
Incremental Modular Testing for AOP

André Restivo1, Ademar Aguiar1 and Ana Moreira2

1Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
2NOVA LINCS, Universidade Nova de Lisboa, Costa da Caparica, Portugal

{arestivo, aaguiar}@fe.up.pt, amm@fct.unl.pt

Keywords: Testing, Aspects, Modularity.

Abstract: By designing systems as sets of modules that can be composed into larger applications, developers unleash
a multitude of advantages. The promise of AOP (Aspect-Oriented Programming) is to enable developers to
organize crosscutting concerns into separate units of modularity making it easier to accomplish this vision.
However, AOP does not allow unit tests to be untangled, which impairs the development of properly tested
independent modules. This paper presents a technique that enables developers to encapsulate crosscutting
concerns using AOP and still be able to develop reusable unit tests. Our approach uses incremental testing
and invasive aspects to modify and adapt tests. The approach was evaluated in a medium scale project with
promising results. Without using the proposed technique, due to the presence of invasive aspects, some unit
tests would have to be discarded or modified to accommodate the changes made by them. This would have
a profound impact on the overall modularity and, in particular, on the reusability of those modules. We will
show that this technique enables proper unit tests that can be reused even when coupled with aspect-oriented
code.

1 INTRODUCTION

The development of large software projects is a com-
plex task. Unfortunately, humans often struggle when
asked to cope with complex problems. The way we
usually deal with this is by decomposing the larger
problem into several smaller and more manageable
ones. When talking about actual code, we usually call
these smaller pieces of software modules.

To reap as many advantages as possible from this
division into smaller modules, several important as-
pects should be taken into consideration. Modules
should have low coupling and high cohesion between
them and concerns should not be spread over several
modules or tangled inside one. A good decomposition
should lead to modules that can be described, reused,
replaced, and tested in isolation.

Classical paradigms, like Object Oriented Pro-
gramming (OOP), suffer from the tyranny of the
dominant decomposition (Peri Tarr et al., 1999) that
states that when programs are modularized follow-
ing any given decomposition criteria, all the concerns
that do not align with that criteria end up tangled
and scattered throughout several modules of the sys-
tem. Aspect-Oriented Programming (AOP) aims at
encapsulating these crosscutting concerns into sepa-
rate units of modularity (Gregor Kiczales et al., 1997).

One way AOP languages, like AspectJ (The
Eclipse Foundation, 2010), bypass this limitation is
by allowing programmers to isolate these crosscutting
concerns into separate units, called aspects. An as-
pect defines a set of advices that run whenever a set
of selected points (joinpoints) in the underlying sys-
tem is reached. This allows units containing aspects
to change the behaviour of other units.

Aspect-oriented software development promises
to enable developers to achieve this kind of isolation,
not only at the code level, but also in the require-
ments (Rashid et al., 2003) and design (Baniassad and
Clarke, 2004) phases. By using aspects, developers
are able to separate each concern into its own unit
of modularity. Having concerns untangled improves
reusability as the code of each module pertains only
to a single concern.

However, when modules are reused, there are
other artifacts besides the actual code that must be
transferred between projects. Some of those artifacts
are the tests that help develop reliable software.

In this paper, we argue that due to the nature of
aspects, some unit tests cannot be reused in different
contexts thus impeding module reusability. Testing
modules in isolation also becomes harder. We will
present a technique that uses automatic dependency
detection and incremental compilation, together with

50
Restivo, A., Aguiar, A. and Moreira, A.
Incremental Modular Testing for AOP.
In Proceedings of the 11th International Joint Conference on Software Technologies (ICSOFT 2016) - Volume 2: ICSOFT-PT, pages 50-59
ISBN: 978-989-758-194-6
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



some Java annotations, that allows the cohexistance
of testing methodologies together with AOP code
while still keeping the code portable. To support this
technique, a tool has also been developed and will be
presented in this paper.

In Section 2, the problem we propose to tackle will
be identified. Section 3 describes a technique, based
on incremental testing, that aims at solving the pro-
posed problem. Section 4 presents a Eclipse based
implementation of the technique. Our efforts to vali-
date the solution are presented in Section 5. Finally,
Sections 6 and 7 describe related work and our con-
clusions.

2 THE PROBLEM

Let us start with a simple example in AspectJ. Imagine
we have a base class called Question that represents a
multiple choice question in an exam (see Listing 1 for
a simplified sample of the class).

Listing 1: Question Class
public class Question {

public void addChoice (String choice)
{...}

public String getChoice(int number)
{...}

}

This class is part of a module with the same name
and has several tests. One of these tests adds some
choices to the question and verifies if they are present
and in the correct order (see Listing 2 for a simplified
version of the test).

Listing 2: Question Test.
public void testChoices () {

Question q =
new Question (" Choose a color ?");

q.addChoice ("blue");
q.addChoice ("red");
q.addChoice ("green");

assertEquals ("blue", q.getChoice (0));
assertEquals ("red", q.getChoice (1));
assertEquals ("green", q.getChoice (2))

;
}

As we have postulated before, this test should also
be reusable. If the Question module is reused in an-
other project, it should also be possible to reuse the
test in that project without any modifications. In fact,
both test and code should be seen as parts of a single
reusable artefact.

In a classical object-oriented environment, this
would not be a problem. This class and its test would

always work in the same way regardless of any other
artifacts present in the system. This does not happen
when aspects are present. Imagine that we add an as-
pect called RandomizeChoices that changes the posi-
tions of the choices at random as they are added (see
Listing 3 for a small excerpt of this aspect).

Listing 3: Randomize Aspect.
pointcut addChoice(List list ,

String choice) :
cflow(

call(void Question.addChoice (..))
) &&
!within(Randomize) &&
target(list) && args(choice) &&
call(boolean List.add (..));

boolean around(List list ,
String choice) :

addChoice(list , choice) {
int position =

random.nextInt(list.size() + 1);
list.add(position , choice);
return true;

}

When this aspect is added, our testChoices test
will start failing five times out of six. We did not
change the code of the Question class or any code this
class depends on. In object-oriented programming,
the problem of having code from outside a module
influencing the outcome of a test was solved by us-
ing mocks and stubs (Fowler, 2007). The difference
is that, when dealing with objects, only the code the
module depends on can alter its behavior. As we just
saw, that is not the case when coding with aspects.
In the next paragraphs we will describe some naive
solutions for this problem.

Moving the Test. The most simple solution would
be to move the offending test from the Question mod-
ule to the RandomChoices module and change it to
accommodate the new concern. This could be easily
achieved by using the contains method to test for the
presence of a choice instead of looking for it in the
expected location. The problem with this approach is
that the Question module would lose the testChoices
test. This would make it harder to reuse this module in
other systems. At the same time, the basic function-
ality of being able to add choices to questions would
no longer be tested separately.

Changing the Test. By altering the testChoices
test to accommodate the changes introduced by the
RandomChoices aspect, we could easily make it work
again. This is the same solution as the one we saw be-
fore but instead of moving the test to the other module
and making the changes there, we just change the test
we already have. This would also have the effect of

Incremental Modular Testing for AOP

51



making the Question and RandomChoices concerns
tangled with each other – not at the working code
level but at the testing level – preventing the Ques-
tion module from being easily reused and leaving the
RandomChoices without any tests.

Using Aspects to Change the Test. We could
keep the Question module code unchanged and use an
aspect to change the testChoices test behavior when-
ever the RandomChoice module is present in the sys-
tem. This way the Question tests would work as
planned when the module is used in isolation and the
RandomChoices module would have a different test
for its own behavior. Although having some advan-
tages, the problem with this approach is the same as
in the previous one. The difference is that the tangling
now happens in the RandomChoices module.

None of these solutions gives us a scenario where
modularity is preserved in its entirety. However, we
could summarize the principles in what would be a
good solution:

1. Obliviousness. Tests should only test the behav-
ior of their own modules.

2. Completeness. All concerns should have their
own tests and all tests should run at least once.

3. Correctness. When a module is reused in a dif-
ferent context, tests should still work correctly.

In the next section, we will describe a technique
based on incremental compilation that allows the us-
age of unit tests without breaking modularity. For the
sake of completeness, we will explore four different
ideas that will converge into our final proposition and
we will explain how these compare to one another in
several different aspects.

3 INCREMENTAL TESTING

A well-designed software system should be built in
such a way that low-level modules do not depend on
higher level modules. Software systems should be
built layer by layer, with each layer adding more func-
tionalities. If this is accomplished, then the modules
dependency graph becomes a directed acyclic graph
(DAG).

Unfortunately, not all software systems follow this
recommendation and it is common to find circular de-
pendencies even in well-designed software systems.
In graph theory, these collection of nodes that form
circular dependencies are called strongly connected
components, and although they cannot be easily re-
moved, they can be isolated. We do this by consider-
ing each strongly connected component in the graph
as a super module. In this way, we can consider that

all software systems can be thought of as being com-
posed as a DAG of module dependencies.

If we are able to extract this dependency graph
from the source code, we can be sure that we will
have at least one low-level module, lets call it module
A, that does not depend upon any other module. This
module can be compiled and tested in isolation shield-
ing it from the potential influence of higher level as-
pects.

After this initial module is tested, we can take an-
other module that only depends on this module, lets
call it module B and test both of them together. Tests
from module B can be easily shielded from eventual
errors in the source code of module A by using clas-
sic object-oriented unit testing techniques like mocks
and stubs. On the other hand, tests from module A
can still be influenced by aspects on module B mak-
ing them fail. We already ran the tests of module A
once, so all we need to do is to make sure that tests
that fail under the influence of aspects from module B
are not run again. This process can then be repeated
for every module in the system until all tests have run
at least once.

When we first started researching this idea
(Restivo and Aguiar, 2008), we postulated that tests
could be used to detect unexpected interferences
caused by aspects. An unexpected interference hap-
pens when a module containing invasive aspectual
code changes the behavior of another module in un-
foreseen and undesirable ways.

If tests are in place, these interferences can be eas-
ily detected. However, there will be no apparent dif-
ference between an unexpected interference and an
expected interaction. The developer must be able to
differentiate between the two of them and act accord-
ingly. Interferences must be fixed and interactions
must be dealt with; not because they are wrong but
because they impede the testing process.

To fix the testing process, the developer must be
able to specify that a certain interaction is desirable.
After that, the testing process can ignore any tests that
fail due to that interaction but only after the test has
been successfully executed without the offending as-
pect. In our initial approach, we considered using
code annotations to enable the developer to specify
these interactions. In the following sections, we will
demonstrate how that initial approach evolved and
present the advantages and drawbacks of each step.

3.1 Method-Test Approach

Our initial idea was to consider tests as being the
proof that a certain concern was implemented cor-
rectly. Ideally, for every concern in the system, the

ICSOFT-PT 2016 - 11th International Conference on Software Paradigm Trends

52



Figure 1: Method-Test approach.

developer should be able to create a test for it. Class
methods are the artefacts that end up implementing
those concerns. So we could have annotations in each
method with a reference to the test for the concern
that the method was implementing.

In order to create the DAG of dependencies
needed for our incremental testing process, we pro-
posed another annotation where each method could
declare the tests it depends on. Notice that we do not
specify which methods the method depends on, but
the tests that were created to test that method. This
means that every time an aspect is added to the sys-
tem, in our incremental testing process, and a previ-
ously tested test fails, we can pinpoint which methods
are affected by that interaction.

Finally, we proposed another annotation that al-
lows developers to declare expected interactions. This
annotation would be used by developers on advices to
pinpoint which tests they expect to break. Figure 1
contains a representation of the connections achieved
by these annotations. Listing 4 represents a sample of
the code needed to implement this approach for the
example described in the beginning of this paper.

Listing 4: Method-Test Approach.
public class Question {

@Adds (" QuestionTest.testChoices ")
public void addChoice (String choice)

{...}
@Adds (" QuestionTest.testChoices ")
public String getChoice(int number)

{...}
}

/* Inside Question Test Suite */
public void testChoices () {...};

/* Inside Randomize Aspect */
@Removes (" QuestionTest.testChoices ")
boolean around(List list ,

String choice) :
addChoice(list , choice) {...};

Having these annotations in place, our testing pro-
cess would be able to create the DAG of dependen-
cies, using the requires and adds annotations, and run
only the tests that have not been removed by subse-
quent advices by means of the removes annotation.

Figure 2: Concern-Test approach.

Besides the extra effort put in by the developer,
the problem with this approach is that the relation be-
tween methods/advices and tests is artificial.

3.2 Concern-Test Approach

To mitigate the artificiality of our first approach, we
decided to add a new annotation that would depict a
concern. In this approach, each method has an an-
notation stating which concern it implements. These
concerns can even be derived from the requirements
phase.

In this way, methods and advices no longer add,
remove or depend on tests but on concerns. To know
which concern is tested by each test we need an anno-
tation that will be applied to each test with a reference
to the concern. Figure 2 shows the relationships be-
tween the code artifacts derived from the annotations
in the code. Listing 5 represents a sample of the code
needed to implement this approach for the example
described in the beggining of this paper.

Listing 5: Concern-Test Approach
public class Question {

@Implements (" questionHasChoices ")
public void addChoice (String choice)

{...}
@Implements (" questionHasChoices ")
public String getChoice(int number)

{...}
}

/* Inside Question Test Suite */
@Tests (" Question.questionHasChoices ")
public void testChoices () {...};

/* Inside Randomize Aspect */
@Removes (" Question.questionHasChoices ")
boolean around(List list ,

String choice) :
addChoice(list , choice) {...}

To apply our proposed testing process using this

Incremental Modular Testing for AOP

53



approach, we start by selecting a module whose meth-
ods do not depend on any concern from another mod-
ule. Tests for the concerns defined in the module are
run. In each step we add another module that only
has requires annotations referencing concerns added
by modules that already have been tested. If a test
that passed in a previous step fails after a new module
is added we can infer that there is an interaction be-
tween a concern implemented in that module and the
concern that the failing test was testing.

In comparison with the first approach, this one has
a richer set of metadata on the implemented concerns
and their tests. This extra knowledge allows us to
better understand which concerns are interacting with
each other. Developers can therefore reason more eas-
ily if the interaction is expected or if it is an unex-
pected interference.

3.3 Module-Test Approach

The previous two approaches imposed an heavy bur-
den on the developers as they had to add a lot of anno-
tations to the code. In this iteration we tried to reduce
the amount of extra work needed by removing most
of them.

We started by considering modules as being de-
fined by the way the used language, in this case As-
pectJ, defined its own units of modularity – Java
packages. To prevent cases where the relation be-
tween the language defined units and the intended
modules is not a direct one, we added an optional
annotation so that each class/aspect could define to
which module it belongs.

Tests defined inside a module are considered as
being used to test some concern of the module. This
removed the burden to add annotations for each test.

The only annotations really needed, are between
tests. The replaces annotations identify cases where
a test represents a concern, developed as an invasive
aspect, that changes the behavior of another concern
that is tested by the other test. Figure 3 shows the rela-
tionships between the code artifacts derived from the
annotations in the code. Listing 6 represents a sample
of the code needed to implement this approach for the
example described in the beginning of this paper.

Figure 3: Module-Test approach.

Listing 6: Module-Test Approach.
public class Question {

public void addChoice (String choice)
{...}

public String getChoice(int number)
{...}

}

/* Inside Question Test Suite */
public void testChoices () {...};

/* Inside Randomize Aspect */
boolean around(List list , String choice

) :
addChoice(list , choice) {...}

/* Inside Randomize Test Suite */
@Replaces (" Question.QuestionTest.

testChoices ")
public void testRandomChoices () {...};

This approach drastically reduced the amount of
extra work by the developer. However, the informa-
tion gathered is much less. But still, when interac-
tions are detected we can get information about which
test failed and which modules caused the interaction.
This information should be enough for the developer
to identify the origin of the problem and act accord-
ingly.

3.4 Advice-Test Approach

The last approach considered was an easy evolution
from the previous one. The only mandatory annota-
tion in our previous approach was used to remove a
test from the system when a module containing in-
vasive aspects was added to the system changing the
behavior the test was testing.

An alternative would be to use an advice to dis-
able the test. Listing 7 shows how that can be accom-
plished by simply adding an around advice that does
not call the original captured joinpoint from the test.

Listing 7: Module-Test Approach.
public class Question {

public void addChoice (String choice)
{...}

public String getChoice(int number)
{...}

}

/* Inside Question Test Suite */
public void testChoices () {...};

/* Inside Randomize Aspect */
boolean around(List list , String choice

) :
addChoice(list , choice) {...}

void around () :

ICSOFT-PT 2016 - 11th International Conference on Software Paradigm Trends

54



testChoices () {}

/* Inside Randomize Test Suite */
public void testRandomChoices () {...};

Although this approach does not use any annota-
tions, besides the optional one that changes the way
modules are defined as language constructs, the incre-
mental compilation process is still needed to ensure
that disabled tests are run at least once during testing.

3.5 The Process

The process used for all these approached is, in its
essence, the same:

1. Identify all modules, their tests and dependencies.

2. Execute a strongly connected analysis of the de-
pendency graph transforming it into a DAG of
modules.

3. Execute a topological sort to determine in which
order the components must be compiled.

4. For each component:

(a) Compile it together with the previously tested
components.

(b) Execute the tests defined for the features pro-
vided by this component.

(c) Execute the tests defined by previous compo-
nents.

When a test fails in step 4b, it means that the mod-
ule being added to the system has an error. This error
can either be caused by a test not working properly,
an error in the code of this module, or even a problem
related to errors in the previously compiled modules
that was not detected by the implemented tests.

When a test fails in step 4c, it means we have
encountered an interaction between the code of the
module being tested and one of the modules previ-
ously compiled. Depending on the selected approach,
the information given to the developer can be differ-
ent. If using the Concern-Test, it should be possible
to pinpoint the concern that is being interfered with.
The other approaches would only reveal the test being
broken.

4 IMPLEMENTATION

During the course of the work, two different plugins
were developed: DrUID and Aida. Both are based
on the usage of annotations throughout the code that
contain information about which interferences are ex-
pected. These tools were implemented as Eclipse plu-
gins.

AspectJ was chosen as the target language for sev-
eral reasons. First, it is one of the most used aspect-
oriented languages. Secondly, as it is Java based, it
can be used with Eclipse, an IDE where plugin devel-
opment is straightforward. With Eclipse we also get
two other important benefits in the form of the tools
JDT and AJD for Java and AspectJ languages respec-
tively. They allow access to the source code abstract
syntax tree. Although the implementation is AspectJ
oriented, the technique we proposed is applicable to
other aspect-oriented languages following the same
principles.

4.1 DrUID

DrUID (UID as in Unexpected Interference Detec-
tion) (Restivo, 2009; Restivo and Aguiar, 2009) was
the first attempt at creating a plugin to help develop-
ers follow the methodology being explored through-
out this paper. In order to accomplish this, the plu-
gin allows developers to define several characteristics
about system artifacts using Java annotations.

Several aids have been implemented to guide the
developer in this process in the form of Eclipse quick
fixes and quick assists. Each time a file is saved in
Eclipse, the annotations are inspected and any errors
are reported. Besides that, a dependency graph is cre-
ated and shown in a graphical form that allows the
developer to navigate through the code following the
dependencies between artifacts.

4.2 Aida

Aida (Restivo, 2010) is an evolution of the DrUID
tool, built from scratch, having the main objective of
removing most of the burden put on the developer to
annotate his code. It also has a bigger focus on the
testing process. In this tool, we started by remov-
ing the notion of annotating features manually. We
did this by considering each test as a feature. This
means that the developer only needs to create test
cases for each individual behavior. Obviously, this
also removed the need to specify which test case tests
what feature.

Using code inspection, we were also able to re-
move the need of specifying the dependencies be-
tween features. At the cost of losing some of the de-
tails of the dependency graph used in DrUID, with
Aida we rely only on the dependencies between units.
In the end, we were down to only two types of anno-
tations:

• @TestFor Used to indicate which unit each test is
testing.

Incremental Modular Testing for AOP

55



• @ReplacesTest Used to indicate that a test re-
places another test. It also indicates that if the unit
the test is related to is present in the system, then
the replaced test does not have to be run.

Units are defined as being contained inside Java
packages by default. A third optional annotation
(@Unit) can be used to alter this behavior. The
dependencies between units are automatically calcu-
lated by using the information provided by the JDT
and AJDT Eclipse plugins.

With the dependency graph calculated, the test
process is very similar to that of DrUID. We start
by extracting the dependency graph from the source
code, then we order the units by sorting them topolog-
ically and test them adding each unit incrementally to
the system.

After running the complete set of tests, Aida is ca-
pable of reporting, both graphically and in text, on
eventually detected errors and interferences. This al-
lows the developer to add @ReplaceTest annotations,
when an interaction is expected, or correct his code if
the interaction was unexpected.

4.3 Current Issues

There are still some issues with the implementation
of these tools. Aida has been a major step forward as
it removes most of the burden of declaring the depen-
dencies from the developer, but there are still a couple
of issues.

The first problem is that not all dependencies can
be detected. At the moment, Aida is able to detect
dependencies caused by: import declarations, method
and constructor calls, type declarations and advices.
These encompass most of the cases, but soft depen-
dencies, like the ones created using reflection are not
detected.

The second problem is that every time the project
is tested, all the tests have to be run again. This prob-
lem is augmented by the fact that most tests are being
run several times. This problem could be mitigated by
doing some code analysis to figure which tests might
have their results altered by the introduction of a new
unit in the incremental compilation process.

5 VALIDATION

To validate the approach we used it in several small
sized projects and a medium sized one. The character-
istics that we were looking for in a candidate project
were that it had to be developed in AspectJ, it had to
have few circular dependencies between modules and
it had to have a test framework.

Figure 4: School Testbed Packages.

Unfortunately, all the existing open source
projects we considered fail in one of these three
aspects. For example, the two most used testbed
projects for AspectJ are AJHotDraw (Marius Marin
and van Deursen, 2007) and Health Watcher (Green-
wood et al., 2007). The first of these has an archi-
tecture with a dependency graph so complicated that
most of the code is part of a mass of 14 different pack-
ages that depend on each other forming a strongly
connected component. The second one is a much
cleaner project, but unfortunately, there are no tests
developed for it.

Having failed to elect a good and popular testbed
where to run our testing process, we ended up devel-
oping our own testbed. A simple school information
system (Restivo, 2014) was implemented featuring
personal information for students, teacher and admin-
istrators, course information, class schedules, infras-
tructure information and grading. Figure 4 shows the
dependencies between the implemented packages.

After implementing the base packages, some
packages containing aspects were added to the sys-
tem:

Authentication. Spectative aspect that adds a login
and password attributes to the Person class. Offers
methods to login and logoff as well as a way to
verify who is logged in.

Attendance. Adds a list of students that attended a
certain lecture and methods to manage that list.

Security. Invasive aspect that assures that the pass-
words are hashed using a secure hashing algo-
rithm. For this, it advises the methods that set and
verify passwords of the Authentication module.

Permission. Invasive aspect that verifies that the
logged in user has permissions to execute the
command being executed. Advises almost every
method in the code in order to do this verification.

Logging. Spectative aspect that logs to a file impor-

ICSOFT-PT 2016 - 11th International Conference on Software Paradigm Trends

56



tant information. At the moment only the creation
of new objects and login attempts are logged. To
do this, it advises the object creation methods but
does not change their behavior.

Minimum Grade. Invasive aspect that adds the pos-
sibility of a course evaluation having a minimum
grade that the student must attain to pass the
course. Adds methods to define this minimum
grade and advises the methods that calculate the
student final grade.

Each one of the packages in the system was thor-
oughly tested. The total number of tests amounts to 55
with most of them belonging to the Permission pack-
age. This happens as this package crosscuts the entire
application and modifies the behavior of almost all
methods by adding a permission system. This makes
it important to test if those methods are still working
when the user has permission to use them, and also if
access is denied when the user has no permission to
use them.

By using Aida, interferences were easily spotted.
Each time an invasive aspect was added, a test broke
somewhere. In the rare event where that did not hap-
pen, it was due to an error in the implementation of
the new aspect or a poorly written test. By using the
technique described in this document, we were able to
test all the packages of the system in isolation, with-
out compromising modularity.

After testing the complete system, we tried to test
smaller subsets of the system where some packages
were not considered. We counted 77 different possi-
ble valid configurations with only some of the non-
aspectual packages being used. If we add the other
four invasive packages, in any possible combination,
we get eight times more possibilities. Or a grand to-
tal of 616 configurations. We were able to test all of
these successfully, using Aida without having to add,
remove or change any of the tests.

6 RELATED WORK

Katz (Katz, 2004) proposed the use of regression test-
ing and regression verification as tools that could help
identifying harmful aspects. The idea behind this
technique is to use regression testing as normally and
then weave each aspect into the system and rerun all
regression tests to see if they still pass. If an error
is found, either the error is corrected or the failing
tests have to be replaced by new ones specific for that
particular aspect. This approach is similar to the one
presented in this paper but does not explore the possi-
bility of adding the aspects in an automatic and con-

troled order or the extra information that can be ex-
tracted by compiling the aspects in different orders. It
also does not propose a wat of dealing with intended
interactions.

Ceccato (Ceccato et al., 2005) proposed a tech-
nique to establish which tests had to be rerun when
incrementally adding aspects to a system. Combin-
ing this technique with our approach could reduce the
ammount of time needed to run the tests as some tests
would not have to be run twice if it can be proved that
they will yield the same result.

Balzarotti (Balzarotti and Monga, 2004) claims
that the interaction detection problem can be solved
by using a technique proposed in the early 80s, called
program slicing. Although totally automatic, this
technique does not account for intended interactions.

Havinga (Havinga et al., 2007) proposed a method
based on modeling programs as graphs and aspect
introductions as graph transformation rules. Using
these two models it is then possible to detect con-
flicts caused by aspect introductions. Both graphs,
representing programs, and transformation rules, rep-
resenting introductions, can be automatically gener-
ated from source code. Although interesting, this ap-
proach suffers the same problem of other automatic
approaches to this problem, as intentional interactions
cannot be differentiated from unintentional ones.

Lagaisse (Lagaisse et al., 2004) proposed an ex-
tension to the Design by Contract paradigm by allow-
ing aspects to define what they expect of the system
and how they will change it. This will allow the detec-
tion of interactions by other aspects that were weaved
before, as well as the detection of interactions by as-
pects that are bounded to be weaved later in the pro-
cess.

It has been noticed by Kienzle (Kienzle et al.,
2003) that aspects can be defined as entities that re-
quire services from a system, provide new services
to that same system and removes others. If there is
some way of explicitly describing what services are
required by each aspect it would be possible to detect
interactions (for example, an aspect that removes a
service needed by another aspect) and to choose bet-
ter weaving orders.

A state-based testing method for aspect-oriented
software has been developed by Silveira (Silveira
et al., 2014). According to the authors, this method
provides class–aspect and aspect–aspect faults detect-
ing capabilities.

Assunção (Assunção et al., 2014) explored differ-
ent ways to determine the order for integration and
testing of aspects and classes. Two different strate-
gies, incremental and combined, for integration test-
ing were evaluated.

Incremental Modular Testing for AOP

57



7 CONCLUSIONS

In this paper, we identified a problem that makes it
hard to use unit testing in conjunction with aspect-
oriented code. The problem is that unit tests in AOP
systems must always test the system after the advises
from any modules containing aspects have been ap-
plied. If these aspects are invasive, then the tests are
not testing the unit in isolation and they stop being
unit tests.

The solution we proposed is based on having tests,
that test modules that contain invasive aspects, anno-
tated in such a way that they announce which tests
test the functionality being modified by those aspects.
Having these annotations in place would allow a test-
ing technique based on incremental compilation that
could test units in lower layers of the software, using
their own unit tests, separately from invasive aspects
from higher layers. We argued that this is similar to
what stubs and mocks contributed to object-oriented
unit testing.

We do not argue that the proposed solution is us-
able in every situation, but we have shown that it can
be used in several different scenarios. We envision it
being used in software houses that have a large repos-
itory of modules that can be combined in different
ways in order to compose different software solutions.
Anyone that has tried to create such a system knows
that crosscutting concerns are a big issue.

ACKNOWLEDGEMENTS

We would like to thank FCT for the support provided
through scholarship SFRH/BD/32730/2006.

REFERENCES

Assunção, W. K. G., Colanzi, T. E., Vergilio, S. R., and
Ramirez Pozo, A. T. (2014). Evaluating different
strategies for integration testing of aspect-oriented
programs. Journal of the Brazilian Computer Society,
20(1).

Balzarotti, D. and Monga, M. (2004). Using program
slicing to analyze aspect-oriented composition. In
Proceedings of Foundations of Aspect-Oriented Lan-
guages Workshop at AOSD, pages 25–29.

Baniassad, E. and Clarke, S. (2004). Theme: An approach
for aspect-oriented analysis and design. In Proceed-
ings of the 26th International Conference on Software
Engineering, pages 158–167. IEEE Computer Soci-
ety.

Ceccato, M., Tonella, P., and Ricca, F. (2005). Is AOP
Code Easier to Test than OOP Code? In Work-

shop on Testing Aspect-Oriented Programs, Interna-
tional Conference on Aspect-Oriented Software De-
velopment, Chicago, Illinois.

Fowler, M. (2007). Mocks aren’t stubs. Online article at
martinfowler.com http://bit.ly/18BPLE1.

Greenwood, P., Garcia, A. F., Bartolomei, T., Soares, S.,
Borba, P., and Rashid, A. (2007). On the design of
an end-to-end aosd testbed for software stability. In
ASAT: Proceedings of the 1st International Workshop
on Assessment of Aspect-Oriented Technologies, Van-
couver, Canada. Citeseer.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier, and
John Irwin (1997). Aspect-Oriented Programming.
Proceedings of the European Conference on Object-
Oriented Programming, 1241:220–242.

Havinga, W., Nagy, I., Bergmans, L., and Aksit, M. (2007).
A graph-based approach to modeling and detecting
composition conflicts related to introductions. In
AOSD: Proceedings of the 6th International Con-
ference on Aspect-Oriented Software Development,
pages 85–95, New York, NY, USA. ACM Press.

Katz, S. (2004). Diagnosis of harmful aspects using regres-
sion verification. In FOAL: Foundations Of Aspect-
Oriented Languages, pages 1–6.

Kienzle, J., Yu, Y., and Xiong, J. (2003). On composition
and reuse of aspects. In SPLAT: Software Engineering
Properties of Languages for Aspect Technologies.

Lagaisse, B., Joosen, W., and De Win, B. (2004). Manag-
ing semantic interference with aspect integration con-
tracts. In SPLAT: Software Engineering Properties of
Languages for Aspect Technologies.

Marius Marin, L. M. and van Deursen, A. (2007). An inte-
grated crosscutting concern migration strategy and its
application to jhotdraw. Technical report, Delft Uni-
versity of Technology Software Engineering Research
Group.

Peri Tarr, Harold Ossher, William Harrison, and Stanley M.
Sutton Jr. (1999). N degrees of separation: multi-
dimensional separation of concerns. Proceedings of
the International Conference on Software Engineer-
ing, page 107.

Rashid, A., Moreira, A., and Araújo, J. (2003). Modulari-
sation and composition of aspectual requirements. In
Proceedings of the 2nd international conference on
Aspect-oriented software development, pages 11–20.
ACM.

Restivo, A. (2009). DrUID: Unexpected interactions detec-
tion. https://github.com/arestivo/druid.

Restivo, A. (2010). Aida: Automatic interference detection
for aspectj. https://github.com/arestivo/aida.

Restivo, A. (2014). School-aspectj-testbed. https://
github.com/arestivo/School-AspectJ-Testbed.

Restivo, A. and Aguiar, A. (2008). Disciplined composition
of aspects using tests. In LATE: Proceedings of the
2008 AOSD Workshop on Linking Aspect Technology
and Evolution, LATE ’08, pages 8:1–8:5, New York,
NY, USA. ACM.

Restivo, A. and Aguiar, A. (2009). DrUID – unexpected

ICSOFT-PT 2016 - 11th International Conference on Software Paradigm Trends

58



interactions detection. AOSD: Demonstration at the
Aspect Oriented Software Development Conference.

Silveira, F. F., da Cunha, A. M., and Lisbôa, M. L. (2014). A
state-based testing method for detecting aspect com-
position faults. In Murgante, B., Misra, S., Rocha, A.,
Torre, C., Rocha, J., Falcão, M., Taniar, D., Apduhan,
B., and Gervasi, O., editors, Computational Science
and Its Applications – ICCSA 2014, volume 8583 of
Lecture Notes in Computer Science, pages 418–433.
Springer International Publishing.

The Eclipse Foundation (2010). The AspectJ Project.
http://www.eclipse.org/aspectj/.

Incremental Modular Testing for AOP

59


