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Abstract
In the most recent years, structural applications of bonded joints have 
increased remarkably owing to their several advantages relative to other 
joining methods. As a consequence, the development of improved models 
to provide design effi ciency and, at the same time, increase the confi dence 
of designers acquires special relevancy. Recent developments consider-
ing cohesive and continuum mixed-mode damage models have demon-
strated that these methods are able to deal with several details inherent to 
mechanical behaviour of bonded joints. Both methods allow simulation 
of damage initiation and propagation by combining classical strength of 
materials approaches with fracture mechanics concepts. 

In this work, several different mixed-mode cohesive laws adapted to 
different types of adhesives mechanical behaviour are presented and dis-
cussed. Effectively, while mechanical behaviour of brittle or moderately duc-
tile adhesives is well simulated by means of the simple bilinear cohesive 
law, adhesives with pronounced ductile behaviour require more sophisti-
cated cohesive laws. The aspects regarding determination of some cohesive 
parameters are also given special attention in the present paper. A continuum 
mixed-mode damage model is also presented using the bilinear softening 
cohesive law. This model is advantageous since properties degradation takes 
place inside solid elements used to simulate the adhesive, which allows the 
evaluation of specifi c issues like the infl uence of asymmetric propagation 
on joint mechanical behaviour in a more realistic manner. Important conclu-
sions about advantages and drawbacks of both methodologies are drawn.

Keywords: Bonded joints, cohesive damage model, continuum damage 
model, mixed-mode
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5.1 Introduction

The application of bonded joints in critical structures has been 
increasing during the most recent years owing to their several 
advantages relative to alternative joining methods. This neces-
sitates the development of adequate design methods accounting 
for specifi cities of damage initiation and growth which are not 
included in classical design methods. In fact, methods based on 
strength of materials approaches [1–3] show diffi culties in dealing 
with geometrical singularities, which are usually present in bonded 
joints. In these cases, stresses tend to infi nity in a linear elastic anal-
ysis. This problem can be observed in fi nite element analysis, when 
stresses at the singularity point increase with the mesh refi nement 
and convergence cannot be reached. To overcome this problem the 
stresses obtained numerically can be evaluated at a characteristic 
distance from the singularity point or averaged over a distance in 
order to evaluate the occurrence of failure [4–6]. However, the lack 
of a physical meaning of this characteristic distance makes it diffi -
cult to establish a predictive methodology independent of a param-
eter which is a function of type of loading, materials involved and 
joint geometry. Fracture mechanics based methods [7–8] can also be 
applied to evaluate joint’s strength. In this case, the presence of a 
defect in the material is assumed. The objective is to verify whether 
the defects can induce failure or, during the predicted structure life, 
they can propagate stably maintaining their dimensions less than 
the critical size. Hence, it can be concluded that fracture mechanics 
based criteria are more adequate for damage propagation instead of 
its onset. On the other hand, the defi nition of the initial crack length 
and its location can be viewed as two main drawbacks intrinsic to 
this approach.

As a result, the development and application of damage onset 
and propagation methods to bonded joints design can be viewed as 
a fundamental task when dealing with design of critical structures. 
In this context, cohesive and continuum damage models can be 
viewed as valuable alternatives to classical approaches described 
above. Both of these are based on stress criteria to deal with damage 
onset and fracture criteria to simulate damage growth. The advan-
tage of this strategy relies in the fact that stress-based methods are 
adequate to predict damage onset, and fracture mechanics is suit-
able for crack propagation modelling. Effectively, by combining 
these two types of criteria it is not necessary to consider an initial 
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fl aw as it is done in pure fracture mechanics methods, and mesh 
dependency problems in fi nite element analysis are overcome.

5.2 Cohesive Damage Model

Cohesive damage models are usually based on interface fi nite ele-
ments connecting plane or three-dimensional solid elements [9–11]. 
The interface elements should be placed at the planes where dam-
age is prone to occur which means that critical regions must be iden-
tifi ed in advance. In bonded joints these regions can be identifi ed 
as being the interfaces between the adhesive and the adherends as 
well as in the middle of the adhesive. Interface elements include 
a softening relationship between stresses and relative displace-
ments between element faces in order to simulate smooth mate-
rial properties degradation. Different cohesive damage laws have 
been applied in the context of bonded joints [12–14]. The bilinear 
cohesive law with a linear softening relationship [12] is appropri-
ate when brittle or moderately ductile adhesives are used. In the 
case of pronounced ductility, the trapezoidal cohesive law whose 
plateau accounts for adhesive plasticization [15] is more adequate. 

In the following a trapezoidal cohesive mixed-mode I+II dam-
age model (Figure 5.1) appropriate for bonded joints is presented. 
Although this type of law is particularly adequate to characterize 
fracture of ductile adhesives, the presented formulation comprises 
the bilinear law since it is a particular case of the trapezoidal one. In 
fact, the trapezoidal law transforms into the bilinear one when the 
plateau vanishes. The model establishes a constitutive softening 
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Figure 5.1 Pure and mixed-mode I+II cohesive  damage model.
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law relating stresses (σ) and relative displacements (δr) between 
homologous points of interface fi nite elements connecting solid ele-
ments. In the linear elastic regime, i.e., before the occurrence of any 
damage 

 σ = Eδr (5.1)

where E is the interface stiffness diagonal matrix (ei, i = I, II). In order 
to account indirectly for the presence of the adhesive on the joint 
stiffness, the parameters ei are defi ned as being the ratio between 
the Young’s (mode I) or shear modulus (mode II), and adhesive 
thickness. In the pure-mode damage model, damage onset takes 
place when the relative displacement reaches d1,i and the constitu-
tive equation becomes

 
r(I D)Es d= −  (5.2)

being I is the identity matrix and D is a diagonal matrix containing, 
in the position corresponding to mode i (i=I, II), the damage param-
eter, d. In the plateau region the parameter damage can be defi ned as 
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where d1,i (i= I, II) is obtained from the initial stiffness (ei) and local 
cohesive strength in mode i, su,i. In the stress softening part of the law, 
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The relative displacement corresponding to second infl exion 
point can be obtained by an inverse method following an iterative 
procedure in order to obtain agreement between numerical and 
experimental load-displacement curves from the fracture test used 
to characterize the bonded joint. The relative displacement corre-
sponding to complete failure (du,i) results from the respective frac-
ture energy Jic, which is defi ned by the area defi ned by the softening 
law (Figure 5.1), thus leading to
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Since bonded joints usually are under mixed-mode (I+II) load-
ing, an extension of the pure-mode damage model was developed 
(Figure 5.1). A quadratic stress criterion is used to simulate damage 
initiation 
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where si and su,i (i=I, II) represent, respectively, the stresses and 
local cohesive strengths in each mode. It is assumed that normal 
compressive stresses do not induce damage. Taking into account 
the relation between stresses and relative displacements (Eq. 5.1), 
the fi rst Eq. 5.6 can be rewritten as
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where d1m,i (i = I, II) are the components of relative displacements 
in each mode leading to damage initiation. Utilizing the equivalent 
mixed-mode displacement

 I IIm
2 2d d d= +  

(5.8)

and the mixed-mode ratio

 I

IIb
d
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(5.9)

the equivalent mixed-mode relative displacement at the onset of 
the softening process ( 1 1 1m m,I

2
m,II

2δ δ δ= + ) is obtained by combining 
Eqs. 5.7–5.9 as:
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It should be noted that the mixed-mode ratio (Eq. 5.9) is obtained 
from the current relative displacements which means that b, for a 
given integration point can change along the softening region dur-
ing the loading history.

For the second infl exion point corresponding to stress soft-
ening onset (d2m), a relative displacements quadratic criterion 
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similar to the one considered for the damage initiation point 
(Eq. 5.7) is used, 
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leading to 
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where d2m is the mixed-mode relative displacement at the second 
infl exion point.

In order to simulate crack propagation the linear fracture ener-
getic criterion is employed 
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where Ji (i=I, II) represent the energy released in each mode at fail-
ure and Jic (i=I, II) the respective critical values. The energies Ji can 
be obtained from the area of the smaller trapezoid of Figure 5.1
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Combining Eqs. 5.1, 5.8, 5.9, 5.14 and 5.13 it can be written
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which corresponds to the equivalent ultimate relative displace-
ment under mixed-mode I+II loading. The damage parameter can 
now be evaluated using in Eqs. 5.3 and 5.4 the equivalent current 
relative displacement (Eq. 5.8) and critical mixed-mode relative dis-
placements (Eqs. 5.10, 5.12 and 5.15), instead of the respective pure 
mode values. The evolution of the damage parameter allows the 
simulation of a progressive softening which accounts for different 
failure processes occurring in the vicinity of the crack tip. In fact, 
in this region, known as the Fracture Process Zone (FPZ), several 
damage processes take place e.g., plasticity and micro-cracking, 
which are simulated by this softening law. 
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5.3 Measurement of Cohesive Parameters

One of the fundamental issues regarding this approach is the esti-
mation of the cohesive parameters intrinsic to each pure mode. 
Since bonded joints are usually used as thin bonded layers, tests on 
bulk specimens are not adequate to perform such characterization. 
Fracture characterization tests (Double Cantilever Beam for pure 
mode I and End Notched Flexure for pure mode II) can be per-
formed by considering specimens with similar geometric and mate-
rials conditions as in the intended application. One of the aspects 
that can be viewed as critical is the adhesive thickness, which must 
be the same since some infl uence on the measured fracture proper-
ties has been observed [16]. 

5.3.1 Double Cantilever Beam (DCB) Test

The DCB is a standardized test (ASTM D3433-99) used to perform 
fracture characterization of materials under pure mode I loading. 
The application of the DCB test to bonded joints fracture charac-
terization requires a careful monitoring of adhesive thickness dur-
ing the manufacturing process and the consideration of a pre-crack 
length. The application of load (Figure 5.2) induces pure mode I 
crack growth thus allowing the measurement of the mode I fracture 
energy.

Two methods are commonly used to estimate the mode I fracture 
energy (JIc). The Compliance Calibration Method (CCM) is based 
on the establishment of the compliance versus crack length (C=f(a)) 
relationship and on the Irwin-Kies relationship
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Figure 5.2 The DCB test.
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where b is the specimen width and P the applied load. The Corrected 
Beam Theory (CBT) is based on the following equation [17]

 ( )
J b a

P
2

3
Ic

d 
Δ = +  

(5.17) 

where d is the applied displacement (Figure 5.2). The parameter 
Δ aims to correct the crack length in order to account for crack tip 
rotation and defl ection effects and can be determined from a lin-
ear regression of C1/3=f(a). It should be noted that both methods are 
based on monitoring of applied load and displacement as well as on 
the resulting crack length during its propagation. This last task is not 
easy to perform with the required accuracy especially when ductile 
adhesives are being characterized. Additionally, in these cases the 
pronounced fracture process zone ahead of the crack tip is respon-
sible for a non-negligible amount of energy dissipation which is not 
accounted for when actual crack length is used as control parameter. 

In order to overcome the referred diffi culties, an equivalent crack 
length method based on specimen compliance and beam theory can 
be utilized. The objective is to use the current specimen compliance to 
estimate an equivalent crack length (ae) by means of the beam theory. 
Following this procedure the monitoring of the crack length during 
the test is not necessary. Moreover, the infl uence of the non-negligi-
ble FPZ is indirectly included since it affects the current compliance 
which is used to estimate ae. The application of the Timoshenko beam 
theory to the DCB specimen leads to the following equation [18]
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where E1 and G13 are the longitudinal and shear elastic properties 
of a general orthotropic material, and h the adherend thickness. 
In order to account for the infl uence of several parameters not 
included in the beam theory, like stress concentration in the vicinity 
of the crack tip, material variability between different specimens 
and the presence of the adhesive, an equivalent elastic modulus 
can be estimated from previous equation considering initial crack 
length a0 and initial compliance C0,
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where Δ is the correction to the initial crack length to account for the 
beam rotation at the crack tip. It can be calculated by a linear regres-
sion of C1/3=f(a0) considering three different initial crack lengths. 
Alternatively, the equations proposed by Wang and Williams [19] 
based on beam on elastic foundation assumptions can be used to 
estimate the crack length correction ΔI which can be used instead 
of Δ in Eq. 5.19
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To overcome the drawbacks intrinsic to crack monitoring dur-
ing propagation, an equivalent crack length ae can be calculated 
from the current compliance using Eq. 5.18. The solution of this 
cubic equation can be obtained using the Matlab® software and is 
presented in Appendix A. It should be emphasized that this proce-
dure allows including the effect of beam root rotation and fracture 
process zone (FPZ), i.e., a a ae FPZΔ Δ= + + , since these parameters 
affect the current compliance. The evolution of fracture energy as a 
function of equivalent crack length (JI=f(ae)) provides the resistance 
curve (R-curve) under mode I loading and can be obtained by com-
bining Eqs. 5.16 and 5.18
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The plateau of the R-curve corresponds to the critical fracture 
energy that characterizes the bonded joint. This method has some 
important advantages. The fi rst one is the fact that the R-curve is 
obtained using only the data provided by the P–d curve and does 
not require the monitoring of crack length which is prone to reading 
errors. Additionally, the effect of the fracture process zone is indi-
rectly included in the calculations via current compliance. This is 
an important characteristic of this method, particularly when duc-
tile adhesives are being characterized. Furthermore, since the elastic 
modulus is not a measured property but an estimated one consider-
ing the initial compliance and crack length, aspects like material var-
iability and presence of adhesive are indirectly taken into account. 

More details about the application of this methodology in the 
context of fracture characterization of bonded joints under mode 
I loading using the DCB test can be found in de Moura et al. [20].
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5.3.2 End Notched Flexure (ENF) Test

Owing to its simplicity, the ENF test (Figure 5.3) is a serious can-
didate for standardization for the measurement of the fracture 
energy of bonded joints under pure mode II loading. It consists 
of a three-point bending test using a specimen with a pre-crack, 
thus leading to shear sliding between the specimen arms at the 
crack tip.

The classical methods presented for DCB test can also be used 
in this case. Thus, the CCM is based on Eq. 5.16 and the CBT, pro-
posed by Wang and Williams [19], leads to 
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where ΔII is a crack length correction to account for crack defl ec-
tion. Wang and Williams [19] demonstrated that ΔII=0.42ΔI, ΔI 
being the correction for mode I obtained for the DCB test (Eq. 
5.20). Both methods require crack length monitoring during its 
growth which is even more complicated to perform in these mode 
II loading tests. In this context, the implementation of a crack 
equivalent method similar to the one previously presented for 
DCB tests acquires special relevancy. The equation of compliance 
versus crack length in the ENF test using the Timoshenko beam 
theory leads to
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The equivalent elastic modulus obtained from previous equation 
considering initial compliance and crack length becomes
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The use of the equivalent elastic modulus (Ef) instead of the 
measured one (E1) allows to account for several aspects not 
included in the beam theory equation, as the presence of adhe-
sive, stress concentration at the crack tip and contact between 
the two arms in the pre-crack region. These aspects infl uence the 
specimen behaviour even in the elastic regime and are indirectly 
taken into account via Ef. During propagation, the equivalent 
crack length can be estimated from Eq. 5.23 as a function of cur-
rent compliance C
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where Cc and C0c are given by 
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The R-curve in mode II (JII=f(ae)) can now be obtained by combin-
ing Eqs. 5.16 and 5.23–5.26,
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The plateau of the R-curve defi nes the critical value of fracture 
energy under mode II loading. It is not necessary to monitor the 
crack length during propagation which is a remarkable advantage. 
In fact, this task is very diffi cult to perform with the required accu-
racy in mode II fracture tests, since the crack tends to propagate in 
closed manner. Additionally, the presence of a non-negligible FPZ 
is indirectly accounted for by means of current compliance. Under 
mode II loading adhesives usually develop larger FPZ relative to 
mode I tests, which emphasizes the relevancy of this method. 

The application of the proposed procedure in the context of frac-
ture characterization of bonded joints under mode II loading using 
the ENF test is detailed in de Moura et al. [21].

5.3.3  Determination of Cohesive Parameters of the 
Trapezoidal Law

The procedure described in previous Sections 5.3.1 and 5.3.2 per-
mits to determine the fracture energy under pure loading modes 
(I and II). However, in order to defi ne completely the trapezoidal 
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pure mode laws it is necessary to identify two additional param-
eters: the local cohesive strength su,i (i=I, II) and the displacement 
corresponding to the second infl exion point d2,i (i= I, II). These 
parameters can be determined by means of an inverse method. The 
fracture characterizations tests (DCB and ENF) are numerically 
simulated using the cohesive damage law whose circumscribed 
area is the respective fracture energy measured experimentally. The 
parameters su,i and d2,i are determined by fi tting by an iterative pro-
cedure the numerical load-displacement curve to the experimental 
one. A genetic algorithm including an optimization strategy can 
be used [22]. However, previous studies [23] have shown that the 
model is not too sensitive to the value of d2,i in a pre-defi ned range 
of values. Consequently, this critical displacement was defi ned as 
being the one that induces, for the third part of the softening law, a 
symmetrical slope relative to the initial linear part. Therefore, only 
one parameter (su,i) remains to be calculated by means of the inverse 
method which means that an iterative manual procedure can be 
straightforwardly applied. In effect, two or three iterations are typ-
ically suffi cient to obtain a good agreement between load-displace-
ment curves, thus leading to the defi nition of the respective local 
cohesive strength.

The described procedure was applied to fracture characteri-
zation of carbon-epoxy bonded joints under pure mode I (DCB 
test) and pure mode II (ENF test). The specimen dimensions for 
the DCB were (Figure 5.2): L= 120 mm, a0 = 45 mm, 2h = 5.2 mm, 
b = 15 mm, t = 0.2 mm. For the ENF specimens the only difference 
was the specimen length 2L = 200 mm (Figure 5.3). The adher-
ends (unidirectional 0° lay-ups with sixteen layers of TEXIPREG 
HS 160 RM from SEAL®, Legnano, Italy whose elastic properties 
are listed in Table 5.1) were bonded with the adhesive Araldite® 
2015 (Young modulus, E=1850 MPa and Poisson ratio n=0.3). The 
bonded surfaces were polished with sandpaper and cleaned with 
acetone. Then, a 0.2 mm calibrated steel strip was inserted between 
the two specimen arms to guarantee the adhesive thickness. The 
next stage was pouring the adhesive, assembling and holding it 
with pressure. The adhesive was cured at room temperature for 
fi ve days. 

The average trapezoidal cohesive laws for each pure mode 
were obtained by means of the above described inverse method 
and the fundamental parameters are presented in Table 5.2. The 
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Table 5.1 Elastic properties of carbon-epoxy lamina [20].

E1=1.09E+05 MPa n12=0.342 G12=4315 MPa

E2=8819 MPa n13=0.342 G13=4315 MPa

E3=8819 MPa n23=0.380 G23=3200 MPa

E1, E2, E3 – Young’s moduli
n12, n13, n23 – Poisson’s ratios
G12, G13, G23 – Shear moduli

Table 5.2 Cohesive parameters under pure modes I and II.

Jic (N/mm) σu,i (MPa) δ2,i (mm)

Mode I 0.43 23 0.0187

Mode II 4.7 22.8 0.171

Jic – Fracture energy in the mode i (i=I, II)
su,i – Local strength in the mode i (i=I, II)
d2,i – Relative displacement at the second infl exion point of the trapezoidal cohe-
sive law in the mode i (i=I, II)

corresponding global cohesive laws for both modes are presented 
in Figure 5.4. More details about these procedures and respective 
results can be found in [20, 21].

5.3.4 Bonded Joints Strength Prediction

In order to verify the adequacy of the proposed methodology to 
predict the strength of bonded joints, experimental tests on sin-
gle-lap carbon-epoxy bonded joints under tensile load were per-
formed. The materials of the adherends (thickness of 2.5 mm) as 
well as the adhesive were the same as used in the fracture char-
acterization tests. In addition, the adhesive thickness was also 
the same (t=0.2 mm) in order to reproduce the test conditions of 
the fracture characterization tests. The specimens had a useful 
length of 240 mm and a width of 15 mm. Eight different overlap 
lengths (ranging between 10 and 80 mm) were considered. Five 
specimens of each case were tested under displacement control 
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and the maximum load was registered and used to defi ne the joint 
strength. The failure occurred within the adhesive layer (cohesive 
failure) in all cases.

The joints were also simulated numerically by considering the 
trapezoidal cohesive mixed-mode damage model described in 
Section 5.2. The mesh was refi ned in the overlap region and its 
vicinity (element length of 0.4 mm provided converged results) 
in order to capture accurately the stress concentrations that arose 
in these regions. The cohesive pure mode laws in mode I and 
mode II used in the simulations were the ones determined by the 
procedure described in previous Sections 5.3.1, 5.3.2 and 5.3.3. 
Figure 5.5 presents the evolution of experimental and numeri-
cal results. It can be concluded that generally good agreement 
was obtained which demonstrates the adequacy of the proposed 
methodology.

0

5

10

15

20

25

30

0 0.005 0.01 0.015 0.02 0.025 0.03

JIc,I avg = 0.4302 N/mm

d2,I avg = 0.01870 mm

du,I avg =
0.02119 mm

0

10

20

30

40

0 0.05 0.1 0.15 0.2 0.25 0.3

s
  [

M
P

a]
s
  [

M
P

a]

JIIc avg = 4.70 N/mm

d2,II avg = 0.171 mm

su,II avg =
22.8 MPa

du,II avg =
0.248 mm

(b)

(a)

d [mm]

d [mm]

Figure 5.4 Cohesive laws; a) Pure mode I loading; b) Pure mode II loading.
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5.4 Continuum Damage Models

The application of cohesive models described in previous section 
neglects the adhesive thickness. This can constitute a limitation spe-
cially when thick adhesive layers are used and asymmetrical crack 
propagation with different paths along adhesive thickness occur. In 
these cases, typical pure mode cases can be affected by the presence 
of some mode mixity due to asymmetrical crack growth [24], which 
can alter the expected mechanical behaviour. Also, it is known that 
adhesive thickness can infl uence the mechanical properties of the 
joint [16]. In order to overcome these drawbacks continuum damage 
models can be used. In these models the material properties deg-
radation occurs inside the solid elements that are used to simulate 
the adhesive. The progressive damage is computed considering the 
damage onset and propagation criteria in the formulation of solid 
elements. Typically, this is carried out through a user subroutine 
implemented in standard software, where the material properties 
are degraded according to the selected criterion. In the following, 
a triangular softening relationship between stresses and strains is 
implemented in the ABAQUS Standard® software via UMAT user 
subroutine. The bilinear pure-mode law (Figure 5.6) was imple-
mented in two-dimensional solid elements used to simulate the 
adhesive behaviour [25]. 
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Figure 5.5 Comparison between numerical (cohesive zone model) and 
experimental single-lap joint strengths in terms of maximum loads as a function 
of overlap length.
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In this pure mode model damage onset occurs when local 
strength (su,i, i = I, II) is reached. Damage growth takes place when 
the respective fracture energy defi ned by the triangular area cir-
cumscribed by cohesive pure-mode law

  
, , , , I, II

2
u i u i c i

ic
l

J i
s e

= =
 

(5.28) 

is dissipated at a given integration point. A characteristic length 
lc,i is used to establish the relationship between the displacement (di) 
and the corresponding strain at the integration points of the solid 
elements, i.e., ei=di/lc,i. This parameter corresponds to the length of 
infl uence of each integration point and physically can be viewed as 
the length at which the material behaves homogeneously. After the 
ultimate stress su,i is attained, the stress–strain softening relation-
ship becomes

 (I D)Cs = − ε  (5.29) 

where C is the stiffness matrix of the undamaged material in the ortho-
tropic directions and D is the matrix containing the damage param-
eter di in the direction corresponding to the selected pure mode i
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Figure 5.6 Bilinear pure-mode and mixed-mode laws.
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where di, do,i and du,i represent, respectively, the current, onset and 
ultimate relative displacements. The last quantity can be easily 
obtained from Eq. 5.28 as a function of previously known Jic and su,i. 
The damage parameter varies between zero (undamaged material, 
i.e., di≤do,i ) and unity (complete material failure, i.e., di≥du,i).

The application of the continuum damage model to bonded joints 
requires the development of a mixed-mode model (Figure 5.6), since 
structural bonded joints are frequently subjected to mixed-mode load-
ing. Damage onset is detected by means of a quadratic stress criterion 
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(5.31)

sI, sT being the normal and t the shear stresses (Figure 5.7), and 
su,tu the corresponding ultimate values. In addition to the shear 
mode II (t) and normal mode I (sI), another normal component 
(sT) parallel to crack direction is considered. This component is 
generally known as the T-stress component and has been shown 
to play an important role when crack growth under mixed-mode 
loading is concerned [26] and in the size and shape of the plastic 
zone [27]. Under compressive stresses (i.e., sI<0) it is assumed 
that damage is dictated only by the shear stress component and a 
pure mode II loading is considered (second Eq. 5.31).

The fi rst Eq. 5.31 can be used to obtain an equivalent mode I ulti-
mate stress causing damage initiation. With this aim the following 
ratios are considered
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Figure 5.7 Adhesive layer stress components in the vicinity of the crack tip. 
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Combining Eqs. 5.32 and the fi rst Eq. 5.31 gives

 1
eI

u
2

s
2

s u
2

u us
t a b s

s t=
+ +^ h  

(5.33)

which corresponds to the equivalent stress that, taken into account 
the mode ratios (Eqs. 5.32) present in the problem, leads to dam-
age initiation. The damage parameter (Eq. 5.30) under mixed-mode 
loading should be defi ned as a function of equivalent mixed-mode 
displacements instead of the pure mode ones. In this context, the 
relative displacement components in each mode ( ,om Id  and ,om IId ) cor-
responding to damage initiation can be obtained using the Hooke’s 
law and Eq. 5.32
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where E and n are the elastic modulus and Poisson’s ratio, respec-
tively. The equivalent relative displacement at damage onset is 
given by

 E l1 4 1,I , I
2 2 2 2

om om om I
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s s
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cd d d
s
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(5.35)

The linear energetic criterion 

 J
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J
J
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IIc
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(5.36)

is utilized to simulate damage growth. The two components of 
energy that contribute to mixed-mode present in the problem are 
given by (Figure 5.6)
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(5.37)

where sI and t are the limiting stresses in each mode (sum,i in Figure 5.6) 
at damage initiation and ,Iumd , Ium,Id  the ultimate relative displace-
ments in each mode. Considering a relative displacement ratio
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and substituting Eqs. 5.37 into 5.36 gives
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which establishes the ultimate equivalent mixed-mode I+II dis-
placement leading to complete failure as a function of the ratios 
of relative displacements and stresses that defi ne the mode-mixity 
present in the problem. The equivalent mixed-mode I+II quantities 
(dm, dom, dum) are employed in Eq. 5.30 to estimate the damage param-
eter dm, used in Eq. 5.29 to simulate a progressive damage under 
mixed-mode I+II loading. It should be noted that the mode-mix-
ity induced by the applied load is taken into account through the 
mode ratio parameters ( db  and sb ). 

5.4.1 Application to DCB Test

The application of the continuum damage model to bonded joints 
allows considering the presence of the adhesive in a more profi -
cient way than in cohesive modelling. In order to verify the con-
sequences of this aspect, the model was applied to the DCB test 
considering an adhesive thickness t equal to 0.2 mm (Figure 5.8). 
The other specimen dimensions were the ones described in previ-
ous Section 5.3.3. 

Considering the procedure described in Section 5.3.1 and the 
properties listed in Table 5.1 (local strength and fracture energy) 
the following resistance curve (R-curve) was obtained (Figure 5.9).

Since the fracture energy is normalized by the inputted one it 
can be straightforwardly concluded that a slight overestimation 
of the inputted value takes place during the self-similar crack 

t 
h 

h 

L 
a0  

P, d

Figure 5.8 Schematic representation of the DCB test simulated using the 
continuum damage model. 
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propagation observed by the horizontal plateau of the R-curve. In 
order to explain this result the evolution of the damage process 
inside the adhesive layer was captured for four different steps of 
the loading process (Figure 5.10). The crack length was defi ned 
by the integration points where the failure process had been 
completed and normal stresses had vanished. The FPZ region 
comprises the integration points that are in the softening region 
(Figure 5.6), which means that damage is already present although 
normal stresses still exist. 

It can be verifi ed that crack tends to develop close to an interface. 
Additionally, the fracture process zone is distributed asymmetri-
cally being more concentrated towards an interface. These observa-
tions are in agreement with the ones obtained by Gonçalves et al. 
[24], concerning the propagation occurring close to an interface. It 
was verifi ed in [24] that stress concentration arises at interfaces over 
the mid-plane of the adhesive due to localized mismatch between 
different materials (adherend and adhesive). These aspects mean 
that damage grows asymmetrically, thus leading to a localized 
mixed-mode loading instead of the intended pure mode I. The 
presence of some mode II loading induced by asymmetrical prop-
agation justifi es the slight overestimation of the fracture energy 
and highlights the importance of the continuum damage models 
when applied in the context of bonded joints. Effectively, the slight 
overestimation that results for t=0.2 mm will increase with adhe-
sive thickness and this phenomenon is not able to be captured with 
cohesive modelling. 

Another interesting aspect is the fact that the FPZ region ahead 
of crack tip maintains approximately the same shape and size in 
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Figure 5.9 R-curve of the DCB test. The horizontal line (JI/JIc=1) identifi es the 
value inputted in the model.
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all steps (Figure 5.10). This circumstance reveals a self-similar 
crack growth process which leads to a plateau in the R-curves 
(Figure 5.9).

5.4.2 Application to Single-Lap Joints

In order to verify the performance of the mixed-mode I+II contin-
uum damage model proposed in the previous section, the model 
was applied to predict strength of single-lap bonded joints. The 
continuum damage model was implemented in 8-node plane 
stress solid elements used to simulate the adhesive behaviour 
(Figure 5.11). 

The experimental results used to validate the numerical results 
are the ones presented in Section 5.3.4. Generally, good agreement 
was obtained between the numerical and experimental results 
as can be seen in Figure 5.12. This demonstrates the adequacy of 
the model with the advantage that it includes the presence of the 
adhesive. Additionally, it is possible to simulate crack propaga-
tion along different paths inside the adhesive, although in this 
particular case this aspect is not relevant owing to low adhesive 
thickness (t=0.2 mm).

FPZ region Crack

Adhesive
layer

(a)

(b)

(c)

(d)

Figure 5.10 Evolution of damage (crack and FPZ region) inside the adhesive 
layer in the DCB test. Figures a-d present four steps of the evolution of the crack 
and the FPZ region inside the adhesive.
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Figure 5.11 Detail of the mesh used and the respective deformation in a single-
lap bonded joint.
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Figure 5.12 Comparison between numerical (continuum damage model) and 
experimental single-lap joint strengths in terms of maximum loads as a function 
of overlap length.

5.5 Conclusion

Adhesive bonded joints are being increasingly applied in criti-
cal structural applications. Therefore, more challenging design 
methods accounting for several specifi cities inherent to these cru-
cial applications should be considered. Cohesive and continuum 
mixed-mode damage models emerge as effi cient design tools when 
applied to bonded joints strength prediction. Both methods are 
based on stress based criteria to deal with damage initiation and 
fracture mechanics approaches to simulate damage growth, thus 
overcoming the drawbacks of each criterion and gaining benefi t of 
their advantages. 

In this context, a trapezoidal cohesive mixed-mode I+II cohesive 
damage law adequate for the simulation of ductile adhesives was 
presented. The respective cohesive parameters were estimated by 
means of an inverse method applied to the DCB and ENF fracture 
characterization tests for pure modes I and II, respectively. The 
inverse method is based on an iterative procedure with the aim of 
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fi tting the numerical and experimental load-displacement curves, 
thus defi ning the constitutive cohesive laws in the two modes. 
Owing to diffi culties intrinsic to crack length monitoring during 
its propagation in the DCB and ENF tests, crack equivalent based 
methods were applied. Comparison between numerical and exper-
imental results for single-lap joints strength under tensile loading 
revealed good performance of the model.

A continuum bilinear mixed-mode I+II damage model was also 
presented. This method is based on the implementation of a dam-
age softening law inside solid elements which allows to account 
for the presence of the adhesive in a more effi cient way relative to 
cohesive models. Details, such as asymmetrical crack and fracture 
process zone growth and their infl uence on the measured fracture 
properties are well managed by the continuum damage models. 
The model was applied to predict single-lap bonded joints strength 
under tensile loading and showed good performance when com-
pared to experimental results.

Appendix A

Eq. 5.18 can be expressed as,

 a a 03
e ea b g+ + =  

(A.5.1) 

where the coeffi cients a , b  and g  are
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Using the Matlab®
 software and keeping only the real solution 

we have,
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