) / g 0.35491 0.40741 0.51742 0.51654 0.48982 0.49062 

m(fuse) / g 0.00298 0.00313 0.00319 0.00274 0.00359 0.00353 

Tad / K 0.85587 0.98162 1.24594 1.24378 1.18105 1.18233 

f / JK1 13.74 13.90 14.15 14.14 14.05 14.09 

m(H2O) / g 1.1 0.0 1.1 0.0 0.3 0.2 

U(IBP) / J 13317.25 15278.66 19387.58 19359.65 18381.56 18403.93 

U(fuse) / J 48.40 50.83 51.81 44.50 58.30 57.33 

U(HNO3) / J 19.08 21.35 26.28 26.80 28.68 25.11 

U(ign) / J 0.81 0.84 0.80 0.83 0.83 0.92 

U(carb) / J  10.23 3.63    

U / J 7.64 8.86 11.51 11.47 10.82 10.86 

cuo / Jg1 37311.23 37328.12 37303.56 37319.24 37327.51 37321.41 

–cuo = (37318.5 ± 3.9) Jg1 

% CO2 = (100.001 ± 0.011) % 

a cal = (15551.7 ± 1.2) JK‒1. 

 

 

Table 4.17. Standard (po = 0.1 MPa) molar energy and enthalpy of combustion, and derived standard molar enthalpies of 

formation of the crystalline and gaseous phases of 2-aminofluorene, at T = 298.15 K. 

o

c m(cr)U   
o

c m(cr)H   
o

f m(cr)H   
g o

cr mH   
o

f m(g)H  

kJmol1  kJmol1  kJmol1  kJmol1  kJmol1 

6763.3 ± 2.1 
 

6768.9 ± 2.1 
 

81.3 ± 2.7 
 112.3 ± 0.4a  193.6 ± 2.7 

   110.4  1.7b  191.7 ± 3.2 

    Mean  112.2  0.4c  193.5 ± 2.7 

a Derived from vapor pressure results; 

b Derived from calorimetric results; 

c Calculated as the weighted mean of the results. 
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Table 4.18. Standard (po = 0.1 MPa) molar absolute entropies and standard molar entropies, enthalpies and Gibbs 

energies of formation of the crystalline and gaseous phases of 2-aminofluorene, at T = 298.15 K. 

 

  

Phase 

o

mS   
o

f mT S    
o

f mH   
o

f mG  

JK1mol1  kJmol1  kJmol1  kJmol1 

g 412.0 a   142.3  193.6 ± 2.7 c  335.9 ± 2.7 

cr 199.6 ± 1.4 b  205.6 ± 1.4  81.3 ± 2.7  286.9 ± 2.7 

a Calculated at the B3LYP/6-31G(2df,p) level [38]; 

b o o g o

m m cr m(cr) (g)S S S   ; 

c Derived from vapor pressure results. 
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4.2.2.1.3. 2-Nitrofluorene 

 
 

 

 

Molecular formula CAS Number Molar Mass Density 

C13H9NO2 607-57-8 211.2161 gmol1 1.1685 [14] 

 
 
Table 4.19. Source, purification and analysis details of 2-nitrofluorene. 

Source Lot 
Minimum initial 

puritya 
Purification method 

Final mass 
fraction purityb 

Sigma-Aldrich S43858 0.979 

Recrystallization; 

 Sublimation under 
reduced pressure 

0.9996 

a Determined by HPLC (area %), as stated in the certificate of analysis of the manufacturer; 
b Determined by GC. 

 

During the purification process, the compound was subjected to successive 

recrystallizations using ethanol until the desired degree of purity was reached. The 

recrystallized compound was further subjected to sublimation under reduced pressure. 

 

 

Vapor pressures and thermodynamic properties of phase transition 

 

Table 4.20. Temperatures, molar enthalpies and entropies of fusion of 2-nitrofluorene. 

Exp. 
fusT (onset)  

l o

cr m fus( )H T   
l o

cr m fus( )S T  

K  kJmol1  JK1mol1 

1 429.77  24.76   

2 429.61  24.79   

3 429.60  24.72   

4 429.71  24.82   

5 430.77  24.67   

Mean 429.9 ± 0.4  24.75 ± 0.05  57.6 ± 0.1 

Literature a 429 - 431     

a Sigma-Aldrich, MSDS. 
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Table 4.21. Standard (po = 0.1 MPa) molar enthalpy of sublimation of 2-nitrofluorene, determined by Calvet 

microcalorimetry. 

Exp. m / mg  T / K 

g, o

cr, 298.15 K m

T H   
o

298.15 K m (g)T H   
g o

cr m (298.15 K)H  

kJmol1  kJmol1  kJmol1 

1 3.21 432.11 146.83  33.08  113.75 

2 2.98 432.14 147.71  33.09  114.63 

3 2.48 432.09 147.71  33.07  114.64 

4 3.16 432.19 146.99  33.10  113.89 

5 2.43 432.07 147.41  33.07  114.34 

Mean  432.12     114.2 ± 2.5 

 

The calibration was performed with high purity anthracene (details in table 3.2), 

and the calibration constant kcal, for the mean experimental temperature T = 432.1 K was 

found to be kcal = (1.0113 ± 0.0107). The term 
o

298.15 K m (g)T H  was calculated from the 

integration of the fitting of a 2nd degree polynomial to the 
o

,mpC (g) results calculated at the 

B3LYP/6-31G(2df,p) level of theory [38], between T = (290 and 500) K: 

 

o

,mpC (g) = ‒5.0510‒4T2 + 1.00T ‒ 51.20  (4.24) 

 

 

Table 4.22. Vapor pressures of 2-nitrofluorene determined by the Knudsen effusion method. a 

T / K t/s Orifices 
m / mg  p / Pa 

msmall mmedium mlarge  psmall pmedium plarge pmean 

357.16 46967 A3-B6-C9 7.25 11.4 16.03  0.090 0.092 0.090 0.091 

359.13 46967 A2-B5-C8 9.07 14.03 19.47  0.114 0.115 0.111 0.113 

361.11 46967 A1-B4-C7 10.91 16.94 23.90  0.140 0.141 0.139 0.140 

363.16 25135 A3-B6-C9 7.15 11.3 15.95  0.172 0.172 0.170 0.171 

365.14 25135 A2-B5-C8 8.96 14.08 19.54  0.213 0.217 0.209 0.213 

367.11 25135 A1-B4-C7 10.68 16.7 23.42  0.258 0.261 0.258 0.259 

369.16 14496 A3-B6-C9 7.68 11.86 16.95  0.322 0.315 0.315 0.317 

371.13 14496 A2-B5-C8 9.42 14.78 20.13  0.392 0.398 0.377 0.389 

373.10 14496 A1-B4-C7 11.23 17.51 24.56  0.474 0.478 0.472 0.475 

375.15 10130 A3-B6-C9 9.56 14.76 20.92  0.578 0.565 0.561 0.568 

377.14 10130 A2-B5-C8 11.61 18.20 25.09  0.696 0.707 0.678 0.694 

379.12 11149 A1-B4-C7 15.15 23.56 32.89  0.839 0.844 0.829 0.837 

a u(T/K) = ±0.01, u(p/Pa) = ±0.01. 



140 FCUP 
4. Experimental results 

 

1000(K/T)

2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95

ln
(p

/P
a
)

-4.0

-3.0

-2.0

-1.0

0.0

 
 

Figure 4.4. Plots of ln(p/Pa) against 1000(K/T) of 2-nitrofluorene: effusion vapor pressures for the different effusion orifices 

- , small; , medium; , large; , literature vapor pressure results [36]. 

 

 

Table 4.23. Standard (po = 0.1 MPa) molar properties of sublimation of 2-nitrofluorene, derived from the vapor pressure 

results determined experimentally and available in the literature. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated value; d Standard deviation of the fit 

defined as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the 

number of adjustable parameters in the Clarke and Glew equation; e Mean temperature; f Calculated from the literature 

vapor pressure results [36] using the value of g o

cr ,mpC  estimated in this work.. 

 

The value of 
o

,mpC (g, 298.15K) = 192.85 JK–1mol–1, calculated at the B3LYP/6-

31G(2df,p) level of theory [38], was inserted into equation 4.12, yielding the result  

g o

cr ,mpC  = –36.6 JK–1mol–1. 

T / K  / K 

g o

cr m( )G    
g o

cr m( )H    g o  

cr m( ) aS   ( )p  b 
R2 

cr o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, effusion method 

357.16-379.12 
298.15 53.49 ± 0.06  116.2 ± 0.3  210.3 ± 1.0  4.710–5 

0.9999 36.6 0.007 
368.14e 39.06 ± 0.01  113.6 ± 0.3  202.5 ± 0.8  2.910–1 

Crystalline phase, literature f 

349.1-384.5 298.15 54.07 ± 0.26  116.7 ± 1.4  210.1 ± 4.8  3.410–5 0.9972 36.6 0.052 
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In figure 4.4, the experimental vapor pressure results are shown together with 

literature vapor pressures results previously reported by Goldfarb and Suuberg [36]. The 

present work’s vapor pressures are systematically slightly higher when compared to 

those of the literature, but both regressions present identical slopes and consequently 

agreeing enthalpies of sublimation. The reported standard molar enthalpy of sublimation, 

which is referred to the mean experimental temperature, was corrected to the 

temperature T = 298.15 K, using the 
g o

cr ,mpC value estimated in the present work, yielding 

the value g o

cr mH (298.15 K) = (116.7 ± 1.4) kJmol1, that is within experimental 

uncertainty of the result determined in the present work.  

 

 

Combustion calorimetry and thermodynamic properties of formation  

 

Combustion equation: 

13 9 2 2 2 2 2 (cr) + 14.25 O  (g)  13 C H N CO  (g) + 4.5 H O (l) + 0.5 NO  (g)  

n = ‒0.75 
 

 

Table 4.24. Standard (po = 0.1 MPa) massic energy of combustion of 2-nitrofluorene, at T = 298.15 K.a 

Exp. 1 2 3 4 5 6 

m(CO2, total) / g 1.08487 1.51549 1.63924 1.02196 1.44683 1.20875 

m(cpd) / g 0.39897 0.55790 0.60349 0.37578 0.53253 0.44477 

m(fuse) / g 0.00258 0.00290 0.00280 0.00251 0.00268 0.00264 

Tad / K 0.78728 1.09883 1.19083 0.74180 1.04997 0.87727 

f / JK1 13.65 13.80 13.97 13.62 13.81 13.76 

m(H2O) / g 0.5 0.6 –1.5 –1.3 –1.1 –1.6 

U(IBP) / J 12255.09 17105.66 18527.70 11541.71 16337.79 13648.67 

U(fuse) / J 41.90 47.10 45.47 40.76 43.52 42.87 

U(HNO3) / J 19.88 35.07 32.07 18.50 32.67 19.10 

U(ign) / J 0.85 0.93 0.86 0.64 0.70 0.56 

U(carb) / J  3.63    2.64 

U / J 8.40 11.97 13.10 7.88 11.40 9.44 

cuo / Jg1 30540.92 30498.57 30550.73 30535.34 30515.09 30532.41 

–cuo = (30528.8 ± 7.7) Jg1 

% CO2 = (100.009 ± 0.020) % 

a cal = (15551.7 ± 1.2) JK1.  
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Table 4.25. Standard (po = 0.1 MPa) molar energy and enthalpy of combustion, and derived standard molar enthalpies of 

formation of the crystalline and gaseous phases of 2-nitrofluorene, at T = 298.15 K. 

 

 

Table 4.26. Standard (po = 0.1 MPa) molar absolute entropies and standard molar entropies, enthalpies and Gibbs 

energies of formation of the crystalline and gaseous phases of 2-nitrofluorene, at T = 298.15 K.  

 

  

o

c m(cr)U   
o

c m(cr)H   
o

f m(cr)H   
g o

cr mH   
o

f m(g)H  

kJmol1  kJmol1  kJmol1  kJmol1  kJmol1 

6448.2 ± 3.5 
 

6450.0 ± 3.5 
 

48.2 ± 3.9 
 116.2 ± 0.3a  164.4 ± 3.9 

   114.2  2.5b  162.4 ± 4.6 

    Mean  116.2 ± 0.3 c  164.4 ± 3.9 

a Derived from vapor pressure results; 

b Derived from calorimetric results; 

c Calculated as the weighted mean of the results. 

Phase 

o

mS   
o

f mT S    
o

f mH   
o

f mG  

JK1mol1  kJmol1  kJmol1  kJmol1 

g 443.1a  155.2  164.4 ± 3.9 c  319.6 ± 3.9 

cr 232.8 ± 1.0 b  217.9 ± 1.0  48.2 ± 3.9  266.1 ± 3.9 

a Calculated at the B3LYP/6-31G(2df,p) level [38]; 

b o o g o

m m cr m(cr) (g)S S S   ; 
c Derived from vapor pressure results. 
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4.2.2.1.4. 2-Fluorofluorene 

 

 

 

 

Molecular formula CAS Number Molar Mass Density 

C13H9F 343-43-1 184.2080 gmol1 1.207 [39] 

 

 

Table 4.27. Source, purification and analysis details of 2-fluorofluorene. 

Source Lot 
Minimum initial 

puritya 
Purification method 

Final mass 
fraction purityb 

TCI Europe FCO01 0.998 
Sublimation under 
reduced pressure 

0.9999 

a Determined by GC, as stated in the certificate of analysis of the manufacturer; 

b Determined by GC. 

 

 

Vapor pressures and thermodynamic properties of phase transition 

 

Table 4.28. Temperatures, molar enthalpies and entropies of fusion of 2-fluorofluorene. 

Exp. 
fusT (onset)  

l o

cr m fus( )H T   
l o

cr m fus( )S T   tp

aT  
 l o

cr m tp( )bH T   l o

cr m tp( )S T  

K  kJmol1  JK1mol1  K  
kJmol1  JK1mol1 

1 373.06  22.43         

2 373.20  22.37         

3 372.99  22.45         

4 373.07  22.40         

5 373.23  22.36         

Mean 373.11 ± 0.09  22.40 ± 0.03  60.04 ± 0.08  372.56  22.78 ± 0.09  61.1 ± 0.2 

Lit.c 371.65           

a Triple point temperature derived indirectly from vapor pressure results; 

b Determined indirectly from the g o

cr m tp( )H T  and g o

l m tp( )H T  values presented in table 4.30; 

c TCI Europe, certificate of analysis. 
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Table 4.29. Vapor pressures of 2-fluorofluorene determined by the static method with capacitance manometers. a 

T/K p/Pa 100p/p b T/K p/Pa 100p/p b T/K p/Pa 100p/p b 

Crystalline phase 

321.04 0.963 –0.6 338.98 5.878 0.5 354.64 24.11 0.5 

323.02 1.195 0.1 340.85 6.991 0.2 356.58 28.41 0.3 

325.03 1.456 –1.1 342.80 8.387 0.3 358.73 33.77 –0.6 

327.00 1.795 –0.4 344.75 9.981 –0.2 360.45 39.15 –0.1 

329.01 2.214 0.2 346.73 11.91 –0.5 362.68 47.13 0 

330.92 2.665 –0.4 348.84 14.48 0.2 364.51 54.25 –0.8 

332.94 3.286 0.5 350.67 17.20 1.2 366.63 64.54 –0.5 

335.02 4.027 0.6 352.67 20.39 0.7 368.46 74.46 –0.8 

336.92 4.841 0.7       

Liquid phase c 

350.71 26.65 –0.3 372.43 102.6 0 394.26 332.1 0 

352.68 30.61 0.6 374.49 114.9 –0.5 396.11 364.1 0 

354.63 34.50 –0.2 376.39 128.4 –0.1 398.19 402.3 –0.3 

356.66 39.38 –0.1 378.44 144.1 0 4004 442.3 0.2 

358.59 44.47 –0.1 380.29 159.9 0.2 402.12 486.2 –0.4 

360.58 50.53 0.2 382.45 179.9 0.2 404.10 537.4 0.2 

362.56 56.89 –0.2 384.27 198.1 0.1 406.06 586.3 –0.3 

364.55 64.42 0 386.38 221.4 0 408.03 644.9 0.1 

366.49 72.53 0.2 388.21 243.7 0 409.98 705.6 0.1 

368.47 81.56 0.2 390.33 271.8 –0.1 411.88 768.8 0.1 

370.45 91.57 0.1 392.25 300.8 0.3    

a u(T) = ±0.01 K, u(p/Pa) = 0.01 + 0.0025(p/Pa) for gauge I; 

b p = p – pcalc, where pcalc is calculated from the Clarke and Glew equation with parameters given in table 4.30; 

c Including supercooled liquid.  
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Figure 4.5. Phase diagram (ln(p/Pa) against 1000(K/T)) of 2-fluorofluorene: , crystal vapor pressures; , liquid vapor 

pressures; , supercooled liquid vapor pressures (triple point coordinates: Ttp = 372.56 K; ptp = 103.5 Pa). 

 

 

Table 4.30. Standard (po = 0.1 MPa) molar properties of sublimation and vaporization of 2-fluorofluorene, derived from 

the experimental vapor pressure results. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Standard deviation of the fit defined as

 n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the number of 

adjustable parameters in the Clarke and Glew equation; d Mean temperature; e Triple point temperature; f Estimated value; 

g Including supercooled liquid; h Adjustable parameter. 

 

 

T / K  / K 

g o

cr/l m( )G    
g o

cr/l m( )H    
g o

cr/l m( )S  a  ( )p  b 
R2 

cr/l o

g ,mpC  
s c 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, static method 

321.04-368.46 

298.15 35.13 ± 0.01  91.72 ± 0.08  189.8 ± 0.3  7.010–2 

1.0000 33.6f 0.006 345.13d 26.33 ± 0.01  90.15 ± 0.08  184.9 ± 0.2  1.0101 

372.56e 21.29 ± 0.01  89.23 ± 0.08  182.4 ± 0.2  1.0102 

Liquid phase, static method g 

 298.15 30.89 ± 0.03  71.86 ± 0.26  137.4 ± 0.9   3.910–1    

350.71-411.88 381.30d 20.24 ± 0.01  65.82 ± 0.03  119.5 ± 0.1  1.7102 1.0000 72.7 ± 3.2h 0.002 

 372.56e 21.29 ± 0.01  66.45 ± 0.04  121.2 ± 0.1  1.0102    
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The value 
o

,mpC (g, 298.15 K) was estimated for this compound from the value 
o

,mpC

(g, 298.15 K) of fluorene [23] using a group additivity approach according to equation 

4.25 and data provided in table 4.2. The resulting value, 
o

,mpC (g, 298.15 K) = 185.6 

JK1mol1, was inserted into equation 4.12 yielding the result: 
g o

cr ,mpC  = −33.6 

JK1mol1. 

 

o

,mpC (Fluorene) − [1×CB-(H)(CB)2] + [1×CB-(F)(CB)2] (4.25) 

 

The value 
g o

l ,mpC  = ‒(72.7 ± 3.2) JK1mol1 was obtained by adjusting the Clarke 

and Glew equation (eq. 3.71) to the experimental vapor pressures results of the liquid 

phase. 

 

 

Combustion calorimetry and thermodynamic properties of formation  

 

Combustion equation: 

13 9 2 2 2 2C H F (cr) + 15 O  (g) + 6 H O (l)  13 CO  (g) + HF 10H O (l)   n = ‒2 

 

The study of 2-fluorofluorene by rotating bomb combustion calorimetry was 

performed by another researcher [40], but not completed due to lack of compound and 

an equipment operating problem. The preliminary values, however, determined from the 

mean of four experimental combustion experiments, are presented bellow and provide 

an approximation of the enthalpy of formation of the crystalline and gaseous phases of 

2-fluorofluorene.  

 

 

Table 4.31. Preliminary results for the standard (po = 0.1 MPa) molar energy and enthalpy of combustion, and derived 

standard molar enthalpies of formation of the crystalline and gaseous phases of 2-fluorofluorene, at T = 298.15 K. 

 

  

–cuoa  
o

c m(cr)U   
o

c m(cr)H   
o

f m(cr)H   
g o

cr mH   
o

f m(g)H  

Jg1  kJmol1  kJmol1  kJmol1  kJmol1  kJmol1 

35190.6 ± 4.8  6482.4 ± 2.1  6487.3 ± 2.1  93.6 ± 2.8  91.72 ± 0.08  1.9 ± 2.8 

a cal = (25146,4 ± 1.3)  JK1 [41]. 
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4.2.2.1.5. 2-Bromofluorene 

 

 

 

 

Molecular formula CAS Number Molar Mass Density 

C13H9Br 1133-80-8 245.1136 gmol1 1.4168 [14] 

 

 

Table 4.32. Source, purification and analysis details of 2-bromofluorene. 

Source Lot 
Minimum initial 

puritya 
Purification method 

Final mass 
fraction purityb 

TCI Europe EHZXB 0.999 
Sublimation under 
reduced pressure 

0.9999 

a Determined by GC, as stated in the certificate of analysis of the manufacturer; 

b Determined by GC. 

 

 

Vapor pressures and thermodynamic properties of phase transition 

 

Table 4.33. Temperatures, molar enthalpies and entropies of fusion of 2-bromofluorene. 

Exp. 
fusT (onset)  

l o

cr m fus( )H T   
l o

cr m fus( )S T   tp

aT  
 l o

cr m tp( )bH T   l o

cr m tp( )S T  

K  kJmol1  JK1mol1  K  
kJmol1  JK1mol1 

1 387.42  16.81         

2 387.38  17.21         

3 387.40  17.07         

4 387.40  17.02         

5 387.34  16.99         

Mean 387.39 ± 0.03  17.0 ± 0.1  43.9 ± 0.3  385.08  18.8 ± 0.2  48.8 ± 0.5 

Lit. 381.5-383.1 c  16.02 c  41.90 c       

 387.55 d           

a Triple point temperature derived indirectly from vapor pressure results; 

b Determined indirectly from the g o

cr m tp( )H T  and g o

l m tp( )H T  values presented in table 4.36; 

c Ref. [42], minimum purity 0.95; 

d TCI Europe, certificate of analysis. 
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Table 4.34. Vapor pressures of 2-bromofluorene determined by the Knudsen effusion method. a 

T / K t/s Orifices 
m / mg  p / Pa 

msmall mmedium mlarge  psmall pmedium plarge pmean 

327.17 37154 A3-B6-C9 8.44 13.04 18.61  0.118 0.119 0.118 0.118 

329.13 37154 A2-B5-C8 10.44 16.31 23.07  0.148 0.150 0.148 0.149 

331.09 37154 A1-B4-C7 12.68 19.85 28.34  0.183 0.186 0.186 0.185 

333.16 20435 A3-B6-C9 8.70 13.39 19.35  0.229 0.223 0.225 0.226 

335.14 20435 A2-B5-C8 10.70 16.55 23.45  0.279 0.280 0.275 0.278 

337.11 20435 A1-B4-C7 12.93 20.21 28.72  0.343 0.347 0.346 0.345 

339.16 10172 A3-B6-C9 7.97 12.34 17.63  0.425 0.417 0.416 0.419 

341.14 10172 A2-B5-C8 9.48 15.01 21.05  0.501 0.515 0.501 0.506 

343.10 10172 A1-B4-C7 11.78 18.03 25.60  0.634 0.627 0.626 0.629 

345.16 10213 A3-B6-C9 14.13 22.07 31.47  0.758 0.749 0.747 0.751 

347.09 10213 A2-B5-C8 17.46 26.99 38.01  0.928 0.929 0.909 0.922 

349.09 10213 A1-B4-C7 20.73 32.19 45.87  1.120 1.125 1.127 1.124 

a u(T/K) = ±0.01, u(p/Pa) = ±0.01. 
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Figure 4.6. Phase diagram (ln(p/Pa) against 1000(K/T)) of 2-bromofluorene: effusion crystal vapor pressures for the 

different effusion orifices - , small; , medium; , large; static vapor pressures - , crystal vapor pressures; , liquid 

vapor pressures; , supercooled liquid vapor pressures (triple point coordinates: Ttp = 385.08 K; ptp = 23.44 Pa); , 

literature vapor pressure results [42]. 
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Table 4.35. Vapor pressures of 2-bromofluorene determined by the static method with capacitance manometers. a 

T/K p/Pa 100p/p b T/K p/Pa 100p/p b T/K p/Pa 100p/p b 

Crystalline phase 

350.80 1.323 –0.5 362.65 3.848 0.5 372.53 8.716 –0.4 

352.79 1.593 –0.2 364.63 4.520 –0.3 374.50 10.30 0.4 

354.74 1.921 0.8 366.60 5.367 0.2 376.47 12.02 0.1 

356.73 2.274 –0.2 368.56 6.271 –0.7 378.44 14.03 –0.1 

358.70 2.726 0.5 370.56 7.492 0.6 380.40 16.34 –0.1 

360.67 3.206 –0.6       

Liquid phase c 

374.47 12.00 –0.5 390.28 32.01 0.2 405.99 77.40 0.8 

376.47 13.62 –0.7 392.25 36.02 0.5 407.97 84.99 –0.4 

378.44 15.41 –0.9 394.21 40.22 0.3 409.95 93.80 –0.6 

380.40 17.49 –0.5 396.18 45.06 0.4 411.90 104.5 –0.1 

382.39 19.92 0.2 398.13 50.46 0.8 413.88 116.4 0.6 

384.36 22.44 0 400.11 56.25 0.7 415.84 126.4 –1.1 

386.34 25.29 0 402.06 62.80 1.0 417.81 139.8 –0.8 

388.31 28.54 0.4 404.05 69.88 0.9 419.77 153.4 –1.2 

a u(T) = ±0.01 K, u(p/Pa) = 0.01 + 0.0025(p/Pa) for gauge I and u(p/Pa) = 0.1 + 0.0025(p/Pa) for gauge II; 

b p = p – pcalc, where pcalc is calculated from the Clarke and Glew equation with parameters given in table 4.36; 

c Including supercooled liquid.  

 

 

Table 4.36. Standard (po = 0.1 MPa) molar properties of sublimation and vaporization of 2-bromofluorene, derived from 

the vapor pressure results determined experimentally and available in the literature. 

T / K  / K 

g o

cr/l m( )G    
g o

cr/l m( )H    
g o

cr/l m( )S  a  ( )p  b 
R2 

cr/l o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, effusion method 

327.17-349.09 
298.15 42.46 ± 0.05  98.05 ± 0.44  186.4 ± 1.5  3.610−3 

0.9998 34.7 0.011 
338.13e 35.09 ± 0.01  96.66 ± 0.44  182.1 ± 1.3  3.810−1 

Crystalline phase, static method 

 298.15 42.18 ± 0.03  96.43 ± 0.14  182.0 ± 0.5  3.410−3    

350.80-380.40 365.60e 30.15 ± 0.01  94.08 ± 0.14  174.9 ± 0.4  4.9 1.0000 34.7 0.005 

 385.08f 26.76 ± 0.01  93.41 ± 0.14  173.1 ± 0.4  2.3101    

Crystalline phase, literature g 

303.9-353.9 298.15 42.64 ± 0.15  94.2 ± 1.5  172.9 ± 5.1  3.410−3 0.9970 34.7 0.095 

           …/… 
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a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated values; d Standard deviation of the fit 

defined as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the 

number of adjustable parameters in the Clarke and Glew equation; e Mean temperature; f Triple point temperature;                  

g Calculated from the literature vapor pressure results [42] using the value of g o

cr ,mpC  estimated in this work; h Including 

supercooled liquid.  

 

 

The value of 
o

,mpC (g, 298.15K) = 192.16 JK1mol1 was calculated at the B3LYP/6-

311++G(d,p) level of theory [20], and inserted into equations 4.12 and 4.13, respectively 

yielding the results 
g o

cr ,mpC  = –34.7 JK1mol1 and 
g o

l ,mpC  = ‒81.6 JK1mol1.  

The vapor pressure results previously reported by Fu and Suuberg [42] are slightly 

smaller when compared to those of the present work. Their reported standard molar 

enthalpy of sublimation, which refers to the mean experimental temperature, was 

corrected to T = 298.15 K, using the 
g o

cr ,mpC  estimated in the present work, yielding the 

values compiled in table 4.36. The enthalpy of sublimation, 
g o

cr mH (298.15 K) = (94.2 ± 

1.5) kJmol1, presents a mean variation of approximately ‒3 kJmol1 when compared 

to the mean of the results obtained in this work with the effusion and static methods. 

These discrepancies may be related to the insufficient purity of the samples used by Fu 

and Suuberg (minimum purity 0.95). 

 

 

Combustion calorimetry and thermodynamic properties of formation  

 

Combustion equation: 

13 9 2 2 2 2C H Br (cr) + 15 O  (g) + 596 H O (l)  13 CO  (g) + HBr 600H O (l)   

n = ‒2 
 

  

…/… 

Liquid phase, static method h 

 298.15 38.44 ± 0.03  81.72 ± 0.13  145.2 ± 0.4  1.810−2    

374.47-419.77 397.12e 25.28 ± 0.01  73.64 ± 0.13  121.8 ± 0.3  4.7101 0.9999 81.6 0.007 

 385.08f 26.76 ± 0.01  74.63 ± 0.13  124.3 ± 0.3  2.3101    
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Table 4.37. Standard (po = 0.1 MPa) massic energy of combustion of 2-bromofluorene, at T = 298.15 K.a 

Exp. 1 2 3 4 5 6 

m(cpd) / g 0.48935 0.67978 0.66958 0.70230 0.70014 0.67599 

m(fuse) / g 0.00301 0.00315 0.00252 0.00212 0.00239 0.00234 

Ti / K 297.3129 297.2191 297.2636 297.2010 297.1953 297.1939 

Tf / K 297.9995 298.1508 298.1801 298.1612 298.1539 298.1217 

Tad / K 0.64526 0.89494 0.88155 0.92411 0.92106 0.89031 

i / JK1 53.75 53.91 53.90 53.93 53.93 53.91 

f / JK1 53.00 53.18 53.19 53.20 53.19 53.18 

m(H2O) / g 3.8 2.5 1.7 0.8 3.1 0.9 

U(IBP) / J 13182.36 18278.78 18002.26 18867.96 18814.62 18171.50 

U(fuse) / J 48.88 51.16 40.92 34.43 38.81 38.00 

U(HNO3) / J 4.66 2.39 5.01 3.46 2.75 3.58 

∆U(As2O3)a / J 161.07 220.94 217.52 228.40 229.07 220.56 

∆U(H2PtBr6) / J 0.06 0.11 0.02 0.06 0.04 0.04 

U(ign) / J 1.12 1.12 1.11 1.12 1.12 1.12 

U(carb) / J  0.99     

U / J 15.11 20.92 20.58 21.57 21.51 20.77 

cuo / Jg1 26468.95 26455.99 26461.68 26455.99 26455.34 26462.74 

–cuo = (26460.1 ± 2.2) Jg1 

acal = (20361.4 ± 0.6) JK1; 

bThe compound was burnt in the presence of 10.00 cm3 of an aqueous solution of As2O3 (0.1154 moldm3). 

 

 

Table 4.38. Standard (po = 0.1 MPa) molar energy and enthalpy of combustion, and derived standard molar enthalpies of 

formation of the crystalline and gaseous phases of 2-bromofluorene, at T = 298.15 K. 

 

  

o

c m(cr)U   
o

c m(cr)H   
o

f m(cr)H   
g o

cr mH   
o

f m(g)H  

kJmol1  kJmol1  kJmol1  kJmol1  kJmol1 

6485.7 ± 1.4 
 

6490.7 ± 1.4 
 

110.8 ± 2.2 
 98.05 ± 0.44 a  208.9 ± 2.2 

   96.43 ± 0.14 b  207.2 ± 2.2 

    Mean  96.58 ± 0.13 c  207.4 ± 2.2 

a Derived from vapor pressure results determined by the effusion method; 

b Derived from vapor pressure results determined by the static method; 

c Calculated as the weighted mean of the results.. 
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Table 4.39. Standard (po = 0.1 MPa) molar absolute entropies and standard molar entropies, enthalpies and Gibbs 

energies of formation of the crystalline and gaseous phases of 2-bromofluorene, at T = 298.15 K. 

 

 

  

Phase 

o

mS   
o

f mT S    
o

f mH   
o

f mG  

JK1mol1  kJmol1  kJmol1  kJmol1 

g 435.42 a  90.4  207.4 ± 2.2 c  297.8 ± 2.2 

cr 253.1 ± 0.2 b  144.8 ± 0.1  110.8 ± 2.2  255.6 ± 2.2 

a  Calculated at the B3LYP/6-311++G(d,p) level [20]; 

b o o g o

m m cr m(cr) (g)S S S   ;  

c  Weighted mean of the values determined in this work using the effusion and static methods presented in table 4.36. 
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4.2.2.1.6. 2-Iodofluorene 

 

 

 

 

Molecular formula CAS Number Molar Mass Density 

C13H9I 2523-42-4 292.1140 gmol1 1.714 [43] 

 

 

Table 4.40. Source, purification and analysis details of 2-iodofluorene. 

Source Lot 
Minimum 

initial purity 
Purification method 

Final mass 
fraction purityc 

Sigma-Aldrich 
MKBB2762 0.990a Sublimation under 

reduced pressure 
0.9960 

MKBD5491V 0.993b 

a Determined by GC, as stated in the certificate of analysis of the manufacturer (May 2009); 

b Determined by GC, as stated in the certificate of analysis of the manufacturer (May 2010); 

b Determined by GC. 

 

 

Vapor pressures and thermodynamic properties of phase transition 

 

Table 4.41. Temperatures, molar enthalpies and entropies of fusion of 2-iodofluorene. 

Exp. 
fusT (onset)  

l o

cr m fus( )H T   
l o

cr m fus( )S T   tp

aT  
 l o

cr m tp( )bH T   l o

cr m tp( )S T  

K  kJmol1  JK1mol1  K  
kJmol1  JK1mol1 

1 404.13  17.50         

2 404.14  17.46         

3 404.19  17.60         

4 404.08  17.51         

5 404.12  17.56         

Mean 404.13 ± 0.04  17.53 ± 0.05  43.4 ± 0.1  402.17  20.0 ± 0.1  49.7 ± 0.2 

Lit.c 399-402           

a Triple point temperature derived indirectly from vapor pressure results; 

b Determined indirectly from the g o

cr m tp( )H T  and g o

l m tp( )H T  values presented in table 4.43; 

c Sigma-Aldrich, MSDS. 
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The vapor pressure study of this compound was done in collaboration with 

another researcher [40], who performed the Knudsen effusion experimental study. These 

results will be compiled in the table below, along with the vapor pressures determined in 

this work using the static method based on capacitance manometers. 

 

 

Table 4.42. Vapor pressures of 2-iodofluorene determined by the Knudsen effusion and static methods.  

T/K p/Pa 100p/p a T/K p/Pa 100p/p a T/K p/Pa 100p/p a 

Crystalline phase, effusion method b 

341.16 0.119 0 349.21 0.275 1.1 355.12 0.485 0 

343.22 0.150 1.3 350.12 0.296 –0.7 357.16 0.583 –1.2 

345.11 0.179 –0.6 352.17 0.357 –2.0 359.20 0.725 1.4 

347.16 0.220 –0.5 353.21 0.405 0.5 361.12 0.859 0.3 

Crystalline phase, static method c 

362.63 0.966 –0.4 376.45 3.290 0.3 388.31 8.743 0.8 

364.62 1.157 –0.5 378.45 3.888 0.2 390.26 10.11 0 

366.60 1.384 –0.4 380.39 4.564 0 392.21 11.77 –0.1 

368.57 1.667 0.6 382.39 5.393 0.2 394.20 13.67 –0.4 

370.55 1.974 0.1 384.32 6.314 0.3 396.16 15.91 –0.3 

372.51 2.337 –0.2 386.36 7.414 –0.1 398.18 18.49 –0.5 

374.49 2.790 0.5       

Liquid phase, static method c,d 

392.08 13.59 0.1 4000 21.97 –0.1 407.96 34.89 –0.1 

394.08 15.35 –0.1 402.08 24.79 –0.2 409.94 39.07 0.1 

396.17 17.46 0 403.96 27.76 0.1 411.91 43.60 0.1 

398.00 19.54 0.2 405.93 30.99 –0.3 413.86 48.52 0.1 

a p = p – pcalc, where pcalc is calculated from the Clarke and Glew equation with parameters given in table 4.43; 

b Ref. [40]; 

c u(T) = ±0.01 K, u(p/Pa) = 0.01 + 0.0025(p/Pa) for gauge I and u(p/Pa) = 0.1 + 0.0025(p/Pa) for gauge II; 

d Including supercooled liquid. 
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Figure 4.7. Phase diagram (ln(p/Pa) against 1000(K/T)) of 2-iodofluorene: , crystal vapor pressures; , liquid vapor 

pressures; , supercooled liquid vapor pressures (triple point coordinates: Ttp = 402.17 K; ptp = 24.99 Pa); , literature 

solid vapor pressure results. 

 

 

Table 4.43. Standard (po = 0.1 MPa) molar properties of sublimation and vaporization of 2-iodofluorene, derived from 

experimental and literature vapor pressure results. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated value; d Standard deviation of the fit 

defined as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the 

number of adjustable parameters in the Clarke and Glew equation; e Calculated from the vapor pressure results presented 

in reference [40] using the value of g o

cr ,mpC  estimated in this work. f Mean temperature; g Triple point temperature;                     

h Including supercooled liquid. 

T / K  / K 

g o

cr/l m( )G    
g o

cr/l m( )H    
g o

cr/l m( )S  a  ( )p  b 
R2 

cr/l o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, effusion method e 

341.16-361.12 298.15 46.70 ± 0.08  103.0 ± 0.5  188.8 ± 1.7  6.610−4 0.9997 34.7 0.011 

Crystalline phase, static method 

 298.15 46.66 ± 0.02  102.5 ± 0.1  187.3 ± 0.3  6.710−4    

362.63-398.18 380.41f 31.61 ± 0.01  99.69 ± 0.10  179.0 ± 0.3  4.6 1.0000 34.7 0.004 

 402.17g 27.73 ± 0.01  98.93 ± 0.10  177.0 ± 0.2  2.5101    

Liquid phase, static method h 

 298.15 42.18 ± 0.02  87.41 ± 0.09  151.7 ± 0.3  4.110−3    

392.08-413.86 402.97f 27.63 ± 0.01  78.86 ± 0.09  127.1 ± 0.2  2.6101 1.0000 81.6 0.002 

 402.17g 27.73 ± 0.01  78.92 ± 0.09  127.2 ± 0.2  2.5101    
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The values 
g o

cr ,mpC  = −34.7 JK1mol1 and 
g o

cr ,mpC  = ‒81.6 JK1mol1 were 

estimated in this work by means of equations 4.12 and 4.13 with the value 
o

,mpC (g, 298.15 

K) = 192.2 JK1mol1. This value was estimated from that of fluorene [23], using a group 

additivity approach according to equation 4.26 and data provided in table 4.2. 

 

o

,mpC (Fluorene) − [1×CB-(H)(CB)2] + [1×CB-(F)(CB)2] (4.26) 
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4.2.2.2. 2,7-Disubstituted fluorenes 
 

 

4.2.2.2.1. 2,7-Di-tert-butylfluorene 

 

 

 
 

Molecular formula CAS Number Molar Mass Density 

C21H26 58775-05-6 278.4300 gmol1 0.988 [44] 

 

 

Table 4.44. Source, purification and analysis details of 2,7-di-tert-butylfluorene. 

Source Lot 
Minimum 

initial puritya 
Purification method 

Final mass 
fraction purityb 

Aldrich MKBG0052 0.995 
Sublimation under 
reduced pressure 

0.9996 

a Determined by HPLC (area %), as stated in the certificate of analysis of the manufacturer; 

b Determined by GC. 

 

 

Vapor pressures and thermodynamic properties of phase transition 

 

Table 4.45. Temperatures and standard molar enthalpies and entropies of condensed phase transitions of 2,7-di-tert-

butylfluorene. 

Exp. 
crII-crIT (onset)  crII-crI

crI o

crII m( )H T   crII-crI

crI o

crII m( )S T   fusT (onset)  
l o

cr m fus( )H T   
l o

cr m fus( )S T  

K  kJmol1  JK1mol1  K  kJmol1  JK1mol1 

1 367.05  10.04    395.92  15.50   

2 367.26  9.92    396.26  15.52   

3 366.94  9.93    396.01  16.07   

4 366.76  10.03    395.77  15.82   

5 367.09  10.09    395.70  15.30   

Mean 367.0 ± 0.2  10.00 ± 0.07  27.2 ± 0.2  395.9 ± 0.2  15.6 ± 0.3  39.4 ± 0.8 

VPa 366.8  12.7 ± 0.4  34.6 ± 1.1  394.8  14.5 ± 0.3  36.7 ± 0.8 

Lit.b       394 - 397      

a Derived indirectly from vapor pressure results; 

b Sigma-Aldrich, MSDS.  
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The DSC thermograms of 2,7-di-tert-butylfluorene reveal the existence of a 

crystalline transition at TcrII-crI = (367.0 ± 0.2) K (example shown in figure 4.8), before the 

fusion transition at Tfus = (395.9 ± 0.2) K. The crystalline transition is thermodynamically 

reversible, yielding the same values of transition temperature and enthalpy either using 

fresh samples or recrystallized in situ.  

 

 

 
 

 

Figure 4.8. Typical DSC thermogram of 2,7-di-tert-butylfluorene: solid line, heat flow (mW); dashed line, temperature (oC). 

 

 

The calorimetric determination of the enthalpy of sublimation of this compound was 

performed by another researcher [45]. 

 

 

Table 4.46. Standard (po = 0.1 MPa) molar enthalpy of sublimation of 2,7-di-tert-butylfluorene, determined by Calvet 

microcalorimetry. 

T / K 

g, o

cr, 298.15 K m

T H   
o

298.15 K m (g)T H   
g o

cr m (298.15 K)H  

kJmol1  kJmol1  kJmol1 

406.57  0.01a 164.6  0.4a  44.74  119.9  0.9b 

a Uncertainties are the estimated standard deviation of the mean of six independent experiments; 

b The uncertainty is the expanded uncertainty of the mean (0.95 level of confidence, k = 2), and includes the uncertainty 

due to the calibration. 
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The calorimeter was calibrated with high purity anthracene (details in table 3.2), 

and the calibration constant, kcal, for the mean experimental temperature, T = 406.57 K, 

was found to be kcal = (1.0557 ± 0.0022), calculated as the average of six independent 

sublimation experiments. The system was also tested at the same temperature by 

determining the enthalpy of sublimation of pyrene (purity mass fraction 0.9989), yielding 

the result g o

cr mH (298.15 K) = (100.3  1.3) kJmol1, which is in excellent agreement with 

the value recently reported in the literature [46]. 

The term 
o

298.15 K m(g)T H  was calculated from the integration of the fitting of a 3rd 

degree polynomial to the 
o

,mpC (g, 298.15K) results calculated at the B3LYP/6-31G(2df,p) 

level of theory [45],between T = (290 and 500) K: 

 

o

,mpC  = 53.99 + 7.1610‒1(T/K) + 1.5010‒3(T/K)2 ‒ 1.8210‒6(T/K)3                (4.27) 

 

 

Table 4.47. Vapor pressures of 2,7-di-tert-butylfluorene determined by the Knudsen effusion method. a 

T / K t/s Orifices 
m / mg  p / Pa 

msmall mmedium mlarge  psmall pmedium plarge pmean 

349.14 20029 A’1-B’4-C’7 5.22  7.99  0.106  0.105 0.106 

351.14 21123 A’1-B’4-C’7 6.99 8.45 10.88  0.135 0.132 0.136 0.134 

353.30 20029 A’2-B’5-C’8  10.34 12.79   0.171 0.169 0.17 

355.28 21123 A’2-B’5-C’8 11.06 13.78 17.00  0.215 0.217 0.213 0.215 

357.20 20029 A’3-B’6-C’9 12.68 16.24 20.14  0.261 0.271 0.267 0.266 

359.19 22815 A’3-B’6-C’9 18.20 21.91 28.75  0.330 0.321 0.336 0.329 

361.14 10798 A’1-B’4-C’7 10.64 13.12 16.52  0.409 0.408 0.409 0.409 

363.27 10389 A’2-B’5-C’8 12.83 15.72 19.64  0.514 0.509 0.507 0.51 

368.20 10389 A’3-B’6-C’9 19.97 25.02 31.89  0.805 0.816 0.828 0.816 

369.13 11379 A’1-B’4-C’7 24.05 29.79 37.46  0.886 0.888 0.889 0.888 

370.26 11379 A’2-B’5-C’8  32.89 41.23   0.979 0.975 0.977 

371.21 11522 A’3-B’6-C’9 29.65 36.23 45.88  1.082 1.070 1.079 1.077 

372.21 11379 A’3-B’6-C’9  39.35 49.50   1.178 1.180 1.179 

a u(T/K) = ±0.01, u(p/Pa) = ±0.01. 
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Table 4.48. Vapor pressures of 2,7-di-tert-butylfluorene determined by the static method with capacitance manometers. a 

T/K p/Pa 100p/p b T/K p/Pa 100p/p b T/K p/Pa 100p/p b 

Crystalline phase  

368.55 0.873 –0.1 376.45 1.778 0 384.34 3.492 –0.2 

370.54 1.055 0.6 378.41 2.106 –0.2 386.30 4.126 0.1 

372.50 1.246 –0.5 380.40 2.524 0.7 388.27 4.862 0.3 

374.50 1.492 –0.3 382.38 2.965 –0.1 390.24 5.670 –0.4 

Liquid phase c 

384.34 3.946 0.3 392.22 6.859 –0.2 400.05 11.64 0.1 

386.32 4.548 0.2 394.20 7.843 –0.3 402.07 13.27 0.1 

388.28 5.217 0 396.17 8.987 0 404.04 15.08 0.2 

390.28 5.976 –0.5 398.15 10.26 0    

a u(T/K) = ±0.01, u(T) = ±0.01 K, u(p/Pa) = 0.01 + 0.0025(p/Pa) for gauge I; 

b Δp = p – pcalc, where pcalc is calculated from the Clarke and Glew equation with parameters given in table 4.49; 

c Including supercooled liquid.  
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Figure 4.9. Phase diagram (ln(p/Pa) against 1000(K/T)) of 2,7-di-tert-butylfluorene: effusion crystal vapor pressures for 

the different effusion orifices - , small; , medium; , large; static vapor pressures - , crystal vapor pressures; , 

liquid vapor pressures; , supercooled liquid vapor pressures (triple point coordinates: Ttp (I) = 394.80 K, ptp (I) = 8.19 

Pa); Ttp (II) = 366.79 K, ptp (II) = 0.74 Pa. 
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Table 4.49. Standard (po = 0.1 MPa) molar properties of sublimation and vaporization of 2,7-di-tert-butylfluorene, derived 

from the experimental vapor pressure results. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated values; d Standard deviation of the fit 

defined as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the 

number of adjustable parameters in the Clarke and Glew equation; e Mean temperature; f Temperature of triple point (crII, 

crI, g); gTemperature of the triple point (crI, liq, g); h Including supercooled liquid.  

 

 

The value of 
o

,mpC (g, 298.15K) = 352.65 JK1mol1 [45] was calculated at the 

B3LYP/6-31G(2df,p) level of theory, and inserted into equations 4.12 and 4.13, 

respectively yielding the 
g o

cr ,mpC  = –63.0 JK1mol1 and 
g o

l ,mpC  = ‒137.7 JK1mol1. 

 

 

 

 

 

 

T / K  / K 

g o

cr/l m( )G    
g o

cr/l m( )H    
g o

cr/l m( )S  a  ( )p  b 
R2 

cr/l o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase II, effusion method 

 298.15 51.57 ± 0.06  121.1 ± 0.4  233.2 ± 1.4  9.210–5    

349.14-363.27 356.21e 38.36 ± 0.01  117.5 ± 0.4  222.2 ± 1.1  2.410–1 0.9999 63.0 0.005 

 366.79f 36.02 ± 0.01  116.8 ± 0.4  220.2 ± 1.1  7.410–1    

Crystalline phase I, effusion method 

368.20-372.21 
298.15 49.45 ± 0.36  109.3 ± 1.8  200.7 ± 6.2  2.210–4 

0.9991 63.0 0.005 
370.21e 35.50 ± 0.01  104.7 ± 1.8  186.9 ± 4.9  9.810–1 

Crystalline phase I, static method 

 298.15 49.19 ± 0.04  108.4 ± 0.2  198.6 ± 0.7  2.110–4    

368.55-390.24 
379.40e 33.69 ± 0.01  103.3 ± 0.2  183.5 ± 0.5  2.3 

1.0000 63.0 0.004 
366.79f 36.02 ± 0.01  104.1 ± 0.2  185.6 ± 0.5  7.410–1 

 394.80g 30.89 ± 0.01  102.3 ± 0.2  180.9 ± 0.5  8.2    

Liquid phase, static method h 

 298.15 46.61 ± 0.04  101.2 ± 0.2  183.1 ± 0.7  6.810–4    

384.34-404.04 394.19e 30.97 ± 0.01  87.93 ± 0.15  144.5 ± 0.4  7.8 1.0000 137.7 0.002 

 394.80g 30.89 ± 0.01  87.85 ± 0.15  144.3 ± 0.4  8.2    
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Combustion calorimetry and thermodynamic properties of formation  

 

Combustion equation: 

21 26 2 2 2C H  (cr) + 27.5 O  (g)  21 CO  (g) + 13 H O (l)  n = ‒6.5 

 

In the study of 2,7-di-tert-butylfluorene using static bomb combustion calorimetry, 

two combustion aids were tested to prevent the formation of carbon soot residue. Firstly, 

the sample pellet was enclosed in melinex® bags, using the technique described by 

Skinner and Snelson [47]. The use of this combustion aid, however, didn’t prove 

successful and n-hexadecane (Aldrich Gold Label, mass fraction >0.999) was tested with 

better results.  

 

 

Table 4.50. Standard (po = 0.1 MPa) massic energy of combustion of 2,7-di-tert-butylfluorene, at T = 298.15 K. a 

Exp. 1 2 3 4 5 6 

m(CO2, total) / g 1.62291 1.45839 1.56279 1.46598 1.40955  

m(cpd) / g 0.48788 0.40911 0.41354 0.40747 0.40290 0.41266 

m(fuse) / g 0.00259 0.00289 0.00295 0.00299 0.00283 0.00288 

m(c.aid) / g  0.04230 b 0.08121 b 0.03492 c 0.02175 c 0.02177 c 

Ti / K 298.15116 298.15073 298.15189 298.15550 298.15144 298.15143 

Tf / K 299.55510 299.40766 299.47515 299.45182 299.39494 299.42001 

Tad / K 1.33381 1.18254 1.25155 1.22361 1.16907 1.19646 

f / JK1 14.70 14.50 14.58 14.65 14.55 14.56 

m(H2O) / g 0 ‒1.7 ‒0.4 ‒9.4 ‒0.8 ‒0.1 

U(IBP) / J 20762.04 18398.57 19479.19 18998.28 18193.40 18623.23 

U(fuse) / J 42.06 46.93 47.91 48.56 45.96 46.77 

U(c.aid) / J  968.85 b 1859.79 b 1647.05 c 1025.63 c 1026.57 c 

U(HNO3) / J 10.52 10.25 11.61 5.04 5.77 8.05 

U(ign) / J 0.58 0.69 0.66 0.77 0.78 0.70 

U(carb) / J 6.60 10.23 5.61    

U / J 9.12 8.35 9.25 7.92 7.65 7.85 

cuo / Jg1 42442.69 42468.82 42453.55 42431.86 42463.12 42491.16 

–cuo = (42458.5 ± 8.5) Jg1 

% CO2 = (99.963 ± 0.011) % 

a cal = (15551.7 ± 1.2) JK1; 

b Combustion aid: Melinex®; 

c Combustion aid: n-Hexadecane. 
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The energies of combustion of melinex® and n-hexadecane in each experiment, 

were calculated using the respective massic energies of combustion: cuo(melinex) =      

–(22902 ± 5) Jg–1 [47] and cuo(n-hex) = –(47161.9 ± 1.3) Jg–1. The later one was 

determined as the mean of results obtained by other researchers in our laboratory and 

is in good agreement with that reported in the literature [48]. 

 

 

Table 4.51. Standard (po = 0.1 MPa) molar energy and enthalpy of combustion, and derived standard molar enthalpies of 

formation of the crystalline and gaseous phases of 2,7-di-tert-butylfluorene, at T = 298.15 K. 

 

Table 4.52. Standard (po = 0.1 MPa) molar absolute entropies and standard molar entropies, enthalpies and Gibbs 

energies of formation of the crystalline and gaseous phases of 2,7-di-tert-butylfluorene, at T = 298.15 K. 

 

  

o

c m(cr)U   
o

c m(cr)H   
o

f m(cr)H   
g o

cr mH   
o

f m(g)H  

kJmol1  kJmol1  kJmol1  kJmol1  kJmol1 

11821.7 ± 5.9 
 

11837.8 ± 5.9 
 

141.7 ± 6.5 
 121.1 ± 0.4 a  20.6 ± 6.5 

   119.9 ± 0.9 b  21.8 ± 6.6 

    Mean  120.9 ± 0.4 c  20.8 ± 6.5 

a Derived from effusion vapor pressure results of crystalline phase II; 

b Derived from calorimetric results; 

c Calculated as the weighted mean of the results. 

 

Phase 

o

mS   
o

f mT S    
o

f mH   
o

f mG  

JK1mol1  kJmol1  kJmol1  kJmol1 

g 602.2 a  362.9  20.6 ± 6.5 c  342.3 ± 6.5 

cr 369.0 ± 1.4 b  432.4 ± 0.4  141.7 ± 6.5  290.7 ± 6.5 

a Calculated at the B3LYP/6-31G(2df,p) level [45]; 

b o o g o

m m cr m(cr) (g)S S S   ;  

c Derived from effusion vapor pressure results of crystalline phase II. 
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4.2.2.2.2. 2,7-Difluorofluorene 

 

 

 
 

Molecular formula CAS Number Molar Mass Density 

C13H8F2 2195-50-8 202.1984 gmol1 1.289 [49] 

 

 

Table 4.53. Source, purification and analysis details of 2,7-difluorofluorene. 

Source Initial puritya,b Purification method 
Final mass  

fraction puritya 

Synthesis 0.891 
Sublimation under 
reduced pressure 

0.9992 

a Purity after synthesis; 

b Determined by GC. 

 

 

Vapor pressures and thermodynamic properties of phase transition 

 

Table 4.54. Temperatures, molar enthalpies and entropies of fusion of 2,7-difluorofluorene. 

Exp. 
fusT (onset)  

l o

cr m fus( )H T   
l o

cr m fus( )S T  

K  kJmol1  JK1mol1 

1 356.00  18.03   

2 355.97  18.13   

3 356.50  18.06   

4 356.65  18.00   

5 356.73  18.05   

Mean 356.4 ± 0.3  18.05 ± 0.04  50.6 ± 0.1 

Literature a  353 - 355.5      

a Ref. [50], no information regarding minimum purity. 
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Table 4.55. Vapor pressures of 2,7-difluorofluorene determined by the Knudsen effusion method. a 

T / K t/s Orifices 
m / mg  p / Pa 

msmall mmedium mlarge  psmall pmedium plarge pmean 

299.17 25637 A’1-B’4-C’7 5.37 6.56 8.22  0.093 0.092 0.091 0.092 

301.37 25637 A’2-B’5-C’8 6.87 8.48 10.81  0.119 0.119 0.121 0.120 

303.20 25637 A’3-B’6-C’9 8.75 10.64 13.36  0.152 0.150 0.150 0.151 

305.14 14537 A’1-B’4-C’7 6.11 7.58 9.36  0.188 0.189 0.186 0.187 

307.34 14537 A’2-B’5-C’8 7.76 9.63 12.11  0.240 0.241 0.241 0.240 

309.20 14537 A’3-B’6-C’9 9.73 11.96 15.10  0.302 0.300 0.301 0.301 

311.13 10086 A’1-B’4-C’7 8.34 10.17 12.85  0.374 0.369 0.371 0.371 

313.18 10086 A’2-B’5-C’8 10.41 12.99 16.26  0.468 0.472 0.471 0.470 

315.21 10086 A’3-B’6-C’9 13.07 15.93 20.45  0.589 0.581 0.594 0.588 

317.11 10029 A’1-B’4-C’7 16.27 19.72 24.70  0.740 0.726 0.724 0.730 

319.16 10029 A’2-B’5-C’8 20.42 25.12 31.48  0.932 0.927 0.925 0.928 

321.19 10029 A’3-B’6-C’9 25.25 30.43 38.82  1.156 1.127 1.144 1.142 

a u(T/K) = ±0.01, u(p/Pa) = ±0.01. 
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Figure 4.10. Plots of ln(p/Pa) against 1000(K/T) of 2,7-difluorofluorene: effusion vapor pressures for the different 

effusion orifices - , small; , medium; , large. 
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Table 4.56. Standard (po = 0.1 MPa) molar properties of sublimation and vaporization of 2,7-difluorofluorene, derived from 

the experimental vapor pressure results. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated value; d Standard deviation of the fit 

defined as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the 

number of adjustable parameters in the Clarke and Glew equation; e Mean temperature. 

 

 

The value 
g o

cr ,mpC  = −35.8 JK1mol1 was estimated in this work by means of 

equation 4.12 and the value 
o

,mpC (g, 298.15 K) = 198.1 JK1mol1, estimated for this 

compound from the value 
o

,mpC (g, 298.15 K) of fluorene [23] using a group additivity 

approach according to equation 4.28 and data provided in table 4.2. 

 

o

,mpC (Fluorene) − [2×CB-(H)(CB)2] + [2×CB-(F)(CB)2] (4.28) 

 
 

 

  

T / K  / K 

g o

cr m( )G    
g o

cr m( )H    g o  

cr m( ) aS   ( )p  b 
R2 

cr o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, effusion method 

299.17-321.19 
298.15 34.79 ± 0.02  91.78 ± 0.35  191.1 ± 1.2  8.010‒2 

0.9999 35.8 0.010 
310.18e  32.49 ± 0.01  91.35 ± 0.35  189.8 ± 1.1  3.410‒1 
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4.2.2.2.3. 2,7-Dichlorofluorene 

 

 

 
 

Molecular formula CAS Number Molar Mass Density 

C13H8Cl2 7012-16-0 235.1046 gmol1 1.2845 [14] 

 

 

Table 4.57. Source, purification and analysis details of 2,7-dichlorofluorene. 

Source Initial puritya,b Purification method 
Final mass 

fraction purityb 

Synthesis 0.976 

Recrystallization; 

Sublimation under 
reduced pressure 

0.9994 

a Purity after synthesis; 

b Determined by GC. 

 

 

Vapor pressures and phase transition thermodynamic properties 

 

Table 4.58. Temperatures, molar enthalpies and entropies of fusion of 2,7-dichlorofluorene. 

Exp. 
fusT (onset)  

l o

cr m fus( )H T   
l o

cr m fus( )S T  

K  kJmol1  JK1mol1 

1 396.77  18.23   

2 396.99  18.60   

3 396.94  18.26   

4 396.89  18.31   

5 396.91  18.16   

6 396.87  18.59   

Mean 396.90 ± 0.06  18.4 ± 0.2  46.4 ± 0.5 

Literature 397.6 - 398.5 a     

 398.5 - 399.5 b     

a Ref. [42], minimum purity 0.97; 

b Ref. [51], no information regarding minimum purity. 
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Table 4.59. Vapor pressures of 2,7-dichlorofluorene determined by the static method with capacitance manometers. a 

T/K p/Pa 100p/p b T/K p/Pa 100p/p b T/K p/Pa 100p/p b 

Crystalline phase 

364.64 1.50 –0.7 376.33 4.22 0.2 386.28 9.58 0.2 

366.48 1.78 0 378.44 5.05 0.4 388.32 11.25 0 

368.59 2.15 0 380.30 5.89 0.3 390.20 12.98 –0.4 

370.46 2.54 0 382.22 6.92 0.6 392.25 15.23 –0.5 

372.51 3.03 0 384.26 8.17 0.5 394.22 17.74 –0.5 

374.51 3.61 0       

a u(T) = ±0.01 K, u(p) = 0.01 + 0.0025p Pa. 

b Δp = p – pcalc, where pcalc is calculated from the Clarke and Glew equation with parameters given in table 4.60. 
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Figure 4.11. Plots of ln(p/Pa) against 1000(K/T) of 2,7-dichlorofluorene: , crystal vapor pressures; , literature vapor 

pressure results [42]. 
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Table 4.60. Standard (po = 0.1 MPa) molar properties of sublimation of 2,7-dichlorofluorene, derived from experimental 

and literature vapor pressure results. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated value; d Standard deviation of the fit 

defined as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the 

number of adjustable parameters in the Clarke and Glew equation; e Mean temperature; f Calculated from the vapor 

pressure results presented in reference [42] using the value of g o

cr ,mpC  estimated in this work.  

 

 

The value 
g o

cr ,mpC  = −36.9 JK1mol1 was estimated in this work by means of 

equation 4.12 and the value 
o

,mpC (g, 298.15 K) = 204.5 JK1mol1, estimated for this 

compound from the value 
o

,mpC (g, 298.15 K) of fluorene [23] using a group additivity 

approach according to equation 4.29 and data provided in table 4.2. 

 

o

,mpC (Fluorene) − [2×CB-(H)(CB)2] + [2×CB-(F)(CB)2] (4.29) 

 

The vapor pressure results reported by Fu and Suuberg [42], also shown in figure 

4.11, are slightly smaller than the ones determined in this work. Their reported standard 

molar enthalpy of sublimation, which refers to the mean experimental temperature, was 

corrected to T = 298.15 K, using the 
g o

cr ,mpC  value estimated in the present work, yielding 

the values compiled in table 4.60. The enthalpy of sublimation, g o

cr mH (298.15 K) = (97.16 

± 0.62) kJmol1, differs by ‒5.5 kJmol1 from the result derived in this work. These 

discrepancies may be related to the purity of the samples (minimum purity 0.97), used 

without further purification by Fu and Suuberg. 

 

  

T / K  / K 

g o

cr m( )G    
g o

cr m( )H    g o  

cr m( ) aS   ( )p  b 
R2 

cr o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, static method 

364.64-394.22 
298.15 46.03 ± 0.03  102.7 ± 0.1  190.1 ± 0.4  8.610‒4 

1.0000 36.9 0.004 
379.43 e 30.96 ± 0.01  99.7 ± 0.1  181.2 ± 0.3  5.5 

Crystalline phase, literaturef 

318.5-364.0 298.15 45.57 ± 0.08  97.16 ± 0.62  173.0 ± 0.6  1.110‒3 0.9997 36.9 0.029 
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4.2.2.2.4. 2,7-Dibromofluorene 

 

 

 

 

Molecular formula CAS Number Molar Mass Density 

C13H8Br2 16433-88-8 324.0096 gmol1 1.7203 [14] 

 

 

Table 4.61. Source, purification and analysis details of 2,7-dibromofluorene. 

Source Lot 
Minimum initial 

puritya 
Purification method 

Final mass 
fraction purityb 

TCI Europe SLUTA 0.997 
Sublimation under 
reduced pressure 

0.9998 

a Determined by GC, as stated in the certificate of analysis of the manufacturer; 

b Determined by GC. 

 

 

Vapor pressures and phase transition thermodynamic properties 

 

Table 4.62. Temperatures, molar enthalpies and entropies of fusion of 2,7-dibromofluorene. 

Exp. 
fusT (onset)  

l o

cr m fus( )H T   
l o

cr m fus( )S T  

K  kJmol1  JK1mol1 

1 438.87  22.72   

2 438.63  22.70   

3 438.85  22.67   

4 438.73  22.80   

5 438.88  22.72   

Mean 438.8 ± 0.1  22.72 ± 0.04  51.78 ± 0.09 

Literature 438.5 - 439.5 a  22.08 a  50.30 a 

 439.85 b     

a TCI Europe, certificate of analysis; 

b Ref. [42], minimum purity 0.97. 
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Table 4.63. Vapor pressures of 2,7-dibromofluorene, determined by the Knudsen effusion method. a 

T / K t/s Orifices 
m / mg  p / Pa 

msmall mmedium mlarge  psmall pmedium plarge pmean 

361.15 43682 A3-B6-C9 8.75 13.71 19.43  0.095 0.097 0.096 0.096 

363.14 43682 A2-B5-C8 10.74 16.65 23.73  0.119 0.119 0.118 0.119 

365.11 43682 A1-B4-C7 12.84 20.25 28.92  0.144 0.147 0.148 0.146 

367.16 23786 A3-B6-C9 8.66 13.54 19.42  0.179 0.177 0.177 0.178 

369.11 23786 A2-B5-C8 10.52 16.40 23.28  0.215 0.218 0.214 0.216 

371.10 23786 A1-B4-C7 12.56 19.84 28.26  0.261 0.267 0.267 0.265 

373.15 12809 A3-B6-C9 8.26 13.01 18.43  0.319 0.318 0.315 0.318 

375.12 12809 A2-B5-C8 9.98 15.79 22.48  0.382 0.392 0.388 0.387 

377.12 12809 A1-B4-C7 11.89 18.73 26.99  0.463 0.472 0.478 0.471 

379.15 10755 A3-B6-C9 12.13 18.92 12.13  0.563 0.556 0.560 0.560 

381.12 10755 A2-B5-C8 14.74 23.05 14.74  0.678 0.687 0.674 0.680 

383.12 10755 A1-B4-C7 17.30 27.36 17.30  0.809 0.827 0.832 0.823 

a u(T/K) = ±0.01, u(p/Pa) = ±0.01. 

 

 

Table 4.64. Vapor pressures of 2,7-dibromofluorene determined by the static method with capacitance manometers. a 

T/K p/Pa 100p/p b T/K p/Pa 100p/p b T/K p/Pa 100p/p b 

Crystalline phase  

382.23 0.732 0.4 388.21 1.254 0.5 394.16 2.104 0.5 

384.26 0.874 –0.2 390.11 1.472 –0.5 396.08 2.489 1.6 

386.08 1.029 –0.4 392.14 1.751 –1.2 398.07 2.922 –0.4 

a u(T) = ±0.01 K, u(p) = 0.01 + 0.0025p Pa; 

b Δp = p – pcalc, where pcalc is calculated from the Clarke and Glew equation with parameters given in table 4.65. 
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Figure 4.12. Plots of ln(p/Pa) against 1000(K/T) of 2,7-dibromofluorene: effusion crystal vapor pressures for the different 

effusion orifices - , small; , medium; , large; static vapor pressures - , crystal vapor pressures; , literature vapor 

pressure results [42]. 

 

 

Table 4.65. Standard (po = 0.1 MPa) molar properties of sublimation of 2,7-dibromofluorene derived from the vapor 

pressure results determined experimentally and available in the literature. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated value; d Standard deviation of the fit 

defined as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the 

number of adjustable parameters in the Clarke and Glew equation; e Mean temperature; f Calculated from the literature 

vapor pressure results [42] using the value of g o

cr ,mpC estimated in this work.  

 

 

T / K  / K 

g o

cr m( )G    
g o

cr m( )H    g o  

cr m( ) aS   ( )p  b 
R2 

cr o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, effusion method 

361.15-383.12 
298.15 54.12 ± 0.07  114.6 ± 0.3  202.9 ± 1.0  3.310–5 

0.9999 37.9 0.007 
372.14e 39.44 ± 0.01  111.8 ± 0.3  194.4 ± 0.8  2.910–1 

Crystalline phase, static method 

382.23-398.07 
298.15 54.21 ± 0.10  114.6 ± 0.4  202.5 ± 1.4  3.210–5 

0.9999 37.9 0.005 
390.15e 36.07 ± 0.01  111.1 ± 0.4  192.3 ± 1.0  1.5 

Crystalline phase, literature f 

328.7-389.1 298.15 53.22 ± 0.21  107.3 ± 1.2  181.4 ± 4.1  4.810–5 0.9985 37.9 0.078 
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The value of 
o

,mpC (g, 298.15K) = 210.09 JK1mol1 was calculated at the B3LYP/6-

311++G(d,p) level of theory [20], and inserted into equation 4.12, yielding the result 

g o

cr ,mpC  = –34.7 JK1mol1. 

The vapor pressure results reported by Fu and Suuberg [42], also shown in figure 

4.12, are slightly smaller than the ones determined in this work. Although the variation in 

vapor pressure is only slight, the difference in enthalpy is significant. Their reported 

standard molar enthalpy of sublimation, which refers to the mean experimental 

temperature, was corrected to T = 298.15 K, using the 
g o

cr ,mpC  value estimated in the 

present work, yielding the values compiled in table 4.65. The enthalpy of sublimation, 

g o

cr mH (298.15 K) = (107.3 ± 1.2) kJmol1, differs by ‒7.3 kJmol1 from our result. These 

discrepancies may be related, again, to the insufficient purity of the samples used by Fu 

and Suuberg (minimum purity 0.97). 

 

 

Combustion calorimetry and thermodynamic properties of formation  

 

Combustion equation: 

13 8 2 2 2 2 2C H Br  (cr) + 14.5 O  (g) + 1197 H O (l)  13 CO  (g) + 2 HBr 600H O (l)   

n = ‒1.5 
 

For the study of 2,7-dibromofluorene by rotating bomb combustion calorimetry, 

the use of n-hexadecane (Aldrich Gold Label, mass fraction > 0.999) as a combustion 

auxiliary was needed to avoid the formation of carbon soot residue. The energy of 

combustion of the n-hexadecane used in each experiment, U(n-hex), was calculated 

using the value of the massic energy of combustion of cuo = ‒(47150.4 ± 1.3) Jg‒1, 

determined in our laboratory as the mean of results obtained by a number of 

experimentalists in our laboratory and is in good agreement with that reported in the 

literature [48].  
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Table 4.66. Standard (po = 0.1 MPa) massic energy of combustion of 2,7-dibromofluorene, at T = 298.15 K. a 

Exp. 1 2 3 4 5 6 

m(cpd) / g 0.92474 0.88317 0.81559 0.91887 0.79031 0.77473 

m(fuse) / g 0.00223 0.00265 0.00230 0.00289 0.00239 0.00223 

m(n-hex) / g   0.04746 0.05254 0.05108 0.05244 

Ti / K 297.2000 297.2544 297.1986 297.1198 297.2155 297.2239 

Tf / K 298.1466 298.1600 299.1466 298.1785 298.1454 298.1419 

Tad / K 0.90836 0.86768 0.91191 1.02375 0.89487 0.88278 

i / JK1 75.00 74.97 75.03 75.11 75.02 75.01 

f / JK1 73.21 73.23 73.48 73.52 73.47 73.50 

m(H2O) / g 2.0 0.0 ‒3.0 3.3 2.0 0.6 

U(IBP) / J 18570.19 17731.16 18623.65 20934.91 18294.41 18042.02 

U(fuse) / J 36.22 43.04 37.35 46.93 38.81 36.22 

U(n-hex) / J   2237.61 2477.47 2408.53 2472.75 

U(HNO3) / J 1.43 3.22 4.30 2.27 0.84 3.94 

∆U(As2O3)
b/ J 451.58 428.03 400.42 444.26 387.05 378.73 

∆U(H2PtBr6) / J 0.08 0.04 0.03 0.03 0.03 0.02 

U(ign) / J 1.12 1.12 1.11 1.11 1.11 1.11 

U(carb) / J 4.62 4.62 3.30   5.61 

U / J 26.59 25.48 25.81 28.91 25.33 24.92 

cuo / Jg1 19528.64 19516.03 19521.36 19518.58 19528.82 19530.74 

–cuo = (19524.0 ± 2.5) Jg1 

a cal = (20361.4 ± 0.6) JK1; 

b The compound was burnt in the presence of 15.00 cm3 of an aqueous solution of As2O3 (0.1154 moldm3). 

 

 

Table 4.67. Standard (po = 0.1 MPa) molar energy and enthalpy of combustion, and derived standard molar enthalpies of 

formation of the crystalline and gaseous phases of 2,7-dibromofluorene, at T = 298.15 K. 

o

c m(cr)U   
o

c m(cr)H   
o

f m(cr)H   
g o

cr mH   
o

f m(g)H  

kJmol1  kJmol1  kJmol1  kJmol1  kJmol1 

6326.0 ± 1.8 
 

6329.7 ± 1.8 
 

114.7 ± 2.5 
 114.6 ± 0.3 a  

229.3 ± 2.5 
   114.6 ± 0.4 b  

    Mean  114.6 ± 0.2 c  229.3 ± 2.5 c 

a Derived from vapor pressure results determined by the effusion method; 

b Derived from vapor pressure results determined by the static method; 

c Calculated as the weighted mean. 
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Table 4.68. Standard (po = 0.1 MPa) molar absolute entropies and standard molar entropies, enthalpies and Gibbs 

energies of formation of the crystalline and gaseous phases of 2,7-dibromofluorene, at T = 298.15 K. 

  

Phase 

o

mS   
o

f mT S    
o

f mH   
o

f mG  

JK1mol1  kJmol1  kJmol1  kJmol1 

g 478.16 a  80.9  229.3 ± 2.5 c  310.2 ± 2.5 

cr 275.5 ± 0.8 b  141.3 ± 0.2  114.7 ± 2.5  256.0 ± 2.5 

a Calculated at the B3LYP/6-311++G(d,p) level [20]; 

b o o g o

m m cr m(cr) (g)S S S   ;  

c  Weighted mean of the values determined in this work using the effusion and static methods presented in  table 4.65. 
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4.2.2.2.5. 2,7-Diiodofluorene 

 

 

 

Molecular formula CAS Number Molar Mass Density 

C13H8I2 16218-28-3 418.0105 gmol1 2.171 [52] 

 

 

Table 4.69. Source, purification and analysis details of 2,7-diiodofluorene. 

Source Initial puritya Purification method 
Final mass 

fraction purityb 

Synthesis 0.979 
Sublimation under 
reduced pressure 

0.9969 

a Purity after synthesis; 

b Determined by GC. 

 

 

Vapor pressures and phase transition thermodynamic properties 

 

Table 4.70. Temperatures, molar enthalpies and entropies of fusion of 2,7-diiodofluorene. 

Exp. 
fusT (onset)  

l o

cr m fus( )H T   
l o

cr m fus( )S T  

K  kJmol1  JK1mol1 

1 490.94  24.21   

2 490.95  24.36   

3 490.83  24.26   

4 491.01  24.12   

5 490.87  24.40   

6 490.62  24.34   

Mean 490.9 ± 0.1  24.28 ± 0.09  49.5 ± 0.2 

Literature 487 - 490 a      

 489 - 491 b     

a Ref. [53,54], no information regarding minimum purity;  

b Sigma-Aldrich, MSDS. 
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Table 4.71. Vapor pressures of 2,7-diiodofluorene determined by the Knudsen effusion method. a 

T / K t/s Orifices 
m / mg  p / Pa 

msmall mmedium mlarge  psmall pmedium plarge pmean 

393.19 21402 A1-B4’-C7 5.52 6.61 7.66  0.115 0.113 0.115 0.114 

395.24 21402 A2-B5-C8 8.38 10.29 12.23  0.136 0.137 0.138 0.137 

397.15 21402 A3-B6-C9 12.12 14.82 17.45  0.16 0.162 0.162 0.161 

399.19 12765 A1-B4’-C7 5.83 6.87 8.26  0.206 0.203 0.201 0.203 

401.22 12765 A2-B5-C8 8.91 10.67 12.88  0.240 0.241 0.239 0.240 

403.14 12765 A3-B6-C9 12.54 15.22 18.02  0.292 0.289 0.282 0.288 

405.21 11404 A1-B4’-C7  10.53 12.21   0.347 0.347 0.347 

407.25 11404 A2-B5-C8 13.47 16.13 19.17  0.414 0.410 0.409 0.411 

409.15 11404 A3-B6-C9 19.16 23.10 26.92  0.487 0.484 0.476 0.482 

411.22 10885 A1-B4’-C7 14.34 16.84 19.41  0.602 0.592 0.593 0.596 

413.25 10885 A2-B5-C8 21.80 25.79 30.73  0.699 0.692 0.693 0.695 

415.14 10885 A3-B6-C9 31.06 37.06   0.817 0.819  0.818 

a u(T/K) = ±0.01, u(p/Pa) = ±0.01. 
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Figure 4.13. Plots of ln(p/Pa) against 1000(K/T) of 2,7-diiodofluorene: effusion vapor pressures for the different effusion 

orifices - , small; , medium; , large. 
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Table 4.72. Standard (po = 0.1 MPa) molar properties of sublimation of 2,7-diiodofluorene derived from the experimental 

vapor pressure results. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated value; d  Standard deviation of the fit 

defined as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the 

number of adjustable parameters in the Clarke and Glew equation; e Mean temperature. 

 

 

The values 
g o

cr ,mpC  = −38.1 JK1mol1 was estimated in this work by means of 

equation 4.12 with the value 
o

,mpC (g, 298.15 K) = 211.3 JK1mol1, which was estimated 

from that of fluorene [23], using a group additivity approach according to equation 4.30 

and data provided in table 4.2. 

 

o

,mpC (Fluorene) − [2×CB-(H)(CB)2] + [2×CB-(F)(CB)2] (4.30) 

 

 

  

T / K  / K 

g o

cr m( )G    
g o

cr m( )H    g o  

cr m( ) aS   ( )p  b 
R2 

cr o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, effusion method 

393.19-415.14 
298.15 64.11 ± 0.19  126.5 ± 0.7  209.3 ± 2.4  5.910–7 

0.9997 38.1 0.012 
404.16e 42.58 ± 0.01  122.4 ± 0.7  197.5 ± 1.7  3.110–1 



FCUP 

4. Experimental results 

179 

 

4.2.2.3. 9-Substituted fluorenes 

 

4.2.2.3.1. 9-Fluorenecarboxylic Acid 

 

 

 

 

Molecular formula CAS Number Molar Mass Density 

C14H10O2 1989-33-9 210.2276 gmol1 1.164a 

a Calculated from the mass/volume ratio of a pellet of the compound. 

 

 

Table 4.73. Source, purification and analysis details of 9-fluorenecarboxylic acid. 

Source Lot 
Minimum 

initial puritya 
Purification method 

Final mass 
fraction purityb 

Sigma-Aldrich 
STBB0096 0.986 Sublimation under 

reduced pressure 
0.9979 

STBB4311 0.966 

a Determined by HPLC (area %), as stated in the certificate of analysis of the manufacturer (July 2009); 

b Determined by HPLC (area %), as stated in the certificate of analysis of the manufacturer (April 2010); 

b Determined by GC. 
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Vapor pressures and phase transition thermodynamic properties 

 

Table 4.74. Temperatures, molar enthalpies and entropies of fusion of 9-fluorenecarboxylic acid. 

Exp. 
fusT (onset)  

l o

cr m fus( )H T   
l o

cr m fus( )S T  

K  kJmol1  JK1mol1 

1 503.35  30.87   

2 504.01  30.00   

3 504.14  30.34   

4 503.30  29.80   

5 503.86  30.05   

6 504.33  30.41   

Mean 503.8 ± 0.3  30.2 ± 0.3  59.9 ± 0.6 

Literature a 501 - 504     

a Sigma-Aldrich, MSDS. 

 

 

Table 4.75. Standard (po = 0.1 MPa) molar enthalpy of sublimation of 9-fluorenecarboxylic acid, determined by Calvet 

microcalorimetry. 

Exp. m / mg  T / K 

g, o

cr, 298.15 K m

T H   
o

298.15 K m (g)T H   
g o

cr m (298.15 K)H  

kJmol1  kJmol1  kJmol1 

1 5.776 462.46 171.14  43.44  127.70 

2 5.338 462.56 170.85  43.47  127.38 

3 4.578 462.55 170.51  43.47  127.04 

4 5.150 462.46 170.09  43.44  126.65 

5 6.549 462.46 170.29  43.44  126.85 

6 5.615 462.46 171.17  43.44  127.73 

Mean  462.49     127.2  2.0 

 

 

The calorimeter was calibrated with high purity anthracene (details in table 3.2), 

and the calibration constant, kcal, for the mean experimental temperature, T = 462.69 K, 

was found to be kcal = (1.0015 ± 0.0074), where the uncertainty is twice the standard 

deviation of the mean of the six independent experiments.  

The term 
o

298.15 K m(g)T H  was calculated from the integration of the fitting of a 2nd 

degree polynomial to the 
o

,mpC (g) results calculated at the B3LYP/6-31G(2df,p) level of 

theory [55], between T = (290 and 500) K. 



FCUP 

4. Experimental results 

181 

 

o

,mpC (g) = ‒5.4310‒4T2 + 1.06T ‒ 57.64 (4.31 ) 

 

 

Table 4.76. Vapor pressures of 9-fluorenecarboxylic acid determined by the Knudsen effusion method. a 

T / K t/s Orifices 
m / mg  p / Pa 

msmall mmedium mlarge  psmall pmedium plarge pzero 

384.16 26294 A2-B5-C8 5.52 8.25 11.28  0.129 0.125 0.119 0.139 

386.13 26294 A1-B4-C7 6.71 9.96 13.58  0.159 0.153 0.147 0.171 

388.15 21676 A3-B6-C9 6.99 10.20 14.06  0.197 0.186 0.180 0.211 

390.15 21676 A2-B5-C8 8.15 12.33   0.233 0.228   

392.13 21676 A1-B4-C7 9.96 14.65 20.35  0.289 0.275 0.269 0.307 

394.15 21967 A2-B5-C8 12.34 18.73 25.32  0.350 0.344 0.323 0.378 

396.15 11058 A3-B6-C9 7.90 11.40 15.79  0.440 0.412 0.399 0.474 

398.15 11058 A2-B5-C8 9.21 13.79 18.95  0.521 0.506 0.483 0.558 

400.15 11058 A1-B4-C7 11.18 16.33 22.63  0.643 0.608 0.592 0.689 

402.15 10297 A3-B6-C9 12.22 18.89 25.96  0.763 0.739 0.710 0.811 

404.15 10297 A2-B5-C8 15.13 22.68 31.09  0.926 0.900 0.857 0.994 

406.16 10297 A1-B4-C7 18.03 26.97 37.19  1.120 1.085 1.052 1.182 

a u(T/K) = ±0.01, u(p/Pa) = ±0.01. 

 

 

The plot of the vapor pressure results as a function of temperature (figure 4.14) 

reveals a slight systematic decrease of vapor pressure with increasing area of the 

effusion orifice. In order to correct the measured vapor pressure for an hypothetical 

effusion orifice with zero area, the equilibrium vapor pressure at each experimental 

temperature, pzero, was calculated as the intercept of the plot of pi against piwoAo, where 

pi represents the vapor pressure values for each experimental temperature presented in 

table 4.76, according to the procedure suggested by Whitman-Motzfeldt [56,57]. 
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Figure 4.14. Plots of ln(p/Pa) against 1000(K/T) of 9-fluorenecarboxylic acid: effusion vapor pressures for the different 

effusion orifices - , small; , medium; , large;  , extrapolation for hypothetical effusion orifice of zero area; , 

literature vapor pressure results [36]. 

 

 

Table 4.77. Standard (po = 0.1 MPa) molar properties of sublimation of 9-fluorenecarboxylic acid derived from the vapor 

pressure results determined experimentally and available in the literature. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated value; d Standard deviation of the fit 

defined as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the 

number of adjustable parameters in the Clarke and Glew equation; e Considering equilibrium vapor pressures pzero;
 f  Mean 

temperature; g Calculated from the literature vapor pressure results [36] using the value of g o

cr ,mpC estimated in this work.  

  

T / K  / K 

g o

cr m( )G    
g o

cr m( )H    g o  

cr m( ) aS   ( )p  b 
R2 

cr o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, effusion method e 

384.16-406.16 
298.15 62.30 ± 0.20  130.4 ± 0.8  228.4 ± 2.8  1.210‒6 

0.9997 37.7 0.013 
395.16f

  40.67 ± 0.01  126.8 ± 0.8  218.0 ± 2.0  4.210‒1 

Crystalline phase, literature g 

349.1-418.4 298.15 60.53 ± 0.49  113.5 ± 2.1  177.7 ± 0.8  2.510‒6 0.9950 37.7 0.119 
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The value of 
o

,mpC (g, 298.15K) = 209.09 JK1mol1 was calculated at the B3LYP/6-

31G(2df,p) level of theory [55], and inserted into equation 4.12, yielding the result 
g o

cr ,mpC

= –37.7 JK1mol1. 

The vapor pressure results reported by Goldfarb and Suuberg [36], also shown in 

figure 4.14, appear to be in clear disagreement with the results determined in the present 

work. Their reported standard molar enthalpy of sublimation, which refers to the mean 

experimental temperature, was corrected to T = 298.15 K, using the 
g o

cr ,mpC  estimated 

in the present work, yielding the values compiled in table 4.77. These discrepancies may 

be related to insufficient purity of the sample used by Goldfarb and Suuberg (minimum 

purity 0.97). Also, the very low pressures measured by these authors (minimum 

measured vapor pressure 0.002 Pa), if not accurate, may also have contributed to such 

a marked inconsistency between the enthalpy of sublimation determined in this work and 

the one reported by them. 

 

 

Combustion calorimetry and thermodynamic properties of formation  

 

Combustion equation: 

14 10 2 2 2 2C H O  (cr) + 15.5 O  (g)  14 CO  (g) + 5 H O (l)  n = ‒1.5 

 

Given the brittle nature of the pressed samples, in some of the combustion 

experiments of 9-fluorenecarboxylic acid, the sample pellets were burnt inclosed in 

melinex® bags, using the technique described by Skinner and Snelson [47]. The energy 

of combustion of melinex used in each experiment, U(mel), was calculated using the 

reported value of the massic energy of combustion of melinex, cuo = ‒(22902 ± 5) Jg‒1 

[47], routinely confirmed by the combustion of melinex samples in our laboratory. 
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Table 4.78. Standard (po = 0.1 MPa) massic energy of combustion of 9-fluorenecarboxylic acid, at T = 298.15 K.a 

Exp. 1 2 3 4 5 6 7 

m(CO2, total) / g 1.46106 1.78640 1.73998 1.55600 1.61901 1.52040 1.54277 

m(cpd) / g 0.49699 0.60797 0.59226 0.52942 0.51426 0.48100 0.49033 

m(fuse) / g 0.00277 0.00282 0.00259 0.00282 0.00257 0.00265 0.00266 

m(mel) / g     0.04701 0.04646 0.04428 

Tad / K 1.01037 1.23694 1.20424 1.07577 1.11562 1.04704 1.06242 

f / JK1 14.11 14.31 14.32 14.18 14.23 14.15 14.16 

m(H2O) / g 1.1 0.1 1.0 1.1 2.7 0.4 0.8 

U(IBP) / J 15721.88 19253.03 18749.58 16749.60 17352.25 16295.52 16540.33 

U(fuse) / J 44.98 45.80 42.06 45.80 41.74 43.04 43.20 

U(melinex) / J     1076.67 1064.11 1014.08 

U(HNO3) / J 0.15 0.69 0.31 0.60 1.57 2.16 2.22 

U(ign) / J 0.70 0.67 0.68 0.66 0.81 0.80 0.71 

U(carb) / J    1.65    

U / J 10.46 13.08 12.69 11.21 11.84 11.05 11.22 

cuo / Jg1 31522.34 31569.75 31564.72 31531.94 31541.30 31549.19 31549.32 

–cuo = (31546.5 ± 6.4) Jg1 

% CO2 = (100.015 ± 0.012) % 

a cal = (15551.7 ± 1.2) JK1. 

 

 

Table 4.79. Standard (po = 0.1 MPa) molar energy and enthalpy of combustion, and derived standard molar enthalpies of 

formation of the crystalline and gaseous phases of 9-fluorenecarboxylic acid, at T = 298.15 K. 

 

 

 

 

 

o

c m(cr)U   
o

c m(cr)H   
o

f m(cr)H   
g o

cr mH   
o

f m(g)H  

kJmol1  kJmol1  kJmol1  kJmol1  kJmol1 

6632.0 ± 2.9 
 

6635.8 ± 2.9 
 

302.5 ± 3.4 
 130.4 ± 0.8 a  172.1 ± 3.5 

   127.2 ± 2.0 b  175.3 ± 3.9 

    Mean  130.0 ± 0.7 c  172.5 ± 3.5 

a Derived from vapor pressure results; 

b Derived from calorimetric results; 

c Calculated as the weighted mean of the results. 
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Table 4.80. Standard (po = 0.1 MPa) molar absolute entropies and standard molar entropies, enthalpies and Gibbs 

energies of formation of the crystalline and gaseous phases of 9-fluorenecarboxylic acid, at T = 298.15 K. 

 

Phase 

o

mS   
o

f mT S    
o

f mH   
o

f mG  

JK1mol1  kJmol1  kJmol1  kJmol1 

g 451.58 a  145.3  172.1 ± 3.5 c  26.8 ± 3.5 

cr 223.18 ± 2.8 b  213.4 ± 0.8  302.5 ± 3.4  89.1 ± 3.5 

a Calculated at the B3LYP/6-31G(2df,p) level [55]; 

b o o g o

m m cr m(cr) (g)S S S   ;  

c Derived from vapor pressure results. 
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4.2.2.3.2. 9-Phenyl-9-fluorenol 

 

 

 

Molecular formula CAS Number Molar Mass Density 

C19H14O 25603-67-2 258.3125 gmol1 1.242 [58] 

 

 

Table 4.81. Source, purification and analysis details of 9-phenyl-9-fluorenol. 

Source Lot 
Minimum initial 

puritya 
Purification method 

Final mass 
fraction purityb 

Aldrich 1442505v 0.999 
Sublimation under 
reduced pressure 

0.9994 

a Determined by HPLC (area %), as stated in the certificate of analysis of the manufacturer; 

b Determined by GC. 

 

 

Vapor pressures and phase transition thermodynamic properties 

 

Table 4.82. Temperatures, molar enthalpies and entropies of fusion of 9-phenyl-9-fluorenol available in the literature. 

fusT (onset)  
l o

cr m fus( )H T   
l o

cr m fus( )S T  

K  kJmol1  JK1mol1 

382.7 ± 0.1 a  22.7 ± 0.1 a  59.3 ± 0.3 

382 - 386 b     

a Ref. [59], mass fraction purity 0.9994; 

b TCI Chemicals, MSDS. 
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Table 4.83. Vapor pressures of 9-phenyl-9-fluorenol, determined by the Knudsen effusion method. a 

T / K t/s Orifices 
m / mg  p / Pa 

msmall mmedium mlarge  psmall pmedium plarge pmean 

359.16 36171 A3-B6-C9 8.78 12.48 18.16  0.128 0.119 0.121 0.123 

361.15 22569 A2-B5-C8 6.38 10.16 13.84  0.152 0.157 0.148 0.152 

363.10 36171 A1-B4-C7 12.55 19.44 27.42  0.189 0.190 0.188 0.189 

365.15 18286 A2-B5-C8 8.08 12.44 17.36  0.239 0.238 0.231 0.236 

367.11 18286 A1-B4-C7 10.06 14.89 21.45  0.302 0.290 0.293 0.295 

369.16 14828 A3-B6-C9 10.68 15.12 22.07  0.386 0.355 0.362 0.368 

371.13 14828 A2-B5-C8 12.59 19.67 26.80  0.462 0.468 0.443 0.458 

373.10 14828 A1-B4-C7 15.37 23.39 32.98  0.573 0.565 0.56 0.566 

375.15 10335 A3-B6-C9 13.70 20.24 28.78  0.717 0.688 0.684 0.696 

377.15 10335 A2-B5-C8 15.96 25.09 34.93  0.848 0.864 0.836 0.849 

379.12 10335 A1-B4-C7 18.97 30.07 42.77  1.024 1.051 1.051 1.042 

a u(T/K) = ±0.01, u(p/Pa) = ±0.01. 
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Figure 4.15. Plots of ln(p/Pa) against 1000(K/T) of 9-phenyl-9-fluorenol: effusion vapor pressures for the different effusion 

orifices - , small; , medium; , large. 
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Table 4.84. Standard (po = 0.1 MPa) molar properties of sublimation of 9-phenyl-9-fluorenol derived from the experimental 

vapor pressure results. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated value; d Standard deviation of the fit 

defined as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the 

number of adjustable parameters in the Clarke and Glew equation; e Mean temperature. 

 

 

The value of 
o

,mpC (cr, 298.15K) of 9-phenyl-9-fluorenol was inserted into equation 

4.10, yielding the result 
g o

cr ,mpC  = –44.0 JK1mol1. The value of 
o

,mpC (cr, 298.15K) = 

288.4 JK1mol1 was estimated by adding an increment to the 
o

,mpC (cr, 298.15K) of 

fluorene [25] corresponding to the substitution of the hydrogen atoms in position 9 of 

fluorene by an hydroxyl group and a phenyl group. This increment was estimated from 

the difference between the values of 
o

,mpC (cr, 298.5K) of triphenylmethanol [29] and 

diphenylmethane [29], as illustrated by equation 4.32, using data provided in table 4.2. 

 

 

(4.32) 

 

 

Combustion calorimetry and thermodynamic properties of formation  

 

Combustion equation: 

19 14 2 2 2 (cr) + 22 O  (g)  19 CO  (g) + 7 C H O H O (l)  n = ‒3 

 

 

The study of 9-phenyl-9-fluorenol by static bomb combustion calorimetry was 

initiated by another researcher [59], and completed in this work. The experimental 

results obtained by both researchers, presented in table 4.85, were used to derive 

T / K  / K 

g o

cr m( )G    
g o

cr m( )H    g o  

cr m( ) aS   ( )p  b 
R2 

cr o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, effusion method 

359.16-379.12 
298.15 54.79 ± 0.06  125.0 ± 0.3  235.5 ± 1.0  2.510‒5 

0.9999 44.0 0.006 
369.14e 38.41 ± 0.01  121.9 ± 0.3  226.2 ± 0.8  3.710‒1 
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the standard molar enthalpies of formation in crystalline and gaseous phases 

presented in table 4.86. 

 

 

Table 4.85. Standard (po = 0.1 MPa) massic energy of combustion of 9-phenyl-9-fluorenol, at T = 298.15 K.a 

Exp. 1 2 3 4 5 6b 7b 

m(CO2, total) / g 1.66755 1.63665 1.69734 1.76750 1.60377 1.60314 1.59663 

m(cpd) / g 0.51398 0.50467 0.52299 0.54476 0.49410 0.49387 0.49186 

m(fuse) / g 0.00231 0.00213 0.00271 0.00251 0.00267 0.00275 0.00288 

Tad / K 1.21481 1.19206 1.23581 1.28746 1.16788 1.16777 1.16288 

f / JK1 14.20 14.22 13.88 14.33 14.16 14.21 14.20 

m(H2O) / g 1.2 0.3 0.8 1.3 0.7 1.3 0.6 

U(IBP) / J 18902.67 18553.12 19239.33 20032.80 18174.91 18170.39 18097.65 

U(fuse) / J 37.51 34.59 44.01 40.76 43.36 44.66 46.77 

U(HNO3) / J 1.33 1.13 1.54 0.81 0.74 0.14 0.18 

U(ign) / J 0.84 0.90 0.90 0.83 0.72 0.66 0.71 

U(carb) / J  4.29     1.98 

U / J 11.36 11.13 11.15 12.14 10.89 10.88 10.84 

cuo / Jg1 36679.38 36678.54 36678.77 36675.03 36672.58 36679.11 36680.84 

–cuo = (35577.8 ± 1.1) Jg1 

% CO2 = (100.09 ± 0.03) % 

a cal = (15551.7 ± 1.2) JK1; 

b Experimental results obtained in this work. 

 

 

Table 4.86. Standard (po = 0.1 MPa) molar energy and enthalpy of combustion, and derived standard molar enthalpies of 

formation of the crystalline and gaseous phases of 9-phenyl-9-fluorenol, at T = 298.15 K. 

 

  

o

c m(cr)U   
o

c m(cr)H   
o

f m(cr)H   
g o

cr mH   
o

f m(g)H  

kJmol1  kJmol1  kJmol1  kJmol1  kJmol1 

9475.3 ± 1.1  9482.8 ± 1.1  5.3 ± 2.7  125.0 ± 0.3  130.3 ± 2.7 
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4.2.2.3.3. 9-Benzylidenefluorene 

 

 
 

Molecular formula CAS Number Molar Mass Density 

C20H14 1836-87-9 254.3237 gmol1 1.176 [60] 

 

 

Table 4.87. Source, purification and analysis details of 9-benzylidenefluorene. 

Source Lot 
Minimum initial 

puritya 
Purification method 

Final mass 
fraction purityb 

Aldrich 20711BA 0.994 
Sublimation under 
reduced pressure 

0.9989 

a Determined by HPLC (area %), as stated in the certificate of analysis of the manufacturer; 

b Determined by GC. 

 

 

Vapor pressures and phase transition thermodynamic properties 

 

Table 4.88. Temperatures, molar enthalpies and entropies of fusion of 9-benzylidenefluorene. 

Exp. 
fusT (onset)  

l o

cr m fus( )H T   
l o

cr m fus( )S T  

K  kJmol1  JK1mol1 

1 348.76  16.87   

2 348.71  17.12   

3 348.71  16.99   

4 348.64  17.09   

5 348.62  16.84   

Mean 348.69 ± 0.05  17.0 ± 0.1  48.8 ± 0.3 

Literature a 347.85-349.95     

a Sigma-Aldrich, certificate of analysis. 
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Table 4.89. Vapor pressures of 9-benzylidenefluorene determined by the Knudsen effusion method. a 

T / K t/s Orifices 
m / mg  p / Pa 

msmall mlarge  psmall plarge pmean 

339.23 124030 A1’-C7’ 5.18 5.08  0.0113 0.0111 0.0112 

340.31 124030 A2’-C8’ 5.86 5.82  0.0128 0.0127 0.0128 

341.21 93808 A1’-C7’ 4.79 4.8  0.0139 0.0139 0.0141 

342.26 93808 A2’-C8’ 5.46 5.49  0.0158 0.0159 0.0159 

343.24 86483 A2’-C8’ 5.64 5.72  0.0178 0.0180 0.0179 

344.26 86483 A3’-C9’ 6.48 6.3  0.0205 0.0199 0.0202 

345.22 65244 A1’-C7’ 5.40 5.39  0.0226 0.0226 0.0226 

346.30 65244 A2’-C8’ 6.15 6.08  0.0258 0.0255 0.0257 

347.24 65244 A3’-C9’ 6.89 6.85  0.0289 0.0288 0.0289 

a u(T/K) = ±0.01, u(p/Pa) = ±0.01. 

 

 

As the amount of compound available was limited, the vapor pressure 

measurements of 9-benzylidenefluorene using the Knudsen effusion method was 

performed using only the effusion orifices of series A and C, corresponding respectively 

to the effusion orifices of smaller and larger effusion diameters. 

Due to its very low volatility, it was only possible to determine the crystal vapor 

pressures of 9-benzylidenefluorene over an unusually short experimental temperature 

interval (≈ 8 K). Even for vapor pressures one order of magnitude smaller than those 

usually measured by this technique, the effusion time periods were extremely long, 

between (18 and 34) h. Also, considering that it is a relatively ‘large’ molecule, there may 

be a possible influence on its mean free path and consequently in the molecular flow of 

the gas molecules through the orifice, affecting the vapor pressure results. 
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Figure 4.16. Plots of ln(p/Pa) against 1000(K/T) of 9-benzylidenefluorene: effusion vapor pressures for the different 

effusion orifices - , small; , large. 

 

 

Table 4.90. Standard (po = 0.1 MPa) molar properties of sublimation of 9-benzylidenefluorene derived from the 

experimental vapor pressure results. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated value; d Standard deviation of the fit 

defined as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the 

number of adjustable parameters in the Clarke and Glew equation; e Mean temperature. 

 

 

The value of 
o

,mpC (cr, 298.15K) of 9-benzylidenefluorene was inserted into 

equation 4.10, yielding the result 
g o

cr ,mpC  = –42.6 JK1mol1. The value of 
o

,mpC (cr, 

298.15K) = 278.8 JK1mol1 was estimated by adding an increment to the 
o

,mpC (cr, 

298.15K) of fluorene [25] corresponding to the substitution of the hydrogen atoms in 

position 9 of fluorene by a styryl group. This increment was estimated from the difference 

T / K  / K 

g o

cr m( )G    
g o

cr m( )H    g o  

cr m( ) aS   ( )p  b 
R2 

cr o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, effusion method 

339.23-347.24 
298.15 53.8 ± 0.1  117.7 ± 1.1  214.3 ± 3.7  3.810‒5 

0.9994 42.6 0.009 
343.24e 44 33 ± 0.01  115.8 ± 1.1  208.2 ± 3.2  1.810‒2 
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between the values of 
o

,mpC (cr, 298.5K) of triphenylethylene [29] and diphenylmethane 

[29], as illustrated by equation 4.33, using data provided in table 4.2.  

 

 

(4.33) 

 

 

Combustion calorimetry and thermodynamic properties of formation  

 

Combustion equation: 

1420 2 2 2C H  (cr) + 23.5 O  (g)  20 CO  (g) + 7 H O (l)  n = ‒3.5 

 

 

Table 4.91. Standard (po = 0.1 MPa) massic energy of combustion of 9-benzylidenefluorene, at T = 298.15 K.a 

Exp. 1 2 3 4 5 6 

m(CO2, total) / g 1.67596 1.41511 1.40051 1.46144 1.43938 1.30158 

m(cpd) / g 0.48288 0.40752 0.40341 0.42113 0.41466 0.37449 

m(fuse) / g 0.00294 0.00290 0.00269 0.00243 0.00263 0.00340 

Tad / K 1.23659 1.04325 1.03328 1.07851 1.06151 0.96004 

f / JK1 14.15 13.96 13.95 13.99 13.97 13.88 

m(H2O) / g 2.0 3.1 1.9 1.8 1.5 1.3 

U(IBP) / J 19258.92 16252.41 16091.89 16795.87 16529.78 14948.81 

U(fuse) / J 47.75 47.10 43.69 39.46 42.71 55.22 

U(HNO3) / J 0.70 0.87 0.76 1.24 1.06 0.94 

U(ign) / J 0.84 0.82 0.67 0.73 0.83 0.95 

U / J 11.16 9.26 9.15 9.59 9.43 8.44 

cuo / Jg1 -39758.43 39738.35 39755.60 39761.60 39732.79 39743.03 

–cuo = (39748.30 ± 4.8) Jg1 

% CO2 = (100.053 ± 0.008) % 

a cal = (15551.7 ± 1.2) JK1. 

 

 

  



194 FCUP 
4. Experimental results 

 

Table 4.92. Standard (po = 0.1 MPa) molar energy and enthalpy of combustion, and derived standard molar enthalpies of 

formation of the crystalline and gaseous phases of 9-phenyl-9-fluorenol, at T = 298.15 K. 

 

o

c m(cr)U   
o

c m(cr)H   
o

f m(cr)H   
g o

cr mH   
o

f m(g)H  

kJmol1  kJmol1  kJmol1  kJmol1  kJmol1 

10108.9 ± 3.0  10117.6 ± 3.0  246.6 ± 4.0  117.7 ± 1.1  364.3 ± 4.1 



FCUP 

4. Experimental results 

195 

 

4.2.2.3.4. 9-Fluorenemethanol 

 

 
 

Molecular formula CAS Number Molar Mass Density 

C14H12O 24324-17-2 196.2440 gmol1 1.084 a 

a Calculated from the mass/volume ratio of a pellet of the compound. 

 

 

Table 4.93. Source, purification and analysis details of 9-fluorenemethanol. 

Source Lot 
Minimum initial 

puritya 
Purification method 

Final mass 
fraction purityb 

Aldrich 1428746 0.993 
Sublimation under 
reduced pressure 

0.9998 

a Determined by HPLC (area %), as stated in the certificate of analysis of the manufacturer; 

b Determined by GC. 

 

 

Vapor pressures and phase transition thermodynamic properties 

 

Table 4.94. Temperatures, molar enthalpies and entropies of fusion of 9-fluorenemethanol. 

fusT (onset)  
l o

cr m fus( )H T   
l o

cr m fus( )S T   tpT   l o

cr m tp( )H T   l o

cr m tp( )S T  

K  kJmol1  JK1mol1  K  
kJmol1  JK1mol1 

377.1 ± 0.1 a  27.9 ± 0.2 a  74.0 ± 0.5  376.43 b  29.2 ± 0.2 c  77.6 ± 0.5 

376-378 d            

a Ref. [61], mass fraction purity 0.9998; 

b Triple point temperature derived indirectly from vapor pressure results; 

c Determined indirectly from the 
g o

cr m tp( )H T  and 
g o

l m tp( )H T  values presented in table  4.96; 

d Sigma-Aldrich, MSDS. 
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Table 4.95. Vapor pressures of 9-fluorenemethanol determined by the Knudsen effusion method. a 

T / K t/s Orifices 
m / mg  p / Pa 

msmall mmedium mlarge  psmall pmedium plarge pmean 

337.18 54616 A3-B6-C9 29.11 23.42 18.43  0.092 0.092 0.090 337.18 

339.17 54616 A2-B5-C8 20.77 16.73 13.16  0.117 0.119 0.115 339.17 

341.10 54616 A1-B4-C7 13.53 10.72 8.53  0.150 0.150 0.147 341.10 

343.17 26450 A3-B6-C9 8.55 13.05 18.37  0.197 0.190 0.187 343.17 

345.21 26450 A2-B5-C8 10.68 16.69 23.32  0.243 0.247 0.239 345.21 

347.13 26450 A1-B4-C7 13.04 20.40 28.74  0.302 0.306 0.303 347.13 

349.16 18500 A3-B6-C9 11.77 18.07 25.92  0.390 0.380 0.381 349.16 

351.22 18500 A2-B5-C8 14.86 23.13 32.15  0.488 0.493 0.476 351.22 

353.14 18500 A1-B4-C7 18.18 28.27 39.60  0.607 0.611 0.602 353.14 

355.17 10704 A3-B6-C9 13.36 20.43 28.86  0.772 0.748 0.739 355.17 

357.16 10704 A2-B5-C8 16.60 25.72 35.77  0.950 0.955 0.923 357.16 

359.10 10704 A1-B4-C7 20.28 31.41 44.14  1.180 1.184 1.169 359.10 

a u(T/K) = ±0.01, u(p/Pa) = ±0.01. 
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Figure 4.17. Phase diagram (ln(p/Pa) against 1000(K/T)) of 9-fluorenemethanol: effusion crystal vapor pressures for the 

different effusion orifices - , small; , medium; , large; literature static vapor pressure results [61] - , liquid vapor 

pressures; , supercooled liquid vapor pressures (triple point coordinates: Ttp = 376.43 K; ptp = 7.03 Pa). 
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Table 4.96. Standard (po = 0.1 MPa) molar properties of sublimation and vaporization of 9-fluorenemethanol derived from 

the vapor pressure results determined experimentally and available in the literature. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated values. d Standard deviation of the fit 

defined as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the 

number of adjustable parameters in the Clarke and Glew equation; e Mean temperature; f Triple point temperature;                   

g Including supercooled liquid and calculated from the literature vapor pressure results [55] using the value of g o

l ,mpC

estimated in this work.  

 

 

The value of 
o

,mpC (g, 298.15K) = 205.03 JK1mol1 [55] was calculated at the 

B3LYP/6-31G(2df,p) level of theory, and inserted into equation 4.12, yielding the result 

g o

cr ,mpC  = –37.0 JK1mol1. The value 
g o

cr ,mpC  = 141.5 JK1mol1 was estimated from 

the difference of between 
o

,mpC (g, 298.15K), referred to above, and 
o

,mpC (l, 298.15K) = 

346.5 JK1mol1 estimated using group contribution values proposed by Chickos et al. 

[22], according to equation 4.34, using data provided in table 4.2.  

 

8[CB(H)] + 4[CB-(C)] + [Cc(H)-(Cc)2(C)] + [C(H)2-(C)2] + [HO-(C)] (4.34) 

 

 

Combustion calorimetry and thermodynamic properties of formation  

 

Combustion equation: 

14 10 2 2 2C H O (cr) + 16.5 O  (g)  14 CO  (g) + 6 H O (l)  n = ‒2.5  

 

The study of 9-fluorenemethanol by static bomb combustion calorimetry was 

performed by another researcher [61], whose results were used to derive the 

T / K  / K 

g o

cr/l m( )G    
g o

cr/l m( )H    
g o

cr/l m( )S  a  ( )p  b 
R2 

cr/l o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, effusion method 

 298.15 48.14 ± 0.03  118.8 ± 0.2  237.0 ± 0.7  3.710‒4    

337.18-359.10 348.14e 36.43 ± 0.01  117.0 ± 0.2  231.4 ± 0.6  3.410‒1 0.9999 37.0 0.014 

 376.43f 29.93 ± 0.02  115.9 ± 0.2  228.4 ± 0.5  7.0    

Liquid phase, literature g 

 298.15 42.98 ± 0.01  97.8 ± 0.1  183.7 ± 0.3  3.010‒3    

362.69-400.30 381.50e 29.17 ± 0.01  86.0 ± 0.1  149.0 ± 0.3  10.1 1.0000 141.5 0.003 

 376.43f 29.93 ± 0.01  86.7 ± 0.1  150.8 ± 0.3  7.0    
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standard molar enthalpies of formation in crystalline and gaseous phases presented 

in table 4.97. 

 

 

Table 4.97. Standard (po = 0.1 MPa) molar energy and enthalpy of combustion, and derived standard molar enthalpies of 

formation of the crystalline and gaseous phases 9-fluorenemethanol, at T = 298.15 K. 

 
 

Table 4.98. Standard (po = 0.1 MPa) molar absolute entropies and standard molar entropies, enthalpies and Gibbs 

energies of formation of the crystalline and gaseous phases 9-fluorenemethanol, at T = 298.15 K. 

 

  

o

c m(cr)U   
o

c m(cr)H   o

f m(cr)H   
g o

cr mH   o

f m(g)H  

kJmol1  kJmol1  kJmol1  kJmol1  kJmol1 

7108.3 ± 2.3  7114.5 ± 2.3  109.6 ± 2.9  118.8 ± 0.2  9.2 ± 2.9 

Phase 

o

mS   
o

f mT S    
o

f mH   
o

f mG  

JK1mol1  kJmol1  kJmol1  kJmol1 

g 435.52 a  158.5  9.2 ±2.9  167.7 ± 2.9 

cr 198.52 ± 0.7 b  229.1 ± 0.2  ‒109.6 ± 2.9  119.5 ± 2.9 

a Calculated at the B3LYP/6-31G(2df,p) level [55]; 

b o o g o

m m cr m(cr) (g)S S S   . 
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4.2.2.3.5. 9-Chlorofluorene 

 

 
 

Molecular formula CAS Number Molar Mass Density 

C13H9Cl  6630-65-5 200.6611 gmol1 1.25 [62] 

 

 

Table 4.99. Source, purification and analysis details of 9-chlorofluorene. 

Source Initial purity Purification method 
Final mass 

fraction purity 

Synthesis ‒a 
Sublimation under 
reduced pressure 

0.9982 b 

a Sample not analyzed by GC previous to further purification; 

b Determined by GC. 

 

 

Vapor pressures and phase transition thermodynamic properties 

 

Table 4.100. Temperatures, molar enthalpies and entropies of fusion of 9-chlorofluorene. 

Exp. 
fusT (onset)  

l o

cr m fus( )H T   
l o

cr m fus( )S T  

K  kJmol1  JK1mol1 

1 362.11  17.50   

2 361.86  17.50   

3 362.43  17.78   

4 361.85  17.63   

5 362.64  17.62   

Mean 362.2 ± 0.3  17.6 ± 0.1  48.6 ± 0.3 

Literature 360.5 - 361.9 a  14.21   39.34 

 359 - 361 b     

a Ref. [42], minimum purity 0.97; 

b Alfa Aesar, MSDS. 

  

http://www.sigmaaldrich.com/catalog/search?term=6630-65-5&interface=CAS%20No.&N=0&mode=partialmax&lang=pt&region=PT&focus=product
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Table 4.101. Vapor pressures of 9-chlorofluorene determined by the Knudsen effusion method. a 

T / K t/s Orifices 
m / mg  p / Pa 

msml mmed mlrg  psml pmed plrg pmean 

309.18 40502 A3-B6-C9 7.00 10.41 14.86  0.096 0.093 0.093 0.094 

311.14 40502 A2-B5-C8 8.86 13.14 18.55  0.124 0.119 0.117 0.120 

313.10 40502 A1-B4-C7 10.39 16.19 22.77  0.148 0.149 0.147 0.148 

315.18 19965 A3-B6-C9 6.76 10.16 14.43  0.195 0.186 0.185 0.186 

317.15 19965 A2-B5-C8 8.49 12.69 17.91  0.243 0.235 0.231 0.236 

319.10 19965 A1-B4-C7 9.98 15.59 22.01  0.29 0.293 0.291 0.291 

321.17 10183 A3-B6-C9 6.69 9.82 13.85  0.382 0.355 0.351 0.363 

323.13 10183 A2-B5-C8 8.10 12.46 17.29  0.459 0.457 0.441 0.452 

325.09 10183 A1-B4-C7 9.65 14.95 21.05  0.556 0.557 0.552 0.555 

327.17 10178 A3-B6-C9  19.14 27.30   0.699 0.698 0.699 

329.11 10178 A2-B5-C8 15.80 23.87 33.22  0.904 0.885 0.856 0.882 

331.08 10178 A1-B4-C7 18.30 28.57 40.63  1.064 1.074 1.075 1.071 

a u(T/K) = ±0.01, u(p/Pa) = ±0.01. 
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Figure 4.18. Plots of ln(p/Pa) against 1000(K/T) of 9-chlorofluorene: effusion crystal vapor pressures for the different 

effusion orifices - , small; , medium; , large; , literature vapor pressure results [42]. 
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Table 4.102. Standard (po = 0.1 MPa) molar properties of sublimation of 9-chlorofluorene derived from the vapor pressure 

results determined experimentally and available in the literature. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated value; d Standard deviation of the fit 

defined as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the 

number of adjustable parameters in the Clarke and Glew equation; e Mean temperature; f Calculated from the literature 

vapor pressure results [42] using the value of 
g o

cr ,mpC  estimated in this work.  

 

The value of 
o

,mpC (g, 298.15K) of 9-chlorofluorene was inserted into equation 4.12, 

yielding the result 
g o

cr ,mpC  = –34.2 JK1mol1. The value of 
o

,mpC (g, 298.15K) = 189.2  

JK1mol1 was estimated by adding an increment to the 
o

,mpC (g, 298.15K) of fluorene 

corresponding to the substitution of an hydrogen atom by a chlorine atom in position 9 

of fluorene. The increment for the chlorine atom was estimated from the difference 

between the values of 
o

,mpC (g, 298.15K) of chlorocyclopentane [31] and cyclopentane  

[30], as illustrated in equation 4.35, using data provided in table 4.2. 

 

 

(4.35) 

 

The vapor pressure results reported by Fu and Suuberg [42], also shown in figure 

4.18, are systematically slightly smaller than the ones determined in this work, but 

present identical tendencies with temperature (regression slopes). Their reported 

standard molar enthalpy of sublimation, which refers to the mean experimental 

temperature, was corrected to T = 298.15 K, using the 
g o

cr ,mpC  value estimated in the 

present work, yielding the values compiled in table 4.102. The enthalpy of sublimation, 

g o

cr mH (298.15 K) = (94.6 ± 3.0) kJmol1, is within experimental uncertainty of the result 

determined in the present work, and vapor pressures extrapolated to T = 298.15 K only 

differ by 510‒3 Pa. 

T / K  / K 

g o

cr m( )G    
g o

cr m( )H    g o  

cr m( ) aS   ( )p  b 
R2 

cr o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, effusion method  

309.18-331.08 
298.15 37.80 ± 0.03  95.0 ± 0.5  191.8 ± 1.7  2.410‒2 

0.9998 34.2 0.013 
320.13 e 33.61 ± 0.01  94.3 ± 0.5  189.6 ± 1.6  3.310‒1 

Crystalline phase, literature f 

349.1-418.4 298.15 38.43 ± 0.18  94.6 ± 3.0  198 ± 10  1.910‒2 0.9920 34.2 0.090 
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4.2.2.4. 2-Substituted fluorenones 

 

 

4.2.2.4.1. 2-Aminofluorenone 

 

 
 

Molecular formula CAS Number Molar Mass Density 

C13H9NO 3096-57-9 195.2158 gmol1 1.327 [63] 

 

 

Table 4.103. Source, purification and analysis details of 2-aminofluorenone. 

Source Lot 
Minimum initial 

puritya 
Purification method 

Final mass 
fraction purityb 

Aldrich 04618LHV 0.991 
Sublimation under 
reduced pressure 

0.9985 

a Determined by HPLC (area %), as stated in the certificate of analysis of the manufacturer; 

b Determined by GC. 

 

 

Vapor pressures and phase transition thermodynamic properties 

 

Table 4.104. Temperatures, molar enthalpies and entropies of fusion of 2-aminofluorenone. 

Exp. 
fusT (onset)  

l o

cr m fus( )H T   
l o

cr m fus( )S T  

K  kJmol1  JK1mol1 

1 429.62  23.96   

2 429.63  24.14   

3 429.51  24.00   

4 429.57  24.19   

5 429.28  24.02   

Mean 429.5 ± 0.1  24.06 ± 0.09  56.0 ± 0.2 

Literature a 430 - 433     

a Sigma Aldrich, MSDS. 
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Table 4.105. Vapor pressures of 2-aminofluorenone determined by the Knudsen effusion method. a 

T / K t/s Orifices 
m / mg  p / Pa 

msml mmed mlrg  psml pmed plrg pmean 

373.14 41403 A3-B6-C9 7.10 10.59 14.48  0.106 0.103 0.099 0.103 

375.09 41403 A2-B5-C8 8.41 12.66 17.60  0.128 0.125 0.121 0.125 

377.10 41403 A1-B4-C7 9.94 15.18 21.17  0.154 0.152 0.149 0.152 

379.15 19912 A3-B6-C9 6.14 8.79 12.41  0.198 0.179 0.177 0.185 

381.10 19912 A2-B5-C8 7.20 10.93 15.34  0.230 0.226 0.220 0.225 

383.11 19912 A1-B4-C7 8.47 13.04 18.27  0.275 0.273 0.269 0.272 

385.15 10995 A3-B6-C9 5.99 9.00 12.68  0.352 0.335 0.33 0.339 

387.08 10995 A2-B5-C8 7.26 11.32 15.46  0.423 0.427 0.406 0.419 

389.10 10995 A1-B4-C7 8.32 13.18 18.64  0.492 0.504 0.502 0.499 

391.15 10222 A3-B6-C9 10.02 14.52 20.93  0.638 0.586 0.59 0.605 

393.09 10222 A2-B5-C8 11.97 18.00 25.04  0.755 0.736 0.712 0.734 

395.11 10222 A1-B4-C7 13.85 21.14 29.84  0.888 0.877 0.871 0.879 

a u(T/K) = ±0.01, u(p/Pa) = ±0.01. 
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Figure 4.19. Plots of ln(p/Pa) against 1000(K/T) of 2-aminofluorenone: effusion crystal vapor pressures for the different 

effusion orifices - , small; , medium; , large. 
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Table 4.106. Standard (po = 0.1 MPa) molar properties of sublimation of 2-aminofluorenone derived from the experimental 

vapor pressure results. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated value; d Standard deviation of the fit 

defined as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the 

number of adjustable parameters in the Clarke and Glew equation; e Mean temperature.   

 

 

The value 
g o

cr ,mpC  = −36.2 JK1mol1 was estimated in this work by means of 

equation 4.12 with the value 
o

,mpC (g, 298.15 K) = 200.8 JK1mol1, estimated for this 

compound from the value 
o

,mpC (g, 298.15 K) of fluorenone [26] using a group additivity 

approach according to equation 4.36 and data provided in table 4.2. 

 

o

,mpC (Fluorenone) − [1×CB-(H)(CB)2] + [1×CB-(N)(CB)2] + [1×N-(CB)(H)2] (4.36) 

  

T / K  / K 

g o

cr m( )G    
g o

cr m( )H    g o  

cr m( ) aS   ( )p  b 
R2 

cr o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, effusion method  

373.14-395.11 
298.15 58.82 ± 0.16  123.7 ± 0.7  217.6 ± 2.4  5.010‒6 

0.9997 36.2 0.014 
384.13 e 40.53 ± 0.01  120.6 ± 0.7  208.4 ± 1.8  3.110‒1 
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4.2.2.4.2. 2-Hydroxyfluorenone 

 

 

 
 

Molecular formula CAS Number Molar Mass Density 

C13H8O2 6949-73-1 196.2004 gmol1 1.2272 [14] 

 

 

Table 4.107. Source, purification and analysis details of 2-hydroxyfluorenone. 

Source Lot 
Minimum initial 

puritya 
Purification method 

Final mass 
fraction puritya 

Acros 
Organics 

A0137718 0.9939 
Sublimation under 
reduced pressure 

0.9986 

a Determined by GC. 

 

 

Vapor pressures and phase transition thermodynamic properties 

 

Table 4.108. Temperatures, molar enthalpies and entropies of fusion of 2-hydroxyfluorenone. 

Exp. 
fusT (onset)  

l o

cr m fus( )H T   
l o

cr m fus( )S T  

K  kJmol1  JK1mol1 

1 482.49  29.37   

2 482.22  29.58   

3 482.41  29.36   

4 482.42  29.42   

5 481.92  29.13   

Mean 482.3 ± 0.2  29.4 ± 0.1  61.0 ± 0.2 

Literature a 477 - 479      

a Sigma Aldrich, MSDS. 
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Table 4.109. Vapor pressures of 2-hydroxyfluorenone determined by the Knudsen effusion method. a 

T / K t/s Orifices 
m / mg  p / Pa 

msml mmed mlrg  psml pmed plrg pmean 

387.16 21287 A1’-B4’-C7’ 3.70 4.48 5.54  0.089 0.087 0.086 0.087 

389.22 21287 A2’-B5’-C8’ 4.62 5.65 6.66  0.111 0.110 0.103 0.108 

391.26 21287 A3’-B6’-C9’ 5.47 6.65 8.10  0.132 0.130 0.126 0.129 

393.17 14621 A1’-B4’-C7’ 4.70 5.66 6.81  0.166 0.161 0.155 0.161 

395.23 14621 A2’-B5’-C8’ 5.80  8.14  0.205  0.185 0.195 

397.26 14621 A3’-B6’-C9’ 6.74 8.14 10.05  0.239 0.233 0.229 0.234 

399.18 10663 A1’-B4’-C7’ 5.99 7.33 8.87  0.292 0.289 0.278 0.286 

401.21 11897 A2’-B5’-C8’   12.74    0.359  

401.26 10663 A2’-B5’-C8’ 7.25 8.78 10.62  0.354 0.347   

403.25 11897 A3’-B6’-C9’ 10.05 12.43 15.63  0.441 0.441 0.442 0.441 

405.18 10246 A1’-B4’-C7’   15.81    0.52  

405.26 10663 A3’-B6’-C9’ 10.36 12.59   0.509 0.500   

407.23 10246 A2’-B5’-C8’ 12.41 15.05 18.78  0.636 0.624 0.619 0.626 

409.26 10246 A3’-B6’-C9’ 14.89 18.38 22.51  0.765 0.763 0.744 0.757 

a u(T/K) = ±0.01, u(p/Pa) = ±0.01. 
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Figure 4.20. Plots of ln(p/Pa) against 1000(K/T) of 2-hydroxyfluorenone: effusion crystal vapor pressures for the different 

effusion orifices - , small; , medium; , large. 
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Table 4.110. Standard (po = 0.1 MPa) molar properties of sublimation of 2-hydroxyfluorenone derived from the 

experimental vapor pressure results. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated value; d Standard deviation of the fit 

defined as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the 

number of adjustable parameters in the Clarke and Glew equation; e Mean temperature.  

  

 

The value 
g o

cr ,mpC  = −35.1 JK1mol1 was estimated in this work by means of 

equation 4.12 with the value 
o

,mpC (g, 298.15 K) = 194.4 JK1mol1, estimated for this 

compound from the value 
o

,mpC (g, 298.15 K) of fluorenone [26] according to equation 

4.37 using a group additivity approach and data provided in table 4.2. 

 

o

,mpC (Fluorenone) − [1×CB-(H)(CB)2] + [1×CB-(O)(CB)2] + [1×O-(CB)(H)] (4.37) 

 

  

T / K  / K 

g o

cr m( )G    
g o

cr m( )H    g o  

cr m( ) aS   ( )p  b 
R2 

cr o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, effusion method  

387.16-409.26 
298.15 64.83 ± 0.21  132.9 ± 0.8  228.3 ± 2.8   4.410‒7 

0.9996 35.1 0.015 
398.21 e 42.54 ± 0.01  129.3 ± 0.8  217.9 ± 2.0  2.610‒1 
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4.2.2.4.3. 2-Fluorofluorenone 

 

 

 

Molecular formula CAS Number Molar Mass Density 

C13H7OF 343-01-1 198.1914 gmol1 1.2415 [14] 

 

 

Table 4.111. Source, purification and analysis details of 2-fluorofluorenone. 

Source Lot 
Minimum initial 

puritya 
Purification 

method 
Final mass 

fraction puritya 

Aldrich 
11720JZ 0.9798 Sublimation under 

reduced pressure 
0.9966 

11720JZV 0.9838 

a Determined by GC. 

 

 

Vapor pressures and phase transition thermodynamic properties 

 

Table 4.112. Temperatures, molar enthalpies and entropies of fusion of 2-fluorofluorenone. 

Exp. 
fusT (onset)  

l o

cr m fus( )H T   
l o

cr m fus( )S T  

K  kJmol1  JK1mol1 

1 388.53  18.95   

2 388.53  18.97   

3 388.51  18.87   

4 388.48  18.83   

5 388.54  18.95   

6 388.49  18.98   

Mean 388.51 ± 0.02  18.93 ± 0.05  48.7 ± 0.1 

Literature a 388 - 390     

a Sigma-Aldrich, MSDS. 
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Table 4.113. Vapor pressures of 2-fluorofluorenone determined by the Knudsen effusion method. a 

T / K t/s Orifices 
m / mg  p / Pa 

msmall mmedium mlarge  psmall pmedium plarge pmean 

317.15 27969 A1’-B4’-C7’ 5.11 6.16 7.71  0.084 0.082 0.082 0.083 

319.19 27969 A2’-B5’-C8’ 6.31 7.70 9.60  0.104 0.103 0.102 0.103 

321.26 27969 A3’-B6’-C9’ 8.09 9.75 12.32  0.134 0.131 0.132 0.132 

323.15 20477 A1’-B4’-C7’   9.10 11.24    0.167 0.164 0.166 

325.17 20477 A2’-B5’-C8’ 9.26 11.40 14.03  0.211 0.210 0.206 0.209 

327.27 20477 A3’-B6’-C9’ 11.44 14.04 17.65  0.262 0.260 0.260 0.260 

329.15 10787 A1’-B4’-C7’ 7.37 8.72 11.13  0.321 0.307 0.312 0.313 

331.15 10787 A2’-B5’-C8’ 8.76 11.12 13.79  0.382 0.393 0.388 0.388 

333.27 10787 A3’-B6’-C9’ 11.14 13.75 17.22  0.488 0.487 0.486 0.487 

335.16 10979 A1’-B4’-C7’ 14.05 17.11 21.25  0.606 0.597 0.590 0.598 

337.17 10979 A2’-B5’-C8’ 17.22 21.18 26.04  0.745 0.741 0.726 0.737 

339.27 10979 A3’-B6’-C9’ 21.06 25.83 32.34  0.914 0.907 0.904 0.908 

a u(T/K) = ±0.01, u(p/Pa) = ±0.01. 

 

 

 
Table 4.114. Vapor pressures of 2-fluorofluorenone determined by the static method with capacitance manometers. a 

T/K p/Pa 100p/p b T/K p/Pa 100p/p b T/K p/Pa 100p/p b 

Crystalline phase, static method c 

344.88 1.661 0.7 358.71 5.880 ‒0.8 372.54 19.32 0.3 

346.86 1.991 ‒0.2 360.68 7.013 ‒0.6 374.48 22.59 0.1 

348.83 2.405 0.0 362.67 8.391 0.0 376.47 26.59 0.4 

350.82 2.877 ‒0.7 364.65 9.939 ‒0.1 378.45 31.09 0.3 

352.79 3.471 ‒0.1 366.60 11.82 0.6 380.44 36.16 ‒0.3 

354.77 4.183 0.5 368.60 13.94 0.2 382.39 41.97 ‒0.6 

356.74 4.985 0.2 370.56 16.41 0.2    

a u(T) = ±0.01 K, u(p) = 0.01 + 0.0025p Pa; 

b Δp = p – pcalc, where pcalc is calculated from the Clarke and Glew equation with parameters given in table 4.115.  
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Figure 4.21. Plots of ln(p/Pa) against 1000(K/T) of 2-fluorofluorenone: effusion crystal vapor pressures for the different 

effusion orifices - , small; , medium; , large; static vapor pressures - , crystal vapor pressures. 

 

 

Table 4.115. Standard (po = 0.1 MPa) molar properties of sublimation of 2-fluorofluorenone derived from the vapor 

pressure results determined experimentally. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated value; d Standard deviation of the fit 

defined as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the 

number of adjustable parameters in the Clarke and Glew equation; e Mean temperature. 

 

 

  

T / K  / K 

g o

cr m( )G    
g o

cr m( )H    g o  

cr m( ) aS   ( )p  b 
R2 

cr o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, effusion method 

317.15-339.27 
298.15 40.56 ± 0.04  97.9 ± 0.4  192.3 ± 1.3  7.810‒3 

0.9998 33.7 0.011 
328.21e 34.83 ± 0.01  96.9 ± 0.4  189.1 ± 1.2  2.910‒1 

Crystalline phase, static method 

344.88-382.39 
298.15 40.33 ± 0.02  97.0 ± 0.1  190.1 ± 0.3  8.610‒3 

1.0000 33.7 0.004 
363.64 e 28.12 ± 0.01  94.6 ± 0.1  182.3 ± 0.3  9.1 
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The value 
g o

cr ,mpC  = −33.7 JK1mol1 was estimated in this work by means of 

equation 4.12 and the value 
o

,mpC (g, 298.15 K) = 186.5 JK1mol1, estimated for this 

compound from the value 
o

,mpC (g, 298.15 K) of fluorenone [26] using a group additivity 

approach according to equation 4.38 and data provided in table 4.2. 

 

o

,mpC (Fluorenone) − [1×CB-(H)(CB)2] + [1×CB-(F)(CB)2] (4.38) 
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4.2.2.5. 2,7-Substituted fluorenone 

 

4.2.2.5.1. 2,7-Dibromofluorenone 

 

 

 

Molecular formula CAS Number Molar Mass Density 

C13H6OBr2 14348-75-5 337.9931 gmol1 1.907 [64] 

 

 

Table 4.116. Source, purification and analysis details of 2,7-dibromofluorenone. 

Source Lot 
Minimum initial 

puritya 
Purification 

method 
Final mass 

fraction purityb 

Aldrich MKBK2818V 0.989 
Sublimation under 
reduced pressure 

0.9964 

b Determined by GC. 

 

 

Vapor pressures and phase transition thermodynamic properties 

 

Table 4.117. Temperatures, molar enthalpies and entropies of fusion of 2,7-dibromofluorenone. 

Exp. 
fusT (onset)  

l o

cr m fus( )H T   
l o

cr m fus( )S T  

K  kJmol1  JK1mol1 

1 477.89  27.11   

2 478.27  27.03   

3 477.74  26.85   

4 477.63  26.73   

5 477.53  26.64   

Mean 477.8 ± 0.3  26.9 ± 0.2  56.3 ± 0.4 

Literature a 476 - 478     

a Sigma-Aldrich, MSDS 
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Table 4.118. Vapor pressures of 2,7-dibromofluorenone determined by the Knudsen effusion method. a 

T / K t/s Orifices 
m / mg  p / Pa 

msmall mmedium mlarge  psmall pmedium plarge pmean 

381.17 25297 A1’-B4’-C7’ 7.04 8.49 10.41  0.108 0.105 0.103 0.105 

383.16 25297 A2’-B5’-C8’ 8.08 10.36 12.77  0.124 0.128 0.126 0.126 

385.25 25297 A3’-B6’-C9’ 10.17 12.54 15.65  0.156 0.156 0.155 0.156 

387.17 10750 A1’-B4’-C7’ 5.28 6.34 7.87  0.191 0.186 0.184 0.187 

389.14 10750 A2’-B5’-C8’ 6.23 7.82 9.52  0.227 0.230 0.223 0.226 

391.25 10750 A3’-B6’-C9’ 7.39 9.18 11.55  0.269 0.271 0.271 0.270 

393.19 10989 A1’-B4’-C7’ 9.29 11.52 14.23  0.332 0.333 0.328 0.331 

395.16 10989 A2’-B5’-C8’ 10.77 13.79 17.00  0.386 0.400 0.392 0.393 

397.25 10989 A3’-B6’-C9’ 13.29 16.42 20.43  0.478 0.477 0.473 0.476 

399.19 11471 A1’-B4’-C7’ 16.66 20.44 25.12  0.575 0.571 0.558 0.568 

401.15 11471 A2’-B5’-C8’   24.05 29.69    0.673 0.661 0.667 

403.25 11471 A3’-B6’-C9’ 23.44 28.71 36.17  0.813 0.806 0.808 0.809 

a u(T/K) = ±0.01, u(p/Pa) = ±0.01. 
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Figure 4.22. Plots of ln(p/Pa) against 1000(K/T) of 2,7-dibromofluorenone: effusion crystal vapor pressures for the different 

effusion orifices - , small; , medium; , large. 
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Table 4.119. Standard (po = 0.1 MPa) molar properties of sublimation of 2,7-dibromofluorenone derived from the vapor 

pressure results determined experimentally. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated value; d Standard deviation of the fit 

defined as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the 

number of adjustable parameters in the Clarke and Glew equation; e Mean temperature. 

 

 

The value 
g o

cr ,mpC  = −37.2 JK1mol1 was estimated in this work by means of 

equation 4.12 and the value 
o

,mpC (g, 298.15 K) = 206.06 JK1mol1, estimated for this 

compound from the value 
o

,mpC (g, 298.15 K) of fluorenone [26] using a group additivity 

approach according to equation 4.39 and data provided in table 4.2. 

 

o

,mpC (Fluorenone) − [2×CB-(H)(CB)2] + [2×CB-(Br)(CB)2] (4.39) 

 

 

T / K  / K 

g o

cr m( )G    
g o

cr m( )H    g o  

cr m( ) aS   ( )p  b 
R2 

cr o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, effusion method  

381.17-403.25 
298.15 60.37 ± 0.09  121.9 ± 0.4  206.4 ± 1.4  2.710‒6 

0.9999 37.2 0.007 
392.21e 41.47 ± 0.01  118.4 ± 0.4  196.1 ± 1.0  3.010‒1 
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4.2.2.6. 2,6-Substitued naphthalenes 

 

4.2.2.6.1. 2,6-Diethylnaphthalene 

 

 

 

 

Molecular formula CAS Number Molar Mass Density 

C14H16 59919-41-4 184.2760 gmol1 0.974 [65] 

 

 

Table 4.120. Source, purification and analysis details of 2,6-diethylnaphthalene. 

Source Lot 
Minimum initial 

puritya 
Purification method 

Final mass 
fraction purityb 

Aldrich 05010AIV 0.999 
Sublimation under 
reduced pressure 

0.9994 

a Determined by HPLC (area %), as stated in the certificate of analysis of the manufacturer; 

b Determined by GC. 

 

 

Vapor pressures and phase transition thermodynamic properties 

 

Table 4.121. Temperatures, molar enthalpies and entropies of fusion of 2,6-diethylnaphthalene. 

fusT (onset)  
l o

cr m fus( )H T   
l o

cr m fus( )S T   tpT   l o

cr m tp( )H T   l o

cr m tp( )S T  

K  kJmol1  JK1mol1  K  
kJmol1  JK1mol1 

322.5 ± 0.1 a  22.36 ± 0.06 a  69.3 ± 0.2  321.98 b  21.5 ± 0.1 c  66.8 ± 0.3 

322.45-323.85 d           

a Ref. [66], mass fraction purity 0.9994; 

b Triple point temperature derived indirectly from vapor pressure results; 

c Determined indirectly from the 
g o

cr m tp( )H T  and 
g o

l m tp( )H T  values presented in table 4.123; 

d Sigma-Aldrich, certificate of analysis. 
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Table 4.122. Vapor pressures of 2,6-diethylnaphthalene determined by the static method with capacitance manometers.a 

T/K p/Pa 100p/p b T/K p/Pa 100p/p b T/K p/Pa 100p/p b 

Crystalline phase 

305.16 0.582 0 311.07 1.173 0.3 316.98 2.287 0 

306.21 0.660 0 312.15 1.326 0.1 318.02 2.571 0.2 

307.09 0.734 0 313.05 1.468 ‒0.1 319.00 2.853 ‒0.2 

308.13 0.829 ‒0.1 314.05 1.647 0 320.02 3.193 ‒0.1 

309.09 0.924 ‒0.5 315.05 1.849 0.3 321.0 3.550 ‒0.2 

310.09 1.048 0.3 316.05 2.067 0.2    

Liquid phase c 

305.14 0.888 0.1 328.86 6.915 0.1 352.66 38.11 ‒0.4 

307.10 1.067 0 330.92 8.096 ‒0.2 354.66 43.70 0.3 

309.09 1.282 ‒0.1 332.91 9.445 0 356.62 49.43 0 

311.11 1.540 ‒0.2 334.90 11.00 0.1 358.60 56.18 0.2 

313.08 1.841 0 336.86 12.79 0.6 360.57 63.35 0 

315.03 2.186 ‒0.1 338.84 14.69 ‒0.1 362.55 71.59 0 

317.03 2.607 0.1 340.82 17.02 0.3 364.52 80.51 ‒0.2 

319.01 3.093 0.2 342.80 19.55 0.1 366.48 90.73 0 

320.94 3.645 0.4 344.76 22.43 0 368.45 101.8 ‒0.1 

322.96 4.296 0 346.75 25.70 ‒0.1 370.45 114.5 0.1 

324.95 5.067 0.3 348.72 29.35 ‒0.2 372.40 128.3 0.2 

326.90 5.869 ‒0.8 350.71 33.48 ‒0.4    

a u(T) = ±0.01 K, u(p) = 0.01 + 0.0025p Pa; 

b Δp = p – pcalc, where pcalc is calculated from the Clarke and Glew equation with parameters given in table 4.123; 

c Including supercooled liquid.  
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Figure 4.23. Phase diagram (ln(p/Pa) against 1000(K/T)) of 2,6-diethylnaphthalene: , crystal vapor pressures; , liquid 

vapor pressures; , supercooled liquid vapor pressures (triple point coordinates: Ttp = 321.98 K; ptp = 3.96 Pa). 

 

 

Table 4.123. Standard (po = 0.1 MPa) molar properties of sublimation and vaporization of 2,6-diethylnaphthalene, derived 

from the experimental vapor pressure results. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated value; d  Standard deviation of the fit 

defined as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the 

number of adjustable parameters in the Clarke and Glew equation; e Mean temperature; f Triple point temperature; g 

Including supercooled liquid. 

 

 

T / K  / K 

g o

cr/l m( )G    
g o

cr/l m( )H    
g o

cr/l m( )S  a  ( )p  b 
R2 

cr/l o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, static method 

305.16-321.00 298.15 32.03 ± 0.01  93.63 ± 0.09  206.6 ± 0.3  2.410–1 

1.0000 40.9 0.002 313.08e 28.96 ± 0.01  93.02 ± 0.09  204.6 ± 0.3  1.5 

321.98f 27.14 ± 0.01  92.66 ± 0.09  203.5 ± 0.3  4.0 

Liquid phase, static method g 

 298.15 30.49 ± 0.01  73.42 ± 0.04  144.0 ± 0.1  4.610–1    

305.14-372.40 338.77e 24.89 ± 0.01  69.62 ± 0.04  132.0 ± 0.1  1.5101 1.0000 93.8 0.005 

 321.98f 27.14 ± 0.01  71.19 ± 0.04  136.8 ± 0.1  4.0    
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The value of 
o

,mpC (g, 298.15K) = 227.1 JK1mol1 [66] was calculated at the 

B3LYP/6-31G(d) level of theory, and inserted into equations 4.12 and 4.13, respectively 

yielding the results 
g o

cr ,mpC  = –40.9 JK1mol1 and 
g o

l ,mpC  = ‒93.8 JK1mol1.  

 

 

Combustion calorimetry and thermodynamic properties of formation  

 

Combustion equation: 

14 16 2 2 2C H  (cr) + 18 O  (g)  14 CO  (g) + 8 H O (l)  n = ‒4 

 

The study of 2,6-diethylnaphthalene by static bomb combustion calorimetry was 

performed by another researcher [66], whose results were used to derive the 

standard molar enthalpies of formation in crystalline and gaseous phases presented 

in table 4.124. 

 

 

Table 4.124. Standard (po = 0.1 MPa) molar energy and enthalpy of combustion, and derived standard molar enthalpies 

of formation of the crystalline and gaseous phases of 2,6-diethylnaphthalene, at T = 298.15 K. 

 

 

Table 4.125. Standard (po = 0.1 MPa) molar absolute entropies and standard molar entropies, enthalpies and Gibbs 

energies of formation of the crystalline and gaseous phases of 2,6-diethylnaphthalene, at T = 298.15 K. 

 

  

–cuo  
o

c m(cr)U   
o

c m(cr)H   
o

f m(cr)H   
g o

cr mH   
o

f m(g)H  

Jg1  kJmol1  kJmol1  kJmol1  kJmol1  kJmol1 

41915.4 ± 1.7  7724.0 ± 2.5  7733.9 ± 2.5  61.9 ± 3.1  93.63 ± 0.09  31.7 ± 3.1 

Phase 

o

mS   
o

f mT S    
o

f mH   
o

f mG  

JK1mol1  kJmol1  kJmol1  kJmol1 

g 480.62 a  192.4  31.7 ± 3.1  224.1 ± 3.1 

cr 274.0 ± 0.3 b  254.0 ± 0.1  –61.9 ± 3.1  192.1 ± 3.1 

a Calculated at the B3LYP/6-31G(d) level [66]; 

b o o g o

m m cr m(cr) (g)S S S   . 
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4.2.2.6.2. 2,6-Diisopropylnaphthalene 

 

 

 

 

Molecular formula CAS Number Molar Mass Density 

C16H20 24157-81-1 212.3291 gmol1 0.949 [67] 

 

 

Table 4.126. Source, purification and analysis details of 2,6-diisopropylnaphthalene. 

Source Lot 
Minimum initial 

puritya 
Purification method 

Final mass 
fraction purityb 

TCI Europe  VRQIF 0.999 
Used without  

further purification 
0.9998 

a Determined by GC, as stated in the certificate of analysis of the manufacturer; 

b Determined by GC. 

 

 

Vapor pressures and phase transition thermodynamic properties 

 

Table 4.127. Temperatures, molar enthalpies and entropies of fusion of 2,6-diisopropylnaphthalene available in the 

literature. 

fusT (onset)  
l o

cr m fus( )H T   
l o

cr m fus( )S T  

K  kJmol1  JK1mol1 

343.0 ± 0.2 a  18.8 ± 0.1 a  54.8 ± 0.3 

343.25 b     

a Ref. [66], mass fraction purity 0.9998; 

b TCI Europe, certificate of analysis. 
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Table 4.128. Vapor pressures of 2,6-diisopropylnaphthalene determined by the Knudsen effusion method. a 

T / K t/s Orifices 
m / mg  p / Pa 

msmall mmedium mlarge  psmall pmedium plarge pmean 

301.12 26976 A1’-B4’-C7’ 4.63 5.69 7.22  0.074 0.074 0.075 0.074 

303.20 26976 A2’-B5’-C8’ 6.06 7.47 9.34  0.098 0.098 0.097 0.098 

305.19 26976 A3’-B6’-C9’ 7.73 9.54 11.93  0.125 0.125 0.124 0.125 

307.11 14278 A1’-B4’-C7’ 5.32 6.51 8.09  0.163 0.162 0.160 0.162 

309.19 14278 A2’-B5’-C8’ 6.79 8.33 10.39  0.209 0.207 0.206 0.207 

311.20 14278 A3’-B6’-C9’ 8.45 10.47 13.11  0.261 0.262 0.261 0.261 

313.11 10626 A1’-B4’-C7’ 7.92 9.90 12.29  0.330 0.333 0.329 0.331 

315.18 10626 A2’-B5’-C8’ 10.10 12.50 15.55  0.422 0.422 0.418 0.421 

317.09 11769 A3’-B6’-C9’ 14.09 17.31 21.74  0.533 0.530 0.530 0.531 

319.16 11769 A1’-B4’-C7’ 17.73 21.96 27.54  0.673 0.674 0.673 0.673 

321.19 11769 A2’-B5’-C8’ 22.37 27.48 34.61  0.852 0.846 0.848 0.849 

323.19 10626 A3’-B6’-C9’ 25.14 30.93 38.55  1.063 1.058 1.050 1.057 

a u(T/K) = ±0.01, u(p/Pa) = ±0.01. 
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Figure 4.24. Plots of ln(p/Pa) against 1000(K/T) of 2,6-diisopropylnaphthalene: effusion vapor pressures for the different 

effusion orifices - , small; , medium; , large. 
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Table 4.129. Standard (po = 0.1 MPa) molar properties of sublimation of 2,6-diisopropylnaphthalene, derived from the 

experimental vapor pressure results. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated value; d  Standard deviation of the fit 

defined as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the 

number of adjustable parameters in the Clarke and Glew equation; e Mean temperature. 

 

 

The value of 
o

,mpC (g, 298.15K) = 274.4 JK1mol1 [66] was calculated at the 

B3LYP/6-31G(d) level of theory, and inserted into equation 4.12, yielding the result 

g o

cr ,mpC  = –49.2 JK1mol1.  

 

 

Combustion calorimetry and thermodynamic properties of formation  

 

Combustion equation: 

16 20 2 2 2C H  (cr) + 21 O  (g)  16 CO  (g) + 10 H O (l)  n = ‒5 

 

The study of 2,6-diisopropylnaphthalene by static bomb combustion calorimetry 

was performed by another researcher [66], whose results were used to derive the 

standard molar enthalpies of formation in crystalline and gaseous phases presented 

in table 4.130. 

 

 

Table 4.130. Standard (po = 0.1 MPa) molar energy and enthalpy of combustion, and derived standard molar enthalpies 

of formation of the crystalline and gaseous phases of 2,6-diisopropylnaphthalene, at T = 298.15 K. 

 
 

   
 

T / K  / K 

g o

cr m( )G    
g o

cr m( )H    g o  

cr m( ) aS   ( )p  b 
R2 

cr o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, effusion method 

301.12-323.19 
298.15 35.94 ± 0.01  97.96 ± 0.24  208.0 ± 0.8  5.110–2 

0.9999 49.2f 0.007 
312.16e 33.04 ± 0.01  97.27 ± 0.24  205.8 ± 0.8  3.010–1 

–cuo  
o

c m(cr)U   
o

c m(cr)H   
o

f m(cr)H   
g o

cr mH   
o

f m(g)H  

Jg1  kJmol1  kJmol1  kJmol1  kJmol1  kJmol1 

42481.1 ± 3.9  9020.0 ± 3.3  9032.4 ± 3.3  122.1 ± 3.9  97.96 ± 0.24  24.1 ± 3.9 
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Table 4.131. Standard (po = 0.1 MPa) molar absolute entropies and standard molar entropies, enthalpies and Gibbs 

energies of formation of the crystalline and gaseous phases of 2,6-diisopropylnaphthalene, at T = 298.15 K. 

 

  

Phase 

o

mS   
o

f mT S    
o

f mH   
o

f mG  

JK1mol1  kJmol1  kJmol1  kJmol1 

g 529.62 a  259.1  24.1 ± 3.9  235.0 ± 3.9 

cr 321.6 ± 0.8 b  321.1 ± 0.2  122.1 ± 3.9  199.0 ± 3.9 

a Calculated at the B3LYP/6-31G(d) level [66]; 

b o o g o

m m cr m(cr) (g)S S S   . 
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4.2.2.6.3. 2,6-Di-tert-butylnaphthalene 

 

 

 

 

Molecular formula CAS Number Molar Mass Density 

C18H24 3905-64-4 240.3822 gmol1 0.936 [14] 

 

 

Table 4.132. Source, purification and analysis details of 2,6-di-tert-butylnaphthalene. 

Source Lot 
Minimum initial 

puritya 
Purification method 

Final mass 
fraction purityb 

TCI Europe  Z2CGB 0.999 
Used without 

 further purification 
0.9993 

a Determined by GC, as stated in the certificate of analysis of the manufacturer; 

b Determined by GC. 

 

 

Vapor pressures and phase transition thermodynamic properties 

 

Table 4.133. Temperatures, molar enthalpies and entropies of fusion of 2,6-di-tert-butylnaphthalene available in the 

literature. 

fusT (onset)  
l o

cr m fus( )H T   
l o

cr m fus( )S T  

K  kJmol1  JK1mol1 

420.2 ± 0.2 a  18.5 ± 0.2 a  44.0 ± 0.5 

420.45 b     

419 c     

a Ref. [66], mass fraction purity 0.9993; 

b TCI Europe, certificate of analysis; 

c Ref. [68], no information regarding minimum purity. 
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Table 4.134. Vapor pressures of 2,6-di-tert-butylnaphthalene determined by the Knudsen effusion method. a 

T / K t/s Orifices 
m / mg  p / Pa 

msmall mmedium mlarge  psmall pmedium plarge pmean 

323.11 24677 A1’-B4’-C7’ 6.37 8.13 9.88  0.109 0.113 0.109 0.110 

325.19 24677 A2’-B5’-C8’ 8.13 9.94 12.13  0.140 0.138 0.134 0.137 

327.18 24677 A3’-B6’-C9’ 9.97 12.44 15.17  0.172 0.173 0.168 0.171 

329.11 18057 A1’-B4’-C7’ 9.10 11.01 13.83  0.215 0.210 0.210 0.212 

331.18 18057 A2’-B5’-C8’ 11.31 13.84 16.88  0.268 0.265 0.257 0.263 

333.17 18057 A3’-B6’-C9’ 13.86 17.16 20.84  0.329 0.330 0.319 0.326 

335.12 10314 A1’-B4’-C7’ 9.55 11.78 14.50  0.398 0.397 0.389 0.395 

337.18 10314 A2’-B5’-C8’ 11.60 14.56 17.74  0.485 0.493 0.478 0.485 

339.18 10314 A3’-B6’-C9’ 14.31 17.89 21.93  0.600 0.607 0.592 0.600 

341.11 10787 A1’-B4’-C7’ 18.54 22.59 28.17  0.746 0.735 0.730 0.737 

343.16 10787 A2’-B5’-C8’ 22.88 27.98 34.43  0.923 0.913 0.895 0.910 

345.17 10787 A3’-B6’-C9’ 27.58 33.63 42.26  1.116 1.101 1.101 1.106 

a u(T/K) = ±0.01, u(p/Pa) = ±0.01. 
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Figure 4.25. Plots of ln(p/Pa) against 1000(K/T) of 2,6-di-tert-butylnaphthalene: effusion vapor pressures for the different 

effusion orifices - , small; , medium; , large. 
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Table 4.135. Standard (po = 0.1 MPa) molar properties of sublimation of 2,6-di-tert-butylnaphthalene, derived from the 

experimental vapor pressure results. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated value; d  Standard deviation of the fit 

defined as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the 

number of adjustable parameters in the Clarke and Glew equation; e Mean temperature. 

 

 

The value of 
o

,mpC (g, 298.15K) = 323.3 JK1mol1 [66] was calculated at the 

B3LYP/6-31G(d) level of theory, and inserted into equation 4.12, yielding the result 

g o

cr ,mpC  = –57.8 JK1mol1.  

 

 

Combustion calorimetry and thermodynamic properties of formation  

 

Combustion equation: 

18 24 2 2 2C H  (cr) + 24 O  (g)  18 CO  (g) + 12 H O (l)  n = ‒6 

 

The study of 2,6-di-tert-butylnaphthalene by static bomb combustion calorimetry 

was performed by another researcher [66], whose results were used to derive the 

standard molar enthalpies of formation in crystalline and gaseous phases presented 

in table 4.136. 

 

 

Table 4.136. Standard (po = 0.1 MPa) molar energy and enthalpy of combustion, and derived standard molar enthalpies 

of formation of the crystalline and gaseous phases of 2,6-di-tert-butylnaphthalene, at T = 298.15 K. 

 

 

T / K  / K 

g o

cr m( )G    
g o

cr m( )H    g o  

cr m( ) aS   ( )p  b 
R2 

cr o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, effusion method 

323.11-345.17 
298.15 41.64 ± 0.04  99.14 ± 0.35  192.9 ± 1.2  5.110–3 

0.9999 57.8 0.009 
334.14e 34.82 ± 0.01  97.06 ± 0.35  186.3 ± 1.0  3.610–1 

–cuo  
o

c m(cr)U   
o

c m(cr)H   
o

f m(cr)H   
g o

cr mH   
o

f m(g)H  

Jg1  kJmol1  kJmol1  kJmol1  kJmol1  kJmol1 

42997.0 ± 7.1  10335.8 ± 4.7  10350.7 ± 4.7  162.4 ± 5.3  99.14 ± 0.35  63.3 ± 5.3 
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Table 4.137. Standard (po = 0.1 MPa) molar absolute entropies and standard molar entropies, enthalpies and Gibbs 

energies of formation of the crystalline and gaseous phases of 2,6-di-tert-butylnaphthalene, at T = 298.15 K. 

 

Phase 

o

mS   
o

f mT S    
o

f mH   
o

f mG  

JK1mol1  kJmol1  kJmol1  kJmol1 

g 566.37 a  329.5  63.3 ± 5.3  266.2 ± 5.3 

cr 373.5 ± 1.2 b  387.0 ± 0.4  162.4 ± 5.3  224.6 ± 5.3 

a Calculated at the B3LYP/6-31G(d) level [66]; 

b o o g o

m m cr m(cr) (g)S S S   . 
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4.3. Photoluminescence properties 

 

4.3.1. General remarks  

 

The photoluminescence study of the compounds was initiated during the last year 

of this doctoral project. Due to the late acquisition of the equipment and a hard 

familiarization period with the technique, it was not possible to advance as much as was 

expected and some of the experimental results obtained so far are still exploratory. Also 

a number of setbacks regarding the equipment occurred during this period which further 

delayed the work. For instance, the sample holder was contaminated, was replaced by 

a new one, and it was only possible to resumed the work a couple of months later.  

Initially it was intended to focus on the solid state fluorescence study. During the 

first few months, several tests were performed with the new equipment using loose 

powder samples of pyrene (used as a test substance, results are provided in annex 

C.2.3.), fluorene, fluorenone, and naphthalene, as well as some of their derivatives 

studied in this project. Additionally, 9-fluorenol and fluoranthene were also tested. 

From all the compounds studied, the ones presenting very small or no fluorescent 

emission in powder form are listed in table 4.138. For the compounds that presented 

more promising quantum yield results (larger than 0.1, for the maximum absorbance), 

the solid state study was later repeated using different conditions of amount of sample 

and different excitation wavelengths. As we advanced with this technique, there was a 

need to understand the fluorescence behavior of the compounds in solution as a 

complement to the fluorescence results in the solid state. Employing an optimized 

procedure (section 3.4.6.1.), the solution fluorescence study of the parental molecules, 

fluorene and naphthalene, and some of their derivatives was performed. 

The detailed fluorescence spectral data of the solution and powder studies of the 

most promising compounds are presented in section 4.3.2. 
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Table 4.138. Fluorescence quantum yields of the weakly/non fluorescent compounds, in powder form, studied in this work 

(approximately 40 % of the area of the base of the dish covered by powder sample).  

Compound exc / nm Abs

max a / nm 
F

 b 

2-Fluorenecarboxaldehyde 280 - 400 360 0.00 

2-Nitrofluorene   280 - 380 380 0.00 

2-Bromofluorene 280 - 380 310 0.01 

2-Iodofluorene 280 - 380 320 0.00 

2,7-Di-tert-butylfluorene 280 - 380 310 0.09 

2,7-Difluorofluorene 300 - 400 320 0.03 

2,7-Dichlorofluorene 300 - 400 320 0.02 

2,7-Dibromofluorene 280 - 400 320 0.01 

2,7-Diiodofluorene 280 - 380 320 0.00 

9-Fluorenol 300 - 450 310 0.00 

9-Fluorenecarboxylic acid 280 - 400 310 0.06 

9-Phenyl-9-fluorenol 280 - 380 310 0.00 

9-Benzylidenefluorene 280 - 400 370 0.00 

9-Fluorenemethanol 280 - 400 310 0.06 

9-Chlorofluorene 280 - 380 320 0.00 

Fluorenone 400 - 500 450 0.07 

2-Aminofluorenone 300 - 420 420 0.00 

2-Hydroxyfluorenone 280 - 400 400 0.00 

2-Fluorofluorenone 280 - 380 380 0.02 

2,7-Dibromofluorenone 280 - 400 350 0.01 

2,6-Diethylnaphthalene 300 - 350 320 0.02 

a Maximum absorption wavelength of the range studied, determined using the Quantaurus apparatus; 

b Determined using the maximum absorption wavelength as the excitation wavelength. 
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4.3.2. Experimental results 

 

 

4.3.2.1. Fluorene and fluorene derivatives 

 

4.3.2.1.1. Fluorene 

 

 
 

Molecular formula CAS Number Molar Mass Density 

C13H10 86-73-7 166.2176 gmol1 1.20 [69] 

 

 

Table 4.139. Source, purification and analysis details of fluorene. 

Source Lot 
Minimum initial 

purity  
Purification method 

Final mass 
fraction puritya 

Sigma-Aldrich STBC4093V 0.986 b 
Recrystallization; 
Sublimation under 
reduced pressure 

0.9843 

Supelco c LC08752V 
0.991 b 

0.999 d 
0.9825 e 

Sublimation under 
reduced pressure 

0.9842 

a Determined by GC; b Determined by GC, as stated in the certificate of analysis of the manufacturer; c Analytical standard; 

d Determined by HPLC with UV detection at 254 nm, as stated in the certificate of analysis of the manufacturer;                         

e Determined by GC, previous to purification process. 

 

 

Table 4.140. Literature results for the fluorescence quantum yield of fluorene in different solvents.  

Solvent C / molL–1 exc / nm 
F
 Method Source 

Hexane   0.54 Relative Weber & Teale  [70] 

Ethanol   0.53 Relative Weber & Teale [70] 

Ethanol 2.010–2 300 0.50 Relative Ellis & Solomon [71] 

Ethanol Infinite dilution a 254 0.68 ± 0.04 Relative Dawson & Windsor [72] 

Cyclohexane 610–4 265 0.80 Relative Berlman [73] 

Methylcyclohexane  265 0.71 ± 0.03 Relative Williams et al. [74] 

Hexane  254 0.68 Relative Palmer & Parmar [75] 

a Fluorescence data extrapolated to zero concentration. 

http://pubs.rsc.org/en/results?searchtext=Author%3AG.%20Weber
http://pubs.rsc.org/en/results?searchtext=Author%3AG.%20Weber
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Table 4.140 provides literature results for the quantum yield of fluorene (listed in 

chronological order).  As mentioned before, fluorescence quantum yield depends on 

physical conditions, such as the solvent, the sample concentration, and the excitation 

wavelength. Therefore when available these parameters are also specified in table 

4.140. The literature data refers to measurements performed at room temperature using 

relative methods. Dawson and Windsor [72] have used the same relative measuring 

method reported by Weber and Teale [70], in which the intensities of fluorescence are 

compared with the intensities of excitation light scattered from non-absorbing, colloidal 

reference solutions. The fluorescence spectra reported by Dawson and Windsor were 

corrected for self-absorption by measuring the spectra at several concentrations and 

extrapolating to the fluorescence spectra at zero concentration. Berlman [73] and 

Williams et al. [74] used a solution of 9,10-diphenylanthracene (F = 1.0 [76]), while 

Palmer and Parmar [75] used a solution of 510‒3 mol·dm‒3 of quinine bisulfate in 1 N 

sulphuric acid (F = 0.546 [77]). 

 

 

Table 4.141. Fluorescence spectroscopic data of fluorene in cyclohexane solutions, at room temperature.  

 exc 
a / nm 

F

max b / nm 
F

 c 

1st Sample 

110–5 molL–1  303.4 0.32 ± 0.01 

110–4 molL–1 265  310.2 0.30 ± 0.01 

110–3 molL–1  317.0 0.29 ± 0.01 

2nd Sample 

110–6 molL–1  302.6 0.43 ± 0.01 

110–5 molL–1 265 303.4 0.32 ± 0.01 

110–4 molL–1  310.2 0.30 ± 0.01 

a Excitation wavelength corresponding to the maximum absorption determined using UV-Vis spectrometry for the 

concentration 110–5 molL–1; 

b Wavelength at the maximum fluorescence emission intensity; 

c Mean values and standard deviations of the mean of six independent measurements. 

 

 

 

 

 

 

 

http://pubs.rsc.org/en/results?searchtext=Author%3AG.%20Weber
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Table 4.142. Absorption and fluorescence spectroscopic data of fluorene in powder form (Supelco), for different amounts 

of sample. 

Sample amount a exc
 / nm Abs b  

F

max c / nm 
F 
 

15 %  0.169  0.37 

40 % 260 d 0.606 407.9 0.30 

100 %  0.705  0.29 

15 %  0.203  0.60 

40 % 320 e 0.606 407.9 0.49 

100 %  0.708  0.47 

a Rough estimate of the percentage of area of the base of the quartz dish covered by sample; 

b Determined by the Quantaurus apparatus; 

c Wavelength at the maximum fluorescence emission intensity; 

d Excitation wavelength corresponding to the maximum absorption determined using UV-Vis spectrometry; 

e Excitation wavelength corresponding to the maximum absorption determined using the Quantaurus apparatus. 
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Figure 4.26. Normalized UV-Vis absorption and fluorescence emission spectra of fluorene: dashed line - absorption 

spectra (110–5 molL–1); solid line – solution fluorescence spectra (110–6 molL–1); dotted line - powder fluorescence 

spectra (1st sample). 

 

 

Table 4.141, reports the experimental results obtained with the two different 

fluorene samples studied. The fluorescence quantum yield results do not agree with the 

value determined by Berlman [73]. This may be due to self-absorption problems, as it 

will be discussed in section 5.3.1., or to impurities of the samples. Commercial fluorene 

generally contains impurities very difficult to remove, such as benz[f]indane, anthracene 
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and carbazole [78-80]. Initially, the sample that had been previously used for a 

thermodynamic study [81] was tested. The purity of the sample was analyzed by GC and 

a small impurity of similar volatility to fluorene was detected. Further purification by 

reduced pressure sublimation was attempted without improving the purity degree. A 

second sample, an analytical standard, was commercially acquired from Supelco. This 

sample was equally sublimed under reduced pressure and analyzed by GC and its purity 

didn’t differ much from that of the first sample. The obtained fluorescence spectra and 

quantum yield in cyclohexane solution was consistent with that obtained for the first 

sample. The results for the solid state, however, were slightly different. As can be 

observed in figure 4.27, the relative intensity of the bands shown above 370 nm is higher 

in the second sample than in the first sample which leads to a shift of the maximum 

emission to longer wavelengths ( F

max = 408.7 nm). Other purification techniques and 

further measurements will be explored in the future as it is crucial to characterize in detail 

the parental molecules in order to evaluate the effect of the different substituents, both 

quantitatively and qualitatively. 
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Figure 4.27. Normalized fluorescence emission spectra of fluorene powder samples: solid line - first sample; dashed line 

- second sample (Supelco). 
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4.3.2.1.2. 2-Aminofluorene 

 

 

 

 

Details regarding the source, purity and physical properties of 2-aminofluorene are 

reported in section 4.2.2.1.2. 

 

 

Table 4.143. Absorption and fluorescence spectroscopic data of 2-aminofluorene in powder form, for different amounts of 

sample. 

Sample amount a exc
 b/ nm Abs c 

F

max d / nm 
F
 

15 %   0.564  0.30 

40 %  350 0.671 387.2 0.26 

100 %   0.746  0.19 

a Rough estimate of the percentage of area of the base of the quartz dish covered by sample; 

b Excitation wavelength corresponding to the maximum absorption determined using the Quantaurus apparatus; 

c Determined using the Quantaurus apparatus; 

d Wavelength at the maximum fluorescence emission intensity. 
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Figure 4.28. Fluorescence emission spectra of 2-aminofluorene in powder form (exc = 350 nm). 
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4.3.2.1.3. 2-Fluorofluorene 

 

 

 

 

Details regarding the source, purity and physical properties of 2-fluorofluorene are 

reported in section 4.2.2.1.4. 

 

 

Table 4.144. Absorption and fluorescence spectroscopic data of 2-fluorofluorene in powder form, for different amounts of 

sample. 

Sample amount a exc
 b/ nm Abs c 

F

max d / nm 
F
 

15 %   0.254  0.32 

40 %  310 0.685 356.6 0.32 

100 %   0.746  0.28 

a Rough estimate of the percentage of area of the base of the quartz dish covered by sample; 

b Excitation wavelength corresponding to the maximum absorption determined using the Quantaurus apparatus; 

c Determined using the Quantaurus apparatus; 

d Wavelength at the maximum fluorescence emission intensity. 
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Figure 4.29. Fluorescence emission spectra of 2-fluorofluorene in powder form (exc = 310 nm). 
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4.3.2.1.4. 2,7-Di-tert-butylfluorene 

 

 

 

 

Details regarding the source, purity and physical properties of 2,7-di-tert-butylfluorene 

are reported in section 4.2.2.2.1. 

 

 

Table 4.145. Fluorescence spectroscopic data of 2,7-di-tert-butylfluorene in cyclohexane solutions, at room temperature.  

Sample exc 
a / nm 

F

max b / nm 
F

 c 

110–5 molL–1  322.3 0.49 ± 0.01 

110–4 molL–1 273.0  323.1 0.43 ± 0.01 

110–3 molL–1  324.6 0.43 ± 0.01 

a Excitation wavelength corresponding to the maximum absorption determined using UV-Vis spectrometry for the 

concentration 110–5 molL–1; 

b Wavelength at the maximum fluorescence emission intensity; 

c Mean values and standard deviations of the mean of six independent measurements. 

 

 

Table 4.146. Absorption and fluorescence spectroscopic data of 2,7-di-tert-butylfluorene in powder form, for different 

amounts of sample. 

Sample amount a exc
 b/ nm Abs c 

F

max d / nm 
F
 

15 %   0.277  0.09 

40 %  310 0.419 334.5 0.07 

100 %   0.712  0.07 

a Rough estimate of the percentage of area of the base of the quartz dish covered by sample; 

b Excitation wavelength corresponding to the maximum absorption determined using the Quantaurus apparatus; 

c Determined using the Quantaurus apparatus; 

d Wavelength at the maximum fluorescence emission intensity. 
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Figure 4.30. Normalized UV-Vis absorption and fluorescence emission spectra of 2,7-di-tert-butylfluorene: dashed line - 

absorption spectra (110–5 molL–1); solid line - solution fluorescence spectra (110–5 molL–1); dotted line - powder 

fluorescence spectra. 
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4.3.2.2. Naphthalene and naphthalene derivatives 

 

 

4.3.2.2.1. Naphthalene 

 

 

 

Molecular formula CAS Number Molar Mass Density 

C10H8 91-20-3 128.1698 gmol1 1.037 [82] 

 

 

The sample used for the photoluminescence study was already available at the lab 

and no information regarding the supplier, lot and initial purity was available. The sample 

had been sublimed twice under reduced pressure (by another researcher) and the purity 

was checked by GC previously to the photoluminescence study. 

 

 

Table 4.147. Source, purification and analysis details of naphthalene. 

Source Mass fraction purity 

Commercial a 0.9998 b 

a Sublimed twice under reduced pressure. 

b Determined by GC. 

 

 

Table 4.148. Literature results for the fluorescence quantum yield of naphthalene in different solvents.  

Solvent C / molL–1 exc / nm 
F
 Method Source 

Hexane   0.10 Relative Weber & Teale [70] 

Ethanol   0.12 Relative Weber & Teale [70] 

Ethanol Infinite dilution a 254 0.205 ± 0.014 Relative Dawson & Windsor [72] 

Cyclohexane 7.310–3 265 0.23 ± 0.02 Relative Berlman [73] 

Cyclohexane 7.010–5 270 0.23 ± 0.01 Absolute b Suzuki et al. [83] 

a Fluorescence data extrapolated to zero concentration; 

b Integrating sphere. 

 

 

http://pubs.rsc.org/en/results?searchtext=Author%3AG.%20Weber
http://pubs.rsc.org/en/results?searchtext=Author%3AG.%20Weber
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Table 4.148 provides literature results for the quantum yield of naphthalene (listed 

in chronological order). The literature data refers to measurements performed at room 

temperature. Dawson and Windsor [72] have used the same relative measuring method 

reported by Weber and Teale [70]. The fluorescence spectra reported by Dawson and 

Windsor were corrected for self-absorption extrapolating the fluorescence spectra to 

zero concentration. Berlman [73] used a solution of 9,10-diphenylanthracene (
F
 = 1.0 

[76]) as standard. 

The absorption and fluorescence emission spectra as well as the fluorescence 

quantum yield in cyclohexane solution obtained in this work are consistent with those 

reported in the literature, with the exception of those reported by Weber and Teale [70]. 

To the best of our knowledge, no quantum yield results have been published for 

naphthalene in the solid state. 

 

 

Table 4.149. Fluorescence spectroscopic data of naphthalene in cyclohexane solutions, at room temperature.  

Sample exc 
a / nm 

F

max b / nm 
F

 c 

110–4 mol·L–1 
276 

336.0 0.21 ± 0.01 

110–3 mol·L–1 336.8 0.22 ± 0.01 

a Excitation wavelength corresponding to the maximum absorption determined using UV-Vis spectrometry for the 

concentration 110–4 molL–1; 

b Wavelength at the maximum fluorescence emission intensity; 

c Mean values and standard deviations of the mean of five independent measurements. 

 

 

Table 4.150. Absorption and fluorescence spectroscopic data of naphthalene in powder form, for different amounts of 

sample. 

Sample amount a exc
 b/ nm Abs c 

F

max d / nm 
F
 

15 %   0.205  0.23 

40 %  320 0.532 339.0 0.21 

100 %   0.712  0.20 

a Rough estimate of the percentage of area of the base of the quartz dish covered by sample; 

b Excitation wavelength corresponding to the maximum absorption determined using the Quantaurus apparatus; 

c Determined using the Quantaurus apparatus; 

d Wavelength at the maximum fluorescence emission intensity. 

 

 

http://pubs.rsc.org/en/results?searchtext=Author%3AG.%20Weber
http://pubs.rsc.org/en/results?searchtext=Author%3AG.%20Weber
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Figure 4.31. Normalized UV-Vis absorption and relative fluorescence emission spectra of naphthalene: dashed line - 

absorption spectra (110–4 molL–1); solid line - solution fluorescence spectra (110–4 molL–1); dotted line - powder 

fluorescence spectra. 
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4.3.2.2.2. 2,6-Diethylnaphthalene 

 

 

 

Details regarding the source, purity and physical properties of 2,6-diethylnaphthalene 

are reported in section 4.2.2.6.1. 

 

 

Table 4.151. Fluorescence spectroscopic data of 2,6-diethylnaphthalene in cyclohexane solutions, at room temperature.  

Sample exc 
a / nm 

F

max b / nm 
F

 c 

110–4 mol·L–1 
323 339.8 

0.46 ± 0.01 

110–3 mol·L–1 0.45 ± 0.01 

a Excitation wavelength corresponding to the maximum absorption determined using UV-Vis spectrometry for the 

concentration 110–4 molL–1; 

b Wavelength at the maximum fluorescence emission intensity; 

c Mean values and standard deviations of the mean of five independent measurements. 
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Figure 4.32. Normalized UV-Vis absorption and relative fluorescence emission spectra of 2,6-diethylnaphthalene: dashed 

line - absorption spectra (110–4 molL–1); solid line - solution fluorescence spectra (110–3 molL–1). 
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4.3.2.2.3. 2,6-Diisopropylnaphthalene 

 

 

 

Details regarding the source, purity and physical properties of 2,6-

diisopropylnaphthalene are reported in section 4.2.2.6.2. 

 

 

Table 4.152. Fluorescence spectroscopic data of 2,6-diisopropylnaphthalene in cyclohexane solutions, at room 

temperature.  

Sample exc 
a / nm 

F

max b / nm 
F

 c 

110–4 mol·L–1 
320 339.1 

0.42 ± 0.01 

110–3 mol·L–1 0.40 ± 0.01 

a Excitation wavelength corresponding to the maximum absorption determined using UV-Vis spectrometry for the 

concentration 110–4 molL–1; 

b Wavelength at the maximum fluorescence emission intensity; 

c Mean values and standard deviations of the mean of five independent measurements. 

 

 

Table 4.153. Absorption and fluorescence spectroscopic data of 2,6-diisopropylnaphthalene in powder form, for different 

amounts of sample. 

Sample amount a exc
 b/ nm Abs c 

F

max d / nm 
F
 

15 %   0.222  0.38 

40 %  320 0.606 345.8 0.37 

100 %   0.727  0.36 

a Rough estimate of the percentage of area of the base of the quartz dish covered by sample; 

b Excitation wavelength corresponding to the maximum absorption determined using the Quantaurus apparatus; 

c Determined using the Quantaurus apparatus; 

d Wavelength at the maximum fluorescence emission intensity. 
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Figure 4.33. Normalized UV-Vis absorption and relative fluorescence emission spectra of 2,6-diisopropylnaphthalene: 

dashed line - absorption spectra (110–4 molL–1); solid line - solution fluorescence spectra (110–3 molL–1); dotted line - 

powder fluorescence spectra.  



FCUP 

4. Experimental results 

243 

 

4.3.2.2.4. 2,6-Di-tert-butylnaphthalene 

 

 

 

Details regarding the source, purity and physical properties of 2,6-di-tert-

butylnaphthalene are reported in section 4.2.2.6.3. 

 

 

Table 4.154. Fluorescence spectroscopic data of 2,6-di-tert-butylnaphthalene in cyclohexane solution and in powder form, 

at room temperature.  

Sample exc 
a / nm 

F

max b / nm 
F

 c 

110–4 mol·L–1 
320 

336.8 0.39 ± 0.01 

110–3 mol·L–1 337.5 0.34 ± 0.01 

a Excitation wavelength corresponding to the maximum absorption determined using UV-Vis spectrometry for the 

concentration 110–4 molL–1; 

b Wavelength at the maximum fluorescence emission intensity; 

c Mean values and standard deviations of the mean of five independent measurements. 

 

 

Table 4.155. Absorption and fluorescence spectroscopic data of 2,6-di-tert-butylnaphthalene in powder form, for different 

amounts of sample. 

Sample amount a exc
 b/ nm Abs c 

F

max d / nm 
F
 

15 %   0.354  0.57 

40 %  320 0.608 342.3 0.55 

100 %   0.731  0.52 

a Rough estimate of the percentage of area of the base of the quartz dish covered by sample; 

b Excitation wavelength corresponding to the maximum absorption determined using the Quantaurus apparatus; 

c Determined using the Quantaurus apparatus; 

d Wavelength at the maximum fluorescence emission intensity. 
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Figure 4.34. Normalized UV-Vis absorption and relative fluorescence emission spectra of 2,6-di-tert-butylnaphthalene: 

dashed line - absorption spectra (110–4 molL–1); solid line - solution fluorescence spectra (110–3 molL–1); dotted line - 

powder fluorescence spectra. 
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4.3.2.3. Fluoranthene 

 

 

 

 

Molecular formula CAS Number Molar Mass Density 

C16H10 206-44-0 202.2494 gmol1 1.243 [84] 

 

 

Table 4.156. Source, purification and analysis details of fluoranthene. 

Source Lot Initial puritya Purification method b 
Final mass 

fraction purity c 

Sigma-Aldrich 14128DD 0.996 Recrystallization 0.9989 

a Determined by HPLC, as stated in the certificate of analysis of the manufacturer; 

b Ref. [85]; 

c Determined by GC. 

 

 

Table 4.157. Absorption and fluorescence spectroscopic data of fluoranthene in powder form, for different amounts of 

sample. 

Sample amount a exc
 b/ nm Abs c 

F

max d / nm 
F
 

15 %   0.399  0.50 

40 %  400 0.529 460.7 0.48 

100 %   0.690  0.46 

a Rough estimate of the percentage of area of the base of the quartz dish covered by sample; 

b Excitation wavelength corresponding to the maximum absorption determined using the Quantaurus apparatus; 

c Determined using the Quantaurus apparatus; 

d Wavelength at the maximum fluorescence emission intensity. 
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Figure 4.35. Fluorescence emission spectra of fluoranthene in powder form (exc = 400 nm). 
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5.1. Introduction 

 

 After the detailed presentation of the experimental results of the compounds studied 

in the previous chapter, the thermodynamic properties are now discussed in terms of 

volatility and thermal stability, and the photoluminescence properties are discussed in terms 

of fluorescence spectral details and quantum efficiency. 

The influence of the different substituents in the thermodynamic and 

photoluminescence properties of the fluorene, fluorenone and naphthalene derivatives was 

evaluated by comparison with the properties of the parental molecules. 

Additionally, the thermodynamic properties were employed in several correlations 

and, using similar approaches to others published recently by our research group [1,2], 

estimation equations were developed to predict the vapor pressure and thermodynamic 

properties of sublimation and vaporization of some of the fluorene, fluorenone and 

naphthalene derivatives studied. 
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5.2. Thermodynamic properties 
 

 

5.2.1. Thermodynamic properties of fusion 

 

Table 5.1 presents a summary of the temperatures of fusion and of the enthalpies and 

entropies of fusion, at this temperature, of fluorene, fluorenone, naphthalene and its 

derivatives. Estimated values derived using correlations to be discussed ahead are also 

presented in this table (inside parenthesis). 

 

 

Table 5.1. Temperatures, molar enthalpies and entropies of fusion of the compounds studied, determined by DSC. 

Compound  
fusT (onset)  

l o

cr m fus( )H T   
l o

cr m fus( )S T  

K  kJmol1  JK1mol1 

Fluorene [3] 388.0 ± 0.2  20.3 ± 0.1  52.3 ± 0.3 

2-SUBSTITUTED FLUORENES 

2-Fluorenecarboxaldehyde 357.61 ± 0.07  22.05 ± 0.05  61.7 ± 0.1 

2-Aminofluorene 400.9 ± 0.1  23.81 ± 0.05  59.4 ± 0.1 

2-Nitrofluorene 429.9 ± 0.4  24.75 ± 0.05  57.6 ± 0.1 

2-Fluorofluorene 373.11 ± 0.09  22.40 ± 0.03  60.04 ± 0.08 

 (373.2)a     

2-Chlorofluorene 369.7 [4]     

 (370.6)a     

2-Bromofluorene 387.39 ± 0.03  17.0 ± 0.1  43.9 ± 0.3 

 (385.7)a     

2-Iodofluorene 404.13 ± 0.04  17.53 ± 0.05  43.4 ± 0.1 

 (404.9)a     

2,7-DISUBSTITUTED FLUORENES 

2,7-Di-tert-butylfluorene 395.9 ± 0.2  15.6 ± 0.3  39.4 ± 0.8 

2,7-Difluorofluorene 356.4 ± 0.3  18.05 ± 0.04  50.6 ± 0.1 

 (356.4) b     

2,7-Dichlorofluorene 396.90 ± 0.06  18.4 ± 0.2  46.4 ± 0.5 

 (397.6) b     

2,7-Dibromofluorene 438.8 ± 0.1  22.72 ± 0.04  51.78 ± 0.09 

 (437.3) b     

     …/… 
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…/...      

2,7-Diiodofluorene 490.9 ± 0.1  24.28 ± 0.09  49.5 ± 0.2 

 (491.5) b     

9-SUBSTITUTED FLUORENES 

9-Fluorenecarboxylic Acid 503.8 ± 0.3  30.2 ± 0.3  59.9 ± 0.6 

9-Phenyl-9-fluorenol 382.7 ± 0.1  22.7 ± 0.1  59.3 ± 0.3 

9-Benzylidenefluorene 348.69 ± 0.05  17.0 ± 0.1  48.8 ± 0.3 

9-Fluorenemethanol 377.1 ± 0.1  27.9 ± 0.2  74.0 ± 0.5 

9-Chlorofluorene 362.2 ± 0.3  17.6 ± 0.1  48.6 ± 0.3 

Fluorenone [5] 356.2 ± 0.2  17.6 ± 0.7  49.4 ± 2.0 

2-SUBSTITUTED FLUORENONES 

2-Aminofluorenone 429.5 ± 0.1  24.06 ± 0.09  56.0 ± 0.2 

2-Hydroxyfluorenone 482.3 ± 0.2  29.4 ± 0.1  61.0 ± 0.2 

2-Fluorofluorenone 388.51 ± 0.02  18.93 ± 0.05  48.7 ± 0.1 

2,7-DISUBSTITUTED FLUORENONES 

2,7-Dibromofluorenone 477.8 ± 0.3  26.9 ± 0.2  56.3 ± 0.4 

Naphthalene [6] 353.4  19.07 ± 0.08  54.0 ± 0.2 

2,6-SUBSTITUTED NAPHTHALENES 

2,6-Dimethylnaphthalene [7] 383.32 c  25.06 ± 0.01  65.38 ± 0.03 

2,6-Diethylnaphthalene 322.5 ± 0.1  22.36 ± 0.06  69.3 ± 0.2 

2,6-Diisopropylnaphthalene 343.0 ± 0.2  18.8 ± 0.1  54.8 ± 0.3 

2,6-Di-tert-butylnaphthalene 420.2 ± 0.2  18.5 ± 0.2  44.0 ± 0.5 

a Values estimated through equation 5.4; 

b Values estimated through equation 5.5; 

c Triple point temperature. 

 

 

The thermodynamic properties of fusion – temperature, enthalpy and entropy – are 

important characteristics of pure compounds. They are related to the intermolecular forces 

presented in both crystalline and liquid phases. So, they are somewhat related to the 

compound’s crystalline structure. As can be seen in figure 5.1, the enthalpies of fusion tend 

to increase with increasing temperatures of fusion, for the compounds studied.  

Interestingly this tendency seems to be in accordance with the Walden’s rule [8]. From 

the experimental study on the fusion of 15 aromatic compounds formed by “non-associated” 

molecules, Walden calculated a mean value of the entropy of fusion of these compounds 

as l o

cr mS  = 56.5 JK1mol1. Similarly to the Trouton’s rule for the normal entropy of 
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vaporization of “non-associated” liquids [9], this mean value has been used for rough 

estimations of the enthalpy of fusion when values of temperatures of fusion are available. 

The entropy of fusion of the compounds studied, represented in figure 5.2, may be 

represented by the mean value l o

cr m fus( )S T  = (53.0 ± 7.1) JK1mol1 (the quoted 

uncertainty is the standard deviation of the mean) where the value of 9-fluorenemethanol is 

excluded (two hydrogen bonds per molecule, as shown in section 5.2.2.1.). 

The correlation presented in figure 5.1 is well defined by the equation 5.1: 

 

l o 1

cr m fus fus( )/K mol 0.0530 /K)(H T T    (5.1) 

 

The values of the enthalpy of fusion estimated according to this equation for the 

compounds studied present a standard deviation of 2.8 JK1mol1. 
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Figure 5.1. Correlation between the temperature (Tfus) and enthalpy of fusion ( l o

cr mH ) of the compounds studied (, 9-

fluorenemethanol). 
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Figure 5.2. Temperature of fusion versus entropy of fusion of the compounds studied (, 9-fluorenemethanol). 

 

 

Accurate estimations of the temperature of fusion are admittedly difficult and no 

general procedure has proven successful for its prediction based on correlations with other 

physical and structural properties [10]. 

In this work, we attempted to establish a correlation between the temperatures of 

fusion of halogenated fluorenes and the combined influence of the excess volumes and 

excess electron affinity of halogen atoms, as recently applied by Monte et al. [2] for the 

estimation of the thermodynamic properties of vaporization of halogenated benzenes. The 

previously referred excess properties, presented in table 5.2, are calculated as the 

difference between the properties of the halogen substituents (X), and the respective 

properties of the hydrogen atom being replaced. 

 

3 3 3(X)/nm (X)/nm (H)/nmXSV V V   (5.2) 

(X)/eV (X)/eV (H)/eVXSEA EA EA   (5.3) 

 

Correlating the temperatures of fusion with the referred to above atomic properties of 

each halogen, equations 5.4 and 5.5 reproduce rather well the temperatures of fusion of 

the fluorenes halogenated in positions 2 and 2,7, respectively. The results estimated from 

these equations are listed in table 5.1.  
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   3 3

fus 492.75 0.81(2-Xfluorene) / K (3 10 47.0X)/nm (X)/eV5XS XST V EA    (5.4)  

R2 = 0.994;  = 2.1 K  

 

   3

fus 2

3481.30 5.95 1(2,7-X fluorene)/K (X)/nm (X)/eV0 60.89XS XSV EAT    (5.5) 

R2 = 0.9997;  = 1.8 K  

 

 

Table 5.2. Bondi radius, and absolute and excess volumes and electron affinities of the halogen atoms (reported in ref. [2]).   

Atom 
r a  103 V  103 VXS  EA b,c  EAXS c 

nm nm3 nm3 eV eV 

H 0.120   7.23  0  0.75419  0 

F 0.147   13.3  6.1  3.401290  2.647 

Cl 0.175   22.4  15.2  3.612724  2.859 

Br 0.185   26.5  19.3  3.363588  2.609 

I 0.198   32.5  25.3  3.059038  2.305 

a Bondi radius reported  in ref. [11]; 

b Ref. [12]; 

c 1 eV = 1.602176565(35)10−19 J. 
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Figure 5.3. Correlation between experimental and estimated results of Tfus of halogenated fluorenes: , 2-halogenated 

fluorenes (2-fluorofluorene, 2-chlorofluorene, 2-bromofluorene, 2-iodofluorene); , 2,7-dihalogenated fluorenes (2,7-

difluorofluorene, 2,7-dichlorofluorene, 2,7-dibromofluorene, 2,7-diiodofluorene).  
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The quality of each estimation equation may be defined by the statistic parameters 

presented above: the standard error of the estimate () and the square correlation 

coefficient (R2). Figure 5.3 shows the correlation between the experimental and estimated 

results for the temperature of fusion, highlighting the excellent estimated results yield by 

equations 5.4 and 5.5. Similar correlations may eventually be established for fluorenes 

halogenated in position 9, however there was only one result available (9-chlorofluorene). 

For halogenated fluorenones the only two available results (2-fluorofluorenone and 2,7-

dibromofluorenone didn’t allow checking if experimental results of fusion may be described 

by such correlations. 

 

 

 

5.2.2. Thermodynamic properties of sublimation and vaporization 

 

 

5.2.2.1. Fluorene and fluorene derivatives  

 

Table 5.3 presents a summary of the thermodynamic properties of sublimation and 

vaporization of fluorene and its derivatives, at T = 298.15 K, including their vapor pressures. 

Estimated values derived using correlations to be discussed ahead are also presented in 

this table (inside parenthesis). 

 

 

Table 5.3. Thermodynamic properties of sublimation and vaporization of fluorene and its derivatives, as well as their vapor 

pressures at T = 298.15 K. Values inside parenthesis are estimations. 

Compound Phase 

g o

cr/l mG  
g o

cr/l mH  
g o

cr/l mT S   p(cr/l) 

 kJmol‒1   Pa 

Fluorene [3] cr 34.49 ± 0.02 87.8 ± 0.5 53.3 ± 0.5  9.110–2 

 l 30.43 ± 0.04 72.1 ± 0.2 41.7 ± 0.2  4.710–1 

2-SUBSTITUTED FLUORENES 

2-Fluorenecarboxaldehyde cr 45.94 ± 0.08 110.1 ± 0.6 64.3 ± 0.6  8.910−4 

  (44.8)a     

2-Aminofluorene cr 48.97 ± 0.06 112.3 ± 0.4 63.3 ± 0.4  2.610–4 

  (49.5)a     

2-Nitrofluorene   cr  53.49 ± 0.06 116.2 ± 0.3 62.7 ± 0.3  4.710–5 

  (53.9)a     

      …/… 
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…/…       

2-Fluorofluorene cr 35.13 ± 0.01 91.72 ± 0.08 56.59 ± 0.08  7.010–2 

  (35.1)b (91.4)c    

  (36.7)a     

 l 30.89 ± 0.03 71.9 ± 0.3 41.0 ± 0.3   3.910–1 

  (30.5)d (72.5)e    

2-Chlorofluorene cr  (38.7)b (92.5)c (53.8)  (1.610–2) 

 l  (35.3)d (79.1)e (43.8)  (6.510−2) 

2-Bromofluorene cr 42.25 ± 0.03 f 96.6 ± 0.1 f 54.3 ± 0.1  4.010–3 

  (42.5)b (97.7)c    

  (42.0)g     

  (40.4)a     

 l 38.44 ± 0.03 81.7 ± 0.1 43.3 ± 0.1  1.810−2 

   (37.9)d (82.6)e    

2-Iodofluorene cr 46.66 ± 0.02 f 102.5 ± 0.1 f 55.8 ± 0.1  6.710−4 

  (46.7)b (102.0)c    

  (46.3)g     

  (44.8)a     

 l 42.18 ± 0.02 87.41 ± 0.09 45.2 ± 0.09  4.110−3 

  (41.6)d (87.6)e    

2,7-DISUBSTITUTED FLUORENES 

2,7-Di-tert-butylfluorene cr 51.57 ± 0.06 121.1 ± 0.4  68.9 ± 1.0  9.210–5 

  (53.3)a     

 l 46.61 ± 0.04 101.2 ± 0.2 54.6 ± 0.2   6.810–4 

2,7-Difluorofluorene cr 34.79 ± 0.02 91.8 ± 0.4 57.0 ± 0.4  8.010‒2 

  (34.9)b (91.7)c    

  (35.3)a     

 l  (30.6)d (73.0)e    

2,7-Dichlorofluorene cr 46.03 ± 0.03 102.7 ± 0.1 56.7 ± 0.1  8.610‒4 

  (46.1)b (102.5)c    

  (46.3)g     

  (44.3)a     

 l  (40.2)d (86.1)e    

2,7-Dibromofluorene cr 54.15 ± 0.06 g 114.6 ± 0.2 g  60.5 ± 0.2  3.310–5 

  (54.2)b (114.1)c    

  (55.0)g     

  (53.9)a     

 l  (45.4)d (93.1)e    

       

      …/… 
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…/…       

2,7-Diiodofluorene cr 64.1 ± 0.2 126.5 ± 0.7 62.4 ± 0.7  5.910–7 

  (64.1)b (126.2)c    

  (63.6)g     

  (64.3)a     

 l (52.8)d (103.1)e    

9-SUBSTITUTED FLUORENES 

9-Fluorenol [5] cr 46.32 ± 0.06 108.3 ± 0.5 62.0 ± 0.5  7.710−4 

  (47.0)h     

 l 40.32 ± 0.07 91.6 ± 0.4 51.3 ± 0.4  8.610−3 

9-Fluorenecarboxylic acid cr 62.3 ± 0.2 130.4 ± 0.8 68.1 ± 0.8  1.210‒6 

  (61.2)h     

9-Phenyl-9-fluorenol cr 54.79 ± 0.06 125.0 ± 0.3 70.2 ± 0.3  2.510‒5 

9-Benzylidenefluorene cr 53.8 ± 0.1 117.7 ± 1.1 63.9 ± 1.1  3.810‒5 

9-Fluorenemethanol cr 48.14 ± 0.03 118.8 ± 0.2 70.7 ± 0.2  3.710‒4 

  (48.4)h     

 l 42.98 ± 0.01 97.8 ± 0.1 54.8 ± 0.1  3.010‒3 

9-Chlorofluorene cr 37.80 ± 0.03 95.0 ± 0.5 57.2 ± 0.5  2.410‒2 

  (36.5)h     

a Values estimated through equation 5.11; b Values estimated through equation 5.6; c Values estimated through equation 5.7;   

d Values estimated through equation 5.8; e Values estimated through equation 5.9; f Weighted mean of results derives from 

vapor pressures measured by effusion and static methods; g Values estimated through equation 5.10; h
 
Values estimated 

through equation 5.12. 

 

 

5.2.2.1.1. Correlations and estimation equations 

 

It has been recently shown by Monte and Almeida [1] that thermodynamic properties 

of sublimation of substituted benzenes can be predicted using estimating equations based 

on the respective temperature of fusion (Tfus) and the number and quality of substituents. 

Using a similar approach, estimating equations were derived by multiple linear regression 

from the experimental results determined in the present work in order to estimate the 

thermodynamic properties of sublimation of halogenated fluorenes in positions 2 and 2,7. 

The standard Gibbs energies (and subsequently derived vapor pressures) and enthalpies 

of sublimation, at T = 298.15 K, were estimated using equations 5.6 and 5.7, respectively, 

involving Tfus of the halogenated fluorenes and the number and quality of halogen 

substituents. In these equations, nF, nCl, nBr, nI, represent, respectively, the number (one or 

two) of fluorine, chlorine, bromine and iodine atoms that replace hydrogen in the fluorene 

molecule. 
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g o 1

cr m fus F Cl Br I(298.15 K) / kJ mol 1.9 0.086( /K) 1.15 5.02 7.27 9.99G T n n n n         

R2 = 1.000;  = 0.2 kJmol–1 (5.6) 

 

g o 1

cr m fus F Cl Br I(298.15 K) / kJ mol 20.1 0.182( /K) 3.38 5.09 7.06 8.39H T n n n n         

R2 = 0.999;  = 0.9 kJmol–1 (5.7) 

 

As mentioned previously, Monte et al. [2] also developed equations for the estimation 

of vapor pressures and enthalpies of vaporization of liquid halogenated benzenes, which 

consider calculated contributions to each halogen substituent based on the combined 

influence of the respective volumes and electron affinities. The proposed method was also 

tested for other polycyclic aromatic compounds, including a few fluorene and fluorenone 

derivatives. Using the halogen contributions proposed by Monte et al. [2] and the 

thermodynamic properties of vaporization of the parent compound – fluorene – given in 

table 5.3, the standard Gibbs energies and enthalpies of vaporization, at T = 298.15 K, of 

the halogenated fluorene derivatives were estimated, at T = 298.15 K, using equations 5.8 

and 5.9 respectively. 

 

g o 1 g o 1

l m l m F Cl Br I(298.15 K) / kJ mol (fluorene) / kJ mol 0.09 4.9 7.5 11.2G G n n n n           

R2 = 0.999 (5.8) 

 

g o 1 g o 1

l m l m F Cl Br I(298.15 K) / kJ mol (fluorene) / kJ mol 0.43 7.0 10.5 15.5H H n n n n           

R2 = 0.997 (5.9) 

 

The estimated results obtained from equations 5.6 to 5.9, also presented in table 5.3, 

were correlated with the ones obtained experimentally as can be observed in figure 5.4, 

showing excellent agreement.  

Given that it was not possible to experimentally determine the thermodynamic 

properties of sublimation and vaporization of 2-chlorofluorene (section 2.3.1.4.), these 

properties were estimated using the previously mentioned equations and the literature 

temperature of fusion (Tfus = 369.7 K [4]), yielding the estimated results included in table 

5.3. The properties of vaporization the dihalogenated fluorene derivatives were also 

estimated using equations 5.8 and 5.9. 
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Figure 5.4. Correlation between experimental and estimated results of thermodynamic properties of sublimation or 

vaporization for the halogenated fluorenes studied: , 
g o

cr m;G , 
g o

cr m;H , 
g o

l m;G , 
g o

l m.H  

 

 

The regular dependence of the standard Gibbs energies with the enthalpies of 

sublimation and vaporization has been used as an estimation method for some groups of 

aromatic compounds with different substituents [13-15]. When plotting the standard Gibbs 

energies of sublimation of fluorene and fluorene derivatives studied in this work as a function 

of the respective enthalpies of sublimation, represented in figure 5.5, there is a tendency 

correlating these thermodynamic properties that seems to be applicable only for the mono 

and di halogenated fluorenes, although the fluoro derivatives results look to be outliers. 

 

 

 

 R1 = Br, I; R2 = H 

 R1 = R2 = H, Cl, Br, I 

 

g o 1 g o 1

cr m cr m27.95 0.724(/ kJ )mol / kJ molG H        (5.10) 

R2 = 0.996;  = 0.7 kJmol‒1  
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Figure 5.5. Correlation between g o

cr mH  and 
g o

cr mG determined experimentally: , fluorene; , 2-halogenated and 2,7-

dihalogenated fluorenes (2-bromofluorene, 2-iodofluorene, 2,7-dichlorofluorene, 2,7-dibromofluorene, 2,7-diiodofluorene); , 

2-halogenated and 2,7-dihalogenated fluorene outliers (2-fluorofluorene, 2,7-difluorofluorene); , 2-substituted fluorenes (2-

fluorenecarboxaldehyde, 2-aminofluorene, 2-nitrofluorene); , 2,7-di-tert-butylfluorene; , 9-substituted fluorenes (9-

fluorenecarboxylic acid, 9-phenyl-9-fluorenol, 9-benzylidenefluorene, 9-fluorenemethanol, 9-chlorofluorene). 

 

 

Including the temperature of fusion as an additional independent variable while 

attempting to correlate the enthalpies and standard Gibbs energies of sublimation, two 

tendencies were distinguished for the following groups of compounds: 2-substituted and 

2,7-disubstituted fluorenes, defined by equation 5.11, and 9-substituted fluorenes defined 

by equation 5.12. The estimated results obtained by these equations are compiled in table 

5.3. 

 

 

 

 R1 = CHO, NH2, NH2, F, Br, I; R2 = H 

 R1 = R2 = H, F, Cl, Br, I, tert-butyl 

 

g o 1 g o 1

cr m cr m fus/ kJ mol 0.506( / kJ mol41.25 0.085 /K)) (G H T        (5.11) 

R2 = 0.978;  = 1.5 kJmol‒1
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Figure 5.6. Correlation between experimental and estimated results of
g o

cr mG for the 2-substituted and 2,7-disubstituted 

fluorenes: , fluorene; , 2-substituted fluorenes (2-fluorenecarboxaldehyde, 2-aminofluorene, 2-nitrofluorene); , 2-

halogenated and 2,7-dihalogenated fluorenes (2-fluorofluorene, 2-bromofluorene, 2-iodofluorene, 2,7-difluorofluorene, 2,7-

dichlorofluorene, 2,7-dibromofluorene, 2,7-diiodofluorene); , 2,7-di-tert-butylfluorene.  

 

 

 

 R = H, COOH, CH2OH, Cl, OH 

 

     g o 1 g o 1

cr m m fuscr/ kJ mol 0.461( /29.74 0.062(kJ m /K)ol )G TH  (5.12) 

R2 = 0.995;  = 1.1 kJmol‒1  

 

 

In the latter correlation were included the 9-fluorene derivatives in which only one of 

the two hydrogens in position 9 is substituted by a functional group, including 9-fluorenol 

using literature results [5]. The 9-substituted fluorenes in which both hydrogens in position 

9 were substituted by either two functional groups (9-phenyl-9-fluorenol) or one functional 

group linked by the double bond (9-benzylidenefluorene) were not included in this 

correlation.  
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Figure 5.7. Correlation between experimental and estimated results of
g o

cr mG  for the 9-substituted fluorenes: , fluorene; , 

9-substituted fluorenes (9-fluorenecarboxylic acid, 9-fluorenemethanol, 9-fluorenol, 9-chlorofluorene).  

 

 

 

5.2.2.1.2. Enthalpic and entropic contributions to the standard Gibbs energies of 

sublimation and vaporization 

 

Aiming to rationalize the volatility results of the crystalline and liquid phases of the 

compounds studied, the standard Gibbs energies of sublimation and vaporization were 

analyzed in terms of their corresponding enthalpic and entropic contributions. Whenever 

possible the interpretation of the experimental results will be supported by the available 

crystalline structures of the compounds. 

 

i) 2-Fluorenecarboxaldehyde, 2-aminofluorene and 2-nitrofluorene 

Figure 5.8 presents the thermodynamic properties of sublimation of                            

2-fluorenecarboxaldehyde, 2-aminofluorene, and 2-nitrofluorene. As the three compounds 

present similar values of the standard entropy of sublimation, the differences observed in 

their volatility follow the differences of their enthalpies of sublimation.  
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Figure 5.8. Relation between the enthalpic 
g o

cr m( )H  and entropic g o

cr m( )T S  contributions to 
g o

cr mG  of the carboxaldehyde, 

amine and nitro derivatives of fluorene in position 2.  

 

 

No crystal structure data was found for 2-nitrofluorene. Crystalline structural data are, 

however, available for the other two compounds. For 2-fluorenecarboxaldehyde [16], the 

observed C–HO interactions result in the formation of a cyclic dimer about a center of 

symmetry, as schematized in figure 5.9. 

 

 

 

Figure 5.9. Packing diagram of 2-fluorenecarboxaldehyde, C–HO interactions are represented as dashed lines (image 

adapted from ref. [16]). 

g o

cr mG

g o

cr mH
g o

cr mT S
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For 2-aminofluorene, the amine group does not form N–HN hydrogen bonds (that 

would strongly diminish its volatility), but is only engaged in weaker N–H interactions, 

where the N–H vector points to the faces of the aromatic rings of neighboring molecules 

[17]. 

 

 

 

 

Figure 5.10. Packing diagram of 2-aminofluorene, N–H interactions are represented as dashed lines (image adapted from 

ref. [17]). 

 

 

ii) 2- and 2,7- halogenated fluorenes 

The enthalpic and entropic contributions to the standard Gibbs energy of sublimation 

of the monohalogenated and the dihalogenated derivatives of fluorene are schematized in 

figures 5.11 and 5.12, respectively, in order of decreasing volatility. The volatilities of the 

crystalline phase of both series of halogenated derivatives decrease with increasing 

halogen size. This decrease is more accentuated in the case of the dihalogenated 

compounds. As was the case for the aldehyde, amine and nitro fluorene derivatives, the 

volatility of the halogenated derivatives seems to be predominantly led by enthalpic 

contributions. This is particularly evident for the dihalogenated fluorenes. 

Both the fluorinated derivatives seem to present larger entropic contributions when 

compared to the other halogenated fluorenes (figure 5.13). This larger entropic contribution 

seems to be the reason for their discrepancy concerning the correlation given by equation 

5.10. The inclusion of the temperature of fusion (equation 5.11) seems to attenuate this 

divergence as can be observed in figure 5.6. 
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Figure 5.11. Relation between the enthalpic and entropic contributions to 
g o

cr mG  of the monohalogenated derivatives of 

fluorene in position 2.  

 

 

0

20

40

60

80

100

120

140

  2,7-Difluorofluorene

  2,7-Dichlorofluorene

  2,7-Dibromofluorene

  2,7-Diiodofluorene

E
/k

J·
m

ol
-1

 

 

Figure 5.12. Relation between the enthalpic and entropic contributions to 
g o

cr mG  of the dihalogenated derivatives of fluorene 

in positions 2,7. 
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Figure 5.13. Correlation between the enthalpies and entropies of sublimation of the monohalogenated () and the 

dihalogenated () derivatives of fluorene. 
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Figure 5.14. Relation between the enthalpic and entropic contributions to g o

l mG  of the monohalogenated derivatives of 

fluorene in position 2. 
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When considering the liquid phase, the volatility of the monohalogenated derivatives 

schematized in figure 5.14, replicates what was observed in the crystalline phase. While in 

the crystalline phase the entropy of sublimation of the fluoro derivatives appeared to be 

higher than that of the other halogenates, the same is not observed in the entropy of 

vaporization. 

 

iii) 9-Substituted fluorenes 

The enthalpic and entropic contributions to the standard Gibbs energies of 

sublimation of the 9-fluorene derivatives studied are schematized in figure 5.15.  

9-Fluorenemethanol, 9-phenyl-9-fluorenol and 9-fluorenecarboxylic acid present 

similar entropies of sublimation and their differences in volatility is thus related to enthalpic 

contributions. The crystalline packing of these compounds are further stabilized by strong 

hydrogen bonds O–HO. Most likely the presence of the hydrogen bonding and -

stackinginteractions decreases their entropy of the crystalline phase. 
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Figure 5.15. Relation between the enthalpic and entropic contributions to g o

cr mG  of the 9-fluorene derivatives. 
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In the crystalline structure of 9-fluorenemethanol [18], the molecules are arranged in 

two dimensional layers linked by hydrogen bonds, as referred to above, and also benefit 

from nonparallel-stacking interactions between the flat fluorenyl systems (figure 5.16). 

Csöregh et al. [19] reported that the crystal packing of 9-phenyl-9-fluorenol contains 

hydrogen bonded dimers involving one of the hydroxyl groups as a proton acceptor and the 

other as both proton donor and acceptor (figure 5.17). The packing of the 9-phenyl-9-

fluorenol dimers seems to be further stabilized by interactions between neighboring 

fluorene moieties. More recently, Hosseinzadeh et al. [20] reviewed the structure reported 

by Csöregh and suggested the existence of additional weaker O–H and C–HO 

hydrogen bond type interactions involving neighboring molecules. 

Among the 9-substituted fluorenes studied, 9-fluorenecarboxylic acid is the least 

volatile. According to Blackburn et al. [21], the crystalline structure of fluorene-9-carboxylic 

acid contains two sets of cyclic dimers (A and B, as shown in figure 5.18) dimers each 

exhibiting hydrogen bonding about a center of symmetry. An additional disordering of the 

carboxyl oxygen atoms observed in A molecules distinguishes them from B molecules. 

These three compounds present higher entropies of sublimation when compared to 

those of 9-chlorofluorene and 9-benzylidenefluorene.  

 

 

 

 

 Figure 5.16. Scheme of the crystalline structure of 9-fluorenemethanol. Hydrogen bonds (O–HO) are represented as dashed 

lines (image adapted from ref. [18]). 
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Figure 5.17. Scheme of the crystalline structure of 9-phenyl-9-fluorenol. Hydrogen bonds are represented as dashed lines 

and O–Hinteractions as double dashed lines (image adopted from ref. [20], crystal structural data available from ref. [19]). 

 

 

  

 

Figure 5.18. Scheme of the crystalline structures of A and B fluorene-9-carboxylic acid cyclic dimers. Hydrogen bonds are 

represented as dashed lines and centers of symmetry as dots (image and numbering scheme adopted from ref. [21]; for 

clarity, depiction of the hydrogen bonding of the two A-molecule carboxyl groups has been omitted). 

 

 

9-Benzylidenefluorene and 9-fluorenemethanol present similar enthalpies of 

sublimation, however 9-fluorenemethanol is more volatile due the higher entropic 

contribution referred to above. The absence of hydrogen bonding and -

stackinginteractions in 9-benzilidenefluorene is confirmed in its crystalline structure 

reported by Chan et al. [22]. To the best of our knowledge, no structural data has been 
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reported for 9-chlorofluorene that is the most volatile of the group of the 9- substituted 

fluorenes studied, although it is not clear if its the volatility is mainly due to enthalpic or 

entropic factors. 

 

 

5.2.2.2. Fluorenone and fluorenone derivatives 

 

Table 5.4 presents a summary of the thermodynamic properties of sublimation and 

vaporization of fluorenone and its derivatives, at T = 298.15 K, including their vapor 

pressures. Estimated values derived using correlations to be discussed ahead are also 

presented in this table (inside parenthesis). 

 

 

Table 5.4. Thermodynamic properties of sublimation and vaporization of fluorenone and its derivatives, as well as their vapor 

pressures at T = 298.15 K. Values inside parenthesis are estimations. 

Compound Phase 

g o

cr/l mG  
g o

cr/l mH  
g o

cr/l mT S   p(cr/l) 

 kJmol‒1   Pa 

Fluorenone [5] cr 38.82 ± 0.03 95.1 ± 0.5 56.3 ± 0.5  1.610−2 

 l 36.25 ± 0.02 80.6 ± 0.2 44.4 ± 0.2  4.510−2 

2-SUBSTITUTED FLUORENONES 

2-Aminofluorenone cr 58.8 ± 0.2 123.7 ± 0.7 64.9 ± 0.7  5.010‒6 

  (58.6)a     

2-Hydroxyfluorenone cr 64.8 ± 0.2 132.9 ± 0.8 68.1 ± 0.8  4.410‒7 

  (65.0)a     

2-Fluorofluorenone cr 40.38 ± 0.02b 97.1 ± 0.1b 56.7 ± 0.1  8.410−3 

  (40.3)a     

 l (36.4)c (82.2)c (45.8)  (4.210−2) 

  (36.3)d (81.0)e    

2,7-DISUBSTITUTED FLUORENONES 

2,7-Dibromofluorenone cr 60.37 ± 0.09 121.9 ± 0.4 61.5 ± 0.4  2.710‒6 

 l (51.7)c (103.8)c (52.1)  (8.710‒5) 

  (51.3)d (101.6)e    

a Values estimated through equation 5.13; b Weighted mean of results derived from vapor pressures measured by effusion 

and static methods; c Values derived indirectly from the experimental results of fusion and sublimation; d Values estimated 

through equation 5.14; e Values estimated through equation 5.15. 
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5.2.2.2.1. Correlations and estimation equations 

 

Following what was previously discussed for the fluorene derivatives, we attempted 

to correlate the standard Gibbs energies and enthalpies of sublimation for fluorenone and 

its derivatives studied in this work. This correlation, defined by equation 5.13, yields very 

good results for the 2-substituted fluorenone derivatives studied, and includes the results of 

fluorenone. 

 

 

 

 R = H, NH2, OH, F 

 

      g o 1 g o 1

cr m cr m26.59 0.6/ KJ mol / KJ mo9( )l8G H  (5.13) 

R2 = 0.9999;  = 0.2 kJmol‒1  
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Figure 5.19. Correlation between  g o

cr mH  and g o

cr mG  determined experimentally: , fluorenone; , 2-substituted fluorenones 

(2-aminofluorenone, 2-hydroxyfluorenone, 2-fluorofluorenone); , 2,7-dibromofluorenone.  
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This correlation doesn’t yield satisfactory results for the di-substituted derivative 

studied, 2,7-dibromofluorenone. Even when considering the temperature of fusion as an 

added variable, this compound behaves like an outlier of the correlation. 

As previously mentioned, the method proposed by Monte et al. [2] for the estimation 

of vaporization thermodynamic properties of haloaromatics was also found successful for 

the estimation of these properties of some halogenated fluorenones. Considering the 

properties of vaporization of fluorenone, listed in table 5.4, equations 5.14 and 5.15 were 

respectively used to estimate standard Gibbs energy and enthalpy of vaporization of two 

halogenated fluorenones (2-fluorofluorenone and 2,7-dibromofluorenone) whose 

sublimation was studied in this work. 

 

g o 1 g o 1

l m l m F Cl Br I(298.15 K) / kJ mol (fluorenone) / kJ mol 0.09 4.9 7.5 11.2G G n n n n           

(5.14) 

 

g o 1 g o 1

l m l m F Cl Br I(298.15 K) / kJ mol (fluorenone) / kJ mol 0.43 7.0 10.5 15.5H H n n n n           

(5.15) 

 

The so-estimated results were in good agreement with the values of the standard 

Gibbs energies and enthalpies of vaporization derived indirectly from the experimental 

results of fusion and sublimation.  

 

 

5.2.2.2.2. Enthalpic and entropic contributions to the standard Gibbs energies of 

sublimation 

 

The enthalpic and entropic contributions to the volatilities of the fluorenone derivatives 

are schematized in figure 5.20. All the fluorenone derivatives studied are less volatile than 

the parental compound, fluorenone. 

The crystalline packing of 2-aminofluorenone has been reported by Eakins et al. [23]. 

Like 2-aminofluorene, hydrogen bonding is not observed between neighboring amine 

groups. Also, probably due to the approximately planar orientation of the hydrogen and 

nitrogen atoms of the amine groups relative to the fluorenyl fragment, no -

stackinginteractions were observed, as opposed to what was the case in the fluorene 

derivative (21o angle between amine group and fluorenyl fragment [17]). No crystalline 
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structure data were found in the literature for the remaining fluorenone derivatives studied 

in this work. 
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Figure 5.20. Relation between the enthalpic and entropic contributions to 
g o

cr mG  of the fluorenone derivatives. 

 

 

 

  

 

Figure 5.21. Packing arrangement of 2-aminofluorenone within the unit cell (image adapted from ref. [23]). 
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5.2.2.3. Naphthalene and naphthalene derivatives 

 

Table 5.5 presents a summary of the thermodynamic properties of sublimation of 

naphthalene and the alkyl derivatives, at T = 298.15 K, including their vapor pressures. 

Estimated values derived using correlations to be discussed ahead are also presented in 

this table (inside parenthesis). 

 

 

Table 5.5. Thermodynamic properties of sublimation and vaporization of naphthalene and its derivatives, as well as their vapor 

pressures at T = 298.15 K. Values inside parenthesis are estimations. 

Compound Phase 

g o

cr/l mG  
g o

cr/l mH  
g o

cr/l mT S   p(cr/l) 

 kJmol‒1   Pa 

Naphthalene [24] cr  22.58 ± 0.01 72.70 ± 0.04 50.12 ± 0.04  1.1101 

2,6-SUBSTITUTED NAPHTHALENES 

2,6-Dimethylnaphthalene [25] cr  30.96 ± 0.01 86.7 ± 0.2 55.7 ± 0.2  3.810‒1 

2,6-Diethylnaphthalene cr 32.03 ± 0.01 93.63 ± 0.09 61.6 ± 0.1  2.410‒1 

  (32.2)a     

 l 30.49 ± 0.01 73.42 ± 0.04 42.9  4.610‒1 

2,6-Diisopropylnaphthalene cr 35.94 ± 0.01 98.0 ± 0.2 62.1 ± 0.2   5.110‒2 

  (36.0)a     

2,6-Di-tert-butylnaphthalene cr 41.64 ± 0.04 99.1 ± 0.4 57.5 ± 0.4  5.110‒3 

  (41.8)a     

a Values estimated through equation 5.16. 

 

 

5.2.2.3.1. Correlation between enthalpy and standard Gibbs energy of sublimation 

 

The standard Gibbs energies of sublimation of the alkylnaphthalene derivatives, 

presented in table 5.5, did not linearly depend on the respective enthalpies of sublimation. 

Considering the temperature of fusion as an additional independent variable, the standard 

Gibbs energies of sublimation of the alkyl derivatives studied in this work and of naphthalene 

are perfectly defined by equation 5.16. 

 

g o 1 g o 1

cr m cr m fus/ KJ mol / KJ mol41 0.067.3 0.55 ( /K4 )) (G H T       (5.16) 

R2 = 0.9998;  = 0.1 kJmol‒1  
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Osborn and Douslin [25] have reported the vapor pressures and enthalpies of 

sublimation and vaporization of four dimethylnaphthalene isomers, including 2,6-

dimethylnaphthalene. The reported crystal vapor pressures for 2,6-dimethylnaphthalene, 

measured using an inclined-piston pressure gauge, were fitted to the Clarke and Glew 

equation (eq. 3.72) using g o

cr ,mpC  = ‒33.7 JK–1mol–1 [26], and the derived standard Gibbs 

energy and enthalpy of sublimation at T = 298.15 K are included in table 5.5. 
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Figure 5.22. Correlation between experimental and estimated results of g o

cr mG : , naphthalene; , 2,6-substituted 

naphthalenes studied in this work (2,6-diethylnaphthalene, 2,6-diisopropylnaphthalene, 2,6-di-tert-butylnaphthalene); , 2,6-

dimethylnaphthalene [25].  

 

 

Equation 5.16 did not yield a good estimation for 2,6-dimethylnaphthalene, as can be 

observed in figure 5.22. Considering the value Tfus = 383.3 K [7], the estimated standard 

Gibbs energy of sublimation, 32.4 kJmol‒1, is 1.4 kJmol‒1 larger than the value derived in 

this work from the reported vapor pressures by Osborn and Douslin [25].  

No significant correlation was observed between the properties of phase transition 

and the increase in molar mass of the alkyl substituent. 
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5.2.2.3.2. Enthalpic and entropic contributions to the standard Gibbs energies of 

sublimation 

 

The enthalpic and entropic contributions to the volatilities of naphthalene and the 2,6-

dialkylnaphthalene derivatives are schematized in figure 5.23, including those of 2,6-

dimethylnaphthalene, in order of decreasing volatility. 
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Figure 5.23. Relation between the enthalpic and entropic contributions to 
g o

cr mG  of naphthalene, 2,6-dimethylnaphthalene and 

of the 2,6-dialkylnaphthalene studied in this work. 
 

 

All the dialkyl derivatives presented in figure 5.23 are less volatile than the parental 

compound, naphthalene, and the volatility of the dialkyl derivatives decreases with 

increasing molar mass of the alkyl substituents. The diethyl and the diisopropyl derivatives 

present similar entropic contributions and their difference in volatility seems to be influenced 

mainly by enthalpic factors. 2,6-Di-tert-butylnaphthalene exhibits a decrease in the entropy 

of sublimation, that contributes to a decrease in volatility when compared to the other two 

dialkylnaphthalenes studied.  
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5.2.3. Thermodynamic properties of formation 

 

A compound’s thermodynamic stability can be evaluated by its standard molar Gibbs 

energy of formation. Besides being an important parameter for calculating equilibrium 

constants of reactions, it measures the thermodynamic tendency towards decomposition 

into their constituent elements under standard conditions – smaller values indicate greater 

stability. In order to compare the thermodynamic stability of some of the compounds 

studied, with that of the parental molecules, we determined their standard molar Gibbs 

energies of formation in the crystalline and gaseous phases.  

Table 5.6 presents a summary of the thermodynamic properties of formation of some 

of the fluorene and naphthalene derivatives studied in this work, at T = 298.15 K. In this 

table are also included the results of fluorene [3], naphthalene [6,24], and 2,6-

dimethylnaphthalene [25,27], which were taken or derived from literature results. The 

standard molar entropies and Gibbs energies of formation of fluorene, naphthalene and 2,6-

dimethylnaphthalene, in the crystal and gaseous phases, were derived considering the 

respective values of the absolute gaseous entropies, o

mS (fluorene, g) = 381.0 JK‒1mol‒1 

[5], o

mS (naphthalene, g) = 346.84 JK‒1mol‒1 [28] and o

mS (2,6-dimethylnaphthalene, g) = 

422.42 JK‒1mol‒1 [26], determined computationally. 

 

 

Table 5.6. Thermodynamic properties of formation, in the crystalline and gaseous phases, of fluorene, naphthalene and some 

of its derivatives studied in this work, at T = 298.15 K. 

Compound Phase 

o

f mH  
o

f mT S   
o

f mG  

 kJmol‒1  

Fluorene [3,5] cr 91.6 ± 3.0 156.9 ± 0.3 248.5 ± 3.0 

 g 179.4 ± 3.0 103.5 282.9 ± 3.0 

2-SUBSTITUTED FLUORENES 

2-Fluorenecarboxaldehyde cr ‒(45.7 ± 3.1)   

 g 64.5 ± 3.2   

2-Aminofluorene cr 81.3 ± 2.7 205.6 ± 1.4 286.9 ± 3.0 

 g 193.6 ± 2.7 142.3 335.9 ± 2.7 

2-Nitrofluorene cr 48.2 ± 3.9 217.9 ± 1.0 266.1 ± 4.0 

 g 164.4 ± 3.9 155.2 319.6 ± 3.9 

2-Bromofluorene cr 110.8 ± 2.2 144.8 ± 0.1 255.6 ± 2.2 

 g 207.4 ± 2.2 a 90.4 297.8 ± 2.2 

    …/… 
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…/…     

2,7-DISUBSTITUTED FLUORENES 

2,7-Di-tert-butylfluorene cr ‒(141.7 ± 6.5) 432.4 ± 0.4 290.7 ± 6.5 

 g ‒(20.6 ± 6.5) 362.9 342.3 ± 6.5 

2,7-Dibromofluorene cr 114.7 ± 2.5 141.3 ± 0.2 256.0 ± 2.5 

 g 229.3 ± 2.5 a 80.9 310.2 ± 2.5 

9-SUBSTITUTED FLUORENES 

9-Fluorenecarboxylic acid cr ‒(302.5 ± 3.4) 213.4 ± 0.8 ‒(89.1 ± 3.5) 

 g ‒(172.1 ± 3.5) 145.3 ‒(26.8 ± 3.5) 

9-Phenyl-9-fluorenol cr 5.3 ± 2.7   

 g 130.3 ± 2.7   

9-Benzylidenefluorene cr 246.6 ± 4.0   

 g 364.3 ± 4.1   

9-Fluorenemethanol cr ‒(109.6 ± 2.9) 229.1 ± 0.7 119.5 ± 2.9 

 g 9.2 ± 2.9 158.5 167.7 ± 2.9 

Naphthalene [6,24,28] cr 78.0 ± 1.5 119.7 ± 0.4 197.7 ± 1.5 

 g 150.7 ± 1.5 69.6 220.3 ± 1.5 

2,6-SUBSTITUTED NAPHTHALENES 

2,6-Dimethylnaphthalene [25-27] cr –(5.7 ± 1.7) 184.0 ± 0.3 178.3 ± 1.7 

 g 81.0 ± 1.7 128.4 209.4 ± 1.7 

2,6-Diethylnaphthalene cr –(61.9 ± 3.1) 254.0 ± 0.1 192.1 ± 3.1 

 g 31.7 ± 3.1 192.4 224.1 ± 3.1 

2,6-Diisopropylnaphthalene cr –(122.1 ± 3.9) 321.1 ± 0.2 199.0 ± 3.9 

 g –(24.1 ± 3.9) 259.1 235.0 ± 3.9 

2,6-Di-tert-butylnaphthalene cr –(162.4 ± 5.3) 387.0 ± 0.4 224.6 ± 5.3 

 g –(63.3 ± 5.3) 329.5 266.2 ± 5.3 

a Derived from the weighted mean of the standard molar enthalpies of sublimation determined in this work using the effusion 

and static methods. 

 

 

5.2.3.1. Thermodynamic stability 

 

The standard molar Gibbs energies of formation of fluorene, naphthalene and of the 

derivatives listed in table 5.6, in the crystalline and gaseous phases, were plotted in figure 

5.24 in order of increasing thermodynamic stability of the crystals of each family of 

compounds.  
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Figure 5.24. Standard molar Gibbs energies of formation, in the crystalline phase (filled symbols) and in the gaseous phase 

(open symbols), of fluorene, naphthalene and some of their derivatives, plotted in order of increasing thermodynamic stability 

of the crystals. 

 

 

Obviously, the difference between the standard molar Gibbs energies of formation in 

the crystalline and gaseous phases is the standard molar Gibbs energy of sublimation, 

which is related to the vapor pressure of the crystal compound. Accordingly, the standard 

molar Gibbs energies of formation provide additional insight on the role of volatility in the 

further stabilization of crystalline phase with respect to gaseous phase. 

Among the fluorene derivatives studied, only the two 9-substituted fluorenes – 9-

fluorenemethanol and 9-fluorenecarboxylic acid – are thermodynamically more stable than 

fluorene, in both crystalline and gaseous phases. Despite the differences of the standard 

Gibbs energy of sublimation, the thermodynamic stability of the considered fluorenes 

follows the same order in both crystalline and gaseous phases. 

As for the alkyl naphthalene derivatives, the high volatility of naphthalene contributes 

to a decrease in stability in its crystalline phase, relative to that of 2,6-dimethylnaphthalene 

and 2,6-diethylnaphthalene which are thermodynamically more stable in the crystalline 

phase. In the gaseous phase, the relative stability of naphthalene and 2,6-

diethylnaphthalene is inverted. For the same reason, the reduced stability of 2,6-
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diisopropylnaphthalene in the gaseous phase relative to that of naphthalene, is partially 

compensated in the crystalline phase where both compounds present  similar stability. 

The relative thermodynamic stability of the dialkyl derivatives decreases with 

increasing molar mass of the alkyl substituent, in both crystalline and gaseous phases. 

Significant and regular variations of the standard molar enthalpy and entropy of formation 

with increasing molar mass of the alkyl groups are evident in both crystalline and gaseous 

phases for the dialkyl derivatives. These variations partially compensate resulting in more 

discrete differences in the standard molar Gibbs energies of formation. The exception to 

this tendency is naphthalene, remaining slightly less stable than the 2,6-dimethyl and 2,6-

diethylnaphthalene derivatives, due to a stronger enthalpic contribution verified in both 

phases (figure 5.25).  
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Figure 5.25. Decrease of the standard molar enthalpies of formation, in the gaseous () and crystal () phases, with 

increasing molar mass of naphthalene (open symbols) and the 2,6-dialkylnaphthalenes (filled symbols) studied in this work. 

 

 

5.2.3.2. Enthalpic increments 

 

The enthalpic increments in the gas phase enthalpies of formation related to the 

insertion of the different substituent groups in fluorene and naphthalene were determined 
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and, when possible, compared with the respective increments in the simple aromatic ring, 

benzene, to check for transferability of the enthalpic contributions. These increments may 

also be useful in establishing prediction schemes for standard molar enthalpies of formation, 

in the gas phase, of structurally similar compounds. 

Table 5.7 reports the estimated enthalpic increments in the gas phase enthalpies of 

formation associated with the insertion of different substituent groups on benzene, as well 

as on positions 2,6 of naphthalene and on positions 2,7 of fluorene.  

 

 

Table 5.7. Gaseous phase increments on enthalpies of formation associated to the insertion of different substituents in 

benzene, in positions 2,6 of naphthalene and in positions 2,7 of fluorene (all values in kJmol‒1). 

Substituent groups 
   

R1 R2 
o

f mH  
o

m(inc)H  
o

f mH  
o

m(inc)H  
o

f mH  
o

m(inc)H  

H H 82.9 ± 0.9a   150.7 ± 1.5 b  179.4 ± 3.0 c   

CH2CH3 H 30.0 ± 1.0d ‒(52.9 ± 1.3)     

CH(CH3)2 H 4.0 ± 1.0d ‒(78.9 ± 1.3)     

C(CH3)3 H ‒(24.4 ± 0.8)e  ‒(107.3 ± 1.2)     

CH2CH3 CH2CH3   31.7 ± 3.1 ‒(59.5 ± 3.4)f   

CH(CH3)2 CH(CH3)2   –(24.1 ± 3.9) ‒(87.4 ± 4.2)f   

C(CH3)3 C(CH3)3   ‒(63.3 ± 5.3) ‒(107.0 ± 2.8)f ‒(20.6 ± 6.5) ‒(100.0 ± 3.6)f 

CHO H ‒(36.7 ± 2.8)d ‒(119.6 ± 2.9)   64.5 ± 3.2 ‒(114.9 ± 4.4) 

NH2 H 87.1 ± 1.1 d 4.2 ± 1.3   193.6 ± 2.7 14.2 ± 4.0 

NO2 H 67.5 ± 0.5  d ‒(15.4 ± 1.1)   164.4 ± 3.9 ‒(15.0 ± 4.9) 

Br H 105.4 ± 4.1 d 22.5 ± 4.2 175.6 ± 2.3 g 24.9 ± 2.7 207.4 ± 2.2 28.0 ± 3.7 

Br Br     229.3 ± 2.5 25.0 ± 2.0 f 

a Value taken from ref. [6]; b Value derived from data in ref. [6,24]; c Value taken from ref. [3]; d Value taken from ref. [29];          

e Value taken from ref. [30]; f Enthalpic increment per substituent; g Value taken from ref.  [31]. 

 

 

The mean enthalpic increments associated to the insertion of ethyl or isopropyl groups 

in positions 2,6 of naphthalene ( o

m(inc)H = –59.5 kJmol‒1 and o

m(inc)H = –87.4 kJmol‒1) 

are 6.6 kJmol‒1 and 8.5 kJmol‒1 larger (in absolute value) than the corresponding 

increments for the alkyl substituents in benzene ( o

m(inc)H = ‒52.9 and o

m(inc)H = ‒78.9 

kJmol‒1). The enthalpic increment for the insertion of tert-butyl group in tert-butylbenzene  

( o

m(inc)H = –107.3 kJmol‒1), however, is in agreement with the mean enthalpic increment 
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observed in 2,6-di-tert-butylnaphthalene ( o

m(inc)H = –107.0 kJmol‒1). For 2,7-di-tert-

butylfluorene, the mean increment per tert-butyl group ( o

m(inc)H = –100.3 kJmol‒1) is ca. 

7 kJmol‒1 smaller (in absolute value) than the values referred to above. A smaller increment 

is also observed for fluorene substituted in position 2 with an aldehyde group ( o

m(inc)H = 

‒114.9 kJmol‒1), when compared to that in benzene ( o

m(inc)H = ‒119.6 kJmol‒1). In 

opposition, larger increments are observed when considering the substitution by an amine 

group ( o

m(inc)H = 14.2 kJmol‒1) or a bromine atom ( o

m(inc)H = 28.6 kJmol‒1) in fluorene 

comparatively to those in benzene ( o

m(inc)H = 4.2 kJmol‒1 and o

m(inc)H = 22.5 kJmol‒1, 

respectively). The increment for a bromine atom in position 2 of naphthalene ( o

m(inc)H = 

25.0 kJmol‒1) is also larger than in benzene. The enthalpic increments for the nitro group 

in benzene and in position 2 of fluorene are in close agreement ( o

m(inc)H ≈ 15 kJmol‒1). 
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5.3. Photoluminescence properties 

 

 

5.3.1. Challenges and technical difficulties 

 

As mentioned previously, several difficulties appeared in applying the used method 

and related technique. The instruction’s manual of the apparatus is not always clear and it 

was sometimes hard to correctly use the equipment that the manufacturer considers easy-

to-use and intuitive [32]. Other researchers have complained about these setbacks. On a 

recent publication regarding integrating sphere theory [33], Valenta comments on the use 

of commercial apparatus including the Quantaurus: “their users often struggle with lack of 

detailed information on the quantum yield (QY) determination procedure and the technique 

background”. Actually, it was quite hard to achieve consistent experimental conditions in 

order to guaranty reproducibility of results, particularly for determining the QY of powder 

samples. One of the issues that might affect results is the self-absorption effect, which is a 

major concern for integrating sphere setups [34-36]. Emitted light can be reabsorbed by the 

fluorophore in the region of the spectral overlap between absorption and emission (small 

Stokes shift), leading to a reduction of the fluorescence QY and a distortion of the 

fluorescence spectrum. The dedicated software of the equipment provides an option for 

self-absorption correction only for concentrated solutions. This functionality was not simple 

to implement and yielded non-reliable results, reason why it was decided to present the 

obtained results without self-absorption correction. Instead it was used a range of 

concentrations to test for spectral and QY dependence on the concentration. The least 

concentrated solutions were accepted to yield the most reliable results of QY. Information 

available in the literature also states that it should be relatively easy to avoid erroneous QY 

results in solution by using very low concentrations [36,37], however, in the solid state this 

is more difficult to achieve. When studying powder samples, we found that QY results also 

depended on the area of the sample contained in the Petri dish. Again, we opted for studying 

different amounts of sample to infer on the self-absorption effect on the solid state QY 

results. For the reasons referred to above the obtained results of QY of powder samples 

are somewhat exploratory and will be further developed in future work. 
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5.3.2. Fluorescence properties of the compounds studied 

  

The nature and position of substituent groups influence both the emission spectra and 

the QY of fluorescent molecules. The effect of substituents, however, can be complex and 

no generalization should be assumed [38,39]. 

The results presented in the previous chapter for the solid state fluorescence 

properties of fluorene and its derivatives, show that all substituents studied seem to have a 

quenching effect on the fluorescence emission1 of crystalline fluorene. Within the 2-

substituted fluorene derivatives, only 2-aminofluorene and 2-fluorofluorene show 

appreciable QY results. As for the 2-substituents aldehyde, nitro, bromine, and iodide no 

significant emission was detected in the respective fluorene derivatives. In general, the 

presence of heavy atoms (like bromine and iodine) results in fluorescence quenching, 

known as internal heavy atom effect, because the increased probability of intersystem 

crossing favors the occurrence of phosphorescence instead of fluorescence [37,40,41]. 

Substitution in positions 2,7 and in position 9 of fluorene in general lead to very small 

or undetectable QY results in the solid state. From the di-substituted derivatives studied, 

2,7-di-tert-butylfluorene is the one that shows the greatest QY. While for 2-fluorofluorene, 

the emission was only partially quenched when compared to that of fluorene, in 2,7-

difluorofluorenethe quenching effect is stronger and the observed QY is irrelevant.  

Fluorenone shows very weak emission in the solid state as do all of its derivatives 

studied.  

Naphthalene and the dialkyl derivatives studied, with the exception of 2,6-

diethylnaphthalene, are strongly fluorescent in the solid state. The isopropyl and tert-butyl 

substituents lead to higher QY in the solid state than that determined for crystal 

naphthalene.  

 

 

5.3.2.1. Fluorene and 2,7-di-tert-butylfluorene 

 

Figure 5.26. shows the emission spectra of fluorene and 2,7-di-tert-butylfluorene in 

cyclohexane solution and in powder form. In cyclohexane solution, both compounds emit in 

the UV region. In the solid state, fluorene presents a broader emission range and continues 

emitting in the visible region of the spectrum. 

                                                           
1 From this point forward whenever “emission” is mentioned, it refers to fluorescence emission. 
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The emission spectrum of fluorene in solution is characterized by the maximum 

emission band at 303 nm and three smaller shoulders at longer wavelenghs. The spectra 

of 2,7-di-tert-butylfluorene is located at longer wavelengths, with a maximum emission at 

336 nm. In the solid state, 2,7-di-tert-butylfluorene presents a less structured emission 

spectra when compared to that of fluorene.  

The emission spectra of fluorene in cyclohexane solution are quite consistent with 

those published by Berlman [37] and Nakamizo and Kanda [42]. The determined QY in 

solution, however, is not in agreement with the result reported by Berlman [37] (section 

4.3.2.1.1.), which may be due to the presence of impurities in the samples studied and to 

eventual self-absorption effects. The impurities don’t seem to be relevant in the absorption 

spectra, for the concentration range studied. 
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Figure 5.26. Normalized fluorescence emission spectra of fluorene (in black) and 2,7-di-tert-butylfluorene (in blue): solid lines, 

- cyclohexane solution (1·10–6 molL–1); dashed lines - powder form. 

 

 

In the solid state, the emission spectra at wavelengths above 370 nm are consistent 

with those published by Sangster and Irvine [43] (exc not specified) and Pujari et al. [44] 

(exc = 363 nm). However, Di Marco and Giro [45] (exc = 265 nm) report a simpler, less 

structured emission spectra for ultrapure fluorene crystals, with maximum emission ca. 320 

nm. These authors consider that bands that may appear above 370 nm are usually a 
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consequence of impurities (anthracene and benz[f]indane) in the sample, which seems to 

be the case of the other literature results [43,44]. So, it seems that the results obtained in 

this work for solid fluorene may be affected by the presence of impurities of the studied 

samples as referred before. 

In the solid state, the quantum efficiency of fluorene is much higher than that of 2,7-

di-tert-butylfluorene. 

 

 

Table 5.8. Fluorescence quantum yields of fluorene and 2,7-di-tert-butylfluorene in cyclohexane solution and in powder form. 

Compound 
 

F
  

Solution (max. C) a Solution (min. C) b Powder

Fluorene 0.29 c 0.43 d 0.60 e 

Fluorene (literature) 0.80 f  

2,7-Di-tert-butylfluorene 0.43 0.49 0.09 

a Result for the least dilute solution; 

b Result for the most dilute solution; 

c 1st sample; 

d 2nd sample; 

e 2nd sample (approximately 15 % of area of the base of the quartz dish covered by sample); 

f Ref. [37], for 610–4 molL–1. 

 

 

A distortion of the emission spectrum at shorter wavelengths and a red shift of the 

emission maximum with increasing concentration are spectral indications of reabsorption 

[36,46]. To visualize the reabsorption effect, the emission spectra of fluorene and 2,7-di-

tert-butylfluorene were normalized to the maximum emission of the most concentrated 

solution. Figures 5.27 and 5.28 clearly show the dependence of the emission spectra of 

fluorene and 2,7-di-tert-butylfluorene with solution concentration, as the bands at shorter 

wavelengths are completely suppressed. The increase in QY for more dilute solutions (less 

self-absorption) is also evident, from the data compiled in table 5.8. 
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Figure 5.27. Normalized fluorescence emission spectra of fluorene in cyclohexane solution at different concentrations:              

a. 110–6 molL–1, b. 110–5 molL–1; c. 110–4 molL–1; d. 110–3 molL–1 (spectral data normalized to the maximum emission of 

the most concentrated solution). 

 

 

Wavelengh (/nm)

310 320 330 340 350 360 370 380

N
o
rm

a
liz

e
d
 F

lu
o
re

s
c
e
n
c
e
 I
n
te

n
s
it
y

0.0

0.2

0.4

0.6

0.8

1.0

 

 

Figure 5.28. Normalized fluorescence emission spectra of 2,7-di-tert-butylfluorene in cyclohexane solution at different 

concentrations: a. 110–6 molL–1, b. 110–5 molL–1; c. 110–4 molL–1. 
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5.3.2.2. Naphthalene and naphthalene derivatives 

 

Naphthalene and its 2,6-dialkyl derivatives studied emit in the UV region, either in 

solution or in the solid state. The emission spectrum of naphthalene in cyclohexane solution 

is characterized by two major bands at 322 and 337 nm (maximum emission), and two 

shoulders at 313 and 348 nm. The obtained spectra are in agreement with that published 

by Berlman [37], but the maximum emission reported by this author corresponds to the band 

at 322 nm. 

Naphthalene, as many aromatic hydrocarbons, can form excited dimers (excimers) in 

the solid state [47]. In solution, however, excimer fluorescence only occurs at relatively high 

concentrations (>0.1 molL–1 [48]) or at very low temperatures [49], reasons why it is not 

evident in the present results. 

The solid state fluorescence spectra of naphthalene is characterized by a broad band 

with a maximum emission at 339 nm, showing a slight red-shift when compared to that in 

cyclohexane solution, and two shoulders at about 342 and 350 nm. 

The shape of the fluorescence spectra of the three 2,6-dialkylnaphthalenes studied in 

cyclohexane solution is identical. It is characterized by a dominant band around 340 nm, 

slightly shifted to shorter wavelengths with increasing molar mass of the alkyl substituent, 

and two shoulders at about 333 and 354 nm. The emission spectra of naphthalene and of 

the 2,6-dialkylnaphthalenes was also recorded at more diluted concentrations (<10‒4   

molL–1). For these concentrations, the absorption was very low and the emission was not 

efficiently detected by the fluorimeter. 

The absorption and emission spectra of 2,6-dimethylnaphthalene in cyclohexane 

solution has been reported by Berlman [37]. The quantum yield (
F

 = 0.45, C = 1.310‒3 

molL–1) and the maximum emission wavelength ( F

max  = 340 nm) reported by this author 

are consistent with those determined in this work for the other dialkylnaphthalenes. 

Some alkyl aromatic compounds show noticeable shifts of the fluorescence spectra 

toward longer wavelengths when compared to the parent compound [37,50]. This is 

however not the case for the alkylnaphthalenes studied when considering the obtained 

results for naphthalene, as can be observed in figure 5.29. 
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Figure 5.29. Normalized fluorescence emission spectra of naphthalene and of the 2,6-dialkyl derivatives studied in 

cyclohexane solution: a. Naphthalene; b. 2,6-di-tert-butylnaphthalene; c. 2,6-diisopropylnaphthalene; d. 2,6-diethyl-

naphthalene. 
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Figure 5.30. Normalized fluorescence emission spectra of naphthalene and of the 2,6-dialkyl derivatives studied in the solid 

state: a. naphthalene; b. 2,6-di-tert-butylnaphthalene; c. 2,6-diisopropylnaphthalene. 

a         b      c  

a b c d  
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The fluorescence spectra of 2,6-diisopropylnaphthalene and 2,6-di-tert-

butylnaphthalene powders, with a maximum emission at around 346 nm and 344 nm 

respectively,  show a similar profile to that obtained for naphthalene, as can be observed in 

figure 5.30. The solid state fluorescence spectra of 2,6- di-tert-butylnaphthalene is shifted 

to shorter wavelengths compared to 2,6-diisopropylnaphthalene, as was the case in the 

solution fluorescence spectra. It does not reveal the existence of excimers, probably 

because the alkyl substituents sterically hinder the excimer formation.  

Table 5.9. presents a compilation of the QY results in cyclohexane solution and in 

powder form for naphthalene and for the 2,6-dialkyl derivatives studied. The QY’s of the 

2,6-dialkyl derivatives are in general larger than that of naphthalene in solution and in 

powder form. The exception is 2,6-diethylnaphthalene that, while revealing important 

fluorescence in cyclohexane solution, shows no significant fluorescence emission in the 

powder form. Considering the results obtained for the other dialkyl derivatives, this near 

complete quenching effect was unexpected. The reason behind this surprising result is still 

unclear. 

 

 

Table 5.9. Fluorescence quantum yields of naphthalene and of the 2,6-dialkyl derivatives studied in cyclohexane solution and 

in powder form. 

Compound 
F 

(solution) a 
F 

(powder) 

Naphthalene 0.22 0.23 

2,6-Dimethylnaphthalene 0.45 b  

2,6-Diethylnaphthalene 0.45 0.02 

2,6-Diisopropylnaphthalene 0.40 0.38 

2,6-Di-tert-butylnaphthalene 0.34 0.57 

a For 110–3 molL–1; 

b Ref. [37]. 

 

 

For the dialkyl derivatives studied, the QY in solution decreases with increasing molar 

mass of the alkyl substituent. In the solid state, despite the absence of QY results of 2,6-

methylnaphthalene, the tendency seems to be inverted as these results increase with 

increasing molar mass of the alkyl substituent. No fluorescence data were found in the 

literature regarding the three 2,6-dialkylnaphthalenes studied for comparison purposes. 
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5.4. Conclusions 
 

 

 This work is a contribution to further expand the knowledge of thermodynamic properties 

of fluorene, fluorenone and naphthalene derivatives, whose available literature data is 

scarce or often inaccurate. The combination of the different thermodynamic properties 

determined in the course of this work has, therefore, allowed a more thorough and 

comprehensive understanding of the molecular energetics of these polycyclic aromatic 

hydrocarbons. 

 Additionally, useful correlations (5.4 - 5.16) were developed based on the obtained 

results that allow the estimation of thermodynamic properties of compounds whose 

experimental study was not possible. 

 Keeping in mind that these compounds are acknowledged environment pollutants, the 

collected data regarding the dependence of vapor pressure with temperature and 

consequently derived properties of phase transitions are crucial to better understand and 

control their environmental impact. 

 When considering the eventual application of these compounds in optoelectronic 

devices, this work provides important information regarding the thermodynamic stability 

of some of the compounds in the crystalline phase. The assessment of thermodynamic 

stability is important to evaluate the reactivity of these compounds, in order to predict 

convenient routes leading to their degradation in the environment. 

 Even though so far the study of photoluminescence properties may be considered 

exploratory, it opened a new research possibility that will be explored in the future. 
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Annex A. 
 

 

A.1. Units and conversions  
 

The relative atomic masses used for the elements in the calculation of all molar 

quantities throughout this work were those recommended by the IUPAC Commission in 

2011 [1]. In this work, the International System of Units (SI) [2] was adopted. Multiples and 

submultiples of SI units were used when necessary, based on the order of magnitude of the 

values to which these units referred to. Some conversions were necessary to adapt 

literature values to the SI and are described as follows, accompanied by the conversion 

ratio of the corresponding SI unit: 

 

• The temperature values in degrees Celsius (°C) were converted into Kelvin (K) 

according to the relation: 

 

T / K = T / °C + 273.15 (A.1) 

 

• The energy, when expressed in calories (cal), were converted to joules (J) according 

to the relation: 

 

1 cal = 4.184 J (A.2) 

 

• The vapor pressure values, when expressed in millimeters of mercury (mmHg), were 

converted to Pascal (Pa) according to the relation: 

 

1 mmHg = 133.322 Pa (A.3) 

 

 

A.2. Constants 
 

• Gas constant: R = 8.3144598(48) JK–1mol–1 [3] 

• Avogadro constant: NA = 6.022140857(74)1023 [3]   
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Annex B. 
 

 

B.1. Abbreviation, acronym and symbol list 
 

Table B.1. List of abbreviations, acronyms and symbols used and respective meanings. 

Abbreviation, acronym 
or symbol 

Meaning 

a y-axis intercept 

Ao Area of the effusion orifice 

Abs Absorbance  

aux Auxiliar 

b Slope 

BA Benzoic acid 

C 
 

Concentration (molL‒1), or 
Capacitance of the capacitor 

cal calibration 

carb Carbon 

CAS Chemical Abstracts Service 

cert Certificate 

corr Corrected 

cpd compound 

cr Crystalline 

CB Benzenic carbon (Benson notation) 

Cv
 

Molar heat capacity, at constant volume 

cp Specific heat capacity, at constant pressure 

o

,mpC
 

Standard molar heat capacity, at constant pressure 

g o

cr/l ,mpC  Difference between the standard molar heat capacities of the gas 
phase and the crystalline/liquid phase, at constant pressure 

d Doublet 

dd Doublet of doublets 

ddd Doublet of doublet of doublets 

dt Doublet of triplets 

ddt Doublet of doublet of triplets 

E 
 

Energy, or 
Energy equivalent 

 …/… 
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…/…  

Ef Energy equivalent of the final state 

Ei Energy equivalent of the initial state 

exp Experimental 

FID Free induction decay 

GC Gas Chromatography 

Gm Molar Gibbs energy 

o

f mG  Standard molar Gibbs energy of formation 

g o

cr/l mG  Standard molar Gibbs energy of sublimation/vaporization 

h 
 

Height, or 
Planck constant 

HPLC High Pressure Liquid Chromatography 

o

c mH  Standard molar enthalpy of combustion  

o

f mH  Standard molar enthalpy of formation 

g o

cr/l mH
 

Standard molar enthalpy of sublimation/vaporization 

I Intensity of electric current 

IBP Isothermal bomb process 

ign Ignition 

J Coupling constant 

k Cooling constant of the calorimeter 

kcal Calibration constant 

Khp Hiby and Pahl correction factor 

Kn Knudsen number 

Kp Equilibrium constant, expressed in terms of pressure 

l Liquid 

l Thickness  

lit Literature 

m 
 

Mass, or 
Multiplet 

Δm Mass variation 

M Molar Mass 

min 
 

Minimum, or 
Minute 

max Maximum 

n 
 
 

Number of independent determinations, or 
Number of hydration molecules, or 
Number of molecules per unit of volume 

 …/… 
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…/…  

Δn Variation of the number of moles of gaseous species 

NMR Nuclear magnetic resonance 

p° Reference pressure 

ptp Pressure of the triple point  

ppm Parts per million 

Q Amount of heat 

r 
 

Radius, or 
Heat of rotation 

R2  Correlation coefficient 

s Singlet 

sol Solution 

Sm Molar entropy 

o

f mS  Standard molar entropy of formation 

g o

cr/l mS  Standard molar entropy of sublimation/vaporization 

tf Final instant of the main period 

ti Initial instant of the main period 

tr Instant when the bomb rotation is initiated 

Ts Temperature of the surroundings 

T∞ Convergence temperature 

Tfus Temperature of fusion 

Ttp Temperature of the triple point 

Tf Final temperature 

Ti Initial temperature 

Tm Mean temperature 

ΔT 
 

Temperature variation, or 
Experimental temperature range  

ΔTcorr Thermal corrective term 

ΔTad Variation of temperature in adiabatic conditions 

td Triplet of doublets 

tdd Triplet of doublet of doublets 

u Variation in temperature caused by heat of stirring 

ΔU Internal energy variation 

Δcuo Standard massic energy of combustion 

ΔcUo Standard molar energy of combustion 

 …/… 
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…/…  

ΔUΣ Energy variation associated to the Washburn corrections 

v Frequency 

V Volume 

Vi Initial voltage of the capacitor 

Vf Final voltage of the capacitor 

Vm Molar volume 

g

cr/l mV  

 

Molar volume variation between the gas phase and the 
crystalline/liquid phase 

wo Transmission probability factor 

xi Individual value 

͞x  Mean value 

 Condensation coefficient 

 Chemical shift 

εcal 

 
Energy equivalent of the calorimeter with an empty combustion 
bomb 

εf 
 

Energy equivalent of the combustion bomb containing only the 
products formed 

εi 
 

Energy equivalent of the combustion bomb containing only the 
reactants 

 Reference temperature 

λ 
 

Mean free path of gas molecules, or 
Wavelength 

exc  Excitation wavelength 

Abs

max  Maximum absorption wavelength 

F

max  Maximum fluorescence emission wavelength 

μ Chemical potential 

ν 
 

Vibrational energy level, or 
Stoichiometric coefficients 

π Pi 

ρ Density 

σ 
 

Diameter of molecular collision, or 
Standard deviation of the mean 

Σ Summation 

 
Heat flow, or 
Diameter 


F
 Fluorescence quantum yield 

% Percentage 

® Registered trademark 
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Annex C. 

 

 

C.1. 1H NMR, 13C NMR and mass spectral data 

 

The 1H NMR and 13C NMR data were acquired at room temperature using deuterated 

chloroform (CDCl3) as solvent. Chemical shifts () are expressed in ppm values relative to 

tetramethylsilane used as internal reference, and coupling constants (J) are expressed in 

Hz. Electron impact mass spectral data (EI-MS) are reported as m/z (% of relative intensity) 

of the most important fragments, where M•+ refers to the molecular ion. 

 

  
 

Figure C1. Structures, and IUPAC numbering, of fluorene and fluorenone. 

 

 

C.1.1. 2,7-Difluorofluorene  

1H NMR (400 MHz, CDCl3)  = 7.63 (2H, dd, J = 8.4, 5.0 Hz, H4, H5), 7.22-7.19 (2H, m, H1, 

H8), 7.10-7.02 (2H, m, H3, H6), 3.86 (2H, s, H9, H9’). 
13C NMR (100 MHz, CDCl3)  = 163.06 (d, 1JCF = 244.4, 1.1 Hz, C2, C7), 145.91 (C10, C13), 

137.81 (C11, C12), 121.27 (C4, C5), 114.98 (d, 2JCF = 23.1 Hz, C3, C6), 113.24 (d, 2JCF = 

23.1 Hz, C1, C8), 37.87 (C9). 

EI/MS m/z (%): 203 (26), 202 (M+•, 100), 201 (93), 199 (12), 181 (16), 101 (13), 101 (14). 

 

C.1.2. 2,7-Dichlorofluorene 

1H NMR (400 MHz, CDCl3)  = 7.66 (2H, d, J = 8.2 Hz, H4, H5), 7.53 (2H, s, H1, H8), 7.37 

(2H, dd, J = 8.2, 1.9 Hz, H3, H6), 3.89 (2H, s, H9, H9’). 
13C NMR (100 MHz, CDCl3)  = 145.49 (C10, C13), 140.16 (C11, C12), 133.67 (C2, C7), 

128.21 (C4, C5), 126.31 (C1, C8), 121.69 (C3, C6), 37.53 (C9). 

EI/MS m/z (%): 238 ([M+4]+, 25), 237 (24), 236 ([M+2]+, 77), 235 (46), 234 (M+•, 93), 233 

(33), 202 (24), 201 (83), 200 (57), 164 (47), 163 (67), 99 (59), 82 (46). 
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C.1.3. 2,7-Diiodofluorene 

1H NMR (400 MHz, CDCl3)  = 7.87 (2H, d, J = 0.9 Hz, H1, H8), 7.72 - 7.67 (2H, m, H3, 

H6), 7.49 (2H, d, J = 8.0 Hz, H4, H5), 3.83 (2H, s, H9, H9’). 
13C NMR (100 MHz, CDCl3)  = 144.84 (C10, C13), 140.41 (C11, C12), 136.01 (C1, C8), 

134.18 (C3, C6), 121.59 (C4, C5), 92.44 (C2, C7), 36.30 (C9). 

EI/MS m/z (%): 418 (M+•, 100), 291 (32), 164 (40), 163 (38). 

 

C.1.4. 9-Chlorofluorene 

1H NMR (400 MHz, CDCl3)  = 7.71 (2H, d, J = 7.5 Hz, H4, H5), 7.68 (2H, ddt, J = 7.3, 1.3, 

0.7 Hz, H1, H8), 7.44 (2H, tdd, J = 7.5, 1.2, 0.5 Hz, H3, H6), 7.38 (2H, td, J = 7.5, 1.2 Hz, 

H2, H7), 5.83 (s, H9). 

13C NMR (100 MHz, CDCl3)  = 144.70 (C10, C13), 140.92 (C11, C12), 130.26 (C1, C8), 

128.93 (C2, C7), 126.73 (C3, C6), 121.03 (C4, C5), 58.44 (C9). 

EI/MS m/z (%): 202 ([M+2]+, 14), 200 (M+•, 42), 166 (29), 165 (100), 163 (25), 83 (21). 

 

C.1.5. 2-Bromofluorenone 

1H NMR (400 MHz, CDCl3)  = 7.80 (d, J = 1.8 Hz, H1), 7.69 (dt, J = 7.4, 0.9 Hz, H8), 7.64 

(dd, J = 7.9, 1.9 Hz, H3), 7.56 – 7.50 (2H, m, H5, H6), 7.42 (d, J = 7.9 Hz, H4), 7.39 – 7.31 

(m, H7). 
13C NMR (100 MHz, CDCl3)  = 193.31 (C9), 144.61 (C12), 143.94 (C11), 138.02 (C3), 

136.71 (C10), 135.94 (C6), 134.64 (C13), 130.34 (C1), 128.50 (C7), 125.54 (C8), 123.84 

(C2), 122.63 (C4), 121.35 (C5). 

 

C.1.6. 2-Iodofluorenone 

1H NMR (400 MHz, CDCl3)  = 7.99 (dd, J = 1.6, 0.5 Hz, H1), 7.85 (dd, J = 7.8, 1.6 Hz, H3), 

7.68 (dt, J = 7.4, 0.9 Hz, H8), 7.55 – 7.50 (m, H5, H6), 7.36 (ddd, J = 7.4, 6.1, 2.5 Hz, H7), 

7.31 (dd, J = 7.8, 0.4 Hz, H4). 

13C NMR (100 MHz, CDCl3)  = 192.42 (C9), 143.78 (C12), 143.66 (C11), 143.12 (C3), 

135.77 (C10), 135.01 (C1), 133.37 (C13), 133.36 (C6), 129.61 (C7), 124.57 (C8), 122.02 

(C4), 120.47 (C5), 93.92 (C2). 

EI/MS m/z (%): 307 (23), 306 (M+•, 100), 179 (16), 151 (71), 150 (35). 
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C.1.7. 2,7-Dichlorofluorenone 

1H NMR (400 MHz, CDCl3)  = 7.62 (2H, dd, J = 1.9, 0.6 Hz, H1, H8), 7.47 (2H, dd, J = 8.0, 

1.9 Hz, H3, H6), 7.44 (2H, dd, J = 8.0, 0.6 Hz, H4, H5). 

13C NMR (100 MHz, CDCl3)  = 191.98 (C9), 142.72 (C11, C12), 136.33 (C10, C13), 136.30 

(C2, C7), 135.44 (C3, C6), 125.89 (C1, C8), 122.40 (C4, C5). 

EI/MS m/z (%): 252 ([M+4]+, 18), 250 ([M+2]+, 80), 249 (24), 248 (M+•, 100), 220 (16), 150 

(38), 111 (17), 99 (18), 85 (30), 84 (19), 69 (20), 57 (47). 

 

C.1.8. 2,7-Diiodofluorenone 

1H NMR (400 MHz, CDCl3)  = 7.99 (2H, dd, J = 1.6, 0.4 Hz, H1, H8), 7.86 (2H, dd, J = 7.8, 

1.6 Hz, H3, H6), 7.30 (2H, dd, J = 7.8, 0.4 Hz, H4, H5). 

13C NMR (100 MHz, CDCl3)  = 191.88 (C9), 144.34 (C3, C6), 143.88 (C11, C12), 135.75 

(C10, C13), 134.46 (C1, C8), 123.03 (C4, C5), 95.34 (C2, C7). 

EI/MS m/z (%): 433 (24), 432 (M+•, 100), 277 (29), 150 (55), 85 (15), 71 (18), 57 (23). 
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C.2. Experimental results of test substances 

 

 

C.2.1. Benzoic Acid 

 

 

Table C.1. Vapor pressures of benzoic acid determined by the Knudsen effusion method. a 

T / K t/s Orifices 
m / mg  p / Pa 

msmall mmedium mlarge  psmall pmedium plarge pmean 

302.16 21857 A1’-B4’-C7’ 6.89 8.43 10.32  0.181 0.179 0.174 0.178 

302.16 21211 A1’-B4’-C7’ 6.74 8.15 10.19  0.182 0.178 0.177 0.179 

302.16 21059 A1’-B4’-C7’ 6.74 8.16 10.10  0.183 0.180 0.177 0.180 

304.31 21857 A2’-B5’-C8’ 8.79 11.16 13.45  0.231 0.237 0.228 0.232 

304.21 21211 A2’-B5’-C8’ 8.39 10.68 12.94  0.227 0.234 0.226 0.229 

304.21 21059 A2’-B5’-C8’ 8.38 10.61 12.84  0.229 0.234 0.226 0.230 

306.18 21857 A3’-B6’-C9’ 10.83 13.29 16.46  0.286 0.284 0.280 0.283 

306.28 21211 A3’-B6’-C9’ 10.76 13.02 16.36  0.293 0.286 0.287 0.289 

306.28 21059 A3’-B6’-C9’ 10.65 13.09 16.24  0.292 0.290 0.286 0.289 

311.14 14144 A1’-B4’-C7’ 12.76 15.49 18.87  0.523 0.521 0.498 0.514 

311.15 14503 A1’-B4’-C7’ 12.90 15.67 19.23  0.515 0.514 0.495 0.508 

311.15 14635 A1’-B4’-C7’ 13.13 15.87 19.45  0.522 0.510 0.498 0.510 

314.19 14144 A2’-B5’-C8’ 17.39 21.51 26.36  0.716 0.717 0.699 0.711 

314.21 14503 A2’-B5’-C8’ 17.75 22.44 26.90  0.713 0.729 0.696 0.713 

314.21 14635 A2’-B5’-C8’ 17.94 22.69 27.28  0.716 0.733 0.701 0.717 

317.27 14144 A3’-B6’-C9’ 24.24 29.68   1.003 0.994  0.999 

317.27 14503 A3’-B6’-C9’ 24.80 30.24   1.001 0.987  0.994 

317.27 14635 A3’-B6’-C9’ 25.08 30.66 38.63  1.006 0.995 0.998 1.000 

a u(T/K) = ±0.01, u(p/Pa) = ±0.01. 

 

 

 

 

 

 

 

 



  312 FCUP 
Annexes 

 

Table C.2. Vapor pressures of benzoic acid determined by the static method with capacitance manometers. a 

T/K p/Pa 100p/p b T/K p/Pa 100p/p b T/K p/Pa 100p/p b 

Crystalline phase, static method 

315.19 0.831 0 331.01 4.264 0.3 346.85 19.17 0 

319.05 1.249 0 334.89 6.213 0.1 350.66 26.96 0.2 

323.10 1.905 0 338.91 9.065 ‒0.1 354.75 38.06 ‒0.2 

327.00 2.823 ‒0.1 342.90 13.37 0    

a u(T) = ±0.01 K, u(p) = 0.01 + 0.0025p Pa; 

b p = p – pcalc, where pcalc is calculated from the Clarke and Glew equation with parameters given in table C.3. 

 

 

Table C.3. Standard (po = 0.1 MPa) molar properties of sublimation of benzoic acid, derived from the experimental vapor 

pressure results. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated value. d  Standard deviation of the fit defined 

as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the number of 

adjustable parameters in the Clarke and Glew equation; e Mean temperature. 

 

 

The value g o

cr ,mpC  = −20.8 JK−1mol−1 was estimated in this work from the difference 

between the values of 
o

,mpC (g, 298.15 K) = 126.0 JK−1mol−1 [4] and 
o

,mpC (cr, 298.15 K) = 

146.8 JK−1mol−1 [5]. The results of g o

cr m(298.15 K)H  thus obtained are in very good 

agreement with the review of literature values for benzoic acid presented by Ribeiro da Silva 

et al. [6] ( g o

cr m(298.15 K)H /kJmol1 = 90.2 ± 1.9, mean of 23 values). 

  

T / K  / K 

g o

cr m( )G    
g o

cr m( )H    g o  

cr m( ) aS   ( )p  b 
R2 

cr o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, effusion method 

302.16-317.27 
298.15 34.01 ± 0.01  90.9 ± 0.2  190.8 ± 0.7  1.110‒1 

0.9999 20.8 0.007 
309.72e 31.81 ± 0.01  90.7 ± 0.2  190.1 ± 0.6  4.310‒1 

Crystalline phase, static method 

315.19-354.75 
298.15 33.94 ± 0.02  91.0 ± 0.2  190.4 ± 0.7  1.110‒1 

1.0000 20.8 0.008 
334.97e 26.94 ± 0.02  90.2 ± 0.2  188.9 ± 0.6  6.3 
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Figure C.2. Plots of ln(p/Pa) against 1000(K/T) of benzoic acid: effusion vapor pressures for the different effusion orifices - , 

small; , medium; , large. 
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Figure C.3. Plots of ln(p/Pa) against 1000(K/T) of benzoic acid: , static crystal vapor pressures. 
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C.2.2. N-Methylnicotinamide 

 

 

Table C.4. Vapor pressures of N-methylnicotinamide determined by the Knudsen effusion method. a 

T / K t/s Orifices 
m / mg  p / Pa 

msmall mmedium mlarge  psmall pmedium plarge pmean 

329.17 28628 A2’-B5’-C8’ 5.28 6.58 8.16  0.104 0.105 0.104 0.105 

331.27 28628 A3’-B6’-C9’ 6.77 8.20 10.23  0.134 0.132 0.131 0.132 

333.15 21342 A1’-B4’-C7’ 6.15 7.48 9.31  0.164 0.162 0.160 0.162 

335.17 21342 A2’-B5’-C8’ 7.68 9.76 12.10  0.206 0.211 0.209 0.209 

337.27 21342 A3’-B6’-C9’ 9.70 12.02 15.00  0.261 0.261 0.259 0.260 

339.15 14545 A1’-B4’-C7’ 8.30 10.27 12.56  0.328 0.328 0.320 0.325 

341.16 14545 A2’-B5’-C8’ 10.20 12.91 15.82  0.404 0.414 0.404 0.407 

343.27 14545 A3’-B6’-C9’ 12.91 15.86 19.72  0.513 0.510 0.505 0.510 

345.13 10761 A1’-B4’-C7’ 11.63 14.19 17.65  0.627 0.619 0.613 0.619 

347.16 10761 A2’-B5’-C8’ 14.26 17.94 22.30  0.771 0.784 0.776 0.777 

349.27 10761 A3’-B6’-C9’ 17.91 21.97 27.42  0.971 0.964 0.957 0.964 

a u(T/K) = ±0.01, u(p/Pa) = ±0.01. 
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Figure C.4 Plots of ln(p/Pa) against 1000(K/T) of N-methylnicotinamide: effusion vapor pressures for the different effusion 

orifices - , small; , medium; , large. 
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Table C.5. Standard (po = 0.1 MPa) molar properties of sublimation and vaporization of N-methylnicotinamide, derived from 

the experimental vapor pressure results. 

a Calculated through equation 4.14; b Calculated through equation 4.15; c Estimated value [7]; d  Standard deviation of the fit 

defined as  n 2

calc ii=1
s= (ln -ln ) ( - )p p n m , where n is the number of experimental points used in the fit and m is the number 

of adjustable parameters in the Clarke and Glew equation; e Mean temperature. 

 

 

  

T / K  / K 

g o

cr m( )G    
g o

cr m( )H    g o  

cr m( ) aS   ( )p  b 
R2 

cr o

g ,m

c

pC  
s d 

kJmol1  kJmol1  JK1mol1  Pa JK1mol1 

Crystalline phase, effusion method 

329.17-349.27 
298.15 44.24 ± 0.04  107.4 ± 0.4  211.8 ± 1.3  1.810–3 

0.9999 27.4 0.008 
339.22e 35.62 ± 0.01  106.2 ± 0.4  208.1 ± 1.3  3.310–1 

Crystalline phase, literature [7] 

347.78-377.39 298.15 44.13 ± 0.03  107.1 ± 0.2  211.2 ± 0.7  1.810–3 1.0000 27.4 0.006 
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C.2.3. Pyrene 

 

 

Table C.6. Literature results for the fluorescence quantum yield of pyrene in different solvents, and in powder form.  

Sample Solvent C / molL–1 exc / nm 
F
 Method Source 

Solution Ethanol 210–6 313 0.65 Relative a [8] 

Solution Ethanol  313 0.72 Relative b [9] 

Solution Ethanol Infinite dilution c 313 0.53 ± 0.02  Relative d  [10] 

Solution Benzene Infinite dilution c 313 0.60 ± 0.03 Relative d  [10] 

Solution Cyclohexane Infinite dilution c 313 0.58 ± 0.01 Relative d  [10] 

Solution Cyclohexane 510–5 313 0.32 Relative e  [11] 

Solution Cyclohexane  266 0.69 Relative e [12] 

Solution Cyclohexane  241 0.31 Relative e [13] 

Solution Cyclohexane   0.66 ± 0.02 Absolute f [14] 

Solid    0.68 Absolute f [15] 

a Standard solution of anthracene in ethanol (
F
 = 0.27 [16]); 

b Standard solution of anthracene in ethanol (
F
 = 0.30 [17]); 

c Fluorescence data extrapolated to zero concentration;  

d Intensities of fluorescence are compared with the intensities of excitation light scattered from non-absorbing, colloidal 

reference solutions;  

d Standard solution of 9,10-diphenylanthracene (
F
 = 1.0 [18]); 

e Integrating sphere. 

 

 

Solution fluorescence 

 

Table C.7. Fluorescence spectroscopic data of pyrene in cyclohexane solutions, at room temperature.  

 exc 
a / nm 

F

max b / nm 
F

 c 

510–7 molL–1  383.8 0.43 ± 0.01 

110–5 molL–1 335 383.8 0.44 ± 0.01 

110–4 molL–1  383.8 0.45 ± 0.01 

a Excitation wavelength corresponding to the maximum absorption determined using UV-Vis spectrometry for the 

concentration 110–5 molL–1; 

b Wavelength at the maximum fluorescence emission intensity; 

c Mean values and standard deviations of the mean of three independent measurements. 
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Pyrene is known to present excimer emission in concentrated solutions [19] so, in 

order to quantify solely the monomer emission quantum yield, only diluted solutions 

(<110–4 molL–1) were studied. The quantum yield results reported in references 11 and 

12 refer to dilute solutions that have not been degassed prior to measurement and the 

reported quantum yield results are smaller when compared to the remaining literature data. 

Even though the fluorescence spectra obtained in this work are quite consistent with those 

reported in the literature, the determined quantum yields seem to be consistently smaller 

than the ones found in the literature for cyclohexane solutions (not considering the 

literature results reported by in references 11 and 13). 

 
 

Solid state fluorescence 

 

Table C.8. Absorption and fluorescence quantum yield results of pyrene in powder form, for different amounts of sample. 

Sample amount a exc
 / nm Abs b 

F

max b / nm 
F

 c 

40 % 330 d 0.488 476.5 0.69 

15 %   0.354  0.53 

40 %  330 d 0.569 470.5 0.51 

100 %   0.719  0.50 

15 %   0.350  0.40 

40 %  380 f 0.689 470.5 0.40 

100 %   0.742  0.39 

a Rough estimate of the percentage of area of the base of the quartz dish covered by sample; 

b Determined by the Quantaurus-QY;  

c Wavelength at the maximum fluorescence emission intensity; 
d Excitation wavelength corresponding to the maximum absorption determined using UV-Vis spectrometry; 

f Excitation wavelength corresponding to the maximum absorption determined using the Quantaurus apparatus. 

 

 

The solid state emission spectrum shows a single broad unstructured band 

corresponding to the excimer, red-shifted in relation to the monomer (figure C.5). The first 

value reported in table C.8. for the solid state quantum yield of pyrene is in agreement with 

that reported in reference 12. This determination was repeated a few months later to test 

the dependence of quantum yield with amount of sample and eventual self-absorption 

effects in the solid phase, and the repeated results were smaller than the original one. The 

difference in quantum yield could be due to eventual sample degradation. 
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Figure C.5. Normalized UV/vis absorption and fluorescence emission spectra of pyrene (exc = 335 nm): dashed line - 

absorption spectra (110–5 molL–1); solid line - solution fluorescence spectra (510–7 molL–1); dotted line - powder 

fluorescence spectra. 
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