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!Abstract — To increase the amount of logic available in 
SRAM-based FPGAs manufacturers are using nanometric tech-
nologies to boost logic density and reduce prices. However, 
nanometric scales are highly vulnerable to radiation-induced 
faults that affect values stored in memory cells. Since the func-
tional definition of FPGAs relies on memory cells, they become 
highly prone to this type of faults.  

Fault tolerant implementations, based on Triple Modular Re-
dundancy (TMR) infrastructures, help to keep the correct opera-
tion of the circuit. However, TMR is not sufficient to guarantee 
the safe operation of a circuit. Other issues like the effects of 
Multi-Bit Upsets (MBU) or fault accumulation, have also to be 
addressed. Furthermore, in case of a fault occurrence the correct 
operation of the affected module must be restored and the cur-
rent state of the circuit coherently re-established.  

A solution that enables the autonomous correct restoration of 
the functional definition of the affected module, avoiding fault 
accumulation, re-establishing the correct circuit state in real-
time, while keeping the normal operation of the circuit, is pre-
sented in this paper. 

I. INTRODUCTION

The use of nanometer scales in FPGA manufacturing led to 
a greater integration and to a per unit power reduction, ena-
bling them to grow both in size and complexity. However, it 
also brought some negative aspects, such as a high sensitivity 
to radiation-induced faults, which affects values stored in 
memory cells. Therefore, this kind of faults has a particular 
impact on the reliability of SRAM-based Field Programmable 
Gate Arrays (FPGAs). The exponential growth in the number 
of memory cells needed for configuration makes these devices 
especially vulnerable to radiation-induced faults, such as Sin-
gle Event Upsets (SEU) and Multi-Bit Upsets (MBU) [1-4]. 
Although these faults do not physically damage the chip, their 
effects are permanent, since the functionality of the circuits 
mapped into the device is permanently altered.  

In non-reconfigurable technologies, such as ASICs, protec-
tion against SEUs is restricted to flip-flops, because logic 
paths between them are typically hard-wired. Nevertheless, 
Single Event Transients (SETs) ! a charge transient induced 
in a combinatorial gate by the incidence of an heavy ion !
may be propagated to flip-flop inputs, where they have a high 
probability to be registered, causing soft-errors in the user 
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data. Besides, if a SET strikes a clock line, double-clocking 
may occur, leading to an extemporaneous update that may 
affect part of or all the flip-flops driven by that line (depend-
ing on the charge value and on line attenuation). Further pro-
tection may only be achieved through full module redundancy. 
This is also a preferred choice to improve the reliability of 
highly critical applications based on FPGAs. Due to their in-
herent configurability, FPGAs are especially suitable for the 
implementation of modular redundancy, since it does not re-
quire any architectural innovation and it is function-
independent. However, and because these devices rely on 
memory cells to define logic paths, these, and not only regis-
ters, are also susceptible to SEUs. Again, in this case, the only 
effective protection is full module redundancy [4-10]. 

In a discrete implementation of a Triple Modular Redun-
dancy (TMR) system, if a defect affects the functionality of a 
single module, reliability decreases, but the system will con-
tinue to work correctly. However, a second failure in one of 
the remaining modules may lead to a system failure. Ideally, 
when a module fails, it should be replaced to restore the initial 
redundancy, but this action may not be possible immediately. 
In certain cases, like in space applications, it may even be im-
possible. In the case of FPGA-based systems, in the event of a 
module failure, the initial redundancy may be restored by re-
configuration of the affected module. No physical replacement 
is therefore necessary, resulting in a significant improvement 
in reliability without a comparable rise in costs.

A framework for implementing self-healing circuits im-
mune to radiation-induced faults in FPGAs, built around a 
customized TMR implementation, is herein explored. Its aim 
is to fully automate the procedure of confining, detecting, lo-
cating and mitigating radiation-induced faults in the TMR 
modules, creating a self-healing mechanism fully contained in 
the same FPGA. The full proposal was implemented on a 
XC2V1500, a device that belongs to the Virtex-II FPGA fam-
ily from Xilinx. 

A short survey of the most recent data published concerning 
the impact of radiation-induced faults in FPGAs is presented 
to support the assumptions underlying our proposed imple-
mentation. A discussion concerning implementation issues, 
mainly related to design options and architectural features of 
the FPGA, which may prevent an efficient implementation of 
the fault-tolerant framework, are also presented. A detailed 
explanation of the detection-and-fix controller functionality 
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responsible for error detection, location and mitigation and of 
the self-state-recover mechanism is also provided, followed by 
an experimental case study. Practical implementation aspects 
are pointed out, and current and future work is presented in 
the concluding section. 

The work herein presented is part of a broader project ad-
dressing the design of FPGA-based self-healing circuits. 

II. OVERVIEW OF PUBLISHED DATA ABOUT RADIATION 
EFFECTS ON FPGAS

The results of several radiation campaigns in SRAM-based 
FPGAs, carried out with the objective of understanding the 
effects of radiation-induced faults, were reported by several 
authors [2, 3, 7]. These authors observed that, in general, ra-
diation changes the correct functionality of the circuits, an 
effect defined as a Single Event Functional Interrupt (SEFI). 
A classification of SEFIs according to the affected resources 
and their effects was proposed in [1-2]. 

Several fault injection approaches, proposed as alternatives 
to (expensive) radiation campaigns, may also be found in the 
literature. In these papers the effects of SEUs are emulated as 
bit-flips in the bitstream of the configuration memory of the 
FPGA, either through changes in the original configuration 
bitstream or at run-time, through dynamic reconfiguration [9-
11]. The greatest advantage of these methods is the higher 
controllability of the experiments, in contrast to the unpredict-
ability of radiation injection, which enables a better diagnostic 
of the effects of each SEU. A combination of both techniques, 
not only to increase the controllability of the experiments, but 
also to verify the accuracy of the emulation fault injection 
techniques used, may be found in [4, 5, 12, 13]. 

Lately, several hardening techniques have been proposed to 
avoid SEU effects on the functional behavior of circuits. Cor-
recting techniques based on dynamic reconfiguration, known 
as scrubbing, like those presented on [14-16], periodically 
read back the configuration memory to detect bit-flips caused 
by SEUs. If a bit-flip is detected, the affected frame is recon-
figured and the system is reset. However, the same authors 
recognized some limitations to these techniques: a fault-free 
read-back of the configuration bitstream does not always 
guarantee that a SEU did not occur. As an example, SEUs or 
SETs affecting flip-flop states occur without upsetting the 
bitstream, but may severely disturb or even halt function op-
eration. Another drawback is fault detection latency. Reading 
back the whole configuration memory may take from several 
milliseconds to a few hundred milliseconds, depending on the 
size of the FPGA and on the interface used to perform the 
read-back operation. By then, the fault may already have 
caused the irreversible malfunctioning of the whole system. In 
some cases, it may even be impossible to recover from this 
situation. 

Alternative techniques based on hardware redundancy were 
proposed without the aim of identifying and correcting the 
fault, but just to mask its existence. After extensive testing, 
several authors proved that SEU-induced failures can be prop-
erly controlled for the Virtex family of FPGA devices using 

TMR [6, 7, 9, 13, 17]. Fault tolerance is achieved using extra 
components to instantaneously mask the effect of a faulty 
component, meaning that no fault propagation will occur. 
Still, as no fault detection occurs, the faulty module is not re-
placed and therefore the initial redundancy (and reliability) is 
not restored. Consequently, over time, cumulative faults will 
increase the probability of a general system failure. 

The consideration of the results achieved during radiation 
campaigns concerning MBUs, due to single charged particles, 
is also important, since they may potentially affect multiple 
redundant modules and produce incorrect values. The effects 
produced by MBUs are intrinsically related to the architecture 
of the configuration memory. In earlier Virtex generations 
from Xilinx, configuration memory is divided into one bit 
wide vertical frames that span from the top to the bottom of 
the array. Each column of Configurable Logic Blocks (CLBs) 
comprises multiple frames, which combine internal CLB con-
figuration and state information, with column routing and in-
terconnection information. In [5] it is reported that MBUs in 
Virtex devices occurred all in the same configuration frame, 
while in the Virtex-II family, the percentage of MBUs that 
occurred in the same configuration frame decreases to 88%. 
However, no MBUs spanned the configuration data of sepa-
rated resource columns [4]. No correlation was observed be-
tween MBUs and module granularity sizes, which indicates 
that even at very fine granularities, if the modules are placed 
far enough so as not to share routing networks, TMR is still a 
good option. These results also reveal important information 
about the placement of the configurable memory cells inside 
the FPGA. This information is important to understand the 
fault induction mechanism due to radiation. Configuration 
memory organization changed slightly in more recent genera-
tions of Virtex devices. Frames instead of spanning the array 
from top to bottom are now restricted in height to a fixed 
number of CLB rows, defining a grid of configuration regions. 

In summary, although the association between dynamic re-
configuration and TMR seems to be the most effective way to 
mitigate the effects of radiation, extra care is required during 
the mapping of the circuits into the FPGA and a particular 
attention is required concerning the coherent re-establishment 
of the module state after reconfiguration or after the occur-
rence of bit-flips in flip-flops. 

The experimental results and conclusions reviewed above 
were taken into account when developing our proposed 
framework for the design and implementation of self-healing 
radiation-tolerant FPGA-based circuits. 

III. FRAMEWORK RULES

Effective protection of an FPGA-based circuit against radia-
tion requires a TMR design. In addition, it has to incorporate 
an autonomous mitigation mechanism, based on a detection-
and-fix controller to avoid circuit failures due to the cumula-
tive effects of SEUs. 

In a classic TMR implementation [18], the correct circuit 
output values are settled by voting elements that accept the 
outputs from three redundant sources and deliver the majority 
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vote at their outputs. To ensure a consistent reliability index, 
voters have also to be replicated, in a scheme known as 
T-TMR [18]. Otherwise, and despite module redundancy, 
without voter redundancy if the voter fails, the circuit fails. T-
TMR implementations mask any single fault emerging during 
circuit operation. Multiple faults may also be masked, provid-
ing that i) they affect only one of the redundant modules or 
voters, ii) if affecting different modules, they involve different 
signals and bitwise comparison is used. In these cases, faults 
are confined to the module or voter where they emerged, and 
are not visible from its outside.  

To fully prevent functional problems caused by configura-
tion upsets, each signal should enter the FPGA in triplicate, 
using three input pins [17]. Otherwise, if a single input was 
connected to all three redundant modules, then a failure at the 
single input would cause the error to propagate through all the 
redundant modules, and thus the error would not be masked. 

This same principle applies to clock signals. Each of the 
triplicate circuit modules should receive its own clock. Other-
wise, spurious signals induced by SETs on a single clock line 
may lead to an extemporaneous update of all the three-module 
registers and to the asynchronous output of possibly incorrect 
values. 

Output signals should also leave the FPGA in triplicate, 
with minority voters monitoring each output [17]. The three 
signals converge to a same node outside. When one output is 
different from the others, the correspondent pin is driven to 
high impedance. Some of these implementation aspects were 
already addressed by a Xilinx tool called TMRTool [19]. 
However, the simple implementation of TMR is not sufficient 
to guarantee complete immunity to radiation effects. Other 
issues, like the effects of MBUs or fault accumulation, has 
also to be addressed to guarantee the correct long term opera-
tion of the circuits implemented in the FPGA. Some placement 
and routing considerations are presented in [10] and were 
taken into account when developing the present framework, in 
conjunction with the results produced by the fault injection 
campaigns reported in [2-4, 7]. 

To avoid the effect of MBUs on the different modules [4], 
the three redundant modules of the user’s circuit should be 
placed in different columns of the FPGA. In our proposed 
framework we divided the FPGA vertically into four areas: 
three for the user’s circuit modules and a fourth area for plac-
ing the detection-and-fix controller.  

The interconnections between a module and its own In-
put/Output Blocks (IOBs) should not cross other modules’area 
to avoid route networking share. The overall implementation 
scheme proposed is illustrated in figure 1. 

When one or more faults appear in one of the modules or 
voters, the T-TMR implementation confines the fault and 
masks its existence, avoiding its propagation to the rest of the 
circuit. However, the cumulative effects of several faults in-
duced over time may suppress the effectiveness of the con-
finement and masking mechanism, allowing fault propagation. 
With the aim of detecting the emergence of faults a detection-
and-fix controller is implemented in the fourth area defined on 

the FPGA logic space. A detailed overview of this controller 
structure is shown in figure 2. 
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Fig. 1. Proposed framework overview.

The detection-and-fix controller is responsible for detecting 
data incoherencies, locating the faulty module and restoring 
the original configuration. This is done transparently, through 
partial reconfiguration of the affected module, without human 
intervention, since physical component replacement is not 
needed. As a result, a higher level of maintainability is 
achieved without implying the inoperability of the circuit. 

Fig. 2. Overview of the detection-and-fix controller structure. 

IV. FAULT DETECTION, LOCATION AND MITIGATION

This last point implies not only the existence of redundancy 
but also of a mechanism able to detect the emergence of an 
induced fault. It is very hard to detect a fault in a T-TMR im-
plementation using traditional online test strategies, since the 
redundancy of the circuit masks its effect. In our approach, the 
detection of the faulty modules is done via three scan chains 
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that regularly capture the values at the outputs of the modules 
and voters. 

A Boundary-Scan (BS)-like register [20] is used to imple-
ment the scan chains, composed of simpler cells comprising 
only a capture / shift stage. The absence of the latch stage 
means that no delay is introduced in the signal’s path by the 
scan chain. To avoid capturing undefined values, the scan 
chain is updated synchronously with the system clock (assur-
ing that modules or voters outputs will be in a steady state 
when they are captured).

The scan chain control signals are generated by the detec-
tion-and-fix controller. This controller regularly updates the 
scan chains and shifts their contents, comparing the output 
values. Our framework uses three parallel scan chains, each 
covering a different module. This approach makes it easier for 
the controller to accurately diagnose which of the three mod-
ule areas was affected by a fault, and to trigger its reconfigura-
tion. More than one scan chain in parallel also has the addi-
tional advantage of decreasing fault detection latency, since 
the shifting time is divided by the number of parallel chains 
(enabling more frequent capture operations). 

The problem with this approach is that if a fault affects the 
content of a flip-flop, the output of its module will exhibit a 
wrong value, which will be captured by the scan chain, trig-
gering the reconfiguration procedure of the module. However, 
reconfiguration will not correct the value stored in the flip-
flop, and so, the error will persist. A feedback scheme to cor-
rect faults in flip-flops, based on a majority voter that com-
pares the outputs of the three replicated flip-flops and returns 
the correct value to the inputs is proposed in [17]. Further-
more, this scheme results in the partition of the module in 
smaller logic blocks with voters in-between, which increases 
the robustness of the TMR in the presence of routing upsets 
without being of concern to floorplanning [9]. Yet, if a fault 
affects one of the majority voters, this voter will return to the 
input of its flip-flop a faulty value. This fault will be perma-
nent and will be propagated to the inputs of the remaining 
voters, increasing the risk of fault accumulation and conse-
quent circuit failure. A detection mechanism placed only at the 
outputs of the circuit may fail the detection of these faults if a 
fault occurs deep in the module logic.  

Our proposal to solve this problem is to extend the scan 
chain to the inputs and outputs of each one of the flip-flops in 
the circuit, as illustrated in figure 3. In this way it is not only 
guaranteed that in case of a bit-flip in the flip-flop it will be 
correctly updated in the next clock cycle, but also that any 
functional fault affecting the majority voter will be detected 
through the scan chain, enabling to determine which module 
should be reconfigured. Furthermore, extending the scan chain 
to inside the module and wrapping on it the different combina-
tional blocks and registers enables the precise location of the 
fault. This is an important feature considering the most recent 
SRAM-based FPGAs families, like the Xilinx Virtex-4 and 
Virtex-5. In these families the reconfiguration memory is di-
vided into a number of rectangular regions, forming a grid. 
Each reconfiguration frame spans vertically only each one of 
the regions, instead of the whole FPGA as in earlier families. 

It is therefore possible to limit the area to be reconfigured in 
case of fault detection to a single region due to the increased 
location precision of this approach [21].  

Fig. 3. Implementation of the detection and state restoration mechanism in 
flip-flops.

The sequence of tasks carried out by the detection-and-fix 
controller is represented in the flowchart shown in figure 4. 
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Fig. 4. Detection-and-fix controller flowchart. 

The sequence of tasks is continuously repeated in search of 
emerging faults (either in the controller or in the user mod-
ules). The serial bitstreams captured through the scan chains 
are shifted to the internal controller where they are compared, 
bit-by-bit. When an incoherency is detected, the module where 
it was found is probably faulty. 

Obviously, the controller and the scan chains may also be 
affected by SEUs. To ensure their correct operation, the con-
troller is equally implemented using a T-TMR design and its 
combinational logic and voter output signals are also covered 
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by the scan chains, creating a self-verifiable circuit. The op-
tion of concentrating the controller in only one area, despite 
being implemented in T-TMR, was taken to reduce complex-
ity and the number of occupied CLB columns. However, since 
it occupies fewer slices than those available in each column, a 
convenient separation between modules was implemented. 

The first bits of the scan chain belong to the outputs of the 
controller. If an incoherency is detected in those first bits, the 
controller will be fully reconfigured and reset at once. This 
procedure guarantees that the controller is working properly. 
While not being a critical component (concerning the func-
tionality of the system), a fault-free controller is mandatory to 
maintain the reliability level of the whole system. 

If an incoherency is detected on one of the bits captured by 
the scan chain, it is possible to restraint the origin of the fault 
to a limited area. The module is reconfigured after a parame-
terizable number of detected faults (the ‘x’ and ‘y’ values on 
the flowchart of figure 4), even before reaching the last bit of 
the scan chains. A new capture operation is then performed 
and the verification process restarted.  

Of course, if an upset affects the values shifted through the 
scan chain, this will falsify fault diagnosis and consequently 
trigger an extemporaneous partial reconfiguration of the sup-
posedly faulty area. This operation, although unnecessary, will 
not affect the operation of the system. 

A more complicated situation takes place if the structural 
configuration of the scan chains is affected by a fault. In this 
case, several neighboring bits will be disturbed, falsely indi-
cating that a general failure in one or more modules occurred. 
Additionally, it won’t be possible to locate the place where the 
fault or faults emerged. Therefore, after the detection of a pa-
rameterizable number of faults, either in the controller or in 
the modules, the controller undertakes a full dynamic recon-
figuration of the FPGA, completely restoring the structural 
integrity of the scan chains. 

The exact location of the fault enables the controller to acti-
vate the partial reconfiguration and restoration of only a small 
area of the FPGA. An external memory stores the original 
partial configuration files concerning the four defined areas. 
These partial reconfiguration files may be subdivided into 
regions in case of using Virtex-4 or Virtex-5 devices. Due to 
the volatility of the FPGA configuration memory, this external 
memory was already necessary to hold the FPGA configura-
tion bitstream (to be uploaded during system power up). 

The inclusion of a fault detection mechanism improves the 
performance of the fault recovery procedure. In this case, 
scrubbing takes place only when necessary and on a well de-
fined target. Bearing in mind the intervals between the occur-
rence of SEUs, even in space applications [14], this solution 
enables considerable power savings when compared with pe-
riodic “blind” full reconfiguration of, possibly, in the biggest 
FPGAs, tens of million bits. On the other way, a decrease in 
the scrubbing rate, while saving power, increases fault latency 
and therefore the risk of a system failure. 

V. CASE STUDY

To evaluate the effectiveness of our approach, we devel-
oped an experimental circuit based on a thirty two-bit counter 
and on a cascade of add/subtractor blocks, as illustrated in 
figure 5. The use of a cascaded configuration enabled the 
building of a large circuit, able to maximize FPGA occupa-
tion, with a medium level of complexity but where the addi-
tion of new add/subtractor blocks does not imply a decrease in 
its maximum frequency of operation, which enable to confirm 
the validity of the approach even with high performance cir-
cuits. This circuit was implemented in a XC2V1500-based 
prototyping board, according to the rules defined in our pro-
posed framework. The detection-and-fix controller used a total 
of 254 slices, distributed across two of the 40 available CLB 
columns, representing an area overhead of 5%. Notice that this 
overhead is constant and independent of the size or the com-
plexity of the circuits implemented on the FPGA. The remain-
ing 38 columns were divided in three areas of 12 columns 
each, leaving a total of 2304 slices available for the implemen-
tation of each user module. Of these, 2184 slices were occu-
pied by our circuit. The overall FPGA resources usage is 
summarized in table I. The extra two columns (remainder of 
the division of 38 by 3) were placed among the three areas of 
12 columns, to reinforce protection against column-spanning 
MBUs. 

Fig. 5. Experimental circuit functionality. 

TABLE I
Overall FPGA resources usage 

Slices 92% 
4-bit LUT (Look-Up Tables) 87%
Flip-Flops 85% 

The incorporation with each flip-flop of a scan chain regis-
ter implies an overhead of one LUT and one flip-flop each. An 
extra 3 slices are necessary per module output to capture the 
output value and the outputs of the corresponding majority 
and minority voter. The overhead is therefore dependent on 
the number of internal flip-flops and of outputs of the user 
circuit and not on its complexity. 

In case of fault detection, the detection-and-fix controller 
initiates the partial reconfiguration of the affected area, by 
resolving the location address of the partial file to be config-
ured. Our prototyping board uses System ACE [22] from Xil-
inx to keep trace of the partial configuration files and to con-
figure the FPGA. However, different kinds of interfaces may 
be used to provide the partial reconfiguration files, including 
remote sources. The partial reconfiguration files were gener-
ated using the Foundation tools from Xilinx.  
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The dynamic reconfiguration of part or of the whole FPGA 
does not affect the operation of the functions whose function-
ality is not changed, even if they are active and if its place-
ment area is covered by the reconfiguration procedure. In 
other words, the mitigation procedure is completely transpar-
ent.

The maximum speed of operation achieved by the detec-
tion-and-fix controller was 221 MHz. Since capture operations 
must be synchronous with the operation of the user’s circuit, 
this is also the maximum frequency of operation of the user 
circuits. Our experimental circuit ran at 151 MHz.  

Tests performed continuously over several days based on 
the insertion of faults through partial reconfiguration proved 
the effectiveness of the proposed concept. This process was 
automated using JBits [23]. Each fault insertion takes sixteen 
seconds. After several thousand fault insertions the circuit 
registered no system failures. It was able of autonomously 
recovered from the inserted faults. Currently, only pro-
grammed bits are bit-flipped. The next step is the development 
of a random fault injection procedure to better simulate real 
working conditions, with an FPGA configuration frame being 
picked out randomly and a bit flip being also randomly exe-
cuted in one of its configuration bits. The FPGA will then be 
partially reconfigured using the altered bitstream. 

Notice that the insertion of faults on LUT affect not only 
the combinational blocks but also the voters at the outputs of 
the flip-flops, and, by consequence, due to the feedback path, 
the content of the flip-flop in itself. Despite the difficulty of 
directly injecting faults on flip-flops through partial reconfigu-
ration in Xilinx Virtex FPGA devices, a technique was present 
in [24] to perform it. 

VI. CONCLUSION

This paper presented a framework for the implementation of 
Self-Healing Radiation-Tolerant circuits on SRAM-based 
FPGAs. The approach is built around a customised TMR im-
plementation, complemented with a mechanism for the detec-
tion of faults coupled with a detection-and-fix controller able 
to determine the location of the fault and of promoting the 
reconfiguration of the affected area. 

Several issues addressing the effectiveness of TMR to cope 
with radiation-induced faults in FPGAs were reviewed and 
discussed to support the option of associating T-TMR to a 
careful floorplaning and to dynamic reconfiguration as the 
most effective approach to mitigate radiation-induced faults in 
FPGAs. To avoid system failure due to fault accumulation a 
complementary detection-and-fix controller mechanism was 
proposed, with the aim of restoring the proper operation of the 
modules when a fault is detected. Selectively doing so limits 
power consumption due to repetitive ‘blind’ scrubbing with its 
erratic performance. 

A practical case-study enabled the quantification of the 
overhead of our proposed solution and the assessment of its 
effectiveness. Further work is being done to improve the 
evaluation methodology. 
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