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Different testing scenarios present different requirements.

« Production testing

« Go/no-go testing. Fault diagnosis is not required.

 Field maintenance
» Go/no-go testing. Fault diagnosis is not required.

« Self test (either board or system level) is also a go/no-go testing. Only fault detection
is required.

» Repairing
« An enhanced diagnosis accuracy is required.

« The smallest replaceable unit must be identifiable without ambiguity.




Several factors must be considered when defining a fault model for
Boundary Scan boards.

e The result of a short is an analog value, which must be read by
digital means (O or 17?).

« Open and short faults exhibit a logic behavior which depends on
the technology involved, and also on the number of shorted
outputs, and their logic levels.

A fault model must be reevaluated for each new technology, or
when different technologies are used in the same board. DFT
rules at chip-level may also help (e.g., assuring that floating
inputs capture a fixed value).
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Interconnect short fault TPG algorithms:
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Diagnostic accuracy is limited by response ambiguity, which may be
described on the basis of aliasing and confounding syndromes

net Applied Responses
nl 0001 0001 <
n2 0010 0010
n3 0011 0001 <
nd 0100 0100 <
ns 0101 0100 <
né 0110 0100 <
n7 otl1 0100 <
ng 1000 1000
n9 1001 0001 <
nlo 1010 1010
nil 1011 1011
ni2 1100 1100

Aliasing: Is net nl shorted to nets n3 and n9?

Confounding: Are (n4,n7) and (n5,n6) two independent shorts?

I N, Jarwala, C. Yau, A new framework for analyzing test generation and diagnosis algorithms for wiring interconnects, Proceedings of the
20th ITC, 1989, pp.63-70.



Short-form comparison of one-step TPG algorithms:

l Algorithm Binary Search Wagner Walking Sequence Minimum Weight Max. Independence
Num. of TPs| ceil[log2(N)] L 2*ceilllog2(N)] N p 2 p=f(E,N} 3
Applic. time4| 9 ms 18 ms 500 ms pms 24 ms d
Diagnosis Poor. Aliasing and Poor. Only confoun- | Complete. Poor. Better for large | Complete.

confounding may ding may occur. values of p.
occur.
Comments Minimum number of | Small number of TPs | Too many TPs gene- | Vector assignment to | Additional informa-

TPs generated.

generated.

1 ceil{log2(N)) represents the first integer not smaller than log2(N).
2 p is specified by the user

p is given as a function of the maximum short extent (E), and the total number of nets (N).
4 Approximate values, assuming a circuit with 500 nets, 1000 BS cells, and a | MHz TCK.
5 Assuming a circuit with 1000 BS cells, and a maximum short extent (E) of 20.

ted.

S R

nets aims to minimi-
ze aliasing and con-
founding.

tion (PCB layout,
process characteris
tics) required.




Short-form comparison of adaptive TPG algorithms:

Algorithm Goel and McMahon Optimal C-test
Num. of TPs| ceil[log2(N)] + W | ceilllog2(N)] + C 2 “
Applic. time3| 9 ms + W ms 9 ms + C ms l’
Diagnosis Complete. Complete.
Comments A walking sequence is generated over the set | Reduction on the number of TPs is obtained

of all nets responding with faulty responses. | at the cost of an extra complexity.

1 W is the number of nets responding with faulty responses.
2 C is the maximum number of independent faults in any confounding syndrome (the maximum degree of confounding).
3 Approximate values, assuming a circuit with 500 nets, 1000 BS cells, and a 1 MHz TCK.



Normalized ! cost for various TPG algorithms 2
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2 The Wagner algorithm requires twice the number of TPs used by the other three algorithms.

1 The base cost corresponds to the binary search algorithm.



How to measure the relative merits of these TPG algorithms,
concerning the likelihood of occurrence of ambiguous responses?

« The number of aliasing syndromes is not a significant parameter
(only one further TP is needed to solve all aliasing syndromes).

« The number of confounding syndromes is a much more
significant parameter. But the task of determining the maximum
number of independent faults in each confounding syndrome (the
degree of confounding) is too complicated.

On the other hand, an adaptive algorithm using this parameter to
generate the second set of TPs requires a complex analysis of the
responses obtained in the first step.



A simple and efficient solution skips the determination of the degree
of confounding (no checking is done to see whether the fault
syndrome is effectively confounding).

Each set of nets responding with the same vector is considered an
Eventually Puzzling Syndrome (EPS), independently of
effectively containing aliasing or confounding syndromes.

Comparison of TPG algorithms may now be done in a more
straightforward manner, by using a criterion based on EPSs.



A suitable TPG strategy for the various testing scenarios must then
accommodate the following requirements:

 Because diagnostic accuracy is frequently not important, it must
be possible to choose between a smaller set of TPs (allowing a
faster test) or an enhanced diagnosis capability.

« When diagnostic accuracy is required, a compromise must be
found between the number of TPs, and the complexity of the
TPG procedure.



A TPG strategy fulfilling these requirements may be defined as
follows:

« A two-step adaptive strategy is used. The first step alone is used
when fault diagnosis is not required.

« The TPG algorithm used in the first step is the Minimum Weight,
with a number of TPs given by ceil [log2(N+2)].

« The TPG algorithm used in the second step is the Walking
Sequence, applied to each EPS. Since all EPSs are solved in
parallel, the number of TPs is given by the maximum number of
nets in any EPS.



