jjeee

|
A

INTERNATIONAL JOURNAL of
ELECTRICAL ENGINEERING
EDUCATION

MANCHESTER UNIVERSITY PRESS for the
IUmversnty of Manchester Institute of Science and Technology

Int. J. Elect. Enging Educ., Vol. 27, pp. 132-140. Manchester U.P.. 1990, Printed in Great Britain

A MODULAR ARCHITECTURE FOR AN INTRODUCTORY STUDY
OF 8-BIT MICROPROCESSORS

JOSE MANUEL MARTINS FERREIRA and RAUL FERNANDO

DE ALMEIDA MOREIRA VIDAL

Department of Electrical and Computer Engineering, College of Engineering,
University of Porto, Portugal

INTRODUCTION

There are several 8-bit microprocessor kits easily available to support an
introductory course in this area. Although having been used in many *hands-
on’ circumstances, ranging from short term knowledge updating seminars for
electronic technicians, up to university-level courses in electronic engineering,
these kits are based on architectures that refiect their distinct development
environments. In fact, just a few years difference in these product development
dates is enough to make them have little resemblance to each other, essentially
due to the very fast rate of appearance of new components, as well as the
continuous decrease in their price/performance ratio (just recall that many
higher capacity EPROMs are now cheaper than their lower capacity counter-
parts, or that high performance liquid crystal displays— LCD’s—are becom-
ing common due to their low prices).

These architectural differences (either in hardware, or in software) in the
available 8-bit microprocessor kits, as well as their distinct user interfaces, do
not help towards achieving a practical feel for the different capabilities of the
respective CPU’s, which should be one of the aims of an introductory course.
It thus usually happens that due to time restrictions, a particular CPU is
chosen, the others being only slightly inferior.

This has for a consequence that each individual’s preference for a particular
microprocessor is most often the result of circumstances that have little or
nothing to do with a conclusion drawn from an equal-basis comparison of the
various components available.

On the other hand, and taking a second thought on this subject, it is easy to
conclude that the most commonly used 8-bit microprocessors (essentiaily
those from Zilog, Intel, and Motorola) are all based on the same internal
architecture, differing only on the way it is implemented in each particular
case. In fact, this generic architecture can easily be described on the basis of

This paper was first submitted in August, 1988.

i
!
{

1]

|

\

L
_.ﬂ:EEn——

five types of blocks, as fo

@ aset of blocks to allc
and control);

@ a block used to temp
monly calied the ‘ins

@ directly connected wi
the instruction to exe
sequence of elementa
monly called the ‘ins!

® a block charged with
corresponding to the
(commonly called ‘A

@ finally, a set of regist.
generic (like registers
defined tasks (like st
status register).

The reader is invited to c
the various microprocess:
in order to keep this intrc

This similarity between
microprocessors leads tht
an introductory course by
then present the various r
provided that a convenier
based on the same minim
These two aspects are rel:
characteristics, and its im
associated with the famili
exist,

The purpose of this wo
architecture, in terms of il
with the aim of providing
tourse on 8-bit microproc

The applications field f:
activities, from short term
¢xpansibility features wou
situations,

Finally, a few comment
a short list of possibie pro
presented.

DESCRIPTION OF A M
jI‘hF following sections wil
1stics of the proposed arch

. 1990, Printed in Greal Britain

YDUCTORY STUDY

L FERNANDO

ollege of Engineering,

ilable to support an

:n used in many ‘hands-

re updating seminars for

n electronic engineering,
distinct development

:ese rroduct development
to. h other, essentially
nents, as well as the

(just recall that many

- lower capacity counter-

s—LCD’s—are becom-

or in software) in the
stinct user interfaces, do
‘erent capabilities of the
“an introductory course,
a particular CPU is

sreference for a particular
ces that have little or
I-basis comparison of the

n this subject, it is easy to
‘ocessors (essentially

on the same internal

ted . Yach particular
:scribed on the basis of

-

—— o g—— ==

- — o

~

ol et A

133

five types of blocks, as follows:

@ aset of blocks to allow the interface with the external buses (address, data
and control);

@ a block used to temporarily store the instruction to be executed (com-
monly called the ‘instruction register’);

o directly connected with this last block, another one that decodes which is
the instruction to execute, and that is responsible for controlling the
sequence of elementary operations corresponding to its execution (com-
monly called the ‘instruction decode and control’);

@ a block charged with the execution of arithmetic and logic operations
corresponding to the set of instructions supported by the microprocessor
{commonly called ‘ALU");

o finally, a set of registers intended to be places of temporary storage, some
generic (like registers, accumulators, etc.), and some others devoted to pre-
defined tasks (like storing the program counter, the stack pointer, and the
status register),

The reader is invited to consuit the respective data sheets for a comparison of
the various microprocessors’ block diagrams, which are not reproduced here
in order to keep this introduction short.

This similarity between the internal architectures of the most common 8-bit
microprocessors leads thus to the conclusion that it would make sense to start
an introductory course by describing this generic internal architecture, and
then present the various microprocessors on an equai-importance basis,
provided that a convenient set of kits were available. These kits should be all
based on the same minimal architecture, and have the same user interface.
These two aspects are related respectively to their hardware and software
characteristics, and its importance comes from the fact that the time overhead
associated with the familiarization with each particular kit would thus not
exist.

The purpose of this work is precisely to describe a minimal modular
architecture, in terms of its hardware and software components, developed
with the aim of providing a common approach to be used on a first level
course on 8-bit microprocessors.

The applications field for the proposed architecture covers a wide range of
activities, from short term seminars up to more advanced studies, where its
expansibility features would be used to develop larger systems for specific
situations.

Finally, a few comments on some actual implementations will be made, and
a short list of possible projects based on these implementations will be
presented.

DESCRIPTION OF A MINIMAL MODULAR ARCHITECTURE
The following sections will now describe the hardware and software character-
istics of the proposed architecture. Both descriptions will take place on a basis

134

intended to be detailed enough to allow an easy understanding of its imple-
mentation, but also sufficiently generic as to make it independent of any
particular microprocessor.

Hardward aspects

The hardware architecture can be seen in Fig. 1, and has six main compo-
nents: the central processing unit; the memory (ram and eprom); the parallel
input/output; the input channel (a keyboard, which is the user-system link);
the output channel (an LCD, which is the system-user link); and the decoder
block.

The CPU is obviously the chosen microprocessor.

The memory block is composed of two sockets—one for static RAM
(volatile, or not), the other for EPROM—and a few jumpers to allow for the
accommodation of different capacity devices, within a given range. This block
remains unaltered whatever the microprocessor chosen.

The paraliel I/O block is implemented using the corresponding micro-
processor peripheral, in each case providing 16 parallel [/O lines. The input
channel is a 24 key matrix keyboard (6 columns, 4 rows) which allows the user
to communicate with the system. Ten of the sixteen I/O lines are used to
interface the keyboard (6 output lines to rotate a zero through the columns,
and four input lines to read the rows). This block remains unaltered whatever
the microprocessor chosen.

The decoder is a combinational logic block which takes its inputs from the
address and control buses, and provides the select signals for the various
components, and eventually some modified control signals, when required. It
is advantageously implemented with a bipolar PROM, which allows the use of
the same single component, whatever the microprocessor chosen. Some partic-
ular implementations may also require the use of a sequential logic comple-
ment to allow for timing compatabilities.

s 11 1l

iR IR O

Memory LCD
Decoder . Parallel
soode cPU (rom, | | (o3tem 170
eprom) link)
T} Data bus {T
1 L T 1 1
Address bus |

i

Keyboard
{user-system link)

FIG. 1

It is at this point worthwhil
expansibility. In fact, more ad
of further possibilities, such as
this in mind, the decoder bloc
signals for the corresponding «
the real time clock component

A final word goes for the la:
tations, preferably with a deta
could be available, when the f:
the keyboard.

Software aspects
Coming now to the software a
system monitor requires essen

@ a system initialization rou
condition is forced, and w
functions;

@ an examine /substitute me
or alter the contents of an
previously indicated;

@ a routine which allows thc
EPROM, or previously in
instruction execution sequ

@ finally, a warmstart routir
invoked by some type of t
rupt, etc.), and its executic
microprocessor registers, 1
grams.

_ The definition of these four
1t enables the specification of t
between both parts (user, syst.
(construction of messages fron

o111 t12]:
41516]|"
819 |A|E
CIDJE|F

anderstanding of its imple-
e it independent of any

and has six main compo-
am and eprom); the parallel
ich is the user-system link);
t-user link); and the decoder

sor.
.—one for static RAM

few jumpers to allow for the
hin a given range. This block
‘hosen.

e corresponding micro-
arallel IO lines. The input

4 rows) which allows the user
:en 1/O lines are used to

zero through the columns,

: remains unaltered whatever

rich takes its inputs from the
st stgnals for the various

rol signals, when required. It
ROM, which allows the use of
rocessor chosen. Some partic-
"a sequential logic comple-

Parallel
1/0

5

Keyboard
(user-system link)

135

It is at this point worthwhile to add a few comments concerning system
expansibility. In fact, more advanced applications could require the existence
of further possibilities, such as an RS232C channel, or a real time clock. With
this in mind, the decoder block should thus already provide the selection
signals for the corresponding serial communications peripheral, and also for
the real time clock component.

A final word goes for the layout, which sould be the same for all implemen-
tations, preferably with a detachable keyboard, so that all 16 parallel 1/O lines
could be available, when the foreseen application does not require the use of

the keyboard.

Software aspects
Coming now to the software architecture, it is easy to conciude that any

system monitor requires essentiaily four main routines, as follows:

@ a system initialization routine, running on power-up, or when the reset
condition is forced, and which programs all components to their specific
functions;

@ an examine/substitute memory routine, which allows the user to examine
or alter the contents of any memory position, according to an address
previously indicated;

® a routine which allows the user to run a program, either resident in
EPROM, or previously included in RAM. This routine transfers the
instruction execution sequence to an address previously indicated;

e finally, a warmstart routine may prove very useful to the user. It should be
invoked by some type of breakpoint instruction (restart, software inter-
rupt, etc.), and its execution should send to the display the contents of the
microprocessor registers, thus helping the user to debug his own pro-
grams.

The definition of these four main routines is in fact an important step, since
it enables the specification of the sequence of messages to be exchanged
between both parts (user, system), i.¢., it defines which keys are necessary
(construction of messages from the user to the system), and which messages

0 1 213 Run &— : previous step
4 |S|6]|7 ESM —5 : next step

8| 9| A|B «—

C DIE|F — | shift

FIG.2

136

should be displayed (construction of messages from the system to the user).
The following attributes are then allocated to the keyboard, as shown in
Fig. 2. Note that:

® the ‘next step’ key (=) has a somewhat dual function, since it is used
either to validate an address (when an address specification is required,
both in the run routine, or in the examine/substitute memory routine), or
to increment the actual address (in the examine/substitute memory rou-
tine, but after an address has been validated). It is thus designated neither
as ‘enter’, nor as ‘next position’, but as a more generic ‘next step’, since it
really allows the user to move ahead from the actual state.

@ afew keys are left free. Also, the inclusion of a shift key {to be software
implemented) will duplicate the number of attributes, in case any user
application requires a larger number of possibilities.

Referring now to the messages to be sent from the system to the user
(displayed messages), it is easy to conclude that two cut of the four main
routines will have a characteristic display that is independent of the micro-
processor chosen. These are the cases of the run and examine/substitute
memory routines, to which the messages shown in Fig. 3 were assigned. The
system initialization routine could also have the same characteristic display,
but it is perhaps more convenient that the log in message includes the
reference of the microprocessor used in each particular implementation.

Finally, and since the warmstart routine is intended to show the contents of
the microprocessor registers, it has a characteristic display that is obviously
dependent upon each microprocessor.

The complete set of all necessary routines can then be enumerated as
follows:

a system initialization routine (SYSINI), already described;

an examine/substitute memory routine (ESM), already described;

a routine to allow program execution (RUN), already described;

a warmstart routine (WSTART), also already described;

a routine that keeps dealing with the keyboard (RDKEYB} until it detects
a key closure, and then sends back the corresponding code;

>RUN addr :XXXX (run routine)

»ESM addr X XXX (examine/substitute

memory routine, before
address validation)

>ESM addr X XXX (examine/substilute

mermory routine, after
data:xXX address validation)

FI1G.3

® a routine to rotate a buffe
digits, and which is invok:
for data or address specifi
® aroutine to send the cont
again, this can be either a
® a routine which sends dat:
commands) to the display
@ finally, a routine that stor
the four main routines.

These nine routines are sho
dependencies, as well as their |
cates the routines called by ea:
level specification of the set of
for the ESM case:

ESM clear display
display the ESM r¢
clear the address st

AERERE
%[22
SYSINI g §
ESHM § | §
RUN §
WSTART §1s
RDKEYB
ROTBUF
DSPBUF
LCDOuUT
MSGLIB
e

-om the system to the user).
the keyboard, as shown in

| function, since it is used

zss specification is required,
ubstitute memory routine), or
1ine/substitute memory rou-
. Tt is thus designated neither
ore generic ‘next step’, since it
he actual state.

f a shift key (to be software
ittributes, in case any user
sibilities.

n the system to the user
two out of the four main
s independent of the micro-
and examine/substitute
in Fig. 3 were assigned. The
+ same characteristic display,
1 me~~age includes the
rticL...¢ implementation.
ended to show the contents of
tic display that is obviously

then be enumerated as

-eady described;

M), already described;

{), already described;

ly described;

ard (RDKEYB) until it detects
:sponding code;

in routine)

«amine/substitute
imory routine, before
dres -mlidstion)

xamine/substitute
2mory routine, after
dress validation)

137

a routine to rotate a buffer in memory (ROTBUF), of either two or four

¢ digits, and which is invoked each time a new digit is entered, respectively
for data or address specification;

e a routine to send the contents of a buffer to the display (DSPBUF). Once
again, this can be either a two {data) or four (address} digits buffer;

e a routine which sends data codes (for characters) or control codes (for
commands) to the display (LCDOUT);

e finally, a routine that stores all the messages {MSGLIB) corresponding to

the four main routines.

These nine routines are shown in Table | which gives their functional
dependencies, as well as their input/output parameters. Each ‘§" signal indi-
cates the routines called by each horizontal entry. Each routine has a high
level specification of the set of tasks to be executed, such as is illustrated below

for the ESM case:

ESM clear display
display the ESM routine message

clear the address storage buffer

TABLE |
3|3 |z é 2|8 2 % g Input Output
z|* | =512 |2 2|5 | S |Perameters|Parameters
— [=-] il - =
SYSINI g§ |18 g § 1|8 None None
ESH § | § 8§ |88 8|8 None None
RUN § g g § g g None None
Register con-
WSTART § § § 5 § § tenls (in the None
Mok}, 5P
Code of the pre-
RDKEYB Naone s3ed key {in the
sccumulatar)
2 byle buffer
ROTBUF in memary None
2 byte buffer
DSPBUF g i mermory None
Dats, or Contrel
Lcobout code, in the acc. None
MSGLLIB g None None

138

addr display actual contents of the address buffer
Loop! read keyboard
if key code is for RUN then jump to RUN routine
if key code is for Next Step then jump to data
if key code is for an hexadecimal digit then (rotate the address buffer
and insert this new digit and jump to addr)
else jump to Loopl
data display the actual address and its content
Loop2 read keyboard
if key code is for ESM then jump to ESM routine
if key code is for RUN then jump to RUN routine
if key code is for Next Step then (increment address buffer and jump to
data)
if key code is for Previous Step then (decrement address buffer and
jump to data)
if key code is for an hexadecimal digit then (rotate actual memory
position and insert this new digit and jump to data)
else jump to Loop2

All nine routines are written as individual modules of source code, and then
assembled and linked together, generating a single module of object code,
which is then transferred to an EPROM. This modular approach has the
advantage that it results in a very clear software architecture, absolutely
independent of the microprocessor chosen. The linker output lists the physical
addresses allocated to each routine, which are then also available to the user
for his own applications. It is also worthwhile to mention that this approach
greatly enhances software expansibility, since each new module (for example,
to deal with a serial channel, or with a real time clock, both resultant from
eventual hardware expansions) can just be linked together with the existing
routines, thus ending in an homogeneously expanded system.

SOME COMMENTS ON ACTUAL IMPLEMENTATIONS

The first implementation of this architecture took place around an MC6802

CPU (Motorola), which was chosen due to its fairly transparent instruction

set, thus considered an adequate choice for first-time practitioners in the area.
A Z80 implementation briefly followed as a resuit of students’ work,

showing that it is very easy to adapt the described architecture to any

common 8-bit microprocessor.

SOME SUGGESTED PROJECTS
Since the decoding block already provides some select signals to ease system
expansion, it is now of interest to list some suggested projects intended for
more experienced users.

A first suggestion corresponds to the implementation of an RS232C serial
link, in order to allow interconnection to a large range of external equipment.

As previously described,
processor peripheral is al
this task consists essentia
prove to be a very intere:
wiil allow the user to dev
any PC-compatible (edit
to the kit for immediate «

Another interesting pr
allow for time-dependent
mented included the dec:
time clock (an upgrade o
internal architecture, als
including crystal, and the
to the Z80 is also fairly s

A varied range of othe
interfaces for analog sign
or not), tape interface fo

FINAL COMMENTS
Actual results obtained t
conclusions, as follows:

® the proposed archite
both from its hardw:
sufficiently high leve
between various 8-bi
® it has provided a me
various microproces
cerns our original ai
comparative analysi

Anyone interested in t
v?'ell as the source code li
tions, may contact either

REFERENCES

(11 Hall, Douglas V., Mict
0-07-025571-7 {1980).
21 Wiatrowski, Claude A,
Systems, McGraw Hill,
31 Ciarcia, Steve, Build Y:
4] Rafiquzzaman, Mohar:
Harper & Row, ISBN (
(51 Hayes, John p., Digital
0-07-027367-7 (1985).
(6] Programmable Hardwa

__.m___

wffer

UN routine

o data

hen (rotate the address buffer
ddr)

‘nt

'M routine
UN routine
nent address buffer and jump to

:crement address buffer and

hen (rotate actual memory
imp to data)

»dules of source code, and then
gle module of object code,

no¢ |r approach has the

> architecture, absolutely
linker output lists the physical
hen also available to the user
o mention that this approach

ich new module (for example,

: clock, both resultant from

:d together with the existing
anded systemn.

{ENTATIONS

'k place around an MC6802
airly transparent instruction
-time practitioners in the area.
>sult of students’” work,

ed architecture to any

'se | signals to ease system
ested projects intended for

‘ntation of an RS232C serial
2 range of external equipment.

139

escribed. the chip select signal for the correspon'ding micro-

OCESSOT peripheral is also available as an output of the decoding PROM. SO
i k consists essentially in developing the necessary software. Thls_may

this 122 be a very interesting project, since the connection to a PC serial port
r.ove o the user to develop his applications using readily available tools for

w:ll;, E11:}:‘?.:’;,0“1patible (editor, assember, linker) and then to download the code

a i i jate execution.

to e r;;&:-::zzfidl:g project involves the inclusion of a real time clock to
|1A\I:'0for time-dependent execution of actions. The actual versions imple-

z d included the decode signals for the Dallas Semiconductor DS1287 real

:?;ttz]ock (an upgrade of the MC6818), which besides a very at-tractive

internal architecture, also inclqd:e§ a lithium battery, compl_et%- time base ‘

including crystal, and the polss)lblhty of Intel or Motorola timings (connection

is also fairly simple).

0 ,;hSaZrii(:il:aige of otyher p]:'ojccts could also b_e recommended, such as

interfaces for analog signals acquisition, inclusion of relay outputs (solid state,

or not), tape interface for acquired data storage, etc.

As previously d

FINAL COMMENTS o .
Actual results obtained through usage of these kits highlight two main

conclusions, as follows:

e the proposed architecture leads to a fairly s‘traighfo_rward irpplementation,
both from its hardware or software viewpoints, while remaining a
sufficiently high level specification, such as to allow easy conversion
between various 8-bit microprocessors, . ‘ . '

@ it has provided a means to support students’ enthusiasm in dealing with
various microprocessors, thus bringing a rewarding result in w"hat con-
cerns our original aim of making it possible to present a practical
comparative analysis of the most common of such components.

Anyone interested in the detailed hardware diagrams and PC'B routings, as
well as the source code listings and linker data, for the existing implementa-
tions, may contact either of the authors at the above address.

REFERENCES _

[1} Hall, Douglas V., Microprocessor and Digital Systems, McGraw Hill, ISBN
0-07-025571-7 (1980). o '

[2] Wiatrowski, Claude A., and House, Charles H.. Logic Circuits and Microcomputer
Systems, McGraw Hill, ISBN 0-07-070090-7 (1980).

[3] Ciarcia, Steve, Build Your Own Z80 Computer, Byte Books, ISBN 0~ 07-010962-1 (1981).

4] Rafiquzzaman, Mohamed, Microprocessors and Microcamputer Development Systems,
Harper & Row, ISBN 0-06-045312-5 (1984). ‘

[5] Hayes, John P., Digital System Design and Microprocessors, McGraw Hill, ISBN
0-07-027367-7 (1985).

(6] Programmable Hardware, Byte, (January 1987).

L4y

ABSTRACTS-ENGLISH, FRENCH, GERMAN, SPANISH

A modular architecture for an introductory study of 8-bit microprocessors

The different architectures of various microprocessor kits makes it difficult to give equal treatment
to the most representative of such components. However. considering the similar internal
architecture of the most commen 8-bit microprocessors, it would make sense to have them
presented on an equal-importance basis. if a corresponding set of identical (hardware and
software) kits were available. The aim of this work is to describe such a minimal architecture.

Une architecture modulaire pour I'introduction 4 I'étude des microprocesseurs de 8 bits

Les différentes architectures des kits introductoires disponibles sur le marché rendent difficile une
approche balancé aux différents microprocesseurs. Pourtant, comme Iarchitecture interne des
microprocesseurs 4 8 bits plus répandus est pareille, il semblerait raisonable de les présenter au
méme niveau d'importance, si on disposait d'un ensemble de kits identiques (méme architecture de
matériel et de logiciel). Dans de travail. on décrit une architecture minimale qui poursuit ce but.

Eine Bausteinkonfiguration fiir ein einfiihrendes Studium von 8-bit-Mikroprozessoren

Die unterschiedlichen Konfigurationen verschiedener Mikroprozessorausriistungen erschweren
gleichfdrmige Behandlung der typischsten solcher Bauteile. Jedoch in Anbetracht des dhnlichen
Innenaufbaus der iiblichsten 8-bit-Mikroprozessoren wiirde es sinnvoll sein, sie auf der Basis
gleicher Wichtigkeit zu behandein, falls ein entsprechender Satz identischer Hardware- und
Softwareausriistungen vorhanden wire. Das Ziel dieser Arbeit ist, eine solche minimale Konfigu-
ration zu beschreiben.

Una arquitectura modular para un estudio introductorio a los microprocesadores de 8 bits

Las diferentes arquitecturas de los distintos conjuntos basicos de microprocesadores hace dificil
dar el mismo tratamiento a los mas representativos de estos. Sin embargo. considerando la similar
arquitectura interna de los microprocesadores mis usuales de 8 bits, podria tener sentido que
fueran presentados en bases equivalentes. si estuviera disponible el correspondiente conjunte de

equipos idénticos (hardware y software). El fin de este trabajo es describirio con la minima
arquitectura,

BOOK REVIEW

Computing for Engineers—a problem solving approach to programming in Pascal: C. GRANT
(Prentice Hall, 1989, 364 pp.. £15.95)

The high level language Pascal has been widely adopted in universities as a suitable language to
teach undergraduate engineers the rudiments of structured programming. Computing for Engineers
adopts this approach to provide an introduction to efficient programme design and development
for probiem solving.

As is the nature of the subject, the book itself is well structured and easily read. Part I is
devoted to programming fundamentals, hardware. software and data representation mechanisms.
Part II describes the practical application of structured programming, moduiar programming and
top down programming 10 engineering case studies. Pascal data structures are treated in the final
third part of the book. The first appendix provides a reference to standard Pascal whereas the
second entunciates the mathematics of linear difference equations. Two {urther appendices are
dedicated to programme and examples indices. Exercises are set at the end of each chapter.

The strength of the text lies in the use of case studies to demonsirate the practical engineering
applications of Pascal. Consequently, the book is suitable as n undergraduate teaching book and
as a reference source for standard solutions to engineering problems. The text does suffer slightly
in its lack of consideration for other high level languages and the use of numerical library routines
in problem solving.

ANDREW A. P. GIBSON, Department of Electrical Engineering and Electronics, UMIST

Int. J, Elect. Enging Educ., Yol. 27, pr

AN UNDERGRADUATE S
DESIGN WITH INDUSTRI

D.R.CAMPBELL
Department of Electrical and |
nology, Scotland

I INTRODUCTION

The Honours and Ordinary d
Electronic Engineering at Pai
sandwich’ structure. The indu
able for the potential professic
students and employers. One
choose a set of options, each ¢
both final year courses are als
assignment.

The two-term, final year of
constraint on the volume and
assimilated by the student. A .
to provide some practical exp
tory programme is allocated t
time for project work. A comt
stmulation!, and case studies
spite of the short time availab
taking advantage of the know
and academic environments.

One means of ensuring thai
the spirit of Engineering Appl
with an industrial collaboratc
ideas, about the development
to investigate. This may be du
in a particular area. The idea
successful that development e
or corporate decisions may sii
particular product line,

In all these cases companie:
product development idea by

This paper was first submitted in Ma

