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ABSTRACT

The direct identification of the cohesive law in pure mode 1 of Pinus pinaster is addressed. The approach couples the
double cantilever beam (DCB) test with digital image correlation (DIC). Wooden beam specimens loaded in the radial-
longitudinal (RL) fracture propagation system are used. The strain energy release rate in mode I (G)) is uniquely
determined from the load-displacement (P—9) curve by means of the compliance-based beam method (CBBM). This
method relies on the concept of equivalent elastic crack length (a.q) and therefore does not require the monitoring of
crack propagation during test. The crack tip opening displacement in mode I wy is determined from the displacement
field at the initial crack tip. The cohesive law in mode I (o—wy) is then identified by numerical differentiation of the G\—
w relationship. The methodology and accuracy on this reconstruction are addressed. Moreover, the proposed procedure
is validated by finite element analyses including cohesive zone modelling. It is concluded that the proposed data
reduction scheme is adequate for assessing the cohesive law in pure mode [ of P. pinaster.

KEYWORDS: Wood; Mode I fracture mechanics; Double cantilever beam test; Cohesive law; Digital image

correlation.

1. INTRODUCTION

Wood is a hierarchical, anisotropic and heterogeneous
composite material formed by trees. Recently, green
composites based on lignocellulosic fibres and forest-
based resources have attracted increasing interest in
both research and market [1,2]. Moreover, in a policy of
sustainability, wood and wood products are increasingly
used nowadays, for instance, in structural and semi-
structural applications [3]. However, for a better and
efficient utilisation of wood material, several issues
must be further investigated. One fundamental aspect
concerns the fracture mechanical behaviour of wood.

Relatively extensive fracture process zones (FPZ) are
observed in wood due to fibre bridging and micro-
cracking ahead of the crack tip [4]. However, the
microstructural mechanisms in wood fracture are
usually confined to a region of reduced thickness [5].
Therefore, at the macroscopic scale, the wood behaviour
in the FPZ can be conveniently described through a
phenomenological constitutive cohesive law [6,7]. In
order to obtain the cohesive law, one approach consists
in minimising an objective function quantifying the
difference between numerical and experimental load-
displacement (P —J) curves by inverse analysis,
assuming a given shape of the softening law. This
approach, however, is semi-empirical and does not
guarantee  the uniqueness of the  solution.
Notwithstanding, it has been shown that the inverse

identification of cohesive laws provide good agreement
between experimental and numerical finite element
simulations [7,8]. Instead, a direct method for
evaluating the cohesive law can be proposed based on
independent determination of strain energy release rate
and crack tip opening displacement (CTOD) [9]. The
advantages of this approach are: (i) the shape of the
cohesive law does not need to be assumed a priori; (ii)
the cohesive law is determined based on local
measurements.

In this work, a direct identification of the cohesive law
in mode I of P. pinaster was investigated by coupling
the double cantilever beam (DCB) test with digital
image correlation (DIC). Specimens oriented in the
radial-longitudinal (RL) propagation system were used.
The strain energy release rate in mode I (G;) was
explicitly determined from the P — & curve by means

of the compliance-based beam method (CBBM). This
data reduction scheme is based on the concept of

equivalent elastic crack length (a.,) and, therefore,
does not require the measurement of the crack length
during test. An independent evaluation of CTOD in
mode I (w, ) was determined from displacement fields
at the initial crack tip. The direct differentiation of the
G, —w, curve and the reconstruction of the o —w;

cohesive law, by means of least-squares regression
using a continuous approximation function, were
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addressed. The proposed procedure was also validated
by finite element simulations including cohesive zone
modelling.

2. DATA REDUCTION

The DCB test is schematically shown in Fig. 1. The
specimen is a L,x2ixB mm’ rectangular beam. The

resistance curve (R—curve) can then be determined from
the Irwin-Kies equation

2
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in which C=6/P is the compliance. From the
Timoshenko beam theory and Castigliano theorem an
expression for the compliance of the DCB specimen can
be obtained. This equation can be solved for the flexural

modulus (£, ) using an initial compliance (Cy) and

the corrected initial crack length (a, +A) as
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where A can be determined from finite element
analysis and Gpr is the shear moduli of the material.
The CBBM is based on a.,, which is considered to

account for the FPZ effect at the crack tip as given by:
aeq =a+A+Aagp; [7,10]. Finally, the application of

CBBM to the DCB test yield the following expression
for the strain energy release rate in mode I (resistance or

R—curve)
6P%( 2a;, |
G =—; =+ .
B°h{ E/h 5Gir

It is worth noting that this procedure is less sensitive to
experimental errors such as crack length monitoring and
inherent variability of elastic properties.

In mode I loading, strain energy release rate (G, ) and

A3)

CTOD (w, ) can be related by the following expression
[9]

G = [ o aw, @

The cohesive law (o;=f(w;)) can then be directly
obtained by differentiating the above equation
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Fig. 1. Schematic representation of the DCB test 24 =
20 mm, L; =300 mm, L =280 mm, B =20 mm and g,
= 100 mm).

This data reduction scheme, however, requires the
accurate evaluation of the G, =f(w,) relationship.
Moreover, a suitable differentiation algorithm must be

used to avoid noise amplification in the reconstruction
of the constitutive cohesive law. In order to solve Eq.

(5), it is proposed here to fit the G, —w,; data by a

continuous function described by the following
expression (logistic function)

A —A

=% L4 ©)

L1 S w )

where 4,, 4,, p and w, are constants to be
determined in least-square sense. In this function, the
A, parameter must provide an estimation of the critical

strain energy release rate: 4, = lim G; =Gy, .
Wy —®©

In the literature, several analytical expressions for the
cohesive law in mode I have been proposed. Among
them, there is the Xu and Needleman exponential law

1]
o :&[ﬂjm{ﬂj_
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in which wy, is the crack tip opening displacement at

)

maximum stress ( oy, ) (see cohesive law in Fig. 2). The

logistic (Eq. 6) and exponential (Eq. 7) cohesive laws
are then compared and discussed during the analysis.

3. DIGITAL IMAGE CORRELATION

Full-field optical techniques have become very
important tool in experimental solid mechancis. Among
them, DIC has become widely used, following the
development of digital cameras and automatic digital
image processing techniques [12]. This computer vision
technique has the advantages of a simple principle and
experimental set-up, which can switch from large down
to small scales of observation. In DIC-2D, a planar
object is imaged by a single camera-lens optical system
connected to a computer for real-time visualisation. It is
assumed that the surface of interest has a local random
textured pattern uniquely characterising the material
surface. A matching process is then carried out between
images taken before and after deformation. Typically,
the reference (undeformed) image is divided into
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subsets, whose number of pixels defines the
displacement spatial resolution (i.e., the smaller distance
separating two independent displacement
measurements). The selection of these measuring
parameters, together with the quality of the speckle
pattern, are key issues for determining the spatial
resolution and accuracy associated to DIC
measurements. Therefore, they should be carefully
chosen in a compromise between correlation (small
subsets) and interpolation (large subsets) errors.

3.1 CRACK TIP OPENING DISPLACEMENT

The CTOD in mode 1

processing the displacements provided by DIC. For a
complex material such as wood, this technique can be
advantageous with regard to standard monitoring
procedures. As a procedure, the initial crack length is
firstly identified in the reference (undeformed) image. A
suitable pair of subsets near the crack tip is then
selected. During the test, the relative displacement of
these points is evaluated. The w; can then be

determined by [13,14]

(w;) was determined by

®)

=w* —w-
U T

where w, and w; are the components of the

displacement in the direction perpendicular to the crack
propagation associated to the upper and the lower

cracked surface and |||| represent the Euclidean norm.

4. FINITE ELEMENT SIMULATION

Two-dimensional finite element analyses (FEA) of the
DCB test, including cohesive zone modelling, were
performed in ABAQUS in order to wvalidate the
proposed procedure using CBBM. Nominal dimensions
of the DCB specimen were (Fig. 1): 24 =20 mm, L, =

300 mm, L = 280 mm, B =20 mm and g, = 100 mm.

Isoparametric 8-node planar solid finite elements
(CPS8R) were used for the bulk material, whilst 6-node
cohesive elements were applied along the FPZ, which in
this case was confined to a line at mid-height of the
specimen (Fig. 2). Wood was modelled as an
orthotropic linear elastic material [7,15-17].

5. EXPERIMENTAL WORK

Specimens for the DCB test were cut from a single P.
pinaster tree. Matched specimens were selected in the
mature region within the stem. Twelve specimens were
prepared with axes oriented along the RL propagation
system. The nominal dimensions of the DCB specimens
were those already used in the numerical simulation
(Fig. 1).

The fracture tests were performed in an INSTRON 1125
universal testing machine, with a controlled cross-head
displacement rate of 3 mm/min. The load was measured
by means of a 5 kN load cell, setting the gain at 50 N/V.

Specimens were tested after stabilisation at laboratory
conditions of 60-65% relative humidity and temperature
of 20-25 °C.

The ARAMIS DIC-2D system was used in this work
[18]. The speckled pattern required in the DIC method
was painted over the region of interest by means of an
airbrush to guarantee suitable granulometry, contrast
and isotropy at the scale of magnification.
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Fig. 2. Finite element model of the DCB test (cohesive
law, mesh and boundary conditions).
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Fig. 3. DCB test: (a) curves and macroscopic

visualization of the crack propagation; (b) R—curve
obtained by CBBM; (c) R—curve obtained by Irwin-
Kies equation

For DIC analyses, a subset size of 15x15 pixel®
(0.270x0.270 mm?) and a subset step of 13x13 pixel®
(0.234x0.234 mm?®) were selected for enhancing spatial
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resolution [19]. A resolution in displacement and strain
of a and was respectively obtained. For measuring
CTOD (wy), the coordinates of the initial crack tip

were firstly identified in the reference image. The w;

was then determined by post-processing the
displacement of subsets chosen upper and lower the
crack tip during the test (Eq. 8). The base distance
between the two subsets was 0.468 mm.

6. RESULTS AND DISCUSSION

The crack length propagation during the fracture test
was determined based on DIC measurements:

apic(8) = ay +Aa(o) . The algorithm proposed for this
evaluation together with a further comparison between

aeq and apc as a function of the applied displacement

in the DCB test is described in detailed in [10].
Hereafter, a systematic evaluation of mode I fracture
properties (R — curve and cohesive law) obtained from
both CBBM and Irwin-Kies equations is addressed. To
start with, the R—curves determined from both Irwin—
Kies equation and CBBM (Eq. 3) were analysed. The

compliance versus crack length (ap;c) function was
fitted in the least-square sense by a cubic function of the
form: C =ma® +n. The analytical differentiation of
this function was then used in order to compute G.

Fig. 3a shows the P —J curves obtained experimentally
together with the numerical one resulting from FEA
using the trilinear cohesive law (Fig. 1). The scatter on

the initial compliance among the curves
(Cy=0.072£0.0076 mm/N) is expected due to the
inherent variability of the material. Moreover,

qualitatively, the numerical prediction of the P—¢J
curve was in good agreement with the experimental
ones. In Fig. 3a it is also shown a macroscopic
visualisation of crack propagation. As it can be seen,
micro-cracking and fibre bridging can be identified.
This confirms the difficulties in measuring accurately
the crack length wusing conventional monitoring
techniques. Some authors (e.g., [20]) report that the
main mechanism of mode I fracture is fibre bridging.
However, these observations suggest that both micro-
cracking and fibre bridging contribute significantly for
the energy dissipation in the FPZ. The R—curves in
mode | obtained from the DCB test by both CBBM and
Irwin-Kies equations are shown in Fig. 3b and 3c,
respectively, together with the numerical resistance
curve. The wide dispersion of the experimental curves is
most likely a reflection of the local variability of wood
microstructure at the initial crack tip (e.g., earlywood
and latewood constituents).

From the R—curves, the evaluation of the strain energy
release rate in mode I was carried out at two distinct
stages. The first corresponds to the starting point of the
non-linearity in the P—J curve and therefore the

initialisation of the FPZ (Gy;), whilst the second is
defined at the maximum loading ( Gy, ). Due to the fact
that some of the R—curves do not reveal a clear plateau

140

identifying the critical strain energy release rate, it was
assumed that: Gy, = Gy, . This value is then related to
the complete development of the FPZ and initial steady-
state crack propagation. The Gy and Gy, values for
both CBBM and Irwin-Kies equations are reported in
Table 1, together with density and flexural modulus (Eq.
2). These results point out that an underestimation of
Gy can be obtained if the actual crack length is used
(Eq. 1) because a fraction of fracture energy dissipation
at the FPZ is not properly taken into account. It should
be noted that the density values among specimens have
a coefficient of variation (C.V.) lower than 4%.

Consequently, it is not surprising that scatter of G;; and
GIc

Indeed, as already pointed out, this scatter is likely due
to natural variability of wood cellular structure at the
crack tip among specimens. As can be concluded, the
evaluation of the strain energy release rate in mode I by
the Irwin-Kies equation is slightly lower than the one
from CBMM. This difference is of 11.7% and 12.9% for

Gy; and G, respectively, which is lower than the

was not statistically correlated with density.

coefficients of variation among the tested specimens.

From the DIC measurements both normal and
transverse CTOD, with regard to the crack plane, were
determined during the DCB test. As expected, CTOD in

mode 11 (wy) was negligible. Characteristic R—curves

in mode I (Gy—wy) were then obtained as shown in

Fig. 4a and Fig. 5a for the CBBM and Irwin-Kies
equations, respectively. The numerical characteristic R—
curve obtained by FEA of the DCB test was generically
in relative good agreement with the experimental ones.
For determining the cohesive law (Eq. 5), a logistic
function (Eq. 6) was firstly fitted to the experimental
data as shown in Figs. 4b (CBBM) and 5b (Irwin-Kies).
For this analysis, only the data points just before initial
crack propagation, where the FPZ is assumed to be
completely developed were considered. As it can be
seen, a relatively good approximation was obtained in
both cases. This procedure allows filtering experimental
data and provides a basis for analytical differentiation,
which is less prone to noise amplification. The cohesive
laws in mode I obtained from the DCB test are shown in
Figs. 4c (CBBM) and 5c (Irwin-Kies), together with the
numerical curve.

The parameters (A4, 4,,p and wy,) of the logistic

function (Eq. 6) obtained from this study are reported in
Tables 2 (CBBM) and 3 (Irwin-Kies), together with the
characteristic values of maximum stress (o) and

relative displacements (wy,,w;, in Fig. 2) in mode 1.
The mean value of 4, (Tables 2 and 3) represents an
estimation of G, and it is in agreement with the

independent measurements based on the R-—curves
(Table 1). It is interesting to notice that oy, (Tables 2,
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Table 1. Density (p ), flexural modulus (E), initial (Gy;) and critical (G, ) strain energy release rates in mode I
obtained from the DCB tests by CBBM and Irwin-Kies (IK) equation.

CBBM IK
Specimens P E; Gy Gy Gy Gie
(g/em’)  (N/mm’) (N/mm) (N/mm) (N/mm)  (N/mm)
1 0.539 9888 0.22 0.41 0.18 0.34
2 0.566 7279 0.14 0.28 0.10 0.21
3 0.529 8890 0.10 0.18 0.15 0.25
4 0.545 7423 0.14 0.41 0.14 0.40
5 0.548 8585 0.20 0.30 0.18 0.27
6 0.550 9833 0.17 0.29 0.15 0.27
7 0.535 7585 0.13 0.21 0.12 0.19
8 0.496 8473 0.20 0.37 0.16 0.30
9 0.566 8043 0.25 0.34 0.20 0.27
10 0.553 10105 0.17 0.27 0.15 0.25
Mean 0.543 8610 0.17 0.31 0.15 0.27
C.V.(%) 3.8 12.2 26.3 254 18.6 22.1
3) is of the same order of magnitude as the radial tensile 2. Xavier J, Belini U, Pierron F, Morais J, Lousada J,
strength (7.93 MPa) measured from tensile tests on P. Tomazello M (2013) Characterisation of the
pinaster (with density of 0.7 g/cm®) in [21]. bending stiffness components of MDF panels from
The mean cohesive law in mode I for P. pinaster was full-field slope measurements. Wood Sci Technol
determined from the mean values of the parameters 47(2):423-441
governing the logistic function, as shown in Figs. 4d 3. FAO (2009) State of the World's Forests 2009
(CBBM) and 5d (Irwin-Kies). For comparison purposes, Report. Part 2 - Adapting for the future. UN Food
the exponential (Eq. 7) cohesive law is also plotted in and Agriculture Organization
Figs. 4d (CBBM) and 5d (Irwin-Kies), determined from 4. de Moura MFSF, Silva MAL, de Morais AB,
mean values of the fitting parameters. Qualitatively both Morais JJL (2006) Equivalent crack based mode II
laws have a similar behaviour as summarised in Tables fracture characterization of wood. Eng Fract Mech
2 and 3. 73(8):978-993
5. Vasic S, Smith I (2002) Bridging crack model for
7. CONCLUSIONS fracture of spruce. Eng Fract Mech 69(6):745-760
6. de Borst R (2003) Numerical aspects of cohesive-
The resistance curves in mode I of P. pinaster were zone models. Eng Fract Mech 70(14):1743-1757
determined by applying the CBBM and Irwin-Kies 7. de Moura MFSF, Morais JJL, Dourado N (2008) A
equations to the DCB fracture test. Initial and critical new data reduction scheme for mode I wood
strain energy release rates in mode I were then fracture characterization using the double
determined. These values are in agreement with cantilever beam test. Eng Fract Mech
reference values reported in the literature for this wood 75(13):3852-3865
species. By combining the strain energy release rates, 8. Silva F, Xavier J, Pereira FAM, Morais J,
determined from both CBBM and Irwin-Kies equations, Dourado N, de Moura MFSF (2013)
with CTOD in mode I provided by DIC, characteristic Determination of cohesive laws in wood bonded
R—curves and cohesive laws in mode I for P. pinaster joints under mode I loading using the DCB test.
were evaluated by the direct method. Results were Holzforschung 67 (8): 913-922
consistent with literature values. Moreover, the 9. Fernberg SP, Berglund LA (2001) Bridging law
proposed procedure was validated by finite element and toughness characterisation of CSM and SMC
simulations using a cohesive zone model. composites. Compos Sci Technol 61(16):2445—
2454
8. REFERENCES 10. Xavier Xavier, J.; Oliveira, J.; Monteiro, P.;

1. Satyanarayana K, Arizaga GGC, Wypych F (2009)
Biodegradable composites based on lignocellulosic
fibers — An overview. Prog Polym Sci 34(9):982—
1021
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Morais, J.J.L.; de Moura, M.F.S.F. (2014) Direct
evaluation of cohesive law in mode I of Pinus
pinaster by digital image correlation. Experimental
Mechanics (in press DOI: 10.1007/s11340-013-
9838-y).
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van den Bosch MIJ, Schreurs PJG, Geers MGD
(2006) An improved description of the exponential
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mode decohesion. Eng Fract Mech 73(9):1220—
1234

Sutton M, Orteu J-J, Schreier H (2009) Image
correlation for shape, motion and deformation
measurements: Basic concepts, theory and
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Table 2. Parameters of the logistic function (4, 4,, p and wyy), and characteristic values of maximum stress (o7, )

and relative displacements ( wy, , w;, , see Fig. 2) determined by CBBM.

On

Specimens 4 4 4 Yo Wi Wie Logistic Exponential

(N/mm) (N/mm) ©) (mm) (mm) (mm) (MPa) (MPa)
1 0.016 0.35 2.45 0.026 0.018 0.12 9.19 9.16
2 0.011 0.29 2.05 0.017 0.010 0.12 10.5 9.90
3 0.016 0.18 3.09 0.020 0.016 0.08 7.14 5.49
4 0.005 0.28 2.43 0.027 0.019 0.13 7.31 6.37
5 0.016 0.30 2.21 0.027 0.017 0.15 7.16 6.52
6 0.004 0.29 1.81 0.016 0.008 0.12 11.3 11.2
7 0.006 0.21 2.40 0.015 0.010 0.08 9.44 8.32
8 0.013 0.31 1.99 0.032 0.019 0.19 6.02 571
9 0.019 0.35 2.81 0.037 0.029 0.16 7.04 5.60
10 0.004 0.25 2.24 0.024 0.015 0.13 7.30 6.61
Mean 0.011 0.28 2.35 0.024 0.016 0.13 8.24 7.48
C.V.! (%) 51.5 19.5 16.2 30.1 36.4 25.2 21.1 26.9

" Coefficient of variation (C.V.)

Table 3. Parameters of the logistic function (4, 4,, p and wy), and characteristic values of maximum stress (o7, )

and relative displacements (wy, , w;, , see Fig. 2) determined by the Irwin-Kies equation.

Ol

Specimens 4 4 e Wio Wi Wie Logistic Exponential

(N/mm) (N/mm) ¢) (mm) (mm) (mm) (MPa) (MPa)
1 0.001 0.32 1.51 0.014 0.005 0.14 9.19 9.81
2 0.002 0.23 1.60 0.019 0.008 0.14 7.20 7.45
3 0.023 0.26 3.15 0.019 0.016 0.08 10.5 8.00
4 0.005 0.25 2.48 0.026 0.019 0.13 6.95 6.01
5 0.013 0.26 2.14 0.027 0.017 0.15 6.15 5.69
6 0.004 0.26 1.82 0.016 0.008 0.12 10.2 10.0
7 0.005 0.18 2.37 0.015 0.010 0.08 8.28 7.35
8 0.009 0.25 1.86 0.033 0.018 0.18 4.58 4.38
9 0.013 0.27 2.64 0.038 0.028 0.16 5.33 4.38
10 0.004 0.23 2.24 0.024 0.014 0.13 6.70 6.06
Mean 0.008 0.25 2.18 0.023 0.014 0.13 7.51 6.93
C.V.' (%) 87.2 13.8 23.1 343 47.2 229 26.6 28.5

" Coefficient of variation (C.V.)
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