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Abstract

The reusing of the same hardware resources to
implement speed-critical algorithms, without interrupting
system operation, is one of the main reasons for the
increasing use of reconfigurable computing platforms,
employing complex SRAM-based FPGAs. However, new
semiconductor manufacturing technologies increase the
probability of lifetime operation failures, requiring new
on-line testing / fault-tolerance methods able to improve
the dependability of the systems where they are included.

The Active Replication technique presented in this
paper consists of a set of procedures that enables the
implementation of a truly non-intrusive structural on-line
concurrent testing approach, detecting and avoiding
permanent faults and correcting errors due to transient
Saults.

In relation to a previous technique proposed by the
authors as part of the DRAFT FPGA concurrent test
methodology, the Active Replication technique extends the
range of circuits that can be replicated, by introducing a
novel method with very low silicon overhead.

1. Introduction

An increasing number of systems are relying on the use
of reconfigurable computing platforms to implement
speed-critical computational algorithms. One of the main
reasons is the possibility of reusing the same hardware
when a sequence of different tasks calls for the use of
different algorithms, without the need to reinitialize the
system, since reconfiguration is performed without
interrupting its operation. This was made possible by the
introduction into the market of a new kind of SRAM-
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based FPGAs (Field Programmable Gate Arrays) capable
of implementing fast run-time partial reconfiguration (e. g.
the Virtex family from Xilinx).

Unfortunately, the use of very deep submicron and
nanometer scales in the manufacturing of larger FPGA
dies increases the threat of electromigration and make
them more susceptible to gamma particle radiation [1, 2].
After large periods of operation, certain defects, namely
those related to small manufacturing imperfections not
detected by production testing, become exposed, emerging
as either stuck-at (permanent) faults or transient faults [3].

In the case of permanent faults, after faulty FPGA
elements (Configurable Logic Blocks - CLBs - or routing
resources) are located, the reconfiguration mechanism
should be instructed to bypass them and prevent their use
in future reconfigurations. Previously unused FPGA
resources can replace these faulty elements, improving
dependability with a very small hardware redundancy. For
transient faults, on-line partial reconfiguration enables the
recovery of errors in the on-chip configuration memory
cells that modify the logic functionality, namely Single
Event Upsets (SEU). Such upsets manifest themselves as
permanent faults because of the change in functionality.
However, the cause of the failure is actually transient [4].

A higher system dependability level can therefore only
be achieved through the continuous testing of all FPGA
resources throughout system lifetime, and by the
introduction of fault tolerance features. In [5] an on-line
scanning methodology to dynamically test the CLBs in an
FPGA was proposed, accompanied by the evaluation of
the strategy adopted to implement the rotation and test
schemes. However, the success of this approach depends
on the ability to replicate active CLBs, i.e. CLBs that are
part of a functional block actually being used by the
system. The structural testing of these CLBs is only
possible if we were able to use fault-free resources to
relocate their content and then release them for test, in a
way that must be completely transparent for the system.



2. Background

Different off-line testing methodologies for the test of
SRAM-based FPGAs, employing diverse Built-In Self-
-Test (BIST) strategies or external test procedures, were
proposed recently in [6-13]. However, these approaches
are restricted to manufacturing test, since they require the
device to be off-line. This is unsatisfactory in highly fault-
-sensitive, mission-critical applications, since fault-
-detection latency increases greatly as a result of the off-
-line approach.

Trying to overcome these limitations, two on-line
testing and diagnosis methods, based on a scanning
methodology, were presented in [3, 14]. The main idea
behind these methods is to have only a relatively small
portion of the chip being tested off-line (instead of the
whole chip as in previous proposals), while the rest
continues its normal on-line operation. Testing is
accomplished by sweeping the test functions across the
entire FPGA. The functionality of a small number of
FPGA elements is replicated on another portion of the
device, before being taken off-line and tested. Then,
another set of elements undergoes the same process,
eventually spanning the whole device. However, in [3], a
modification in the structure of the FPGA cells is required
to implement the replication mechanism. On the other
hand, in [14], the whole system must be stopped in order
to replicate an entire CLB column. Since reconfiguration
is performed through the IEEE 1149.1 Boundary Scan
(BS) infrastructure [15], reconfiguration time is long, and
it seems likely that halting the system will disturb its
operation.

In [5, 16] some of the previous concepts were reused
to establish an on-line FPGA testing approach that
eliminated the two drawbacks mentioned before. A much
smaller unit of test—the CLB - was targeted and its
replication accomplished without halting the system, even
when the CLB is active. However, this method was
restricted to synchronous free-running clock circuits.

A new set of active replication procedures targeting the
replication of synchronous and asynchronous circuits, is
presented in this paper. Further to their replication
function, these procedures also enable the correction of
transient faults in the configuration memory. Since the
IEEE 1149.1 infrastructure, is (re)used to access the
FPGA configuration memory, in order to replicate and
release for testing each CLB, we get the additional benefit
of a reduced overhead at board level, since no other
resources are used.

This approach can also be extended to the replication
and release for testing of groups of interconnections. In
fact, and as we shall see, handling interconnects proves to
be easier than handling CLBs.

3. Replicate and release for testing

Dynamically replicating an active CLB is not just a
matter of relocating its functional specification: the
corresponding interconnections with the rest of the circuit
have to be established; additionally, internal state
information has to be copied as well, depending on the
functionality it is implementing. This task is not trivial due
to two major issues: i) configuration memory organization,
and ii) internal state information.

The configuration memory is partitioned into one-bit
wide vertical frames grouped into larger units called
columns. To each CLB column corresponds a
configuration column, with multiple frames, which mixes
internal CLB configuration and state information, and
column routing and interconnect information. The
configuration process is a sequential mechanism that spans
through some (or eventually all) CLB configuration
columns. When replicating an active CLB more than one
column may be affected, since its input and output signals
(as well as those in its replica) may cross several columns
before reaching its source or destination. Any
reconfiguration action must therefore ensure that the
signals from the replicated CLB are not broken before
being totally re-established from its replica, otherwise its
operation will be disturbed or even halted. Furthermore,
the functionality of the CLB replica must be perfectly
stable before its outputs are connected to the system to
avoid output glitches. The only viable solution is to divide
the replication process in two phases, as illustrated in
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Figure 1. Two-phase CLB replication process

In the first phase, the internal configuration of the CLB
is replicated and the inputs of both CLBs are placed in
parallel. Due to the low-speed characteristics of the
reconfiguration (BS) interface, the reconfiguration time is
relatively long when compared with the system speed of
operation. Therefore, in the second phase, when the
outputs of the CLB replica are connected to the circuit,
they are already perfectly stable.

Notice that rewriting the same configuration data does
not generate any transient signals, so this process does not
affect the remaining resources covered by the rewriting of
the configuration frames that are needed to carry out the
replication.

Another major requirement for the success of the
replication process is the correct transferring of state



information. If the CLB is currently implementing a
sequential function, the internal state information must be
preserved and no writes could be lost during the copying
process. The solution to this problem depends on the type
of implementation. In this paper we shall consider three
implementation cases: synchronous free-running clock
circuits,  synchronous  gated-clock  circuits, and
asynchronous circuits.

When dealing with synchronous free-running clock
circuits, the two-phase replication process described
earlier is a good solution. Between the first and the second
phase, the CLB replica has the same inputs as the
replicated CLB and all its four flip-flops (FFs) acquire the
state information. Notice that this is true even when
dealing with asynchronous circuits if the longest “update
period” is higher than the time interval between first and
second phases.

Despite the effectiveness of this solution, its restriction
to synchronous free-running clock circuits is a serious
limitation. A broad range of circuits uses gated-clocks,
where input acquisition by the FF is controlled by the state
of the clock enable signal. As we cannot ensure that this
signal will be active between the first and the second
phrase of the replication process, it is uncertain that the
CLB replica will capture the state information. On the
other hand, it is not feasible to set this signal as part of the
replication process, because the value present at the input
of the replica FFs may change in the meantime, and a
coherency problem will then occur.

To solve this problem we used a replication aid block,
which manages the transfer of the state value from the
replicated FFs to the replica FFs, while enabling their
update by the circuit at any instant, without delaying the
replication process. The whole replication scheme is
represented in figure 2, where only one logic cell is
shown, for reasons of simplicity. Each CLB comprises
four of these cells, which can be considered individually
for the purpose of implementing this procedure. The
temporary transfer paths established between the
replicated and the replica cell do not affect their
functionality, since they use only free routing resources
and do not modify their structure.

The 2:1 multiplexer present in the replication aid block
is controlled by the clock enable signal (CE) of the
replicated FF. If this signal is not active, the output of the
replicated FF (FF_OUT) is applied to the input of the
replica FF, through a multiplexer controlled by the bypass
control signal (BY_C). A clock enable signal, generated
by the replication aid block (capture control signal - CC),
forces the replica FF to hold the transferred value. The
replica FF acquires the state information present in the
replicated FF. If the CE signal is active or is activated
during this process, the multiplexer selects the
LOGIC_OUT signal and applies it to the input of the

replica FF, which is updated at the same time and with the
same value as the replicated FF, guaranteeing state
coherency. Figure 3 represents the flow diagram
describing the replication process. Figure 4 shows the
waveform simulation of state transfer and update
operations during the replication process. No loss of
information or functional disturbance is observed during
the process.
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Figure 2. Synchronous gated-clock circuit
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Figure 3. Flow diagram of the replication process
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Figure 4. Simulation of a state transfer and
update during the replication process

The control signals CC and BY C are configuration
memory bits whose values are driven through



reconfiguration of the configuration memory. BY C
directs the state signal to the input of the replica FF, while
CC enables its acquisition. It is therefore possible to
control the whole replication process through the BS
infrastructure, and as such no extra FPGA pins are
required. The CC net includes the FF shown in figure 2,
which is there simply as a consequence of the structure of
the CLB slice, and does not play any role in the process.

After the state has been transferred, the input signals
involved in the process are placed in parallel, all the
signals to and from the replication aid block are
disconnected, and the outputs are also placed in parallel.
After at least one clock cycle the replicated block is
disconnected and could be tested. Each of these steps
(corresponding to a square in the flow diagram shown in
figure 3) implies a new reconfiguration file. A total of 9
files are needed to accomplish the replication, instead of 3,
as would only be necessary when dealing with purely
combinational or synchronous free-running clock circuits.
However, in most cases, their size is much smaller. To
change the value of CC and/or BY C only one
configuration frame is needed, which is around 2 Kbit
(220 ps for a 20 MHz BS test frequency).

Practical experiments performed wusing a Virtex
XCV200 from Xilinx [17] over the ITC’99 Benchmark
Circuits from the Politécnico di Torino [18] demonstrated
the effectiveness of our approach. The average number of
bits needed to replicate each CLB using this strategy,
including configuration and command frames, was around
230 Kbit. At an operation frequency of the BS
infrastructure of 20MHz, the mean time for a complete
replication of a CLB was 24 ms. Therefore, the replication
of all CLBs of a XCV200 device (array size
=28x42=1176 CLBs) will require 28 seconds, with only
one CLB replicated at a time.

This approach is also applicable to multiple
clock/multiple phase circuits, since only one clock signal
is involved in the replication process at a time (provided
that the slowest “clock™ period is higher than the duration
of the replication process), and with asynchronous circuits,
where transparent data latches are used, instead of FFs. In
this case, the register present in the replication aid block
may be configured also as a latch, instead as a FF, if this is
preferred or if no adequate clock signal is available.

The same two-phase procedure is effective on the
replication and release for testing of local and global
active interconnections. The interconnections to be
replicated are first duplicated in order to establish an
alternative path, and then disconnected, and made
available for test.

The extension of this on-line replication concept to the
replication of Look-Up Tables (LUTs) configured as
RAMs is not viable, despite their content could be read
and written through the configuration memory. If there is a

write attempt during the replication interval, there is no
feasible way, other than to stop the system, capable of
ensuring the coherency of the values, as stated in [4].
Furthermore, since frames span an entire column of CLB
slices, the same LUT bit in all of them is updated with a
single write command. We must ensure that either all the
remaining data in the slice is constant, or it is also
modified externally through partial reconfiguration.

Notice that more than one CLB could be replicated at
each time, improving the scalability of the process, which
is an important issue if we are dealing with larger FPGAs.

4. Fault detection and error recovery

Since the replication procedure used with synchronous
free-running clock circuits did not perform a true state
transfer operation, but rather an acquisition of the values
present at the inputs of the replica CLB FFs, the acquired
state information is correct, despite any fault that may
affect the replicated CLB FFs. As a consequence, and after
the replication process, the outputs of the CLB replica
always display the correct values, automatically correcting
any faulty behavior. On the other hand, when replicating
synchronous gated-clock circuits (or asynchronous
circuits), a truly state transfer operation is executed, so if a
permanent fault in the replicated CLB affects the value
held by the FF(s) (or latches), this fault is propagated to
the replica CLB and will remain active until an update
occurs. The fault in the replicated CLB will be detected
during the subsequent test phase and it will be flagged as
defective, meaning that it will not be used again in a later
reconfiguration.

Depending on the method used to create the
reconfiguration files, the replication procedure can also
recover from errors caused by transient faults in the on-
-chip configuration memory cells that modify the logic
functionality. A typical example of such errors is SEUs in
space environments. Since Virtex FPGAs enable readback
operations, a completely automatic read-modify-write
procedure could be implemented to replicate the CLBs
using local processing resources. In this case, any transient
fault in the configuration memory is propagated and will
affect the functionality of the CLB replica. On the other
hand, if the reconfiguration files are generated from the
initial configuration file stored in an external memory, any
error due to SEUs is corrected when the affected blocks
are replicated.

The previous successful testing of the CLB replica
ensures its good functionality, but the replicated CLB
might be faulty. When the inputs and outputs of both
CLBs are placed in parallel, we may be interconnecting
nodes with different voltage levels. Due to the impedance
of the routing switches, this apparent “short-circuit”
behaves as a voltage divider, limiting the current flow in



the interconnection. Therefore, no damage results to the
FPGA, as proved by extensive experimental essays. Since
we are dealing with digital circuits, the analogue value
resulting from the voltage divider leads to a well defined
value (logic 0 or logic 1) when it goes through a buffer
along the routing, or at the input of the next CLB or
Input/Output Block (IOB). No logic value instability was
reported during the essays.

Each CLB comprises, in addition to its logic resources,
three routing arrays: two locals (input and output) and one
global. The routing resources in these arrays may be
unidirectional or bi-directional, as indicated in figure 5.
No routing resources are available in the local arrays to
establish direct interconnections with other CLBs, so those
required by the replication process can only be established
through the global routing array.
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Figure 5. CLB routing arrays resources

Between local and global routing arrays only
unidirectional routing resources are available. Since no
fault at any of the replicated CLB inputs, due to that
unidirectionality, will propagate backwards, the logic
values present at the inputs of the replica CLB are not
affected by the interconnection, even if the replicated CLB
is faulty. As such, all CLB replica inputs will always
reflect the correct values.

This is also true when replicating active
interconnections where faults in the replicated net are
automatically corrected when the replication takes place.

6. Conclusion

This paper presented a set of procedures to replicate
and release for test all FPGA resources, including those
being used by the application currently running. These
procedures are entirely non-intrusive and enable the
implementation of truly on-line testing strategies, while at
the same time correcting errors caused by transient faults.
The reusing of a standard test infrastructure to access the
configuration memory avoids the need for extra pins.

Taking advantage of the novel partial and dynamic
reconfiguration features of recent FPGA devices, this set
of procedures helps to improve the dependability of
reconfigurable hardware systems in a way that is
completely transparent to the system operation.
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