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Introductionxxii

Laminated composites are becoming the preferred material system in a variety
of industrial applications, such as aeronautical and aerospace structures, ship
hulls in naval engineering, automotive structural parts, micro-electro-
mechanical systems as also civil structures for strengthening concrete members.
The increased strength and stiffness for a given weight, increased toughness,
increased mechanical damping, increased chemical and corrosion resistance
in comparison to conventional metallic materials and potential for structural
tailoring are some of the factors that have contributed to the advancement of
laminated composites. Their increased use has underlined the need for
understanding their modes of failure and evolving technologies for the continual
enhancement of their performance.

The principal mode of failure of layered composites is the separation
along the interfaces of the layers, viz. delamination. This type of failure is
induced by interlaminar tension and shear that develop due to a variety of
factors such as: Free edge effects, structural discontinuities, localized
disturbances during manufacture and in working condition, such as impact
of falling objects, drilling during manufacture, moisture and temperature
variations and internal failure mechanisms such as matrix cracking. Hidden
from superficial visual inspection, delamination lies often buried between
the layers, and can begin to grow in response to an appropriate mode of
loading, drastically reducing the stiffness of the structure and thus the life of
the structure. The delamination growth often occurs in conjunction with
other modes of failure, particularly matrix cracking.

A study of composite delamination, as does any technological discipline,
has two complementary aspects: An in depth understanding of the phenomenon
by analysis and experimentation and the development of strategies for
effectively dealing with the problem. These in turn lead to a number of
specific topics that we need to consider in the present context. These comprise
of:

1. An understanding of the basic principles that govern the initiation of
delamination, its growth and its potential interaction with other modes
of failure of composites. This is the theme of the first chapter, but several
authors return to this theme in their own respective contributions.

2. The determination of material parameters that govern delamination
initiation and growth by appropriate testing. These must necessarily be
interfacial strength parameters which govern interlaminar fracture initiation
and interlaminar fracture toughness parameters, viz. critical strain energy
release rates that must govern interlaminar crack growth. The book contains
several valuable contributions from leading international authorities in
the field of testing of composites.

3. Development of analytical tools : What are the methodologies one may
employ to assess the possibility of delamination onset and growth under
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Introduction xxiii

typical loading scenarios? This may be approached from the points of
view of fracture mechanics, damage mechanics, cohesive modeling
approach and approaches which draw from and combine these. In particular,
the cohesive modeling approach has proven to be a powerful and versatile
tool in that when embedded in a nonlinear finite element analysis, it can
trace the two-dimensional delamination growth without user interference,
is robust from the point of view of numerical convergence, and can
potentially account for a variety of interfacial failure mechanisms. This
subject is discussed thoroughly in several authoritative contributions.

4. Detection of delamination: Ability to diagnose the presence of delamination
and to be able to capture in graphical terms the extent of delamination
damage is a desideratum towards which the composite industry is
continuing to make progress. Several nondestructive evaluation tools
are available and have been used with varying degrees of success. Acoustic
emission, Lamb-wave and Piezo-electric technologies are discussed in
the context of delamination detection in the present work.

5. Prevention of delamination: Several techniques of either inhibiting
delamination or altogether suppressing it are available. The book contains
a section treating the following techniques of delamination prevention/
inhibition: ‘Self-healing’ composites which internally exude adhesive
material as soon as crack advances thus effectively arresting the crack;
Z-pin bridging in which fibers are introduced across the interlaminar
surfaces, liable to delaminate, artfully tapering off discontinuities which
are sources of potential delamination and the use of toughened epoxies.

6. Delamination driven structural failure: Certain loading scenarios can
cause delamination growth if there is some preexisting delamination in
the structural component which in turn can lead to structural failure.
Typically these are: Impact, cyclic loading (delamination due to fatigue),
compressive loading causing localized buckling in the vicinity of
delamination and dynamic loading in the presence of in-plane compression.
Impact loading and any form of dynamic loading in the presence of
significant compressive stress in sandwich structures are known to trigger
delamination failure which is abrupt and total. These aspects have been
discussed in several contributions.

The book has been divided into several sections to address the issues
mentioned in the foregoing. It has been a pleasure to work with a number of
authors of international standing and reputation who had spent a great deal
of effort in developing their respective chapters. The references cited at the
end of each chapter should supplement and corroborate the concepts developed
in the chapter. We hope that researchers and engineers who are concerned to
apply state of the art technologies to composite structural analysis, design
and evaluation of risk of failure will find this book useful and a valuable
source of insight.
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327

11.1 Introduction

Laminated composite materials have high strength-to-weight and stiffness-
to-weight ratios. They can be considered as laminar systems with weak
interfaces. Consequently, they are very susceptible to interlaminar damage
designated by delamination. In the presence of delaminations the material
stiffness and, consequently, of the associated structure, can be drastically
reduced which can lead to its catastrophic failure. Moreover, delamination is
an internal damage and is not easily detected, which increases the associated
risks.

11.1.1 Damage mechanism

In the majority of real applications delamination does not occur alone. It is
known that matrix cracking inside layers and delamination are usually
associated and constitute a typical damage mechanism of composites (Takeda
et al., 1982; Joshi and Sun, 1985), especially when structures are submitted
to bending loads. In fact, although the phenomenon can occur under tensile
loading it acquires a remarkable importance under bending loads, e.g. low
velocity impact (Choi et al., 1991a). It is commonly accepted that there is a
strong interaction between matrix cracking inside layers and delamination
between layers. This coupling phenomenon is initiated by matrix cracking,
i.e., shear and/or bending cracks in the early stages of the loading process.
These cracks can originate delamination and significantly affect its propagation.
Delamination occurs between layers with differing fibre orientations. In fact,
when a bending or shear crack in a layer reaches an interface between two
differently oriented layers it is unable to easily penetrate the other layer, thus
propagating as a delamination. On the other hand, two adjacent laminae
having different fibre angles induce extensional and bending stiffness mismatch
which, combined with the low strength of the matrix, make composite materials
very sensitive to delamination at those interfaces. In general, the delamination

11
Interaction of matrix cracking and

delamination

M  F  S  F  de M O U R A, Faculdade de Engenharia da
Universidade do Porto, Portugal
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mismatching degree (Liu and Malvern, 1987). During delamination propagation
extensive micro-matrix cracks are generated in the adjacent layers.

It is worth noting that this complex interaction damage mechanism can
occur in different forms depending on the bending stiffness of the structure.
Flexible components respond primarily in a flexural mode, inducing significant
tensile stresses at farther layers from the loaded surface. Therefore, the cracks
located in these outermost layers are vertical and caused by bending effects
(Choi and Chang, 1992) and their initiation and growth occur in an almost
mode I fracture process. These cracks will generate a delamination along the
upper adjacent interface, which will interact with other matrix cracks of the
neighbour upper ply, leading to delamination on the second interface and so
on (see Fig. 11.1). Delamination patterns in flexible laminates present a
frustum-conical shape, where delaminations’ size increases towards the lower
face of the laminate (Levin, 1991). A different failure mechanism occurs for
stiffer laminates. In this case, only small deflections take place and damage
initiates near to the loaded surface as a result of contact forces. Shear cracks
develop near to the impact indentation and propagate through the upper ply
up to the neighbour interface degenerating in a delamination. This delamination
extends from the loaded region until it also deflects into a lower ply by shear
and inclined cracks (see Fig. 11.2). Further delamination growth in stiff
laminates occurs in a barrel shape region by growth of delaminations around
the midplane (Olsson et al., 2000).

Matrix bending cracks are a predominant mode I fracture process governed
by transverse normal tensile stresses whilst matrix shear cracks are governed
by interlaminar shear and transverse normal tensile stresses (Choi et al.,

11.1 Schematic representation of damage initiation mechanism in
flexible laminates.
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1991b). Delamination initiation is controlled by mode I although its growth
is typically a mixed shear mode (II and III) fracture process (Choi and
Chang, 1992), which is explained by the bending stiffness mismatching
between adjacent differently oriented layers.

11.1.2 Classical prediction methodologies

Two main approaches have been used in order to simulate the damage
mechanism described above. One is based on strength of materials concepts
where materials are assumed to be free of defects. However, in many situations
the problem of stress concentrations nearby to a notch or a flaw leads to
mesh dependency in numerical approaches. To overcome this problem the
stresses obtained analytically or numerically are used in a point stress or
average stress criteria (Whitney and Nuismer, 1974) in order to evaluate the
occurrence of failure. In the point stress criterion the stresses are evaluated
at a characteristic distance whereas in the average stress criterion they are
averaged over a distance. An example is given by Choi et al. (1991b) where
quadratic average stress criteria were used to predict matrix cracking when
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11.2 Schematic representation of damage initiation mechanism in
stiff laminates.
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dThe subscripts 1, 2 and 3 are the orthotropic local coordinates of the nth or

(n + 1)th layers, which correspond, respectively, to the upper and lower plies
of the nth interface. Y and Si are the in situ ply transverse and shear interlaminar
strengths, respectively, and Da is an empirical constant which was determined
from experiments using a fitting procedure. The stress components are averaged
within the ply thickness

n
ij

n n

t

ijh
dz

n

σ σ = 1
–1∫ 11.3

where tn and tn–1 correspond to the position of the upper and lower interfaces
of the nth ply, h is the ply thickness and z the axis normal to the plate. These
criteria were applied in two steps:

• the matrix cracking criterion is initially applied in each layer;
• if matrix cracking is predicted in a given layer, the delamination criterion

is applied subsequently considering two different circumstances; this
criterion is applied to the lower adjacent interface if a shear crack was
predicted and to the upper one if a bending crack was found.

Unlike what happens in strength of materials based approaches, the fracture
mechanics approach assumes the presence of an inherent defect in the material.
The majority of the proposed works are based on the concepts of strain
energy release rate. It is usually assumed that damage propagation occurs
when the strain energy at the crack front is equal to the critical strain energy
release rate, which is a material property. The strain energy release rates are
commonly obtained by using the Virtual Crack Closure Technique (VCCT)
(Krueger, 2002). Considering a two dimensional problem (see Fig. 11.3), the
strain energies (GI and GII) can be calculated by the product of the relative
displacements at the ‘opened point’ (nodes l1 and l2) and the loads at the
‘closed point’ (node i)

G
B a

Y vi iI  = 1
2

 ∆ ∆

G
B a

X ui lII  = 1
2

 ∆ ∆ 11.4

being B∆a the area of the new surface created by an increment of crack
propagation (see Fig. 11.3). It should be assured that self similar propagation
occurs and an adequate refined mesh should be used. Liu et al. (1993) used
the VCCT to obtain the strains energy release rates and a linear mixed-mode
criterion

G
G

G
G

I

Ic

II

IIc
 +  = 1 11.5
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to simulate the propagation of a small initial delamination crack introduced
after the occurrence of the initial matrix cracking failure. GIc and GIIc represent
the interlaminar critical strain energy release rates in modes I and II,
respectively. A similar approach was followed by Zou et al. (2002) where a
mixed-mode delamination growth is considered when

G
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


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α β γ
11.6

and α, β and γ  are mixed-mode fracture parameters determined from material
tests.

The stress and fracture mechanics based criteria present some disadvantages.
The stress based methods present mesh dependency during numerical analysis
due to stress singularities. On the other hand, the point/average stress criteria
require the definition of a critical dimension which depends on the material
and stacking sequence (Tan, 1989), and do not have a physically powerful
theoretical foundation. Fracture mechanics approach relies on the definition
of an initial flaw or crack length. However, in many structural applications
the locus of damage initiation is not obvious. On the other hand, the stress-
based methods behave well at predicting delamination onset, and fracture
mechanics has already demonstrated its accuracy in the delamination
propagation modelling. In order to overcome the referred drawbacks and
exploit the usefulness of the described advantages, cohesive damage models
and continuum damage mechanics emerge as suitable options. These
methodologies combine aspects of stress based analysis to model damage

y
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ul2

ul1

vl1
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x

11.3 Scheme of the VCCT.
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dinitiation and fracture mechanics to deal with damage propagation. Thus, it

is not necessary to take into consideration an initial defect and mesh dependency
problems are minimized.

11.2 Mixed-mode cohesive damage model

Cohesive damage models are frequently used to simulate damage onset and
growth. They are usually based on a softening relationship between stresses
and relative displacements between crack faces, thus simulating a gradual
degradation of material properties. They do not depend on a predefined
initial flaw unlike conventional fracture mechanics approaches. Typically,
stress based and energetic fracture mechanics criteria are used to simulate
damage initiation and growth, respectively. Usually cohesive damage models
are based on spring (Cui and Wisnom, 1993 and Lammerant and Verpoest,
1996) or interface finite elements (Mi et al., 1998, Petrossian and Wisnom,
1998; de Moura et al., 2000) connecting plane or three-dimensional solid
elements. Those elements are placed at the planes where damage is prone to
occur which, in several structural applications, can be difficult to identify a
priori. However, an important characteristic of delamination is that its
propagation is restricted to a well defined plane corresponding to the interface
between two differently oriented layers, thus leading to a typical application
of cohesive methods. Taking this into consideration, a cohesive mixed-mode
damage model based on interface finite elements is presented.

The formulation is based on the constitutive relationship between stresses
on the crack plane and the corresponding relative displacements

σ = Eδr 11.7

where δr is the vector of relative displacements between homologous points,
and E a diagonal matrix containing the penalty parameter e introduced by
the user. Its values must be quite high in order to hold together and prevent
interpenetration of the element faces. Following a considerable number of
numerical simulations (Gonçalves et al., 2000), it was found that e = 107

N/mm3 produced converged results and avoided numerical problems during
the non-linear procedure.

The interface finite element includes a damage model to simulate damage
onset and growth. Equation 11.7 is only valid before damage initiation. The
considered damage model combines aspects of strength-based analysis and
fracture mechanics. It is based on a softening process between stresses and
interfacial relative displacements and includes a mixed-mode formulation.
After peak stress the material softens progressively or, in other words, undergoes
damage (see Fig. 11.4). To avoid the singularity at the crack tip and its
effects, a gradual rather than a sudden degradation, which would result in
mesh-dependency, is considered. It is assumed that failure occurs gradually
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as energy is dissipated in a cohesive zone behind the crack tip. This is
equivalent to the consideration of a ‘Fracture Process Zone’, defined as the
region in which the material undergoes softening deterioration by different
ways, e.g., micro-cracking, fibre bridging and inelastic processes. Numerically,
this is implemented by a damage parameter whose values vary from zero
(undamaged) to unity (complete loss of stiffness) as the material deteriorates.
For pure mode (I, II or III) loading, a linear softening process starts when the
interfacial stress reaches the respective strength σu,i (see Fig. 11.4). The
softening relationship can be written as

� = (I – D)E�r 11.8

where I is the identity matrix and D is a diagonal matrix containing, on the
position corresponding to mode i (i = I, II, III), the damage parameter,

di
u i i o i

i u i o i
= 

(  –  )

(  –  )
, ,

, ,

δ δ σ
δ δ σ 11.9

where δo,i and δu,i are, respectively, the onset and ultimate relative displacements
of the softening region (see Fig. 11.4), and δi is the current relative displacement.
The maximum relative displacement, δu,i, at which complete failure occurs,
is obtained by equating the area under the softening curve to the respective
critical strain energy release rate

Gic u i u i = 1
2 , ,σ δ 11.10

In general, structures are subjected to mixed-mode loadings. Therefore, a
formulation for interface elements should include a mixed-mode damage
model, which, in this case, is an extension of the pure mode model described

σ i

σ u,i

σ um,i

σ om,i

Gi

δo,i

Gic

Pure mode
model

i = I, II, III

Mixed-mode
model

δ i

δum,i δu,i

11.4 Pure and mixed-mode damage model.
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dabove (see Fig. 11.4). Damage initiation is predicted by using a quadratic

stress criterion

σ
σ

σ
σ

σ
σ σ

σ
σ

σ
σ σ
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2
II

,II

2
III

,III

2

1

II

,II

2
III
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2

1

+ + = 1 if  0

+ = 1 if  0

u u u

u u


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
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









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≥











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≤
11.11

assuming that normal compressive stresses do not promote damage.
Considering Equation 11.7, the first equation 1.11 can be rewritten in function
of relative displacements

δ
δ

δ
δ

δ
δ

om

o

om

o

om

o

,I

,I

2
,II

,II

2
, III

, III

2

+ + = 1


















11.12

δom,i (i = I, II, III) being the relative displacements corresponding to damage
initiation. Defining an equivalent mixed-mode displacement

δ δ δ δm  =  +  + I
2

II
2

III
2 11.13

and mixed-mode ratios

β δ
δi

i = 
I

11.14

the mixed-mode relative displacement at the onset of the softening process
(δom) can be obtained combining Equations 11.12–11.14.

δ δ δ δ
β β

δ δ β δ δ β δ δοom o o
o o o o o o

=
1 +  + 

( ) + ( ) +( ),I ,II ,III
II
2

III
2

,II ,III
2

II ,I ,III
2

III ,I ,II
2

11.15

The corresponding relative displacement for each mode, δom,i, can be obtained
from Equations 11.13–11.15.

δ β δ
β β

om i
i om

,

II
2

III
2

= 
1 +  + 

11.16

Once a crack has initiated the above stress-based criterion cannot be used in
the vicinity of the crack tip due to stress singularity. Consequently, the
mixed-mode damage propagation is simulated using the linear fracture energetic
criterion

G
G

G
G

G
G

I

Ic

II

IIc

III

IIIc
 +  +  = 1 11.17
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dThe released energy in each mode at complete failure can be obtained from

the area of the minor triangle of Fig. 11.4.

Gi um i um i = 1
2 , ,σ δ 11.18

Considering Equations 11.7, 11.13 and 11.14, the energies (Equations [11.10
and 11.18]) can be written in function of relative displacements. Substituting
into Equation 11.17, it can be obtained

δ
β β
δ

β β
um

ome G G G
 = 

2 (1 +  + ) 1  +  + II
2

III
2

Ic

II
2

IIc

III
2

IIIc









 11.19

which corresponds to the mixed-mode displacement at failure. The ultimate
relative displacements in each mode, δum,i, can be obtained from Equations
11.13, 11.14 and 11.19

δ β δ
β β

um i
i um

,

II
2

III
2

 = 
1 +  + 

11.20

The damage parameter for each mode can be obtained substituting δom,i and
δum,i in Equation 11.19.

The interaction between matrix cracking and delamination in (04, 904)s

carbon-epoxy laminates under low velocity impact was simulated using a
cohesive damage model (de Moura and Gonçalves, 2004). Circular clamped
plates of 50 mm diameter were tested and damage, identified by X-ray
method, was constituted by:

• a longitudinal long crack parallel to fibres direction in the outermost
group of equally oriented layers and caused by bending loading;

• an extensive delamination located at the distal interface between differently
oriented layers relatively to the loaded surface; the delamination has a
characteristic two-lobed shape with its major axis oriented on the direction
of the lower adjacent ply.

In the numerical model only half plate was considered due to geometrical
and material symmetrical conditions. With the aim to numerically simulate
this damage mechanism, interface finite elements were placed at the critical
interface in order to simulate the observed delamination, and at the vertical
symmetry plane of the used mesh. The objective of these vertical elements
was to model the onset and growth of the longitudinal bending crack in the
outermost group of equally oriented layers which was observed to be the
initial damage (see Fig. 11.5). This crack induces delamination in the adjacent
interface as it can be seen in Fig. 11.6. This damage mechanism occurs in a
progressive way, i.e., the growth of the vertical crack is associated with an
increasing delamination. Numerical results agreed with the experiments.
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The shape of the delamination was accurately predicted (see Fig. 11.7). The
delamination and crack lengths in function of the maximum load were also
in agreement (see Figs 11.8 and 11.10), although some non-negligible
differences were noted in the delaminations width (see Fig. 11.9). The global
trend was captured for all cases.

11.5 Detail of the initial bending crack.

11.6 Delamination induced by the vertical crack.

(a) (b)

11.7 Experimental and numerical delamination and crack length.
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11.8 Delamination length (l) in function of maximum load.
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11.9 Delamination width (W) in function of maximum load.

11.10 Longitudinal crack length (lc) in function of maximum load.
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dAlthough promising results were obtained with this approach it should be

emphasized that it cannot be considered an adequate prediction model for
more general applications. In fact, in laminates with several different oriented
layers it is not suitable to include numerous vertical interface elements in all
layers to predict matrix cracking in any layer. The alternative is to consider
that solid elements can also include a damage model in order to simulate
damage inside layers. This can be done using continuum damage mechanics
which is discussed in the next section.

11.3 Continuum damage mechanics

The classical approaches based on strength of materials usually assume that
once matrix cracking arises, a sudden loss of material properties occur,
which is generally denominated by ply discount models (Hwang and Sun,
1989). However, it is known that in presence of matrix cracking, the composite
does not loose its load carrying capacity immediately. In fact, damage can be
considered as the progressive weakening mechanism which occurs in materials
prior to failure. It can be constituted by micro-cracking, voids nucleation and
growth, and several inelastic processes that deteriorate the material. The
analysis of cumulative damage is fundamental in life prediction of components
and structures under loading. Tan (1991) proposed a progressive damage
model relating the material elastic properties with internal state variables
Di

T  and Di
C  (i = 1, 2, 6), ranging between 0 and 1, that are function of the

type of damage. When a given failure criterion is satisfied, the material
properties are abruptly reduced according to the respective residual strength
experimentally observed. Each damage mode is predicted by the subsequent
expressions:

Fibre tensile fracture

E D Ed T d d
11 1 11 12 13 =  ;  =  = 0ν ν 11.21

Fibre compressive fracture

E D Ed C d d
11 1 11 12 13 =  ;  =  = 0ν ν 11.22

Matrix tensile failure

E D E E D E

G D G G D G G D G

d T d T d d

d T d T d T
22 2 22 33 2 33 12 23

12 6 12 13 6 13 23 6 23

 =  ;  =  ;  =  = 0

 =  ;  =  ;  = 

ν ν
11.23

Matrix compressive failure or shear cracking

E D E E D E

G D G G D G G D G

d C d C d d

d C d C d C
22 2 22 33 2 33 12 23

12 6 12 13 6 13 23 6 23

 =  ;  =  ;  =  = 0

 =  ;  =  ;  = 

ν ν
11.24
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dThe author (Tan, 1991 and Tan and Perez, 1993) obtained good agreement

with experimental results considering D D D DT T T C
1 2 6 1 = 0.07,  =  = 0.2,  = 0.14

and D DC C
2 6 =  = 0.4. Although this type of models consider a residual strength

in accordance with the physical reality they are mesh dependent during
numerical analysis.

To avoid the sudden loss of material properties and mesh dependency, the
continuum damage models combining strength of materials and fracture
mechanics concepts are an appealing alternative. Material damage is simulated
by introducing damage variables into the constitutive equations (Lemaitre
and Chaboche, 1985). After the matrix cracking initiation is predicted, a
gradual softening post-failure analysis is also performed by appropriately
reducing the material properties within the elements where matrix cracking
onset occurred.

Ladevèze and Le Dantec (1992) developed a continuum damage mechanics
formulation for orthotropic materials to account for ply degradation.
Considering a damaged layer in a state of plane stress the strain-stress
relationship take the general form

� = S� 11.25

where � and � are vectors of elastic strain and stress, respectively. In a local
system associated with orthotropy axes it can be written

� = (σ11, σ22, σ12)
T; � = (ε11, ε22, 2ε12)

T 11.26

and S the compliance matrix

S = 

1
(1 –  )

– 0

– 1
(1 – )

0

0 0 1
(1 – )

1 1

12

1

12

1 2 2

12 12

E d E

E E d

G d

υ

υ























11.27

The damage parameters (d1, d2 and d12) define the damage state for the three
types of stress loading and varies between 0 (undamaged state) and 1 (complete
loss of stiffness). No additional parameter is used to simulate degradation in
Poisson’s ratios as they are intrinsically affected during damage progression;
υ12 is reduced by the factor (1-d1), since for a uniaxial stress σ11 it can be
shown from Equations 11.25, 11.26 and 11.27 that –ε22/ε11 = υ12(1 – d1);
similarly it can be easily demonstrated that υ21 is affected by (1 – d2). In
order to establish the evolution of damage parameters in function of the
damage growth the concept of strain energy density ϕ is used

  
ϕ = 1

2
T� �S 11.28

WH-Delamination-11 6/5/08, 2:38 PM339



Delamination behaviour of composites340

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Woodhead Publishing Limited; proof copy not for publication

W
oo

dh
ea

d 
Pu

bl
is

hi
ng

 L
im

ite
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associated with the internal damage variables d1, d2, d12. Those parameters
are also considered as driving forces for damage development and are defined
by

Y
d

 = 
∂
∂
ϕ

11.29

where Y = (Y1, Y2, Y12)
T and d = (d1, d2, d12)T. Combining Equations 11.28

and 11.29 it follows

Y
E d

Y
E d

Y
G d1

11
2

1 1
2 2

22
2

2 2
2 12

12
2

12 12
2 = 

2 (1 –  )
;  = 

2 (1 –  )
;  = 

2 (1 –  )

σ σ σ

11.30

In the absence of fibre breakage d1 is zero throughout the load history and
the longitudinal modulus does not degrade; therefore only Y2 and Y12 driving
forces should be considered to model matrix cracking. A linear combination

Ŷ Y bY =  + 12 2 11.31

where b is a material constant, can be used to account for coupling between
transverse tension and shear effects. To avoid healing phenomena the maximum
value of Ŷ  up to the current time t is defined as

Ŷ t Y bY
t

( ) = max (  + )12 2τ ≤
11.32

Experimental results for carbon-epoxy laminates showed that damage
parameters can be written as

d
Y Y

Y
d

Y Y

Y
12

0

C
2

0

C

 = 
 –  

;  = 
 –  ˆ ˆ ′

′
11.33

where Y0, YC, ′Y0  and ′YC  are damage evolution parameters. They are determined
experimentally performing tension tests on [±45]s and [±67.5]s laminates
(Ladevèze and Le Dantec, 1992). The model was tested on [±45]2s, [67.5,
22.5]2s and [–12, 78]2s laminates under tensile loading and excellent agreement
was obtained with the respective experimental σ–ε curves.

An approach similar to the one used in the cohesive damage model described
in Section 11.2 is proposed by other authors (Crisfield et al., 1997; Pinho
et al., 2006; de Moura and Chousal, 2006). In this case there is a softening
relationship between stresses and strains instead of between stresses and
relative displacements considered in the cohesive model. Consequently, in
this case a characteristic length lc must be introduced to transform the relative
displacement into an equivalent strain. (see Fig. 11.4)
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2 , ,σ ε 11.34

This parameter was considered to be equal to the length of influence of a
Gauss point in the given direction and physically can be regarded as the
dimension at which the material acts homogeneously. The stress–strain relation
can be written considering an equation similar to Equation 11.8

� = (I – D)C� 11.35

being C the stiffness matrix of the undamaged material in the orthotropic
directions. Assuming that matrix cracking occur in mixed-mode I+II the
damage model described in Section 11.2 can be adopted. The damage parameter
is calculated by an expression similar to Equation 11.9 but considering strains
instead of relative displacements. A linear softening law is also used. The
properties are smoothly reduced due to the energy released at the FPZ. The
material properties at a given Gauss point are degraded according to the
assumed criterion. This leads to load redistribution for the neighbouring
points, thus simulating a gradual propagation process.

In summary, it can be affirmed that these methods allow simulating damage
inside solid finite elements used to model composite layers and can be used
to simulate matrix cracking phenomenon. A gradual degradation of properties
instead of a sudden one avoids the singularity effects and minimizes the
consequent mesh sensitivity.

11.4 Conclusions

Matrix crack and delamination are intrinsically associated in composite
materials, namely under bending loads. The interaction between these two
modes of damage constitutes a complex damage mechanism that has not
been addressed in a realistic level. Such interaction is fundamental to be
considered in a failure model prediction because one mode may initiate the
other and they may intensify each other. Two different models come out to
deal with the referred damage modes. Mixed-mode cohesive damage models
join the positive arguments of stress based and fracture mechanics criteria
overcoming their inherent difficulties. These models have being used with
success to simulate delamination initiation and growth. They are usually
based on interface finite elements including a softening relationship between
stresses and relative displacements. The continuum damage mechanics is
being applied on the simulation of matrix cracking. These models are based
on the introduction of damage parameters into the constitutive equations in
order to simulate material damage. These damage parameters increase smoothly
with growing damage, leading to a slow degradation of material properties
instead of an abrupt one which is not realistic and originate mesh dependencies.
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most prominent numerical tools in order to simulate matrix cracking inducing
delamination damage mechanism of composites. However, it should be
recognized that an accurate methodology addressing all the realistic issues
of this complex damage mechanism is still lacking. The solution points to
the development of a numerical tool incorporating the two kinds of models.
The two methods (cohesive elements and damage mechanics) can coexist. In
fact, both models can be implemented via user subroutines in commercial
software. When the selected damage criterion in a solid element is satisfied
the element fails simulating matrix cracking. This induces important relative
displacements at the adjacent interfaces leading to delamination initiation
and propagation according to the damage criterion of the cohesive elements.
Some aspects should require special attention like the influence of stress
concentration at the intersection of a critical matrix crack with a given interface.
It is not clear up to now if the coexistence of the two methods will be able
to accurately model such particularity. Some efforts should also be dedicated
to the development stress and fracture criteria adequate to the specificities of
this damage mechanism.
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