
“A modified debugging infrastructure to assist real time fault injection campaigns”

André V. Fidalgo1,2, Gustavo R. Alves1, José M. Ferreira2

 anf@ isep.ipp.pt gca@isep.ipp.p jmf@fe.up.pt
1Instituto Superior de Engenharia do Porto

2Faculdade de Engenharia da Universidade do Porto

Abstract

Fault injection is frequently used for the verification and
validation of the fault tolerant features of microprocessors.
This paper proposes the modification of a common on-
chip debugging (OCD) infrastructure to add fault injection
capabilities and improve performance. The proposed
solution imposes a very low logic overhead and provides a
flexible and efficient mechanism for the execution of fault
injection campaigns, being applicable to different target
system architectures.

1 Introduction

In safety critical applications dependability is of
fundamental importance. Dependable systems are
designed to handle errors that originate from software or
hardware faults and recover from them, while maintaining
acceptable operating conditions. The possibly destructive
nature of a failure and the long error latencies impair
identifying the cause of failures in field operation and in
the normal time that it takes for a failure to occur. To
identify and understand possible errors, it is desirable to
experiment on an actual device as to better study and
improve its dependability. This approach can be applied
either in the development phase, where models or
prototypes are used, or on the deployment phase if faults
can be deliberately injected in useful time without
damaging the equipment. This experiment-based approach
requires knowledge of the system architecture and
behavior, and especially of the mechanisms implemented
to provide tolerance to faults, errors or failures, i.e. the
events leading to a service failure on microprocessor
based systems [1]. Specific instruments and tools must be
used to induce these hazards and monitor their effects. In
the case of microprocessor based systems, access to the
internal resources is of utmost importance. Many of
today’s microprocessors provide such access through
dedicated built-in debug circuitry, which is often
designated as on-chip debug (OCD). Using these OCD
infrastructures for fault injection purposes is an efficient
solution for verifying and validating fault tolerant designs.
This paper proposes to upgrade these infrastructures by
adding specific functionalities to improve the fault
injection process.
The rest of the paper is organized as follows: the next
section gives an overview of fault injection methodologies
used on microprocessor based systems; section 3 presents
the system used for our case study and our proposal to
modify existing OCD infrastructures for enhanced fault
injection support; section 4 presents the experimental
results obtained so far and finally section 5 discusses these
results and lays the basis for future work.

2 Fault Injection Methodologies

A mean to achieve dependability is the use of fault-
tolerant components. In this sense fault injection can be
used to:

 Identify design or implementation faults.
 Verify & validate and fault tolerance capabilities.
 Estimate how often failures will occur and evaluate the
consequences of such failures.

A fault injection mechanism must be adapted to its target
system and must include the following components:

 A fault injector: the device used for the actual fault
injection and that requires some type of communication
channel with the target to be able to affect it. This
channel may be non-physical and in some techniques it
may be bi-directional returning some type of
information to the fault injector. The fault injector is
normally capable of injecting different types of faults
according to a given fault model, defined beforehand.
 A workload generator: outputs commands and data to
the target system. These can be signals, synthetic code,
benchmarks or complete applications.
 A data collector: retrieves the necessary information
from the target system to characterize the fault injection
and the target response. An associated data analyzer is
used when the collected data requires processing and in
most cases this analysis is performed off-line, at a later
time.

Fault injection is normally structured in campaigns, each
being composed of a series of experiments during which
the target system runs (a specific workload is activated)
and a specific fault (or set of faults) is inserted at specific
trigger conditions. The target system behavior is
monitored and information is recorded as
comprehensively as necessary and possible, as to later
understand and evaluate the effects of the inserted faults.
Existent microprocessors fault injection techniques are
commonly classified in three broad groups, namely:

 Simulation based fault injection.
 Software based fault injection (SWIFI)
 Physical fault injection (sometimes designated as
hardware based).

Simulation based fault injection is mostly used in the early
phases of a design when the target system exists only in
model format. To use this technique it is necessary: a
model of the target itself, normally in some HDL format;
the necessary simulation tools to insert faults; adequate
processing capabilities to run the simulation [2].

Software based fault injection consists of reproducing at a
logical level the errors originated by physical faults using
software commands already available on the target device.
SWIFI allows the injection of errors on all resources
accessible by software like registers, program and data
memory, most peripherals and some timers [3].
Physical fault injection is a more realistic approach in the
sense that it tries to replicate real world faults. All
physical techniques perform an actual fault insertion on
the circuit or emulate their immediate consequences
(errors) through internal or external action. Access to the
circuit elements is usually performed either trough
specific hardware equipment [4] or using debug and test
infrastructures included on the target chip [5]. Physical
fault injection may also be performed without a direct
connection between the fault injector and the system
under test, either through laser [6], heavy-ion radiation or
electromagnetic fields [7].
Simulation techniques can be used on an early phase of
development but are often time-consuming and may lack
fault coverage as they are intrinsically dependant on the
quality of the available model. SWIFI techniques are less
expensive but require modifications to the running code
which in fact modifies the target system and faults can
only be inserted in the resources accessible by software.
Physical fault injection usually allows a better
representation of real world faults but it is usually more
expensive and sometimes less controllable.
The hardest part of fault injection in microprocessors is
how to access those internal elements where faults are
more probable, generally the memory elements and
communication buses, without disturbing the running
applications. OCD infrastructures provide a solution for
this problem as they allow access to most microprocessor
elements and are designed for use without taking any
resources from the processor. The functionalities provided
by the OCD vary between implementations, but usually
include run control, breakpoint support, code tracing and
access to memory and internal registers. In most
implementations, the microprocessor must be halted and
placed into a special debug mode during OCD
interactions. OCD also requires some external hardware,
to support the communication between the chip and a
debugger host. OCD infrastructures are generally based on
different architectures and access ports, normally
requiring specific hardware and often with proprietary
parts. Each microprocessor developer generally has its
own name for this technology, such as BDM, OnCE, and
MPSD, and other simply add debug capabilities to
existing JTAG test ports. Debuggers are available from
multiple sources normally as a combination of hardware
and software tailored for a specific target system.
OCD infrastructures provide access to internal resources
in parallel with the target hardware and running software,
being an excellent mechanism for modifying register and /
or memory values (i.e. insert faults) and subsequently
retrieve the data necessary for results analysis. An added
value is the non-intrusive nature of this form of fault
injection, as it requires no modification to the target
system. As a technological solution, the major problem
with OCD is the lack of a consistent set of capabilities and

a standard communications interface across processor
architectures.
An industry consortium called NEXUS has been working
on the establishment of a standard for OCD. It's formally
called IEEE-ISTO 5001 [8]. If widely adopted, it may be
possible to use the same remote debugger to access the
core of multiple different processors and to use a common
set of debugging features for all of them. This standard is
still in a proposal phase, but already presents an
interesting possibility for the development of common
fault injection methodologies for the verification &
validation of dependable microprocessor-based systems.
Most fault injection techniques that use OCD rely on
halting the processor, either by the use of external control
signals or using breakpoints, and subsequently modify the
targeted registers or memory locations to emulate a fault.
The usual approach involves a host machine running the
fault injection campaign and a debugger accessing the
target infrastructure.
A microprocessor compliant with class 2 or above of the
NEXUS standard must provide trace information on-the-
fly and may allow memory access through the OCD with
the processor running. Experimental work has been done
in our research group and in the DISCA-UPV [9] using
real-time fault injection on a MPC565 based system,
which is the most widely used NEXUS compliant
microprocessor. The obtained results confirmed most of
the expected potentialities and simultaneously identified
some shortcomings both in fault triggering and
performance. It proved possible to insert faults in memory
space on-the-fly and then use the trace information
gathered as an effective mean to analyze program flow,
before and after the actual fault activation. However, both
NEXUS compliant debuggers used [10] [11] communicate
with the PC running the fault campaigns either through
Ethernet or USB connections, which imposes a critical
limitation on real time access on high performance
systems. As the PC manages most debugging functions, it
proves difficult to read memory contents and write back a
modified value before the initial data is actually
overwritten by the application running on the target
system. The magnitude of the problem depends of the
running application and memory position targeted, but in
some cases it is impossible to insert the desired fault
without halting program execution. Fault activation is also
a difficulty as even when reading trace data without
halting the processor, this information is not readily
available, as it must reach the host machine before it can
be acted upon and this delay can be measured in
milliseconds or more, which effectively prevents its use
for fault triggering. A solution to counter these limitations
would be either speeding-up the debug data flow or
moving the decision making elements nearer to the target
device.

3 Case Study

3.1 Target System

Two areas where it is possible to improve the fault
injection capabilities in microprocessor systems with
built-in debugging mechanisms are the debugger and the
OCD itself. In an effort to cover the most ground we opted

to conduct experiments on both areas and compare the
obtained results. The use of NEXUS compliant devices
benefits from the useful debugging features defined in the
standard and increases the area of immediate applicability
of the developed concepts and solutions. As neither the
actual commercial NEXUS debuggers nor the compatible
CPUs are easily modifiable, we selected an alternative
microprocessor core where a NEXUS compliant OCD
could be implemented. A customized debugger was also
required, as available devices require specific libraries for
each target. We opted for developing the OCD and the
debugger as VHDL modules, aiming to keep them simple,
both to be easily portable and to maintain a high level of
compatibility with different target architectures. In this
way a complete proof-of-concept solution can be tested
and the requirements for its migration to existent or in
development systems will also be evaluated.
As the microprocessor target we selected the cpugenerator
[12] building tool, which is publicly available through
opencores [13]. This tool allows the automatic creation of
4, 8, 16 or 32 bit RISC microprocessor cores. It is
possible to configure several microprocessor parameters
like bus type, interrupt support and memory configuration.
Depending on configuration, this microprocessor is
expected to run between 23 and 138 MHz on a Xilinx[14]
Virtex2 device, when synthesized with ISE 7.1i.
The OCD infrastructure was designed to be compliant
with the NEXUS 5001 standard proposal. As there is no
mandatory implementation, it is based on the
infrastructure present on the MPC565 microcontroller,
which is a well-documented compliant device. The
version actually implemented on our target system is
Class-2+ compliant and is also configurable to adapt itself
to the target system, being compatible with different CPU
configurations, with only minor adjustments.
The debugger consists of one controller module and two
memory banks for data input and output. An external
clock is required as a source for the clock signals used for
communicating with the OCD. As the debugger main
purpose is fault injection campaign managment, it is built
with reduced support for direct control, the emphasis
being on executing scripted commands and reacting
automaticly to specific messages or signals from the OCD.
This last possibility is an important feature that is lacking
in most other debuggers, as it is not required for commom
debugging operations. At this phase the debugger supports
only the NEXUS messages actually implemented on our
OCD, with all messages sent from the debugger being
preloaded on a memory bank that acts as a script for each
debugging session. Two messages have special meaning
to the debugger, being interpreted as internal commands,
not sent to the NEXUS port. One allows for a delay
interval before sending the next message and the other
instructs the debugger to wait for an signal from the
NEXUS port before sending the next message. The
messages output from the OCD are also stored on a
separate memory that can latter be used by an external
tool for program flow analysis and fault effects diagnosis
The data provided by the trace plus eventual error
messages plus the knowledge of the running application
make it possible to reconstruct the exact program flow. A
typical fault injection scenario is presented on Figure 1,

where boxes #1 and #2 may represent simulation modules,
physical devices or parts of the same FPGA.

PC
Debugger

Target
System

OCD

#1

USB / Ethernet NEXUS

#2

Figure 1 – Debugger and Target System

The target application for testing is the matrix_addFT
program, which is a fault tolerant version of a matrix
adder application. The fault tolerance is achieved by
duplicating each arithmetic operation and then comparing
the obtained results, with any difference triggering an
error detection routine. Although not as powerful as
hardware fault tolerance, this solution allows for some
degree of dependability without modifications to the
hardware, at the cost of memory space and some
performance penalty.
The NEXUS standard defines a minimum set of
debugging features, the interface port and the
communication protocol. The implemented features
include all common OCD features plus access to memory
in real time. The interface with the outside world is made
using the AUX port option, which provides two message
data buses for OCD data input and output along with
independent clock and control signals. Two additional
event pins allow halting the processor and exact timing for
watchpoint / breakpoint signaling. An additional (RSTI)
pin is used for resetting the OCD infrastructure.
The communication protocol is message based, with each
message consisting of a six-bit header that indicates the
message purpose and additional variable length data
packets if required. The infrastructure accepts command
messages and outputs response and status messages. All
mandatory messages were implemented as well as
additional optional (developer-defined) messages, as
allowed by the NEXUS proposed standard, used for
internal register access and OCD configuration.
The implemented OCD infrastructure is divided in three
main modules and two bus access modules as seen on
Figure 2. The thinner arrows represent the several control
and status signals and the thicker arrows represent data
and trace information flow. The FI module represented is
not included in the original OCD as it gives form to the
OCD-FI version explained further ahead on this paper.

Figure 2 – The OCD Infrastructure

The MQM (Message Queuing and Management) module
is both the NEXUS message handler and the OCD
controller. It translates all debugging operations into
messages and vice versa, manages the message queues
and provides the necessary control signals to the other
modules. The message queues are implemented using
FIFO (First-In First-Out) memory blocks and in the case
of an overflow, an error message is sent from the MQM
module to the debugger, via the NEXUS port.
The RCT (Run Control & Trace) module is responsible
for CPU run control and bus snooping. It receives
commands from both the MQM and RWA modules and
outputs trace data and watchpoint hit signals. This module
controls the CPU core clock and the signals required to
identify branch and exception occurrences on the running
application. The RCT module will enter DEBUG mode
when requested by the MQM module, a breakpoint is hit
or on reset, if configured to do so. In DEBUG mode all
OCD resources are available although the application
execution is halted. The RCT also includes several
configuration registers, including OCD status and
breakpoint conditions. It is possible to use up to two
instruction and one data breakpoint and both types can be
activated at the Nth occurrence of their trigger condition.
Additionally a watchpoint may be generated in the same
manner as either type of breakpoint. The bus snooper is
used to monitor data and instruction bus activity and the
RCT module uses this information for breakpoint /
watchpoint generation and program trace. Program trace is
performed using branch trace messaging as defined in the
NEXUS 5001 standard, counting executed instructions
and signaling on taken branches or exception occurrences.
The RWA (Read & Write Access) module is used to
access both OCD registers and CPU resources (memory
and registers). A register (RAW_reg) is used to store the
data and address of the next read / write operation, as this
information takes several clock cycles to be transmitted by
the MQM module. This register is loaded whenever a
message requesting a read or write operation is received.
In normal conditions the actual operation is executed
immediately on the rising edge of a signal sent from the
MQM module after the RAW_reg register update is
complete. Conflicts in RAM access are handled by the bus
master with the OCD taking priority on access by default.
As inputs and outputs are handled by the processor as
directly mapped addresses it is possible to access those
resources in the same manner as the processor would. An
access to a CPU core internal resource requires the RCT
module to be in DEBUG mode.
The bus snooper and bus master modules are responsible
for interfacing with the microprocessor buses. The
complete OCD infrastructure provides a common set of
debugging features and interface options that can be
adapted to different target systems, and upgraded to
support additional features or elements.

3.2 Fault Injection Module

The selected fault model is used in most common fault
scenarios for microprocessor based critical systems [15]
and consists of single bit-flip faults at random memory
elements at also random moments during the application

execution. The actual fault trigger can be any instruction
occurrence of the running application, covering the entire
execution time. The fault location can be any resource
accessible for writing through the OCD, including
memory, internal registers and stack. The fault injection
campaigns are randomly generated by an external tool and
then described as a script with the necessary messages to
be sent to the OCD infrastructure, both for configuration
and data collection.
Any fault injection campaign must be initialized by
loading the application into memory and setting up the
OCD environment as required by the faults to be inserted.
If the fault is to be inserted on an internal register or the
stack, a breakpoint replaces the watchpoint, and the
EVTO signal is replaced by a message acknowledging the
entry on DEBUG mode following a breakpoint hit.
Additionally, an extra message must be sent to restart the
application execution after the fault injection process. The
choice of starting the processor in debug mode or in
execution mode depends on the instruction address that
triggers the fault injection procedure. If it cannot be
assured that enough time is available for setting up the
required OCD registers then the processor must start in
debug mode.
Although the debugger allows a fast reaction to trigger
condition(s), the actual fault insertion still requires the
transmission and decoding of at least one complete
message. The On-Chip Debug and Fault Injection (OCD-
FI) concept proposed on this paper consists of a hardware
module to insert faults on the occurrence of the trigger
condition(s) without further commands from the debugger
and it is implemented within the OCD circuitry reusing
some of the already implemented debugging functions. It
requires the implemented OCD to execute write
operations by pre-loading one or more registers and the
write operation itself to be executed on the activation of a
specific control signal. Additionally the OCD must
internally signal breakpoint or watchpoint occurrences.
The Fault Injection (FI) module is represented in Figure 3.
It monitors the watchpoint or breakpoint signal(s) so that,
when enabled, it can activate a fault injection action.

Figure 3 – Fault Injection Module

The input signals FI_SEL and FI_VAL are used to access
the FI_EN register, which enables and configures the FI
module. The TRIGGER input prompts the execution of
the FI operation. The output signal (FI_EXEC) is used to
activate a memory write operation in order to insert a
single bit-flip fault at a given address. This approach
requires that both the data value to be written and the
respective memory address have to be determined
beforehand and preloaded in the OCD register (RAW_reg)
that is used for data writing. To do this, a previous
analysis of the running application is necessary to
determine the target memory position contents at the
injection instant. In this manner it is possible to determine

the value that should be stored so that a single bit-flip is
caused on the target. The required address and data vector
must be downloaded to the OCD infrastructure prior to the
watchpoint occurrence, and the RAW_reg register must not
be rewritten until the actual fault activation. Once the fault
is inserted, the FI module disables itself and all the OCD
resources can then be used normally. All the fault
injection set up can be done with the target processor
running normally, but the fault activation may only take
place after this set up is performed. The program trace is
not affected and operates normally before, during and
after the fault injection process, reacting exactly as if a
“real” fault was inserted.
For internal register or stack faults it is only necessary to
add a breakpoint with the same address as the watchpoint,
to assure the processor is halted at the fault injection
instant.
From the messages output by the NEXUS port it is
possible to reconstruct the program flow and diagnose
fault effects verifying if the fault was acknowledged by
the error detection routine, and after the application runs
its course it is possible to use the OCD to check if all
results are correct.
Two extra and optional NEXUS messages are used, one to
enable and configure the FI module and another to set up
the address and data values for the actual fault injection.
Fault triggering can be done using either a breakpoint or a
watchpoint. The watchpoint option allows the injection of
faults without stopping the target system but can only be
used for memory, as access to internal register requires the
system to be halted. The signal used for fault activation
can also be used for exiting the DEBUG mode and restart
program execution, as represented in Figure 3 as a dotted
line. In this form the OCD-FI infrastructure allows the
insertion of faults in all resources mapped in the OCD,
with a minimum time delay.
Dependability verification it structured into fault
campaigns, each one defining a set of fault injection
executions where a specific fault location and trigger is
selected. In each execution the processor is reset and the
application runs from start. As stated before, the FI
module can be programmed prior to the application start
or in runtime, the only limiting factor being the fault
activation instant. To determine the target memory value
at the moment of the injection beforehand it is possible to
either use the knowledge of the running application code
or perform a prior faultless execution up to the fault
triggering instant and use the OCD to read the relevant
memory contents. The fault trigger condition is selected
beforehand from the executed application code. These
fault campaigns can then used for experimental evaluation
of the target device fault tolerant characteristics and
preliminary results were used to analyze the fault injection
procedure itself.

4 Experimental Results

The target system, the debugger, the fault injection
module and the different memories were designed as
VHDL models using the ISE 7.1i development
environment and simulated using the Modelsim 6.0a
simulation engine. Two CPU configurations were used

differing only in terms of bus width, both including full
interrupt support and internal stack. Both configurations
include separate ROM and RAM banks on the target
system, the first for storing the program code and the later
for application data.
The fault campaigns were structured as follows:
 All experiments part of the same campaign target either
RAM or internal registers.
 As a simplifying step the fault campaigns are also
divided between those where the fault is activated before
setting up is possible and those where this can be done
with the processor running.
 The OCD is configured once at the beginning of the
campaign, with the configuration depending on the fault
injection target (memory or registers).
 A campaign is loaded into memory and the experiments
are executed sequentially.
 The instruction address that triggers each fault injection
is randomly generated from the actually executed ROM
space and each target memory position is also randomly
selected from the used RAM space.
 The results are retrieved after all the experiments are
complete, their analysis being performed externally to
check if the final results are correct and if the fault was
detected by the fault tolerance routine.

Each set of fault campaigns was executed on each of the
configurations and repeated using both the original OCD
and the OCD-FI infrastructure. After simulating several
fault campaigns the following conclusions, relative to the
fault injection processes, were reached:

 The OCD-FI infrastructure does not affect the maximum
microprocessor clock frequency, being possible to use
the same frequency for all clocks.
 Each infrastructure requires a minimum number of
MCKI clock cycles for system set up prior to each fault
injection operation and for the writing operation itself,
as represented in Table 1. Set up time supposes that all
configuration registers are already set up (prior to the
fault injection campaign) and writing time is measured
from the watchpoint hit to the writing instant of the
intended value into memory.

 OCD OCD-FI

CPU Set up Writing Set up Writing
8 bit 13 14 28 2

32 bit 14 21 36 2

Table 1 – Fault Injection Delay (in CLK cycles)

 If targeting internal microprocessor registers, execution
must be halted for only 2 additional clock cycles if using
the OCD-FI infrastructure, which increases slightly the
time interval required to run each fault campaign.
 If using only the OCD for register access, the time
interval during which the processor must be halted is 2
clock cycles higher that the time required for memory
writing.
 When using only the OCD and memory as the target,
some experiments return meaningless results because
the CPU writes on the memory cell being targeted
before the fault is inserted. This did not happen with the
OCD-FI.

The number of equivalent gates for each module and each
CPU configuration is given by Table 2. The Bus Snooper
and Bus Master modules gate counts are included in the
RCT and RWA counts, respectively.

8 bit 32 bit Module # Gates % # Gates %
CPU core 9166 N/A 53717 N/A

RCT 2391 34 5113 27

RWA 369 5 643 3

MQM 4225 60 13045 69

FI 75 1,1 75 0,4

OCD-FI 7060 100 18876 100

Debugger 766 N/A 1079 N/A

Table 2 – Area Overhead

From the above values it is possible to confirm that the
logic overhead of the FI module on the OCD
infrastructure is minimal. It is also possible to see that a
simple debugger tasked only with fault injection
campaigns management and results storage requires
comparatively little space on a programmable device. The
area of the OCD itself it is somewhat large for the
implemented CPU cores, as the used configurations are
rather simple in terms of register and instruction support.
This effect is less notorious as the CPUs increase in
complexity, because the OCD area is mostly dependant of
the size and complexity of the communication buses.

5 Conclusions and Future Work

From the available results it is possible to conclude that
the proposed OCD-FI infrastructure is an efficient
mechanism for verifying and validating the fault tolerance
characteristics of microprocessor based systems. The FI
module main advantage is the extremely fast reaction time
and when compared with other alternatives, it provides an
efficient methodology for fault injection, both in terms of
reusability, resource coverage, performance and cost. If
the necessary HDL modules are available the OCD-FI,
can be used for injecting faults in the simulation phase,
prototyping phase or on the final device if the FI module
makes it that far. Faults can be inserted on most CPU
resources with a minimum time delay, allowing non-
intrusive and fast fault injection campaigns. The achieved
performance is better when targeting memory space and
when the faults are not injected early in the application
execution, and if this is the case, fault campaigns can be
executed almost as fast as it takes to run the target
application, without stopping it.
The compliance with the NEXUS proposed standard
provides a common basis for development and
enhancement of the proposed methodology. In this sense,
the OCD-FI concept can be extended to any NEXUS
compliant microprocessor and other architectures,
providing a very low logic overhead derived from the fact
that the more complex functions are performed by the
OCD infrastructure. As this is already required for debug
purposes, the added FI module provides considerable
advantages with little area overhead. It should be easy to
add to most devices, and with eventual modifications it is

a lightweight solution for most microprocessor
architectures. As an added feature, the debugger may be
included into the same programmable device as the target
system therefore assuring the best performance and
reducing necessary resources and associated costs, the
only limitation being the availability of memory blocks
for data storage.
As a downside, we have the need of an adequate OCD
infrastructure and the required availability of both the
OCD and the target CPU in some type of HDL
description. If injecting faults on a physical device, an
external debugger is also required along with an adequate
communication channel.
Actually we are working on experimenting with different
scenarios and on extending the OCD-FI concept to
different microprocessor architectures including versions
supporting hardware fault tolerance mechanisms.

References
[1] “Basic concepts and taxonomy of dependable and secure

computing”; A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr;
IEEE Transactions on Dependable and Secure Computing,
Volume 1, Issue 1; Jan 2004.

[2] “Comparison and application of different VHDL-based fault
injection techniques”; J. Gracia, J.C. Baraza, D. Gil, P.J. Gil;
IEEE International Symposium on Defect and Fault Tolerance in
VLSI Systems; San Francisco, USA; Oct 2001.

[3] “Experimental evaluation of a COTS system for space
applications”; H. Madeira, R. R. Some, F. Moreira, D. Costa, D.
Rennels; International Conference on Dependable Systems and
Networks; Bethesda, USA; June 2002.

[4] “Experimental Validation of High-Speed Fault-Tolerant Systems
Using Physical Fault Injection”; R. J. Martínez, P. J. Gil, G.
Martín, C. Pérez, J. J. Serrano; Seventh IFIP Working Conf.
Dependable Computing for Critical Applications: DCCA-7; San
Jose, USA; Jan. 1999.

[5] “Evaluation of the Thor Microprocessor Using Scan-chain-Based
and Simulation Based Fault-Injection”; P. Folkesson, S. Svensson,
J. Karlsson; 8th European Workshop on Dependable Computing
(EWDC-8); Goteborg, Sweden; April 1997.

[6] “A Technique for Automated Validation of Fault Tolerant Designs
Using Laser Fault Injection (LFI)”; J. R. Samson , W. A. Moreno,
F. J. Falquez; 28th Annual International Symposium on Fault-
Tolerant Computing; Munich, Germany; June 1998.

[7] “Application of Three Physical Fault Injection Techniques to the
Experimental Assessment of the MARS Architecture”; J.
Karlsson, P. Folkesson, J. Arlat, Y. Crouzet, G. Leber and J.
Reisinger; 5th IFIP Working Conference on Dependable
Computing for Critical Applications; Urbana-Champaign, USA;
September 1995.

[8] “The Nexus 5001 Forum Standard for a Global Embedded
Processor Interface version 2.0”, IEEE-ISTO 5001 2003.

[9] “INERTE: Integrated NExus-Based Real-Time Fault Injection
Tool for Embedded Systems”; Yuste P., de Andrés D., Lemus L.,
Serrano J. J., Gil P. J.; The International Conference on
Dependable Systems and Networks; San Francisco, USA; June
2003.

[10] www.isystem.com/Products/Emulators/iC3000/
[11] www.lauterbach.com
[12] Giovanni Ferrante, “CPUGEN 2.00”, 2003.
[13] www.opencores.org
[14] www.xilinx.com
[15] “How to characterize the problem of SEU in processors &

representative errors observed on flight”; R. Velazco, R. Ecoffet,
F. Faure; 11th IEEE International On-Line Testing Symposium;
Saint Raphael, France; July 2005.

http://www.isystem.com/Products/Emulators/iC3000/
http://www.lauterbach.com/
http://www.opencores.org/
http://www.xilinx.com/

