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BOARD-LEVEL PROTOTYPE VALIDATION: A BUILT-IN CONTROLLER
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ABSTRACT

Prototype validation is a major concemn in modem electronic
products design and development. Simulation, structural test,
functicnal and timing debug are all forming parts of the validation
pracess, although very often addressed as dissociated tasks. In this
paper we describe an integrated approach to board-level prototype
validation, based on a set of mandatory / optionat BST instructions
and a built-in controller for debug and test, that addresses the tate
mentioned tasks as inherent parts of a whole process.

1. INTRODUCTION

Increasing complexity and quality demand on electronic products
combined with shortening time-to-market is creating a bottleneck
on the prototype validation phase. Any sound validation strategy
rmust favour the overlapping of the several verification steps with
the design flow and first prototype releases, to prevent delays and
augment design celerity. Prototype validation is usually formed by
the following steps: simulation, structural tesi, functional and
timing debug. These typically address three classes of errors:

e Human errors in the specification or design.

s Technological, implementation or manufacturing errors. These
include defective components, soldering problems, broken or
short lines, etc.

o Errors related to the tools. These include errors associated with
the synthesis, mode) generation, simulation or layout (at the iC
or PCB level) tools.

Simulation provides the first and best platform for detecting and
debugging human errors in the prototype specification or design,
although this process in itself is also prone to human / tools errors.
The values obtained during simulation provide a database of
golden vectors that can later be used for the prototype functional
and timing debug phase [1]. ATPG and Fault simulation are done
to create the test program and a fault dictionary able to assist on the
diagnosis of faults detected during structural tesl. Sratic timing
analysis helps to determine the maximum clock frequency, by
revealing the longest paths within the design. Pin-to-pin and other
delay types are also calculated during this process. Structural test
addresses the second class of errors. This step is greatly simplified
if the components support BST [2]. Existence of BIST capabilities
also helps to diminish ATE requirements. Testing a board proceeds
in three main steps: testing the BST infrastructure itself, testing the
interconnects, and the components (mainly through the activation
of IC-level BIST functions). Other advantages of using BST
include simple test interface, assistance on functional debug and
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test, and availability during field operation debugging [3,4,5].
During functional debug the golden vectors extracted from
simulation are compared against the values captured on the
prototype, thus covering the third class of errors. This process is
usually carried out step by step, sometimes with a reduced clock
frequency and generally involves a reduced number of vectors. The
timing debug phase is done with the prototype working on its
normal operating speed. Errors not detected during the structural
test (due to the fault models used) or functional debug (due to the
reduced clock frequency) have to be detected and diagnosed during
this last verification step.

This paper describes an integrated solution to board-level
prototype validation based on a set of optional BST instructions 10
be supported by 1149.1-compatible components and a built-in
controller for debug and test. The proposed solution addresses the
four verification steps as follows: functionality of the optional
instructions is included in each IC model and the built-in controller
model is included for system level simulation, to reduce differences
between simulation / prototype debugging environments. Structural
test is covered by mandatory BST instructions, and board-level
BIST is supported by the built-in controller. Functional debug is
covered by both mandatory and optional BST instructions.
Synchronisation between functional and test logic is guaranteed by
the built-in controller [3,4]. Timing debug is covered by both
optional BST instructions and the built-in controller.

Our requisites included a minimal overhead and interference with
the component functional logic for the optional BST instructions,
and reusability of a board-level BIST processor [6].

2. PROTOTYPE DEBUG AND TEST
REQUIREMENTS

The initial phase of our approach included the identification of the
prototype debug and test requirements and the conversion of this
requirements into operations implemented by both mandatory and /
or optional BST instructions, and / or instructions executed by the
built-in controller. Requirements analysis covered characteristics of
simulation and debug tools, current debug and test techniques, and
debug and test mechanisms accessible through BST [1,3,7,8,9].
The analysis process led to a “simplified” debug and test model
with five operation types:

e Control, Observation and Verification (COV)

Single Step (83)

Breakpoint (BP)

Real Time (RT) analysis, and

Control of Internal resources and Test program flow (CIT).
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Next, a set of crileria was defined so as to allow an exhaustive
dissolution of each operation type in a roll of individual operations.
The following list presents the criteria considered for each
operation type. Individual operations were obtained by examining
minutely each criteria combination. The last phase consisted of
analysing the individual operations included in each operation type
and converting these into specifications of instructions
implemented by the built-in controller or the BST infrastructure.
The description of this rather extensive process would go beyond
the scope of this paper. For the sake of simplicity and presentation
clarity it was decided to omit it.

Due to the requirement of reusing the board-level BIST processor
it was decided to design the built-in controller as a dual-processor
architecture. One of the processors is responsible for the control of
the test logic (the board-level BIST processor), while the other is
responsible for the control of the system functional logic, and the
synchronisation between the functional and the test logic.

3. A DUAL-PROCESSOR BUILT-IN
CONTROLLER FOR DEBUG AND TEST

3.1. Control of test logic

The processor controlling the test infrastructure is an enhanced
version of the board-level BIST processor. The original instruction
set allowed the control of the low-level TAP operations. A
deserializer, an interface to an external dual-port FIFO and a
number of new instructions were added, resulting in the instruction
set presented in table 1 (new instructions are shadowed).

NCSHF and NCSHFCP are used to observe and verify the contents
of scan chains without modifying the cumrent value (the value
captured on the scan output is placed at the scan input, resulting in
a-circular shift of the scan chain contents — number of cycles must
match the scan chain extension). The values shifted out of the
active chain are internally stored in a previously selected temporary
buffer (using STMPBx) and deserialized into 8-bit words placed on
an external dual-port FIFO for outside observation. NSHFB2C and
NSHFCPB2C are used to shift the selected temporary buffer
contents into the active scan chain. These instructions enable the
debug & test program to return the active scan chain to a former
saved state. STCK enables the second processor to control TCK,
through synchronism channel A, as during RT operations it is
sometimes necessary to supply an unknown number of TCK cycles.

3.2. Control of functional logic

The instruction set of the processor controlling the functional logic
is presented in table 2. A first group of instructions implement
COV operations on directly accessible pins. A second group of
instructions controls the system clock output for SS operations. A
third group of instructions controls the system clock output for BP
operations. CSTRETCH_N partially implements the cycle stretch
technique [1], that consists of selectively stretching the clock-cycle
length for isolated cycles prior to a detected failure. The theory is
that when the cycle, where a long-path is exercised, is stretched
then enough time will be allowed for the correct data to be
captured / registered. To accomptlish this, the process has to be run
iteratively, with successive cycles stretched, to find when the
subsequent external failure has indeed been eliminated. When it
has, the current stretched cycle is the one that exercises the long-

Table 1: Instruction set supported by the processor controlling the
test infrastructure.

TAP coerations path. The last group of instructions controls synchronism channeis
SELTAP (0,1) | Selecis ihe BST chain 10 be controlled by the following instructions. and the internal resources. STORE (24 stores the contents of the
L IRST ______} Forces an asynchronous reset through the /TRST ouput. internal 24-bit counter in an extemai dual-port FIFO. This counter
T™MS0, TMS1 Forces a slate transition in the internal BST logic of each IC, : sed for i } . h 1 h hni h
NSHF N bits will be shified into the selected chain. Bits shified out of the chain 15 used for implementing the cycle stretch technique, so as when
arg not compared. the time-related fault is no longer detected, its contents identify the
NSHFCP N birs will be shifted into the selected chain. Bits shifted oul of the chain - 3 H
are compared wikh thelr expocted value (using mask bits). exact cycle where the long-path is exercised.
NTCK Applies N 1es1 clock cycles, while keeping TMS at "0". N represems the
conients of the intermal 24 bit counter.
— — Instructions rting COV operations
NCSHF Bis thified ot of the selexted chain arc shifled Into e, @me chain and T o —
sloted in the selected bufler. (3] se1s outpl {i].
NCSHFCP Bits stifed out of the selected chain are COmPARCd with thelr capected LSETOUT[Y]  {Sets output [il
valne, shified into the same chas and stored I the selected tem READ Jif Selects inpu [i] which n:mams con!wf:lcd 1o the data oulpul
butter, Mask bits are used 1o discasd don’t cus bits. JZ [§), sddress Jum| s_lo_srloqu:_daddre}sxrm_ ut fi s(_)t.orll.
NSHFBIC N bits stored Iy the selected lemporary buffer will be shifted bio the | teseporary buffer will be shifted nlo the WAIT WHL 7 [i] | Remains in this instruction while input i) is 0 tor 1),
ickoiod chain Bits shified out of the chaln a'e nol conpared. Lastructions supporting SS operations
NSHFCPB2C N bits stored & the selected temporary buffer will be shified o the CLK Applies a single system clock cycle.
a:bcw:! chain. aie_s shifted ot compared with their expecied vake. CLE N Applies N system clock cycles.
W‘M& - — Instructions supporting BP operations
STCK % hi‘:“ g".‘:.""” while synchronism ipot chamee A is at 17, CLE_WHL_Z{i] | Apphies system clock cycles while input [i] i 0 for ).
Internal contro and synchronisation = - '—M—L"ﬂ:‘ﬂ": 2 rrﬂ“ RT[:ck"m:s
> n n TART _CLK nitiates the applicarion of system cl cycks.
STMPBO, Selects the internal 2048 x 1 bin temporary bufler 0 or 1 for storing the o
$TMPBI values shificd out of the selecied chain. STOP_CLK Stops the application of system clock cyckes. _
LD Cl6, N Loads the internal 16-bit counter with the number of test clock (TCK) MN_W
€ycies ko be applied. Instructions supporting control of Internal resources and synchronism____
LD C24,N Loads the internal 24-bit counter with the number of test clock (TCK) DINZ address Drc £24 and jumps to selected address if not 0.
cyckes to be applicd. LD C24. N Loads the internal 24-hit counter with N.
JPE Address Conditional jumps based on the state of the internal error Mag. STORE C24 Stores the contents of C24 into extemat FIFOD.
PNE Address JP address Unconditional jump to selected address.
SSAW/) SSBO/1 | Forves a logical value (0.1} on the synchronism output channel A or B. SSAQ/1, SSBO/] | Forces a logicat value (0. 1) on the synchranism output channel A or B.
WSAWVL, WSBO/1 | Waits for a logical vaive (0.1) on the synchronism input channel A or B. WSAWL, WSBO] | Waits for a lngical value {0).1) on the synchronism input channel A or B.
HALT Terminates test program cxecution. HALT Termi program execulion.

Table 2: Instruction set supported by the processor controlling the
functional iogic.
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4. OPTIONAL BST INSTRUCTIONS

The optional BST instructions defined give support to BP and RT

operations. For BP operations the BS register is configured to

detect a condition corresponding to values present at input pins or

outputs from the IC functional logic. For RT operations the BS

register is configured to:

¢ Store a sequence of two contiguous vectors.

« Store a sequence of Iwo contiguous vectors after a certain
condition is found.

¢ Store a sequence of two contiguous vectors until a certain
condition is found.

4.1. DPetect condition

The goal is to activate a Condition Detected Output (CDO) pin
when the comparison between the vector present at the BS
register Pls and the vectors stored at the capture/shift and update
stages results true, according to one of eight condition types:
Equal to expected vector (vector compared through a mask)
Different from expected vector (compare with mask)

Greater than limit A (vector > limit A)

Greater/equal to limit A (vector Z limit A)

Lesser than limit A (vector > limit A)

Lesser/equal to limit A (vector < limit A)

Between limit A & B (limit A < vector < limit B}

Outside limit A or B (vector < limit A or vector > limit B)

e & & & & & & @

The optional instruction SEL_COND places a 3-bit test register
between TDI-TDO, which selects the type of condition to be
detected. The expected vector {or limit A) is stored in the update
stage and the mask (or limit B) is stored in the capture/shift stage.
To place the expected vector in the update stage it is necessary (0
shift the Sample/Preload instruction and then shift in the expected
vector. During Update-DR, the vector is stored in the update
stage. To place the mask in the capture/shifi stage it is necessary
to shift in the optional instruction DET_COND and then shift in the
mask. The values present in the BS register when DET_COND is
active are not modified in Capture-DR or Update-DR states. At
the end of the shift process the mask is stored in the capture/shift
stage. Condition is evaluated while TAP controller is in Run-
Test/Idle, where CDO exhibits the result. TCK has no effect on
the evaluation process. To support this operation the BS cells
have to be modified to the structure illustrated in fig. 1.

4 80 o
Pl IF-n
m | pO
) i)
1 ox
— F |
i Mode
et m [
[ e A B -
n x
> >
F, Sl Cleck DR | Update_DR

Fig. 1: Modified BS cell supporting instruction DET_COND.

The F, block evaluates the partial condition at each cell, taking
into account the result from the previous cell, and feeds the result
to the next cell. CDQ is connected to F, of the BS cell closest to
TDO. The F, block of the BS cell closest to TDI receives the
result from a Condition Detected Input (CDI) pin. These two
extra pins (CDI and CDQ) allow several BST components 10 be
cascade for detecting complex conditions that may include several
hundreds of functional pins. CDO is connected to a generic input
pin of the buili-in controller for BP implementation, using
instruction CLK_WHL_Z [i].

4.2. Store sequence

The goal is to store a sequence of two contiguous vectors on the
BS register, one vector in the capture/shift stage and the other in
the update stage. To store one sequence the optional instruction
STORE_SEQ is first shifted in and the TAP controller is placed in
Run-Test/Idle. While at this state the vatue present at each BS cell
Parallel Input (PI) is captured on the TCK rising edge. On the
falling edge the value present in the capture/shift stage is registered
on the update stage. To read the stored sequence the TAP
controller is placed in Shift-DR (contents of the capture/shifl stage
do not change during Caprure-DR) and the first vector is shifted
out. To read the second vector (stored in the update stage) the TAP
controller is first placed in Exit2-DR, via Pause-DR. During Exif2-
DR the value stored in the update stage is captured by the
capture/shift stage. The TAP controlier is placed in Shift-DR and
the second vector is shifted out. Fig. 2 illustrates a BS cell that
implements this instruction.

S0

Pl A

.

—

PO

®EB

A B

®xeg

b >
sy | [F— |
SI  Select|Clock_ DR |Update DR
Fig. 2: Modified BS cell supporting instruction STORE_SEQ.

4.3. Store sequence after condition

The goal is to store a sequence of two contiguous vectors after a
certain condition. The condition detection and the sequence storing
correspond to the functionality defined in the previous optional
instructions. To implement the optional STORE_AFTER_COND
instruction, a dedicated FSM with states monitor condition,
capture sequence I, capture sequence Il, and end of sequence, was
added. The expected vector {or Jimit A) and the mask (or limit B)
are entered the way defined for instruction DET_COND. The FSM is
initially at monitor condition. Condition is evaluated while the
TAP controller is in Run-Test/Idle. When the condition results true,
the FSM enters (on TCK falling edge) the capture sequence [ staie.
While at this state the value present at each BS cell P1 is captured
by the capture/shift stage and afterwards registered in the update
stage. The next TCK falling edge takes the FSM into the capture
sequence II state. While at this state the value present al the BS cell
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Pl is captured by the capture/shift stage and the update stage
retains its previous value. The next TCK falling edge takes the
FSM into the end of sequence state and the stored sequence may
now be shifted out following the steps defined for instruction
STORE_SEQ.

Merging the BS cells illustrated in fig. 1 and fig. 2 allows the
implementation of this optional instruction. Fig. 3 presents the time
diagram of the STORE_AFTER_COND instruction.

rex SR A T R N
condibon _J

dodicatsd monitor caplure capiure ond of
FSM condition sequence ! )\ soquence if ssquance
captune / shift vacior vector vector

stage X A B

update vocy X veokr

stage X A

Fig. 3: Time diagram of store after condition.
4.4. Store sequence until condition

The goal is to store a sequence of two contiguous vectors until a
certain condition. Condition detection corresponds to detecting a
logic '1” at CDI. Two states of the FSM (monitor condition and
end of sequence) are used to implement this optional instruction,
named STORE_UNTIL_COND. The FSM is initially at monitor
condition state. CDI is monitored while TAP controller is in Run-
Test/Idle. While at this state the value present at each BS cell Pl is
captured by the capture/shift stage and afterwards registered in the
update stage. When CDI is asserted, the FSM enters (on TCK
falling edge) end of sequence state and the capluring activity is
ceased. The stored sequence may now be shifted out following the
steps defined for STORE_SEQ. The BS cell illustrated in fig. 2 is
also able to implement this optional instruction.

5. IMPLEMENTATION

The built-in controller is implemented in an EPF10K30. The
MaxPlus II development system is able to generate a gate-level
VHDL description of the design, thus enabling an easy transition to
other development systems. The complete set of optional
instructions is implemented, together with the mandatory BST
infrastructure, in FPGAs emulating the *244 (an 8-bit non-inverting
buffer) and the *373 (an 8-bit latch with tri-state outputs). The
complete system, including two memories containing the programs
for each processor, is now undergoing extensive functional and
timing co-simulation. The test programs are initially written in
assembly, and an in-house developed application generates the
correspondent Memory Initialisation Files (MIFs). These files are
read each time a new simulation is performed. The system-level
model consists of the individual models of each component
(memories, built-in controller, ‘244, and ‘373} interconnected for
system-level co-simulation. The simulation tool accepts mixed-
level modelling, so each component model may either correspond
to a behavioural or gate-level model.

6. CONCLUSION

A set of prototype debug and test requirements was initially
identified and converted into five basic operation types forming a
“simplified” debug and test model. Individual operations included
in each operation type were obtained by considering all possible
combinations of the gathered criteria. These were then analysed
and converted into specifications of instructions implemented by
the BST infrastructure or by a board-level built-in controller for
debug and test. Mandatory / optional instructions described in the
Std. were first considered, and a set of new optional instructions
for debug support was then defined. These included: DET_COND -
concurrently detecting conditions in RT at the BS register
(corresponding to values appearing at IC pins); STORE_SEQ -
storing sequences of two contiguous vectors at the BS register;
STORE_AFTER_COND - storing sequences of two contiguous vectors
after a certain condition; STORE_UNTIL_COND - storing sequences
of two contiguous vectors until a certain condition. Estimated
overhead for the circuitry needed to implement the optional
instructions is approx. 100% in relation to the mandatory BST
infrastructure. This number suggests that for an IC where the
mandatory BST infrastructure represents an overhead of 2-3%,
implementing the optional instructions would raise this value to 4-
6%. The built-in controller was implemented as a dual-processor
architecture. One of the processors controls the board-level scan
chains, while the other controls the system clock, thus guaranteeing
synchronisation between system functional and test logic.

The proposed solution is now undergoing extensive system-level
functional / timing co-simulation. Small and large programs are
being run in the simulation environment, and a database of golden
vectors is being extracted for later comparison with values captured
during systern normal functioning.
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