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ABSTRACT 
 
This study proposes an analytical expression for the straightforward determination of 
the angle of seismic incidence that leads to the maximum structural demand of 
reinforced concrete buildings when subjected to Lateral Force Analysis. The demand 
parameter under consideration is the maximum total displacement of single storey and 
isotropic multi-storey buildings, while the maximum interstorey drift may also be 
employed. The proposed expression is defined based on the geometrical and 
mechanical characteristics of the structure. The characteristics of the seismic loading 
represented by the elastic response spectrum are also integrated into the formulation 
of the expression.    
 
 
KEYWORDS: Critical angle of incidence, three-dimensional analysis, lateral force 
analysis, RC buildings. 
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1.  INTRODUCTION 
 
Earthquake-related standards allow the use of procedures based on lateral forces for 
the seismic analysis of buildings in which the influence of higher modes of vibration can 
be neglected. In Eurocode 8 part 3 (EC8-3) [1], which is the part of the Eurocode suite 
of documents that prescribes seismic safety assessment procedures for existing 
structures, an additional requirement is enforced for the applicability of the Lateral 
Force Analysis (LFA). This requirement aims to quantitatively evaluate the regularity of 
the structure by checking the uniformity of the distribution of deformations across the 
structure under earthquake loading. When all requirements are fulfilled and LFA is 
carried out, the time-dependent earthquake action is represented by time-invariant 
horizontal static forces. It is usually accepted that a safe estimation of the maximum 
demand will be achieved if the seismic forces are applied along the building’s structural 
axes independently and by combining these action effects using an appropriate 
combination rule [2], [3]. However, it has been proven that this approach may lead to 
unconservative results. Therefore, the consideration of different orientations of the 
seismic action should not be disregarded [4]-[6]. Nevertheless, the determination of the 
seismic orientation that leads to the highest demand, which will be referred hereon as 
the critical angle of seismic incidence (ASIcrit), is a complex issue that is still unsolved.  
Existing literature that addresses the ASIcrit within the context of LFA is limited and 
mainly orientated towards the design of new structures. Morfidis et al. [7] examined the 
effect of the angle of seismic incidence (ASI) with respect to the required column 
reinforcement in the context of the Greek seismic code (ΕΑΚ) [8]. The authors 
addressed reinforced concrete (RC) buildings with various configurations in plan and 
found that the reinforcement may be substantially underestimated if the ASIcrit is not 
taken into account. Since the calculation of the reinforcement requires the combination 
of different action effects (axial force and bending moments in two perpendicular 
directions), EAK defines two different combination approaches [8]. Similar trends were 
observed by Quadri and Madhurin [9] that analysed a symmetric multi-storey RC 
building with a square plan and examined the action effects in columns. In this study, 
the different action effects were not combined as in the study of Morfidis et al. [7]; 
instead each action effect (axial forces, shear forces and bending moments) was 
considered separately. Both studies concluded that there was no unique ASI that 
maximizes the demand for all parameters simultaneously and that neglecting the ASIcrit, 
i.e. applying the lateral forces only along the structural axes, may lead to 
unconservative results. However, no constant trends were reported on how to take the 
ASIcrit into consideration in a robust way and in accordance with the code-oriented 
semi-probabilistic approach.  
In light of this, a methodology is proposed for the determination of the ASIcrit in the 
context of LFA. The methodology is defined in the context of the seismic safety 
assessment of existing RC buildings and establishes critical demand criteria for single 
storey buildings and for a special category of multi-storey buildings based on the 
maximum total displacement. The same methodology can also be implemented for the 
determination of the ASIcrit that leads to maximum interstorey drifts. Within the current 
methodology, an analytical expression is established for the determination of the ASIcrit 
based only on the geometrical and material characteristics of the building. The 
proposed expression is able to be updated in order to account for the shape of the 
response spectrum and to be applied in buildings that require different values of the 
lateral forces depending on the horizontal direction under consideration. Finally, two 
case studies are presented for the validation of the proposed methodology. A single 
storey building and an isotropic multi-storey building, both not symmetric in plan, 
subjected to a parametric analysis for different ASIs varying from 0o to 360o in steps of 
1o. The results are then compared with the results predicted from the analytical 
expressions, thus validating the applicability of the latter.  
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2.  REVIEW OF CONCEPTS OF THE STATIC BEHAVIOUR OF BUILDINGS 
 
2.1.  Single storey buildings 
 
The methodology developed for the determination of the ASIcrit is based on the static 
behaviour of three-dimensional (3D) single storey buildings non-symmetric in plan, as 
described in [10]. Some basic concepts of single storey structures and of their 
behaviour under static loading are presented in advance to provide some background 
for the developed rationale. The mechanical behaviour of the materials are considered 
to be linear elastic and the floors are considered to be in-plane rigid and out-of-plane 
flexible. Furthermore, the vertical elements are considered to be axially rigid. Single 
storey buildings with the aforementioned properties always possess an elastic centre 
CS and principal axes (I, II, III), where CS is the intersection of the vertical principal axis 
III (also termed elastic axis) with the floor diaphragm [10], [11]. 
For a single storey building with the aforementioned properties, the horizontal stiffness 
can be described by a 3×3 matrix with respect to an arbitrary reference system O 
(X,Y,Z), where X-Y is the horizontal plane, Z is the vertical axis and O is their 
intersection point. For an arbitrary horizontal loading vector [FX, FY, MZ] T, the following 
static equilibrium has to be satisfied: 
 

 
     
     ⋅ =     
     θ     

XX XY XZ X X

YX YY YZ Y Y

ZX ZY ZZ Z Z

K K K u F
K K K u F
K K K M

 (1) 

 
where Kij are the stiffness matrix coefficients and [uX uY θΖ] T is the displacement vector 
with respect to the O (X,Y,Z) reference system. 
Based on the properties of CS [10], [11], it is always possible to define a special 
reference system CS (I, II, III) with respect to which the stiffness matrix takes a diagonal 
form. This reference system is the principal system of the structure and is defined by a 
horizontal plane I-II (rotated by an angle ω with respect to the X-Y plane), the vertical 
axis III and their intersection point CS. In the principal reference system, the static 
equilibrium is decomposed into three independent equations: 
 
 , ,I I I II II II III Cs CsK u F K u F K M⋅ = ⋅ = ⋅ =θ  (2) 
 
where KI, KII, KIII are the principal stiffness matrix coefficients and [uI uII θCs] T and [FI FII 
MCs] T are the displacement and the loading vectors, respectively, with respect to CS (I, 
II, III).  
The importance of the presented transformation lies in the fact that the translational 
principal stiffnesses KI and KII correspond to the minimum and maximum stiffness of 
the system, respectively. Consequently, the principal periods TI and TII correspond to 
the maximum and minimum periods of the system, respectively. It has been proven 
[12] that the flexibility coefficients (fi = 1/Ki) for each uncoupled fundamental direction of 
the structure lie on an ellipse with a semi major axis a = fΙ and a semi minor axis b = fII. 
Similarly, it can be proven that the uncoupled fundamental periods given by: 
 
 , 2unc i iT m f= ⋅ ⋅ ⋅π  (3) 
 
also lie on an ellipse with a semi major axis a = TΙ and a semi minor axis b = TII and 
can be expressed by: 
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as a function of the angle α’, which is the angle of the respective direction under 
consideration with respect to principal axis I. The importance of this concept is shown 
in the following.  
 
 
2.2.  Multi-storey buildings 
 
General multi-storey buildings do not have an elastic axis or principal bending 
directions [12], [13], therefore the diagonalization of the stiffness matrix and the 
decomposition of the static equations presented in Section 2.1. are not able to be fully 
implemented. Nevertheless, there are special categories of multi-storey buildings for 
which those concepts are still usable. Buildings for which an elastic axis and principal 
bending planes can be defined belong to one of the following categories of systems 
[12]-[14]: systems with two horizontal axes of symmetry in plan view, isotropic systems, 
ortho-isotropic systems and complex-isotropic (coaxial) systems. 
All the previously mentioned systems have principal bending planes (I-III, II-III) the 
intersection of which defines the elastic axis III of the system. Furthermore, the elastic 
axis of multi-storey buildings possesses elastic properties similar to those of the elastic 
axis of single storey buildings, as summarized by [11]. Given these properties, the 
static response of the system is obtained by the superposition of two states of pure 
bending within the planes (I-III, II-III) and of one state of pure torsion about the axis III. 
Generally, any N-storey building satisfies the following static equilibrium with respect to 
an arbitrary reference system (X,Y,Z) [15]: 
 

 
xx xy xz x x

yx yy yz y y

zx zy zz z z

K K K u f
K K K u f
K K K m

     
     ⋅ =     
          θ

 (5) 

 
where u̲x, u̲y, θ̲z are the N-dimensional vectors of translations uxi, uyi and rotations θzi 
with respect to the Xi, Yi, Zi axes, respectively, with i = 1 to N. Furthermore, f̲x, f̲y, m̲z are 
the N-dimensional vectors of forces Fxi, Fyi and moments Mzi with respect to the Xi, Yi, 
Zi axes, respectively, with i = 1 to N. Finally, each K̲ij element is a N × N stiffness matrix 
with i, j given by all the combinations of x, y and z. In isotropic buildings, the horizontal 
stiffness matrices K̲n of all elements have the following form [15]: 
 
 0 , 1,2..n nk K nΚ = ⋅ =  (6) 
 
where kn is a numerical coefficient and K̲0 is a constant reference matrix of order N 
(e.g. the stiffness matrix of an element of the system). Furthermore, it has been proven 
that matrices K̲ij in Eq. (5) have the following form [15]: 
 
 0 , , , ,ij ijk K i j x y zΚ = ⋅ =  (7) 
 
where the coefficients kij = kji are calculated as functions of kn. The static equilibrium in 
Eq. (5) of the N-storey building with respect to the global reference system (X,Y,Z) may 
then be re-written as presented in Eq. (8) after replacing Eqs. (6) and (7) in Eq. (5). 
 

 
xx O xy O xz O x x

yx O yy O yz O y y

zx O zy O zz O z z

k K k K k K u f
k K k K k K u f
k K k K k K m

     
     ⋅ =     
          θ

 (8) 

 
It has been shown that this equilibrium may always take the following form [15]: 
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     
     ⋅ =     
          θ

 (9) 

 
where kI, kII, kIII are calculated as defined as in Section 2.1. by replacing Kij of Eq. (1) 
with kij of Eq. (8). The terms f̲I, f̲II and m̲K are the N-dimensional vectors of the loads and 
u̲Ι, u̲ΙΙ and θ̲k are the N-dimensional vectors of displacements with respect to the 
principal reference system (I, II, III). The coordinates of the location of the elastic axis 
and the orientation angle ω of the horizontal principal axes (I, II) are then determined 
from the conditions kII,III = 0, kI,III = 0 and kI,II = 0, respectively. A similar procedure may 
be followed for the definition of the principal stiffness matrix in ortho-isotropic and 
complex-isotropic systems as described in the study of [15]. Finally, the uncoupled 
fundamental periods can be expressed by Eq. (4). 
 
 
3.  DETERMINATION OF THE CRITICAL ANGLE 
 
3.1.  Presentation of the methodology 
 
3.1.1.  Characteristics of the structure 
 
The solution presented next is derived for single storey structures, yet the same 
expressions can be used for the case of multi-storey buildings that possess an elastic 
axis. Following the procedure described in Section 2., the CS and the principal axes (I, 
II, III) are determined. Based on the properties of CS [10], [12], a static force passing 
through the centre of stiffness will cause a translation without rotation of the floor 
diaphragm. During the rotation of a unit static force around CS, the peak displacement 
vector defines an ellipse with axes I, II and lengths of the semi-axes equal to fΙ (= 1/KI) 
and fΙΙ (= 1/KII), respectively. In addition, a unit torsional moment about a vertical axis 
causes rotation of the diaphragm about Cs. Therefore, a horizontal static force F 
rotating about any point of the diaphragm, e.g. point O in Figure 1, will cause an elliptic 
translation of Cs and a rotation of the diaphragm around Cs. The overall displacement 
of the floor can then be obtained as a superposition of two states of pure translation 
within the planes (I-III, II-III) and of one state of pure rotation about the axis III. This 
rationale is illustrated in Figure 1, where the coordinates of Cs (x'Cs, y'Cs) are 
determined with respect to the reference system O (X,Y,Z) in the rotated system of 
axes and the coordinates of point A (x'Α, y'Α) are determined with respect to the 
principal coordinate system Cs (I, II, III). The value of the moment M that causes 
rotation will depend on the perpendicular distance d between F and Cs. 
 

y'Cs
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M=1*d
I

II
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A

I
II

O
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Y

X
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Figure 1:  Displacement of a single storey building subjected to a horizontal unit static 
force applied at O with an arbitrary direction α with respect to the structural axes X-Y. 

 
The displacement vector of Cs due to the rotation of F about O is then defined by: 
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 (10) 

 
The displacement of a generic point of the diaphragm, e.g. point A in Figure 1, may 
then be calculated according to Eq. (11) that defines the displacement of A as a 
function of the displacement of CS based on rigid body kinematics.  
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θ

θ
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The total resultant displacement of a generic point A can then be calculated using the 
Pythagorean Theorem: 
 

 ( ) ( )2 2
( ') ( ') ( ')A A A

X Yu u u= + =α α α   

2 2
( cos( ') sin( ') ) ( cos( ') sin( ') )cos( ') sin( ')K K K K

A A
I III II III

F y F x F y F xF Fy x
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2 2
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α α α αα α
 (12) 

 
where the lateral force F is determined according to the standard for each uncoupled 
fundamental period according to the procedure presented in the next section.  
 
3.1.2.  Characteristics of the input seismic action  
 
The response spectrum used for the representation of the seismic action in the context 
of the seismic safety assessment of EC8-3 corresponds to the elastic ground 
acceleration response spectrum provided by Eurocode 8 Part 1 (EC8-1) [16]. The 
shape of the spectrum is divided into four branches, the limits of which are determined 
by National Determined Parameters (NDP). The second branch corresponds to the 
constant spectral acceleration region, the third to the constant spectral velocity region 
and the fourth to the constant spectral displacement region. 
The elastic response spectrum is defined as a function of the structural period. In LFA, 
the structural period corresponds to the fundamental period of vibration in the 
horizontal direction being considered. Section 2.2 showed that the uncoupled structural 
period can be expressed as a function of the angle α’, Tunc(α’). Accordingly, the spectral 
acceleration Se can also be expressed as a function of the same angle, which will 
coincide with the angle of seismic incidence. Finally, the resultant lateral force can be 
expressed by: 
 
 ’   ’ ·) ( ·( ( ))e uncF S T mα = α λ  (13) 
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where m is the total mass of the structure and λ is a modal mass correction factor used 
to account for the effective modal mass of the first (fundamental) mode of vibration. 
This effective first mode modal mass is on average 15% smaller than the total mass in 
buildings with at least 3 storeys and translational degrees of freedom in each horizontal 
direction. 
 
  
3.2.  Solution for constant lateral forces 
 
In the special case for which both the principal fundamental periods TI, TII fall onto the 
horizontal branch of the response spectrum, the spectral acceleration is independent of 
the uncoupled fundamental period. Therefore, the horizontal force is invariant for all 
ASIs. In that case, the ASIcrit that leads to the maximum displacement does not depend 
on the value of the force, which is a constant Fconst, and Eq. (12) takes the following 
form: 
 

2 2
2 (cos( ') - sin( ') ) (cos( ') - sin( ') )cos( ') sin( ')( ') - K K K K

const A A
I III II III

y x y xu F y x
K K K K

Α    
= ⋅ + +   



⋅ ⋅ ⋅



⋅

 

α α α αα αα  (14) 

 
Based on this simplification, the ASIcrit can be calculated by deriving Eq. (14) with 
respect to α’ and by equalizing the derivative to zero: 
 

 
( ') 0 '
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du

d
= ⇒

α
α
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3.3.  Solution for variable lateral forces 
 
In cases other than those addressed in Section 3.2, the horizontal force is a function of 
the fundamental period. Therefore, Eq. (12) takes the following form:  
 

 
2 2

2 (cos( ') - sin( ') ) (cos( ') - sin( ') )cos( ') sin( ')( ') ( ') - K K K K
A A

I III II III

y x y xu F y x
K K K K

Α    
= + +   



⋅ ⋅ ⋅ ⋅
⋅

  

α α α αα αα α (16) 

 
When both TI and TII belong to the same branch of the spectrum, e.g. TII > TC and TI < 
TD, Eq. (16) has only one branch and the critical angle is determined by deriving the 
equation for every α’ = [0,360] and by equalizing the derivative to zero. When TI and TII 
belong to different branches of the spectrum, Eq. (16) has more than one branch and 
each branch corresponds to a certain range of angles. The limits of the branches are 
determined from Eq. (4) by replacing the uncoupled period by the appropriate NDP: TB, 
TC or/and TD.  
 
 
4.  EXAMPLES OF APPLICATION  
 
4.1.  Characteristics of the seismic action 
 
In both case studies the seismic action is represented by the Type 1 elastic response 
spectrum defined by EC8-1. The parameters describing the spectrum correspond to a 
ground type B, a 5% viscous damping and a ground acceleration on type A ground with 
a value of 0.36g (S = 1.2, TB = 0.15 sec, TC = 0.5 sec, TD = 2.00 sec, η = 1). The factor 
λ will be considered to be equal to 1.0 in both cases for uniformity. 
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4.2.  Single storey building 
 
The first case study comprises a non-symmetric single storey structure with a 
configuration that was chosen in order to represent a complex case study. The plan 
view as well as the material and the geometrical characteristics of the structure are 
presented in Figure 2. Assumptions regarding the mechanical behaviour of the 
materials described in Section 2. are valid as well. The local structural axes of columns 
C and D are rotated -45o about the vertical axis Z and all columns are considered fixed 
to the ground. 
Following the procedure described in Section 2. the lateral stiffness matrix of the 
structure was determined in the global coordinate system O (X,Y,Z). Subsequently, the 
coordinates of CS, xCs = 0.422 (m) and yCs = 0.999 (m), and the angle ω = -31.03o were 
determined in the same coordinate system. Next, the principal stiffness matrix was 
computed. The coordinates of CS, x’K = -0.16 m and y’K = 1.07 m, with respect to O and 
the rotated axes (Figure 2a) were determined as well as the coordinates of A, x’A = -
0.52 m and y’A = -3.82 m, with respect to the principal reference system CS (I, II, III). 
The top of column A was selected as the reference since it corresponds to the point of 
the diaphragm with the maximum resultant displacement, thus the maximum demand. 

y'C
s

4 m

4 
m

A

O

x

x
y

x

y

x

y

II

I
CS

y'A

x'A

y

x'Cs

 

 
Height 4.0 m 

E (modulus of 
elasticity) 25 GPa 

Column A  0.3 x 0.3 (b x h) (m2) 

Column B  0.3 x 0.6 (b x h) (m2) 

Column C  0.3 x 0.6 (b x h) (m2)  

Column D  0.3 x 0.6 (b x h) (m2) 

Beams 0.25 x 0.6 (b x h)(m2) 

 
Figure 2:  Plan view, material and geometric characteristics of the single storey building  

 
Assuming a translational total mass m of 15 ton, the principal uncouple fundamental 
periods are determined by: 
 

 2 0.16sec, 2 0.11secI I II II
I II

m mT T T T
K K

= ⋅ ⋅ → = = ⋅ ⋅ → =π π  (17) 

 
Figure 3a shows that the principal fundamental periods fall into different branches of 
the spectrum. Consequently, the expression of the maximum displacement of any point 
of the diaphragm will be given by Eq. (16) where F(α’) is defined by: 
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 (18) 

 
where Τunc is obtained by Eq. (4). The branches will be separated at the angle α’ΤΒ = 
21,7ο that corresponds to the TB period of the spectrum and was determined by Eq. (4).  
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For π ≤ α’ ≤ 2π, F(α’) will be symmetric. By inserting the coordinates of the points and 
the values of the principal stiffness matrix in Eq. (16), the resultant displacement of 
point A can be calculated for every value of α’. The derivative and the equation, solved 
with the mathematical software Maple [17], led to an ASIcrit with respect to the principal 
reference system of α’ = 1.7o. The ASIcrit α with respect to the structural coordinate 
system X-Y was then obtained by considering α = α’ + ω = 150.6o. 
In order to verify this result, the behaviour of the structure was also simulated using the 
software OpenSees [18] and a parametric analysis was performed by varying the ASI 
of the horizontal force with respect to axis X. The force was applied at the geometrical 
centre of the floor (accidental eccentricities were not taken into account). The value of 
the force was calculated for each ASI from the uncoupled fundamental period of the 
structure along the respective direction. The evolution of the displacement of point A for 
every ASI is shown in Figure 3b. The maximum displacement was achieved for an ASI 
equal to 150o, thus validating the analytical result. It is also noticed that in accordance 
with relevant studies [7], [9], the maximum demand was not obtained for the X or Y 
structural axes of the building. 
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Figure 3:  The response spectrum with the principal periods (a) and the displacement of 
column A for LFA for every ASI (maximum displacement is noted with the red marker) (b). 

 
 
4.3.  Multi-storey isotropic building 
 
The second case study comprises a 3-storey isotropic building complying with the 
mechanical and material characteristics defined in Section 2. The plan view of a typical 
storey of the considered structure is presented in Figure 4a. The building consists of 
identical planar frames, shown in Figure 4b, which are connected at the floor levels by 
rigid horizontal diaphragms. The modulus of elasticity is considered to be 25 GPa, the 
height of each storey is 3.50 m, the cross section dimensions of the columns are 0.30 × 
0.30 m2 and those of the beams are 0.25 × 0.60 m2. The mass of each storey is equal 
to 143 ton. 
Since the vertical resisting elements have proportional stiffness matrices, the building is 
an isotropic building and has a real elastic axis and principal bending directions. The 
lateral stiffness matrix with respect to the global reference system (X,Y,Z) is given by:  
 

 
3 0 -6
0 4 5
-6 5 249

O O O

O O O

O O O

K K K
K K K K

K K K

⋅ ⋅ ⋅ 
 = ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ 

 (19) 
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where K̲O is a 3×3 lateral stiffness matrix of an individual frame (Figure 4b). 
The coordinates of the elastic axis, xCs = 1.25 m and yCs = 2.00 m, were calculated in 
the global coordinate system shown in Figure 4a. The angle ω between the principal 
direction I and the global reference axis X is equal to zero since all resisting elements 
have their local structural axes parallel to the X and Y structural axes. The lateral 
stiffness matrix with respect to the principal bending planes defined by Eq. (9) is then:  
 

 , ,

3 0 0
0 4 0
0 0 230.75

O

I II III O

O

K
K K

K

⋅ 
 = ⋅ 
 ⋅ 

 (20) 

 
The principal periods, which coincide with the periods along the X and Y structural axes 
(Figure 4a) are TI = 0.79 sec and TII = 0.67 sec. Consequently, the fundamental 
uncoupled periods for all directions fall into the third branch of the spectrum (Figure 5a) 
and the displacement of the diaphragms are given by Eq. (16). Finally, F(α’) is 
expressed by: 

 

 ( ') 2.5 C

unc

TF a S
T

= ⋅ ⋅ ⋅α  (21) 

 
where Τunc is given by Eq. (4).  
By inserting the coordinates of the points and the values of the principal stiffness matrix 
into Eq. (16), the resultant displacement of point A (shown in Figure 4a) can be 
calculated for every value of α’. The derivative and the equation, solved with the 
mathematical software Maple [17], led to an ASIcrit with respect to the principal 
reference system of α’ = 145.6o. The ASIcrit α with respect to the structural coordinate 
system X-Y is equal to α’ since ω =0o. 
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Figure 4:  Plan view of a typical floor of the 3-storey isotropic building (a) and typical frame 

(b); dimensions are in meters. 
 
In order to verify this result obtained analytically, the behaviour of the structure was 
also simulated using the software OpenSees [18]. A parametric analysis was 
performed by varying the ASI of the horizontal forces determined from the response 
spectrum. The forces were assumed to be distributed triangularly and applied at the 
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geometrical centres of the floor diaphragms. It is mentioned that the pattern of the 
distribution of the lateral forces does not influence the results because of the isotropic 
properties of the structure. Accidental eccentricities were not taken into account. The 
value of the forces was calculated for each ASI from the uncoupled fundamental period 
of the structure along the respective direction. The evolution of the displacement of 
point A for all the ASIs is shown in Figure 5b. The maximum displacement was 
achieved for ASI equal to 146o, thus validating the analytical result. It is also noticed 
that in accordance with relevant studies [7], the maximum demand was not obtained for 
the X or Y structural axes of the building even for buildings with apparent principal 
directions. 
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Figure 5:  The response spectrum with the principal periods (a) and the displacement of 
column A for LFA for every ASI (maximum displacement is noted with the red marker) (b). 

 
 
5.  CONCLUDING REMARKS 
 
The current paper develops an analytical methodology to determine the critical angle of 
seismic incidence in single storey buildings and isotropic multi-storey buildings 
analysed with LFA. Given that past research has shown that each demand parameter 
obtains its maximum value for a different ASI, the proposed approach only examined 
the top displacement of the structure, a demand parameter that was found suitable to 
describe global 3D structural performance. The validity of the developed framework 
was demonstrated by two case studies: a single storey building and a 3-storey isotropic 
building. Although in both case studies the parameter under consideration was the 
maximum total displacement, the methodology and the results can be extended for 
interstorey drifts. The applicability of the proposed framework is straightforward since it 
depends only on the materials and the geometrical characteristics of the structure and 
may also integrate different values of the external static force. An additional advantage 
of the methodology is that it is valid for forces applied at any point of the diaphragm, 
thus allowing for the consideration of accidental eccentricities.  
Although the presented framework introduces a direct methodology to determine the 
ASIcrit, its applicability is still bounded by the requirement for the existence of a real 
elastic axis. Since the elastic axis is a very good descriptor of a building and allows the 
determination of its static behaviour independently of the external loading [11], efforts 
have been made to extend and generalize the concept of the elastic axis for general 
multi-storey buildings. Two different methodologies can be found in the literature that 
deal with the approximation of the elastic axis for multi-storey buildings [11], [19], [20]. 
The application of the proposed expression with exploitation of those concepts will be 
the focus of future research. 
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