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Abstract

Dynamically reconfigurable systems have benefited
from a new class of FPGAs, recently introduced into the
market, that enables partial and dynamic reconfiguration.

While enabling concurrent reconfiguration without
disturbing system operation, this technology also raises a
new test challenge: to assure a continuously fault free
operation independently of the circuit present after the
reconfiguration process. A new structural concurrent test
method, recently proposed by the authors and based in
the principle of replicating and freeing the resources to
be tested, raised several questions, one of them being:
What strategy to follow in the process of dynamically
replicate and free those resources?

This paper presents a strategy on how to free the
resources to be tested and the results of a series of
simulation experiments made with the objective of finding
the best methodology to achieve it.

1. Introduction
Reconfigurable logic  devices, namely Field

Programmable Gate Arrays (FPGAs) experienced a
considerable expansion in the last few years. These

* This work was supported by an FCT program under
contract PCTI/1999/ESE/33842
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components enable savings in board space, quicker turn-
around time and an unsurpassed degree of flexibility,
when compared to traditional off-the-shelf LSI/VLSI
components with pre-defined functionality. These
advantages have been reinforced and new possibilities
added, with the advent of dynamic and partially
reconfigurable SRAM-based FPGAs (e. g. the Virtex
family from Xilinx), that enable the dynamic
customisation of hardware functions to a particular
system or application “on-the-fly” [1].

The need to reprogram the whole device, halting its
operation (and possibly halting the operation of the circuit
or system where they are inserted), is one main limitation

associated  with  classic  SRAM-based FPGAs.
Additionally, the contents of all registers (state
information) are lost when the component is
reprogrammed. In  recent FPGA  generations,

manufacturers addressed these issues by supporting
partial device reconfiguration, which can take place
concurrently with the system operation.

Dynamic reconfiguration goes beyond “in-system
reprogramming”, since it does not interrupt the operation
of the device. However, the very high levels of integration
and sub-micron technologies used in these FPGAs lead to
a higher occurrence of defects [2], thus creating a critical
need for fault tolerance features. High reliability levels
can only be achieved by continuously testing all FPGA
blocks throughout system lifetime, in search of emerging
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defects that pop out in result of the reconfiguration
process.

The structural concurrent test method proposed in [3]
reuses the dynamic and partially reconfigurable features
introduced by these devices and the well established
Boundary-Scan (BS) test infrastructure [4] defined in the
IEEE 1149.1 standard [5], thus presenting a very low test
overhead at chip and board level.

This paper is organised as follows: recently proposed
approaches to the test of SRAM-based FPGAs are first
examined, followed by a general description of the
structural concurrent test solution envisaged for the
Configurable Logic Blocks (CLBs) of an FPGA. The next
section presents some particular aspects of the proposed
solution, namely the strategies to dynamically rotate the
free CLB among the used CLBs, in order to individually
test all of them, and some simulation results that validate
the selected option. The last section presents some
directions for further research.

2. Proposed FPGA test approaches

In recent publications, different methodologies and
aspects concerning the test of SRAM-based FPGAs have
been considered, most of them focusing on off-line test
methodologies  applied after manufacturing and
employing several different Built-In Self-Test (BIST)
strategies. More recently, on-line/functional test methods,
and structural/application-oriented tests, have also been
proposed, as referred below.

An FPGA test approach based on BIST techniques,
exposed in [6, 7], exploits the reprogrammability of
FPGAs in order to create the BIST logic, by configuring it
only during off-line testing such that this approach is
applicable to all levels of testing, including the system
level. In this way, testability is achieved without any area
overhead or performance penalty, since the BIST logic is
replaced when the circuit is reconfigured for its normal
system operation.

A slightly different BIST technique, which includes a
modification of the original configuration memory, is
proposed in [8]. The advantages of this method, compared
to similar BIST techniques, are a reduction on test time
and on the off-chip memory required, and the automation
of the test process. The modification required at the
internal hardware level of the FPGA is one main
drawback, implying the non-universality of the solution.

An on-line method based on a self-testing area is
proposed in [9]. The main idea is to have only a relatively
small portion of the chip off-line being tested (instead of
the whole chip as in previous proposals), while the rest of
the device is on-line carrying out its normal operation.
Roving the self-testing area across the FPGA eventually
tests the entire chip. It is assumed that the reconfiguration
process is controlled by a module external to the FPGA.
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A different approach specific to look-up table -based
FPGAs, featuring design for testability characteristics,
was proposed in [10]. An algorithm, which maps
optimised Boolean expressions into look-up tables,
automatically incorporates testability features into the
implemented design, allowing on-line detection of faults
within an FPGA. This is accomplished by using a unique
set of cells to implement a design. These cells operate on
the premise of a two-rail checker, thus producing both the
normal and complemented output when a cell is operating
correctly, and two outputs of the same value in the
presence of a fault. A fault generated in an intermediate
cell is propagated to the final outputs, thus allowing on-
line testability of an FPGA-based system. This method
could be considered an error detection technique rather
than a structural or functional test approach, since it is not
targeted to test the resources of the FPGA, in itself,
neither it take into consideration its logic structure (it is
rather aimed to detect the presence of faults in current
implemented applications). In a newly configured
application, the same defect may not be detected using
this method because the new application may not try to
use the faulty resource. If the system is always being
reconfigured, this method could result in an intermittent
fault, depending on whether or not a logic function is
placed into a faulty resource.

A new application-oriented method that generates a
functional test for the configured circuit, while
considering the logic structure of the FPGA where it is
implemented, was proposed in [11]. This method is an
off-line field oriented test to be used by an FPGA user in
a given application, thus presenting the same drawbacks
of the previously referred method.

Our concurrent test proposal re-uses some of the
previous concepts, while adding other innovative aspects,
namely the use of an atomic unit of test — the CLB —
introducing a negligible overhead at the FPGA level. The
reuse of the BS infrastructure to access and control all
necessary operations in order to achieve the final goal
also greatly reduces the overhead at the board level. Being
application-independent, and oriented to test the logic
FPGA structure, it guarantees the FPGA reliability (even
after many reconfigurations), thus helping to ensure the
correct operation of the implemented applications.

3. The DRAFT Technique

An FPGA comprises an array of independent CLBs,
surrounded by a periphery of Input/Output Blocks (IOBs),
which are interconnectable by configurable routing
resources, as shown in figure 1.

In most cases, only a portion of the FPGA resources is
required to implement a given functional specification.
Even in those cases where independent hardware blocks
share the same FPGA device, with the aim of reducing
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board space, it is highly improbable that all of the FPGA
resources are used.

It is therefore possible to consider a test strategy where
temporarily unused CLBs are released for test (without
compromising the operation of the FPGA), while the
remaining CLBs are requested and in use by the current
implementation. Unused CLBs that have been
successfully tested become available as spare blocks,
which may then be used to replace other resources found
defective. This solution guarantees that the whole FPGA
can be tested, without disturbing the system operation,
provided that at least one unused CLB is available in the
current implementation. Fault tolerance features will
however require more than one unused CLB, since a pool
of spare resources has to be continually available.

This test method uses a technique named Dynamically
Rotate And Free for Test (DRAFT), as represented in
figure 2. This technique scans the whole set of CLBs,
replicating an atomic subset of the current implementation
in a previously unused CLB, which has been successfully
tested. The previously used CLB is then released for test,
and passed on to the pool of spare resources in the event
of a positive test outcome. This replicating process covers
all the FPGA, dynamically rotating the free CLB among
the used CLBs (without disturbing the system operation).
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through the 1149.1 Test Access Port (TAP) such as in the
Xilinx Virtex family.

This novel structural concurrent test method has very
low test overhead, since it reuses the BS test infrastructure
for all reconfiguration operations, for test vector
application to the CLB under test and response capturing.

4. Dynamic rotation strategies

This paper concentrates on the aspects related to the
strategy adopted for the implementation of the dynamic
rotation of the free CLB. Two goals were fixed initially:
the rotation method should have a minimum impact
(preferably none) in the system operation, as well as a
reduced overhead in terms of reconfiguration cost. This
cost depends on the number of frames needed to replicate
and free each CLB, as a great number of frames would
imply a longer test time. The impact of this process in the
overall system operation is mainly related to the delays
imposed by re-routed paths. Note that the rotation process
might imply a longer path, thus diminishing the maximum
system operation frequency (in an FPGA the longest path
delay determines the maximum frequency of operation).
Thus, if the re-routing procedure originates a path delay
higher than the previous maximum, the higher frequency
of operation is reduced, leading to an undesirable impact
in the system operation.
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Figure 1. Schematic representation of an FPGA

This method is only feasible with devices that support
dynamic partial reconfiguration, where the replication of
the CLB (functional and state information) and the re-
establishment of the interconnections are possible without
disrupting the operation of the device. Our solution also
requires that the partial dynamic reconfiguration is done

Figure 2. CLB replication and rotation of free
resources

Three possibilities were considered for establishing the
rule to rotate the free CLB among the entire CLB array:
random, vertical and horizontal rotation.

The first strategy considered (random rotation) was
rejected for several reasons. If the placement algorithm
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(in a strategy to reduce path delays) gathers in the same
area the logic needed to implement the components of a
given application, it would not be logical to disperse the
blocks by two main reasons. First, it would generate
longer paths (and hence, an increase in path delays);
secondly, it would put too much stress in the limited
routing resources. Furthermore, the rotation strategy could
not be totally random since it is necessary to assure the
same degree of defect coverage for the whole CLB array
within a predictable latency.

The second strategy (vertical rotation) illustrated in
figure 3, would rotate the free CLB following a vertical
shifting path that would cover all the CLBs in the array.
In the Virtex family, the configuration memory can be
visualised as a rectangular array of bits, which are
grouped into vertical frames, one-bit wide, that extend
from the top of the array to the bottom. Frames grouped
together into larger units are called columns, which
correspond to the configuration bits of a column of CLBs
[12]. Apparently, the best strategy could be the replication
of the resources to a nearby up or down CLB . Note that,
in this case, only one CLB configuration column would
be affected, and thus the number of reconfiguration
frames needed for the vertical rotation would be less than
the number needed for random or horizontal rotation.

CLB

Free CLB

Used CLB

Figure 3. Dynamic rotation of the free CLB, using
a vertical strategy

The third strategy corresponds to the horizontal
rotation of the free CLB, as illustrated in figure 4. The
free CLB would rotate following a horizontal shifting
path that would also cover all the CLBs in the array. In
the two previous cases the replication is only performed
between neighbouring CLBs for the reasons referred
before (scarcity of routing resources and increase in path
delay). However, this strategy would probably result in a
number of reconfiguration frames greater than for the
vertical rotation, as it would affect two CLB configuration
columns.
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CLB

Free CLB

Used CLB

Figure 4. Dynamic rotation of the free CLB, using
a horizontal strategy

5. Simulation results

A series of simulations were performed to find out the
dynamic reconfiguration strategy with fewer costs. First,
we used a microcontroller implementation described in
[13], and tried to find out the influence of the two
strategies in the number of reconfiguration frames needed
to rotate the free CLB all along the CLBs occupied by the
microcontroller implementation.

The simulations were performed on a microcontroller
circuit, due to its internal complexity, characterised by a
diversity of circuits covering a large range of possible
fundamental components: decoders, shift registers,
counters, and other arithmetic functions.

In the first approach we tried to find out what strategy,
between the remaining two — vertical and horizontal
rotation strategies — was the most advantageous in terms
of the number of reconfiguration frames needed to
perform each rotation. The results were not entirely
satisfactory as the horizontal rotation solution had only, in
terms of mean value, a cost which was 10% higher than
the vertical rotation solution, a value lower than the
expected difference. The dispersion of results was also
very large, as shown in the graphic presented in figure 5.
In face of the results, we concluded that the number of
frames affected by swapping the configuration setup
between CLBs was smaller than those affected by re-
routing the interconnected nets. Shifting the free CLB
vertically or horizontally doesn’t result in a great
difference in the number of configuration frames since the
number of the routing configuration frames dominates
over the number of CLB configuration frames.
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Figure 5. Cost of the rotation in terms of
reconfiguration frames

Nevertheless, during the simulation process we noticed
that the routing algorithm tended to spend a large effort
when the rotation process affected some types of routing
resources. In fact, Virtex FPGAs present several
dedicated routing resources, one of them being a pair of
dedicated nets per CLB that propagate carry signals
vertically to adjacent CLBs [14]. When, in the rotation
process, one dedicated carry path was broken due to the
introduction of the free CLB in the middle, the
propagation of this carry signal between the nearest
adjacent CLBs (over and under the free CLB) went on
through generic routing resources.

Vertical rotation

------- Horizontal rotation
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Number of reconfigurations

Figure 6. Changes in the carry path delay
introduced by the rotation process

In order to understand the truly implications of this fact
we tried the two strategies with a 24-bit counter, a
component which operation relies mainly in the use of
carry signals. We particularly noticed the changes in the
carry path delay when the two strategies were applied.
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The effect of not using the dedicated carry nets on the
delay path was evident, as shown in the graphic presented
in figure 6. With the vertical rotation technique, the
dedicated carry nets were kept, except between the two
cells separated during the test by the free CLB. With the
horizontal rotation strategy, all dedicated carry nets were
gradually broken, thus requiring the use of generic
resources. The consequence was a linear increase in the
carry path delay that further resulted in a huge reduction
on the maximum operating frequency of the counter, as
shown in figure 7.

By applying the same simulation process to the
microcontroller implementation we found out that its
maximum operating frequency dropped when using the
horizontal rotation strategy, and, surprisingly, raised when
using the vertical strategy. This pointed out that the
reconfiguration algorithm performed better than the
placement algorithm, as shown in figure 8.

Vertical rotation

------- Horizontal rotation
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Figure 7. Changes in the maximum allowed
frequency of the counter introduced by the
rotation process

6. Conclusion

The solution proposed in this paper enables the
implementation of a concurrent test method that reuses
the standard BS infrastructure and the novel partial
dynamic reconfiguration features of recent FPGA devices,
in order to improve the reliability of reconfigurable
hardware systems, with minimal test overhead and in a
way that is completely transparent to the system
operation.

Simulation sessions done with the objective of finding
the best rotation strategy showed that the vertical rotation
strategy does not affect the normal system operation and
is preferable to the horizontal rotation strategy that tends
to rise path delays and, consequently, imposes a decrease
in the maximum operating frequency.
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Figure 8. Changes in the maximum allowed
frequency of the microcontroller introduced by
the rotation process

Experiments are currently under way addressing other
aspects of the proposed method, namely looking for an
optimal solution (test application time, fault coverage), in
terms of the trade off between the number of
reconfiguration operations and the number of test vectors.
Future research work is also planned to address other
FPGA resources, namely interconnections and RAM-
-blocks, while still reusing the BS infrastructure.
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