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Preface

Ubiquitous Data Mining(UDM) uses Data Mining techniques to extract useful
knowledge from data, namely when its characteristics reflect a World in Movement.
The goal of this workshop is to convene researchers (from both academia and in-
dustry) who deal with techniques such as: decision rules, decision trees, association
rules, clustering, filtering, learning classifier systems, neural networks, support vec-
tor machines, preprocessing, postprocessing, feature selection and visualization tech-
niques for UDM of distributed and heterogeneous sources in the form of a continuous
stream with mobile and/or embedded devices and related themes.

This is the third workshop in the topic. We received 12 submissions that were
evaluated by 3 members of the Program Committee. The PC recommended accept-
ing 8 full papers and 2 Position Papers. We have a diverse set of papers focusing
from activity recognition, predicting taxis demand, trend mining to more theoretical
aspects of learning model rules from data streams. All papers deal with different
aspects of evolving data and/or distributed data.

We would like to thank all people that make this event possible. First of all,
we thank authors that submit their work and the Program Committee for the work
in reviewing the papers, and proposing suggestions to improve the works. A final
Thanks to the IJCAI Workshop Chairs for all the support.

João Gama, Michael May, Nuno Marques, Paulo Cortez and Carlos A. Ferreira
Program Chairs
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Exploiting Label Relationship in Multi-Label

Learning

Zhi-Hua Zhou

National Key Laboratory for Novel Software Technology,
Nanjing University, China

zhouzh@nju.edu.cn

Abstract

In many real data mining tasks, one data object is often associated with multi-
ple class labels simultaneously; for example, a document may belong to multiple
topics, an image can be tagged with multiple terms, etc. Multi-label learning
focuses on such problems, and it is well accepted that the exploitation of rela-
tionship among labels is crucial; actually this is the essential difference between
multi-label learning and conventional (single-label) supervised learning.

Most multi-label learning approaches try to capture label relationship and
then apply it to help construct prediction models. Some approaches rely on ex-
ternal knowledge resources such as label hierarchies, and some approaches try to
exploit label relationship by counting the label co-occurrences in training data.
These approaches are effective in many cases; however, in real practice, the ex-
ternal label relationship is often unavailable, and generating label relationship
from training data and then applying to the same training data for model con-
struction will greatly increase the overfitting risk. Moreover, the label relation-
ship is usually assumed symmetric, and almost all existing approaches exploit
it globally by assuming the label correlation be shared among all instances.

Short Bio

Zhi-Hua Zhou is a professor at Nanjing University. His research interests are
mainly in machine learning, data mining, pattern recognition and multimedia
information retrieval. In these areas he has published more than 100 papers
in leading international journals or conferences, and holds 12 patents. He is
the recipient of the IEEE CIS Outstanding Early Career Award, the Fok Ying
Tung Young Professorship Award, the Microsoft Young Professorship Award,
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the National Science & Technology Award for Young Scholars of China, and
many other awards including nine international journal/conference paper or
competition awards. He is an Associate Editor-in-Chief of ”Chinese Science
Bulletin”, Associate Editor or Editorial Boards member of ”ACM Trans. Intel-
ligent Systems and Technology” and twelve other journals. He is the Founder
and Steering Committee Chair of ACML, and Steering Committee member of
PAKDD and PRICAI. He is the Chair of the AI&PR Technical Committee
of the China Computer Federation, Chair of the Machine Learning Technical
Committee of the China Association of AI, the Vice Chair of the Data Mining
Technical Committee of the IEEE Computational Intelligence Society, and the
Chair of the IEEE Computer Society Nanjing Chapter. He is a Fellow of the
IAPR, Fellow of the IEEE, and Fellow of the IET/IEE.
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NIM: Scalable Distributed Stream Processing

System on Mobile Network Data

Wei Fan

IBM T.J. Watson Research, Hawthorne, NY, USA
weifan@us.ibm.com

Abstract

As a typical example of New Moore’s law, the amount of 3G mobile broad-
band (MBB) data has grown from 15 to 20 times in the past two years (30TB
to 40TB per day on average for a major city in China), real-time processing
and mining of these data are becoming increasingly necessary. The overhead of
storage and file transfer to HDFS, delay in processing, etc are making offline
analysis on these datasets obsolete. Analysis of these datasets are non-trivial,
examples include mobile personal recommendation, anomaly traffic detection,
and network fault diagnosis. In this talk, we describe NIM - Network Intelli-
gence Miner. NIM is a scalable and elastic streaming solution that analyzes
MBB statistics and traffic patterns in real-time and provides information for
real-time decision making. The accuracy of statistical analysis and pattern
recognition of NIM is identical to that of off line analysis, while NIM can pro-
cess data at line rate. The design and the unique features (e.g., balanced data
grouping, aging strategy) of NIM will be helpful not only for the network data
analysis but also for other applications.

Short Bio

Dr. Wei Fan is the associate director of Huawei Noah’s Ark Lab. Prior to join-
ing Huawei, he received his PhD in Computer Science from Columbia University
in 2001 and had been working in IBM T.J. Watson Research since 2000. His
main research interests and experiences are in various areas of data mining and
database systems, such as, stream computing, high performance computing,
extremely skewed distribution, cost-sensitive learning, risk analysis, ensemble
methods, easy-to-use nonparametric methods, graph mining, predictive feature
discovery, feature selection, sample selection bias, transfer learning, time series
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analysis, bioinformatics, social network analysis, novel applications and com-
mercial data mining systems. His co-authored paper received ICDM’2006 Best
Application Paper Award, he lead the team that used Random Decision Tree
to win 2008 ICDM Data Mining Cup Championship. He received 2010 IBM
Outstanding Technical Achievement Award for his contribution to IBM Infos-
phere Streams. He is the associate editor of ACM Transaction on Knowledge
Discovery and Data Mining (TKDD).
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Predicting Globally and Locally: A Comparison of Methods
for Vehicle Trajectory Prediction

William Groves, Ernesto Nunes, and Maria Gini
Department of Computer Science and Engineering, University of Minnesota

{groves, enunes, gini}@cs.umn.edu

Abstract
We propose eigen-based and Markov-based meth-
ods to explore the global and local structure of
patterns in real-world GPS taxi trajectories. Our
primary goal is to predict the subsequent path of
an in-progress taxi trajectory. The exploration of
global and local structure in the data differenti-
ates this work from the state-of-the-art literature
in trajectory prediction methods, which mostly fo-
cuses on local structures and feature selection. We
propose four algorithms: a frequency based algo-
rithm FreqCount, which we use as a benchmark,
two eigen-based (EigenStrat, LapStrat), and a
Markov-based algorithm (MCStrat). Pairwise per-
formance analysis on a large real-world data set re-
veals that LapStrat is the best performer, followed
by MCStrat.

1 Introduction
In order to discover characteristic patterns in large spatio-
temporal data sets, mining algorithms have to take into ac-
count spatial relations, such as topology and direction, as well
as temporal relations. The increased use of devices that are
capable of storing driving-related spatio-temporal informa-
tion helps researchers and practitioners gather the necessary
data to understand driving patterns in cities, and to design
location-based services for drivers. To the urban planner, the
work can help to aggregate driver habits and can uncover al-
ternative routes that could help alleviate traffic. Additionally,
it also helps prioritize the maintenance of roads.

Our work combines data mining techniques that discover
global structure in the data, and local probabilistic methods
that predict short-term routes for drivers, based on past driv-
ing trajectories through the road network of a city.

The literature on prediction has offered Markov-based
and other probabilistic methods that predict paths accurately.
However, most methods rely on local structure of data, and
use many extra features to improve prediction accuracy. In
this paper we use only the basic spatio-temporal data stream.
We advance the state-of-the-art by proposing the LapStrat
algorithm. This algorithm reduces dimensionality and clus-
ters data using spectral clustering to then predict a subse-
quent path using a Bayesian network. Our algorithm supports

global analysis of the data, via clustering, as well as local in-
ference using the Bayesian framework. In addition, since our
algorithm only uses location and time data, it can be easily
generalized to other domains with spatio-temporal informa-
tion. Our contributions are summarized as follows:

1. We offer a systematic way of extracting common behav-
ioral characteristics from a large set of observations us-
ing an algorithm inspired by principal component anal-
ysis (EigenStrat) and our LapStrat algorithm.

2. We compare the effectiveness of methods that explore
global structure only (FreqCount and EigenStrat), lo-
cal structure only (MCStrat), and mixed global and lo-
cal structure (LapStrat). We show experimentally that
LapStrat offers competitive prediction power compared
to the more local structure-reliant MCStrat algorithm.

2 Related Work
Eigendecomposition has been used extensively to analyze and
summarize the characteristic structure of data sets. The struc-
ture of network flows is analyzed in [Lakhina et al., 2004],
principal component analysis (PCA) is used to summarize the
characteristics of the flows that pass through an internet ser-
vice provider. [Zhang et al., 2009] identify two weaknesses
that make PCA less effective on real-world data. i.e. sensi-
tivity to outliers in the data, and concerns about its interpreta-
tion, and present an alternative, Laplacian eigenanalysis. The
difference between these methods is due to the set of relation-
ships each method considers: the Laplacian matrix only con-
siders similarity between close neighbors, while PCA consid-
ers relationships between all pairs of points. These studies
focus on the clustering power of the eigen-based methods to
find structures in the data. Our work goes beyond summariz-
ing the structure of the taxi routes, and uses the eigenanalysis
clusters to predict the subsequent path of an in-progress taxi
trajectory.

Research in travel prediction based on driver behavior has
enjoyed some recent popularity. [Krumm, 2010] predicts the
next turn a driver will take by choosing with higher likeli-
hood a turn that links more destinations or is more time effi-
cient. [Ziebart et al., 2008] offer algorithms for turn predic-
tion, route prediction, and destination prediction. The study
uses a Markov model representation and inverse reinforce-
ment learning coupled with maximum entropy to provide ac-
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curate predictions for each of their prediction tasks. [Veloso
et al., 2011] proposes a Naive Bayes model to predict that a
taxi will visit an area, using time of the day, day of the week,
weather, and land use as features. In [Fiosina and Fiosins,
2012], travel time prediction in a decentralized setting is in-
vestigated. The work uses kernel density estimation to predict
the travel time of a vehicle based on features including length
of the route, average speed in the system, congestion level,
number of traffic lights, and number of left turns in the route.

All these studies use features beyond location to improve
prediction accuracy, but they do not offer a comprehensive
analysis of the structure of traffic data alone. Our work ad-
dresses this shortcoming by providing both an analysis of
commuting patterns, using eigenanalysis, and route predic-
tion based on partial trajectories.

3 Data Preparation
The GPS trajectories we use for our experiments are taken
from the publicly available Beijing Taxi data set which in-
cludes 1 to 5-minute resolution location data for over ten-
thousand taxis for one week in 2009 [Yuan et al., 2010]. Bei-
jing, China is reported to have seventy-thousand registered
taxis, so this data set represents a large cross-section of all
taxi traffic for the one-week period [Zhu et al., 2012].

Because the data set contains only location and time in-
formation of each taxi, preprocessing the data into segments
based on individual taxi fares is useful. The data has sufficient
detail to facilitate inference on when a taxi ride is completed:
for example, a taxi waiting for a fare will be stopped at a taxi
stand for many minutes [Zhu et al., 2012]. Using these infer-
ences, the data is separated into taxi rides.

To facilitate analysis, the taxi trajectories are discretized
into transitions on a region grid with cells of size 1.5 km ×
1.5 km square. V =< v1,v2, . . . ,vw > is a collection of
trajectories. We divide it into VTR, VTE, VVA which are the
training, test, and validation sets, respectively. A trajectory
vi is a sequence of N time-ordered GPS coordinates: vi =<
cvi
1 , . . . cvi

j , . . . , cvi

N >. Each coordinate contains a GPS lat-
itude and longitude value, cvi

j = (xj , yj). Given a complete
trajectory (vi), a partial trajectory (50% of a full trajectory)
can be generated as vpartial

i =< cvi
1 , cvi

2 , . . . , cvi

N/2 >. The
last location of a partial trajectory vlast

i =< cvi

N/2 > is used
to begin the prediction task.

The relevant portion of the city’s area containing the ma-
jority of the city’s taxi trips, called a city grid, is enclosed
in a matrix of dimension 17 × 20. Each si corresponds to
the center of a grid square in the euclidean xy-space. The
city graph is encoded as a rectilinear grid with directed edges
(esisj ) between adjacent grid squares. I(cj , si) is an indicator
function that returns 1 if GPS coordinate cj is closer to grid
center si than to any other grid center and otherwise returns
0. Equation 1 shows an indicator function to determine if two
GPS coordinates indicate traversal in the graph.

Φ(cvi

j , cvi

k , eslsm) =

{
1, if I(cvi

j , sl) ∗ I(cvi

k , sm) = 1

0 Otherwise
(1)

From trajectory vi, a policy vector πi is created having one
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Figure 1: City grid transitions are all rectilinear.

value for each edge in the city grid. Each δsl,sm is a directed
edge coefficient indicating that a transition occurred between
sl and sm in the trajectory. The policy vectors for this data
set graph have length (|π|) of 1286, based on the number of
edges in the graph. A small sample city grid is in Figure 1. A
collection of policies Π =< π1,π2, . . . ,πw > is computed
from a collection of trajectories V :

πvi =< δvi
s1,s2 , . . . , δ

vi
sl,sm

, . . . > (2)

δvi
sl,sm =

{
1, if

∑N−1
j=1 Φ(cvi

j , cvi

j+1, esl,sm) ≥ 1

0 Otherwise
(3)

A graphical example showing a trajectory converted into a
policy is shown in Figure 2. All visited locations for trajec-
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Figure 2: A trajectory converted to a policy in the city grid.

tory vpartial
i are given by θvpartial

i :

θvpartial
i =< ωs1 , ωs2 , . . . , ωsm >,with (4)

ωsi =

{
1, if

∑n
j=1 I(c

vpartial
i

j , si) ≥ 1

0 Otherwise
(5)

A baseline approach for prediction, FreqCount, uses ob-
served probabilities of each outgoing transition from each
node in the graph. Figure 3 shows the relative frequencies
of transitions between grid squares in the training set. This
city grid discretization is similar to methods used by others in
this domain [Krumm and Horvitz, 2006; Veloso et al., 2011].

4 Methods
This work proposes four methods that explore either the local
or the global structure or a mix of both to predict short-term
trajectories for drivers, based on past trajectories.
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qCount method with horizon of 3
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Figure 6: Actual complete trajectory corre-
sponding to Fig. 4, trajectory πvi
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Figure 3: Visualization of frequency counts for edge transitions in
the training set. Longer arrows indicate more occurrences.

Benchmark: Frequency Count Method. A benchmark pre-
diction measure, FreqCount, uses frequency counts for tran-
sitions in the training set to predict future actions. The relative
frequency of each rectilinear transition from each location in
the grid is computed and is normalized based on the number
of trajectories involving the grid cell. The resulting policy
matrix is a Markov chain that determines the next predicted
action based on the current location of the vehicle.

The FreqCount method computes a policy vector based
on all trajectories in the training set VTR. πFreqCount contains
first order Markov transition probabilities computed from all
trajectories as in Equation 6.

δπ
FreqCount

si,sj =

∑
v∈VTR

δvsi,sj∑
v∈VTR

∑M
k=1 δ

v
si,sk

(6)

The probability of a transition (si → sj) is computed as
the count of the transition si → sj in VTR divided by the
count of all transitions exiting si in VTR.

Policy iteration (Algorithm 1) is applied to the last loca-
tion of a partial trajectory using the frequency count policy
set ΠFreqCount =< πFreqCount > to determine a basic predic-
tion of future actions. This method only considers frequency
of occurrence for each transition in the training set, so it is ex-
pected to perform poorly in areas where trajectories intersect.

Algorithm 1: Policy Iteration
Input: Location vector with last location of taxi θlast, a

policy list Π, prediction horizon niter
Output: A location vector containing visit probabilities

for future locations θ̂
1 θaccum ← θlast

2 for π ∈ Π do
3 t← 1

4 θ0 ← θlast

5 while t ≤ niter do
6 θt =< ωt

s1 , ω
t
s2 , . . . , ω

t
si , . . . , ω

t
sM >

7 , where ωt
si = maxsj∈S(ω

t−1
sj ∗ δπsj ,si)

8 t← t+ 1

9 for Si ∈ S do
10 ωθaccum

si = max(ωθaccum

si , ωθt

si )

11 θ̂ = θaccum

EigenStrat: Eigen Analysis of Covariance. This method
exploits linear relationships between transitions in the grid
which 1) can be matched to partial trajectories for purposes
of prediction and 2) can be used to study behaviors in the
system. The first part of the algorithm focuses on model gen-
eration. For each pair of edges, the covariance is computed
using the training set observations. The n largest eigenvectors
are computed from the covariance matrix. These form a col-
lection of characteristic eigen-strategies from training data.

When predicting for an in-progress trajectory, the algo-
rithm takes the policy generated from a partial taxi trajectory
πvpredict , a maximum angle to use as the relevancy threshold
α, and the eigen-strategies as Π. Eigen-strategies having an
angular distance less than α to πvpredict are added to Πrel.
This collection is then used for policy iteration. Optimal val-
ues for α and dims are learned experimentally.

Eigenpolicies also facilitate exploration of strategic deci-
sions. Figure 7 shows an eigenpolicy plot with a distinct pat-
tern in the training data. Taxis were strongly confined to tra-
jectories either the inside circle or the perimeter of the circle,
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Algorithm 2: EigenStrat
Input: ΠTR, number of principal components (dims),

minimum angle between policies (α), prediction
horizon (horizon), partial policy (πvi

partial

)
Output: Inferred location vector θ̂

1 Generate covariance matrix C|πi|×|πi| (where πi ∈ ΠTR)
between transitions on the grid

2 Get the dims eigenvectors of C with largest eigenvalues
3 Compute cosine similarity between πvi

partial

and the
principal components (πj, j = 1 . . . dims):
Πrel = {πj||cos(πj ,π

vi
partial

)| > α}
4 If the cos(πj ,π

vi
partial

) < 0, then flip the sign of the
coefficients for this eigenpolicy. Use Algorithm 1 with
Πrel on vpartial

i for horizon iterations to compute θ̂

but rarely between these regions. The two series (positive and
negative) indicate the sign and magnitude of the grid coeffi-
cients for this eigenvector. We believe analysis of this type
has great promise for large spatio-temporal data sets.
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Figure 7: An eigenpolicy showing a strategic pattern.

LapStrat: Spectral Clustering-Inspired Algorithm. Lap-
Strat (Algorithm 3) combines spectral clustering and
Bayesian-based policy iteration to cluster policies and infer
driver next turns. Spectral clustering operates upon a simi-
larity graph and its respective Laplacian operator. This work
follows the approach of [Shi and Malik, 2000] using an un-
normalized graph Laplacian. We use Jaccard index to com-
pute the similarity graph between policies. We chose the Jac-
card index, because it finds similarities between policies that
are almost parallel. This is important in cases such as two
highways that only have one meeting point; in this case, if
the highways are alternative routes to the same intersection,
they should be similar with respect to the intersection point.
The input to the Jaccard index are two vectors representing
policies generated in Section 3. J(πi,πj) is the Jaccard sim-
ilarity for pair πi and πj . The unnormalized Laplacian is
computed by subtracting the degree matrix from the similar-
ity matrix in the same fashion as [Shi and Malik, 2000]. We
choose the dims eigenvectors with smallest eigenvalues, and

Algorithm 3: LapStrat
Input: ΠTR, dimension (dims), number of clusters (k),

similarity threshold (ǫ), prediction (horizon),
partial policy (πvi

partial

)
Output: Inferred location vector θ̂

1 Generate similarity matrix W|ΠTR|×|ΠTR| where

wij =

{
J(πi,πj), if J(πi,πj) ≥ ǫ

0 Otherwise
2 Generate Laplacian (L): L = D −W and ∀dij ∈ D

dij =

{∑|ΠTR|
z=1 wiz , if i = z

0 Otherwise
3 Get the dims eigenvectors with smallest eigenvalues
4 Use k-means to find the mean centroids (πj , j = 1 . . . k)

of k policy clusters
5 Find all centroids similar to πvi

partial

:
Πrel = {πj|J(πj ,π

vi
partial

) > ǫ}
6 Use Algorithm 1 with Πrel on vpartial

i for horizon
iterations to compute θ̂

perform k-means to find clusters in the reduced dimension.
The optimal value for dims is learned experimentally.

MCStrat: Markov Chain-Based Algorithm. The Markov
chain approach uses local, recent information from vpartial

predict,
the partial trajectory to predict from. Given the last k edges
traversed by the vehicle, the algorithm finds all complete tra-
jectories in the training set containing the same k edges to
build a set of relevant policies Vrel using the match function.
match(k,a, b) returns 1 only if at least the last k transitions
in the policy generated by trajectory a are also found in b.
Using Equation 9, Vrel is used to build a composite single
relevant policy πrel, that obeys the Markov assumption, so
the resulting policy preserves the probability mass.

Vrel = {vi

∣∣match(k,πvpartial
predict ,πvi) = 1,vi ∈ VTR} (7)

πrel =< δπ
rel

s1,s2 , . . . , δ
πrel

si,sj , . . . > (8)

δπ
rel

si,sj =

∑
v∈Vrel

δvsi,sj∑
v∈Vrel

∑M
k=1 δ

v
si,sk

(9)

Using the composite πrel, policy iteration is then performed
on the last location vector computed from vpredict.

Method Complexity Comparison. A comparison of the
storage complexity of the methods appears in Table 1.

Model Model Construction Model Storage
FreqCount O(|π|) O(|π|)
EigenStrat O((|π|)2) O(dims× |π|)
LapStrat O((|ΠTR |)2) O(k × |π|)
MCStrat O(1) O(|ΠTR| × |π|)

Table 1: Space complexity of methods.
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5 Results
Given an in-progress taxi trajectory, the methods presented
facilitate predictions about the future movement of the ve-
hicle. To simulate this task, a collection of partial trajecto-
ries (e.g. Figure 4) is generated from complete trajectories
in the test set. A set of relevant policy vectors is generated
using one of the four methods described, and policy itera-
tion is performed to generate the future location predictions.
The inferred future location matrix (e.g. Figure 5) is com-
pared against the actual complete taxi trajectory (e.g. Fig-
ure 6). Prediction results are scored by comparing the in-
ferred visited location vector θ̂ against the full location vec-
tor θvi . The scores are computed using Pearson’s correlation:
score = Cor(θ̂, θvi). The scores reported are the aggregate
mean of scores from examples in the validation set.

The data set contains 100,000 subtrajectories (of approxi-
mately 1 hour in length) from 10,000 taxis. The data set is
split randomly into 3 disjoint collections to facilitate experi-
mentation: 90% in the training set, and 5% in both the test and
validation sets. For each model type, the training set is used
to generate the model. Model parameters are optimized using
the test set. Scores are computed using predictions made on
partial trajectories from the validation set.

Results of each method for 4 prediction horizons are shown
in Table 2. The methods leveraging more local information
near the last location of the vehicle (LapStrat, MCStrat) per-
form better than the methods relying only on global patterns
(FreqCount, EigenStrat). This is true for all prediction hori-
zons, but the more local methods have an even greater perfor-
mance advantage for larger prediction horizons.

Prediction Horizon
Method 1 2 4 6
FreqCount .579 (.141) .593 (.127) .583 (.123) .573 (.122)
EigenStrat .563 (.143) .576 (.134) .574 (.140) .574 (.140)
LapStrat .590 (.144) .618 (.139) .626 (.137) .626 (.137)
MCStrat .600 (.146) .616 (.149) .621 (.149) .621 (.149)

Table 2: Correlation (std. dev.) by method and prediction horizon.
The best score is in bold.

Statistical significance testing was performed on the vali-
dation set results, as shown in Table 3. The best performing
methods (LapStrat and MCStrat) achieve a statistically sig-
nificant performance improvement over the other methods.
However, the relative performance difference between the lo-
cal methods is not significantly different.

6 Conclusions
The methods presented can be applied to many other spatio-
temporal domains where only basic location and time infor-
mation is collected from portable devices, such as sensor net-
works as well as mobile phone networks. These predictions
assume the action space is large but fixed and observations
implicitly are clustered into distinct but repeated goals. In
this domain, each observation is a set of actions a driver takes
in fulfillment of a specific goal: for example, to take a passen-
ger from the airport to his/her home. In future work, we pro-

Method FreqCount EigenStrat LapStrat MCStrat
FreqCount n/a n/a n/a
EigenStrat 0.431 n/a n/a
LapStrat *0.000211 *0.000218 0.462
MCStrat *0.00149 *0.000243 n/a

Table 3: p-values of Wilcoxon signed-rank test pairs. Starred (*) val-
ues indicate the row method achieves statistically significant (0.1%
significance level) improvement over the column method for a pre-
diction horizon of 6. If n/a, the row method’s mean is not better than
the column method.

pose to extend this work using a hierarchical approach which
simultaneously incorporates global and local predictions to
provide more robust results.
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Abstract

Decision rules are one of the most expressive lan-
guages for machine learning. In this paper we
present Adaptive Model Rules (AMRules), the first
streaming rule learning algorithm for regression
problems. In AMRules the antecedent of a rule is
a conjunction of conditions on the attribute values,
and the consequent is a linear combination of at-
tribute values. Each rule in AMRules uses a Page-
Hinkley test to detect changes in the process gener-
ating data and react to changes by pruning the rule
set. In the experimental section we report the re-
sults of AMRules on benchmark regression prob-
lems, and compare the performance of our algo-
rithm with other streaming regression algorithms.

Keywords: Data Streams, Regression, Rule Learning,
Change Detection

1 Introduction
Regression analysis is a technique for estimating a functional
relationship between a dependent variable and a set of in-
dependent variables. It has been widely studied in statistics,
machine learning and data mining. Predicting numeric val-
ues usually involves complicated regression formulae. Model
trees [14] and regression rules [15] are the most powerful data
mining models. Trees and rules do automatic feature selec-
tion, being robust to outliers and irrelevant features; exhibit
high degree of interpretability; and structural invariance to
monotonic transformation of the independent variables. One
important aspect of rules is modularity: each rule can be in-
terpreted per si [6].

In the data stream computational model [7] examples
are generated sequentially from time evolving distributions.
Learning from data streams require incremental learning, us-
ing limited computational resources, and the ability to adapt
to changes in the process generating data. In this paper we
present Adaptive Model Rules, the first one-pass algorithm
for learning regression rule sets from time-evolving streams.
AMRules can learn ordered and unordered rules. The an-
tecedent of a rule is a set of literals (conditions based on the
attribute values). The consequent of a rule is a function that

minimizes the mean square error of the target attribute com-
puted from the set of examples covered by rule. This func-
tion might be either a constant, the mean of the target at-
tribute, or a linear combination of the attributes. Each rule
is equipped with an online change detector. It monitors the
mean square error using the Page-Hinkley test, providing in-
formation about the dynamics of the process generating data.

The paper is organized has follows. The next Section
presents the related work in learning regression trees and
rules from data focusing on streaming algorithms. Sec-
tion 3 describe in detail the AMRules algorithm. Section 4
presents the experimental evaluation using stationary and
time-evolving streams. AMRules is compared against other
regression systems. Last Section presents the lessons learned.

2 Related Work
In this section we analyze the related work in two dimensions.
One dimension is related to regression algorithms, the other
dimension is related to incremental learning of regression al-
gorithms.

In regression domains, [14] presented the system M5. It
builds multivariate trees using linear models at the leaves. In
the pruning phase for each leaf a linear model is built. Later,
[5] have presented M5′ a rational reconstruction of Quinlan’s
M5 algorithm. M5′ first constructs a regression tree by re-
cursively splitting the instance space using tests on single at-
tributes that maximally reduce variance in the target variable.
After the tree has been grown, a linear multiple regression
model is built for every inner node, using the data associated
with that node and all the attributes that participate in tests
in the subtree rooted at that node. Then the linear regression
models are simplified by dropping attributes if this results in
a lower expected error on future data (more specifically, if the
decrease in the number of parameters outweighs the increase
in the observed training error). After this has been done, ev-
ery subtree is considered for pruning. Pruning occurs if the
estimated error for the linear model at the root of a subtree
is smaller or equal to the expected error for the subtree. Af-
ter pruning terminates, M5′ applies a smoothing process that
combines the model at a leaf with the models on the path to
the root to form the final model that is placed at the leaf.

Cubist [15] is a rule based model that is an extension of
Quinlan’s M5 model tree. A tree is grown where the termi-
nal leaves contain linear regression models. These models are
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based on the predictors used in previous splits. Also, there are
intermediate linear models at each step of the tree. A predic-
tion is made using the linear regression model at the terminal
node of the tree, but is smoothed by taking into account the
prediction from the linear model in the previous node of the
tree (which also occurs recursively up the tree). The tree is
reduced to a set of rules, which initially are paths from the
top of the tree to the bottom. Rules are eliminated via pruning
and/or combined for simplification.

2.1 Streaming Regression Algorithms

Many methods can be found in the literature for solving clas-
sification tasks on streams, but only a few exist for regres-
sion tasks. To the best of our knowledge, we note only two
papers for online learning of regression and model trees. In
the algorithm of [13] for incremental learning of linear model
trees the splitting decision is formulated as hypothesis test-
ing. The split least likely to occur under the null hypothesis
of non-splitting is considered the best one. The linear mod-
els are computed using the RLS (Recursive Least Square) al-
gorithm that has a complexity, which is quadratic in the di-
mensionality of the problem. This complexity is then multi-
plied with a user-defined number of possible splits per nu-
merical attribute for which a separate pair of linear models is
updated with each training example and evaluated. The Fast
Incremental Model Tree (FIMT) proposed in [10], is an in-
cremental algorithm for any-time model trees learning from
evolving data streams with drift detection. It is based on the
Hoeffding tree algorithm, but implements a different splitting
criterion, using a standard deviation reduction (SDR) based
measure more appropriate to regression problems. The FIMT
algorithm is able to incrementally induce model trees by pro-
cessing each example only once, in the order of their arrival.
Splitting decisions are made using only a small sample of the
data stream observed at each node, following the idea of Ho-
effding trees. Another data streaming issue addressed in [10]
is the problem of concept drift. Data streaming models capa-
ble of dealing with concept drift face two main challenges:
how to detect when concept drift has occurred and how to
adapt to the change. Change detection in the FIMT is carried
out using the Page-Hinkley change detection test [11]. Adap-
tation in FIMT involves growing an alternate subtree from the
node in which change was detected.

IBLStreams (Instance Based Learner on Streams) is an ex-
tension of MOA that consists in an instance-based learning
algorithm for classification and regression problems on data
streams by [1]; IBLStreams optimizes the composition and
size of the case base autonomously. On arrival of a new ex-
ample (x0, y0), this example is first added to the case base.
Moreover, it is checked whether other examples might be re-
moved, either since they have become redundant or since they
are outliers. To this end, a set C of examples within a neigh-
borhood of x0 are considered as candidates. This neighbor-
hood if given by the kc nearest neighbors of x0, determined
according a distance measure ∆, and the candidate set C con-
sists of the examples within that neighborhood. The most re-
cent examples are excluded from removal due to the difficulty
to distinguish potentially noisy data from the beginning of a

concept change. Even though unexpected observations should
be removed only in the former but not in the latter case.

Algorithm 1: AMRules Algorithm
Input:

S: Stream of examples
ordered-set: boolean flag
Nmin: Minimum number of examples
λ: Constant to solve ties
α: the magnitude of changes that are allowed
j: rule index

Result: RS Set of Decision Rules
begin

Let RS← {}
Let defaultRule {} → (L ← NULL)
foreach example (xi, yi) do

foreach Rule r ∈ RSj do
if r covers the example then

Let ŷi be the prediction of the rule r,
computed using Lr
Compute error =(ŷi − yi)2
Call PHTest(error, α, λ)
if Change is detected then

Remove the rule
else

Update sufficient statistics of r
Update Perceptron of r
if Number of examples in Lr ≥ Nmin
then

r ← ExpandRule(r)

if ordered-set then
BREAK

if none of the rules in RS triggers then
Update sufficient statistics of the default rule
Update Perceptron of the default rule
if Number of examples in L ≥ Nmin then

RS ← RS ∪ ExpandRule(defaultRule)

3 The AMRules Algorithm
The problem of learning model rules from data streams raises
several issues. First, the dataset is no longer finite and avail-
able prior to learning, it is impossible to store all data in
memory and learn from them as a whole. Second, multiple
sequencial scans over the training data are not allowed. An
algorithm must therefore collect the relevant information at
the speed it arrives and incrementally decide about splitting
decisions. Third the training dataset may consist of data from
different distributions. In this section we present an incremen-
tal algorithm for learning model rules to address these issues,
named Adaptive Model Rules from High-Speed Data Streams
(AMRules).The pseudo code of the algorithm is given in Al-
gorithm 1.

The algorithm begins with an empty rule set (RS), and a
default rule {} → L, where L is initialized to NULL. L is a
data structure used to store the sufficient statistics required to
expand a rule and for prediction. Every time a new training
example is available the algorithm proceeds with checking
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Algorithm 2: Expandrule: Expanding one Rule
Input:

r: One Rule
τ : Constant to solve ties
δ : Confidence

Result: r′ : Expanded Rule
begin

Let Xa be the attribute with greater SDR
Let Xb be the attribute with second greater SDR

Compute ε =
√

R2 ln(1/δ)
2n

(Hoeffding bound)

Compute r = SDR(Xb)
SDR(Xa)

(Ratio of the SDR values for the
best two splits)
Compute UpperBound = r + ε
if UpperBound < 1 ∨ ε < τ then

Extend r with a new condition based on the best
attribute Xa ≤ vj or Xa > vj
Release sufficient statistics of Lr
r ← r ∪ {Xa ≤ vjorXa > vj}

return r

whether for each rule from rule set (RS) the example is cov-
ered by any rule, that is if all the literals are true for the exam-
ple. The target values of the examples covered by a rule are
used to update the sufficient statistic of the rule (L). To detect
changes we propose to use the Page-Hinkley (PH) change de-
tection test. If a change is detected the rule is removed from
the rule set. Otherwise, the rule might be expanded. The ex-
pansion of the rule is considered only after certain minimum
number of examples (Nmin). The expansion of a rule is ex-
plained in Algorithm 2.

The set of rules is learned in parallel, as described in Al-
gorithm 1. We consider two cases: learning ordered or un-
ordered set of rules. In the former case, every example up-
dates statistics of the first rule that covers it. In the latter ev-
ery example updates statistics of all the rules that covers it.
If an example is not covered by any rule, the default rule is
updated.

3.1 Expansion of a Rule
Before discussing how rules are expanded, we will first
discuss the evaluation measure used in the attribute selection
process. [10] describe a standard deviation reduction measure
(SDR) for determining the merit of a given split. It can be
efficiently computed in an incremental way. Given a leaf
where a sample of the dataset S of size N has been observed,
a hypothetical binary split hA over attribute A would divide
the examples in S in two disjoint subsets SL and SR, with
sizesNL andNR respectively. The formula for SDR measure
of the split hA is given below:

SDR(hA) = sd(S)− NL

N
sd(SL)− NR

N
sd(SR)

sd(S) =

√√√√ 1

N
(

N∑

i=1

(yi − ȳ)2) =

=

√√√√ 1

N
(

N∑

i=1

yi2 − 1

N
(

N∑

i=1

yi)2)

To make the actual decision regarding a split, the SDR
measured for the best two potential splits are compared, by
dividing the second-best value by the best one to generate
a ratio r in the range 0 to 1. Having a predefined range for
the values of the random variables, the Hoeffding probability
bound (ε) [17] can be used to obtain high confidence intervals
for the true average of the sequence of random variables. The
value of ε is calculated using the formula:

ε =

√
R2 ln (1/δ)

2n

The process to expand a rule by adding a new condition
works as follows. For each attribute Xi, the value of the SDR
is computed for each attribute value vj . If the upper bound
(r̄+ = r̄ + ε) of the sample average is below 1 then the true
mean is also below 1. Therefore with confidence 1−ε the best
attribute over a portion of the data is really the best attribute.
In this case, the rule is expanded with condition Xa ≤ vj or
Xa > vj . However, often two splits are extremely similar or
even identical, in terms of their SDR values, and despite the ε
intervals shrinking considerably as more examples are seen,
it is still impossible to choose one split over the other. In these
cases, a threshold (τ) on the error is used. If ε falls below this
threshold and the splitting criterion is still not met, the split is
made on the best split with a higher SDR value and the rule
is expanded.

3.2 Prediction Strategies
The set of rules learned by AMRules can be ordered or
unordered. They employ different prediction strategies to
achieve optimal prediction. In the former, only the first rule
that cover an example is used to predict the target example.
In the latter, all rules covering the example are used for pre-
diction and the final prediction is decided by using weighted
vote.

Each rule in AMrules implements 3 prediction strategies: i)
the mean of the target attribute computed from the examples
covered by the rule; ii) a linear combination of the indepen-
dent attributes; iii) an adaptive strategy, that chooses between
the first two strategies, the one with lower MSE in the previ-
ous examples.

Each rule in AMRules contains a linear model, trained us-
ing an incremental gradient descent method, from the ex-
amples covered by the rule. Initially, the weights are set to
small random numbers in the range -1 to 1. When a new
example arrives, the output is computed using the current
weights. Each weight is then updated using the Delta rule:
wi ← wi +η(ŷ−y)xi, where ŷ is the output, y the real value
and η is the learning rate.

3.3 Change Detection
The AMRules uses the Page-Hinkley (PH) test [12] to moni-
tor the error and signals a drift when a significant increase of
this variable is observed. The PH test is a sequential analysis
technique typically used for monitoring change detection in
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signal processing. The PH test is designed to detect a change
in the average of a Gaussian signal [11]. This test considers
a cumulative variable mT , defined as the accumulated differ-
ence between the observed error and the mean of the error till
the current moment:

mT =
T∑

t=1

(et − ēT − α)

where ēT = 1/T
t∑

t=1
et and α corresponds to the magnitude

of changes that are allowed.
The minimum value of this variable is also computed:

MT = min(mt, t = 1 . . . T ). As a final step, the test moni-
tors the difference betweenMT andmT : PHT = mT −MT .
When this difference is greater than a given threshold (λ) we
signal a change in the distribution. The threshold λ depends
on the admissible false alarm rate. Increasing λ will entail
fewer false alarms, but might miss or delay change detection.

4 Experimental Evaluation
The main goal of this experimental evaluation is to study the
behavior of the proposed algorithm in terms of mean absolut
error (MAE) and root mean squared error (RMSE). We are
interested in studying the following scenarios:

– How to grow the rule set?

• Update only the first rule that covers training ex-
amples. In this case the rule set is ordered, and the
corresponding prediction strategy uses only the first
rule that covers test examples.

• Update all the rules that covers training examples.
In this case the rule set is unordered, and the cor-
responding prediction strategy uses a weighted sum
of all rules that covers test examples.

– How does AMRules compares against other streaming
algorithms?

– How does AMRules compares against other state-of-the-
art regression algorithms?

– How does AMRules learned models evolve in time-
changing streams?

4.1 Experimental Setup
All our algorithms were implemented in java using Massive
Online Analysis (MOA) data stream software suite [2]. For
all the experiments, we set the input parameters of AMRules
to: Nmin = 200, τ = 0.05 and δ = 0.01. The parameters
for the Page-Hinkley test are λ = 50 and α = 0.005. Table 1
summarizes information about the datasets used and reports
the learning rate used in the perceptron learning.

All of the results in the tables 2, 3 and 4 are averaged of
ten-fold cross-validation [16]. The accuracy is measured us-
ing the following metrics: Mean absolute error (MAE) and
root mean squared error (RMSE) [19]. We used two evalua-
tion methods. When no concept drift is assumed, the evalua-
tion method we employ uses the traditional train and test sce-
nario. All algorithms learn from the same training set and the

error is estimated from the same test sets. In scenarios with
concept drift, we use the prequential (predictive sequential)
error estimate [8]. This evaluation method evaluates a model
sequentially. When an example is available, the current re-
gression model makes a prediction and the loss is computed.
After the prediction the regression model is updated with that
example.

Datasets
The experimental datasets include both artificial and real data,
as well sets with continuous attributes. We use ten regression
datasets from the UCI Machine Learning Repository [3] and
other sources. The datasets used in our experimental work
are:

2dplanes this is an artificial data set described in [4]. Air-
lerons this data set addresses a control problem, namely fly-
ing a F16 aircraft. Puma8NH and Puma32H is a family of
datasets synthetically generated from a realistic simulation of
the dynamics of a Unimation Puma 560 robot arm. Pol this
is a commercial application described in [18].The data de-
scribes a tele communication problem. Elevators this data
set is also obtained from the task of controlling a F16 aircraft.
Fried is an artificial data set used in Friedman (1991) and
also described in Breiman (1996,p.139). Bank8FM a fam-
ily of datasets synthetically generated from a simulation of
how bank-customers choose their banks. Kin8nm this dataset
is concerned with the forward kinematics of an 8 link robot
arm. Airline this dataset using the data from the Data Expo
competition (2009). The dataset consists of a large amount of
records, containing flight arrival and departure details for all
the commercial flights within the USA, from October 1987
to April 2008. This is a large dataset with nearly 120 mil-
lion records (11.5 GB memory size) [10]. Table 1 summarizes
the number of instances and the number of attributes of each
dataset.

Table 1. Summary of datasets

Datasets # Instances # Attributes Learning rate
2dplanes 40768 11 0.01
Airlerons 13750 41 0.01
Puma8NH 8192 9 0.01
Puma32H 8192 32 0.01

Pol 15000 49 0.001
Elevators 8752 19 0.001

Fried 40769 11 0.01
Bank8FM 8192 9 0.01
Kin8nm 8192 9 0.01
Airline 115Million 11 0.01

4.2 Experimental Results

In this section, we empirically evaluate the AMRules. The
results are described in four parts. In the first part we compare
the AMRules variants, the second part we compare AMRules
against other streaming algorithms and the third part compare
AMRules against other state-of-the-art regression algorithms.
The last part presents the analysis of AMRules behavior in the
context of time-evolving data streams.
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Comparison between AMRules Variants
In this section we focus on two strategies that we found po-
tentially interesting. It is a combination of expanding only
one rule, the rule that first triggered, with predicting strat-
egy uses only the first rule that covers test examples. Obvi-
ously, for this approach it is necessary to use ordered rules
(AMRuleso). The second setting employs unordered rule
set, where all the covering rules expand and the correspond-
ing prediction strategy uses a weighted sum of all rules that
cover test examples (AMRulesu).

Ordered rule sets specializes one rule at a time, and as a
result it often produces less rules than the unordered strat-
egy. Ordered rules need to consider the previous rules and re-
maining combinations, which might not be easy to interpret
in more complex sets. Unordered rule sets are more modular,
because they can be interpreted alone.

Table 2 summarize the mean absolute error and the root
mean squared error of these variants. Overall, the experimen-
tal results points out the unordered rule sets are more compet-
itive than ordered rule sets in terms of MAE and RMSE.

Table 2. Results of ten-fold cross-validation for AMRules algo-
rithms

Mean absolut error (variance) Root mean squared error (variance)
Datasets AMRuleso AMRulesu AMRuleso AMRulesu

2dplanes 1.23E+00 (0.01) 1.16E+00 (0.01) 1.67E+00 (0.02) 1.52E+00 (0.01)
Airlerons 1.10E-04 (0.00) 1.00E-04 (0.00) 1.90E-04 (0.00) 1.70E-04 (0.00)
Puma8NH 3.21E+00 (0.04) 3.26E+00 (0.02) 4.14E+00 (0.05) 4.28E+00 (0.03)
Puma32H 1.10E-02 (0.00) 1.20E-02 (0.00) 1.60E-02 (0.00) 1.20E-02 (0.00)

Pol 14.0E+00 (25.1) 15.6E+00 (3.70) 23.0E00 (44.50) 23.3E00 (4.08)
Elevators 3.50E-03 (0.00) 1.90E-03 (0.00) 4.80E-03 (0.00) 2.20E-03 (0.00)

Fried 2.08E+00 (0.01) 1.13E+00 (0.01) 2.78E+00 (0.08) 1.67E+00 (0.25)
Bank8FM 4.31E-02 (0.00) 4.30E-02 (0.00) 4.80E-02 (0.00) 4.30E-02 (0.00)
Kin8nm 1.60E-01 (0.00) 1.50E-01 (0.00) 2.10E-01 (0.00) 2.00E-01 (0.00)

Comparison with other Streaming Algorithms
We compare the performance of our algorithm with three
other streaming algorithms, FIMT and IBLStreams. FIMT is
an incremental algorithm for learning model trees, addressed
in [10]. IBLStreams is an extension of MOA that consists in
an instance-based learning algorithm for classification and re-
gression problems on data streams by [1].

The performance measures for these algorithms are given
in Table 3. The comparison of these streaming algorithms
shows that AMRules get better results.

Comparison with State-of-the-art Regression Algorithms
Another experiment which involves adaptive model rules is
shown in Table 4. We compare AMRules with other non-
incremental regression algorithms available in WEKA [9].
All these experiments using algorithms are performed us-
ing WEKA. We use the standard method of ten-fold cross-
validation, using the same folds for all the algorithms in-
cluded.

The comparison of these algorithms show that AMRules
is very competitive in terms of (MAE, RMSE) than all the
other methods, except M5Rules. AMRules is faster than all
the other algorithms considered in this study. These results
were somewhat expected, since these datasets are relatively
small for the incremental algorithm.

Table 5. Average results from the evaluation of change detection
over ten experiments.

Algorithms Delay Size
AMRules 1484 56 (nr. Rules)

FIMT 2096 290 (nr. Leaves)
IBLStreams - -

Evaluation in Time-Evolving Data streams
In this subsection we first study the evolution of the error
measurements (MAE and RMSE) and evaluate the change de-
tection method. After, we evaluate the streaming algorithms
on non-stationary streaming real-world problem, we use the
Airline dataset from the DataExpo09 competition.

To simulate drift we use Fried dataset. The simulations al-
low us to control the relevant parameters and to evaluate the
drift detection. Figure 1 and Figure 2 depict the MAE and
RMSE curves of the streaming algorithms using the dataset
Fried. These figures also illustrate the point of drift and the
points where the change was detected. Only two of the algo-
rithms – FIMT and AMRules – were able to detect a change.
Table 5 report the average results over ten experiments vary-
ing the seed of the Fried dataset. We measure the number of
nodes for FIMT, the number of rules AMrules and the the de-
lay (in terms of number of examples) in detection the drift.
The delay gives indication of how fast the algorithm will be
able to start the adaptation strategy. These two algorithms ob-
tained similar results. The general conclusions are that FIMT
and AMRules algorithms are robust and have better results
than IBLStreams. Figures 3 and 4 show the evaluation of the
MAE and the RMSE of the streaming algorithms on non-
stationary real-world problem. FIMT and AMRules obtain
approximately similar behavior in terms of MAD and MSE.
Both exhibit somewhat better performance than IBLStreams,
but not significantly different.

Fig. 1. Mean absolut error of streaming algorithms using the dataset
Fried.

5 Conclusions
Learning regression rules from data streams is an interest-
ing approach that has not been explored by the stream mining
community. In this paper, we presented a new regression rules
approach for streaming data with change detection. The AM-
Rules algorithm is able to learn very fast and the only mem-
ory it requires is for storing sufficient statistics of the rules. To

14



Table 3. Results of ten-fold cross-validation for Streaming Algorithms

Mean absolut error (variance) Root mean squared error (variance)
Datasets AMRulesu FIMT IBLStreams AMRulesu FIMT IBLStreams
2dplanes 1.16E+00 (0.01) 8.00E-01 (0.00) 1.03E+00 (0.00) 1.52E+00 (0.01) 1.00E+00 (0.00) 1.30E+00 (0.00)
Airlerons 1.00E-04 (0.00) 1.90E-04 (0.00) 3.20E-04 (0.00) 1.70E-04 (0.00) 1.00E-09 (0.00) 3.00E-04 (0.00)
Puma8NH 2.66E+00 (0.01) 3.26E+00 (0.03) 3.27E+00 (0.01) 4.28E+00 (0.03) 12.0E+00 (0.63) 3.84E+00 (0.02)
Puma32H 1.20E-02 (0.00) 7.90E-03 (0.00) 2.20E-02 (0.00) 1.00E-04 (0.01) 1.20E-02 (0.00) 2.70E-02 (0.00)

Pol 15.6E+00 (3.70) 38.2E+00 (0.17) 29.7E+00 (0.55) 23.3E+00 (4.08) 1,75E+03 (1383) 50,7E+00 (0.71)
Elevators 1.90E-03 (0.00) 3.50E-03 (0.00) 5.00E-03 (0.00) 2.20E-03 (0.00) 3.00E-05 (0.00) 6.20E-03 (0.00)

Fried 1.13E+00 (0.01) 1.72E+00 (0.00) 2.10E+00 (0.00) 1.67E+00 (0.25) 4.79E+00 (0.01) 2.21E+00 (0.00)
Bank8FM 4.30E-02 (0.00) 3.30E-02 (0.00) 7.70E-02 (0.00) 4.30E-02 (0.00) 2.20E-03 (0.00) 9.60E-02 (0.00)
Kin8nm 1.60E-01 (0.00) 1.60E-01 (0.00) 9.50E-01 (0.00) 2.00E-01 (0.00) 2.10E-01 (0.00) 1.20E-01 (0.00)

Table 4. Results of ten-fold cross-validation for AMRulesu and others Regression Algorithms

Mean absolute error (variance) Root mean squared error (variance)
Datasets MRulesu M5Rules MLPerceptron LinRegression MRulesu M5Rules MLPerceptron LinRegression
2dplanes 1.16E+00 (0.01) 8.00E-01 (0.01) 8.70E-01 (0.01) 1.91E+00 (0.00) 1.52E+00 (0.01) 9.8E-01 (0.01) 1.09E+00 (0.01) 2.37E+00 (0.00)
Airlerons 1.00E-04 (0.00) 1.00E-04 (0.00) 1.40E-04 (0.00) 1.10E-04 (0.00) 1.70E-04 (0.00) 2.00E-04 (0.00) 1.71E-04 (0.00) 2.00E-04 (0.00)
Puma8NH 3.26E+00 (0.03) 2.46E+00 (0.00) 3.34E+00 (0.17) 3.64E+00 (0.01) 4.28E+00 (0.03) 3.19E+00 (0.01) 4.14E+00 (0.20) 4.45E+00 (0.01)
Puma32H 1.20E-02 (0.00) 6.80E-03 (0.00) 2.30E-02 (0.00) 2.00E-02 (0.00) 1.20E-02 (0.00) 8.60E-03 (0.00) 3.10E-02 (0.00) 2.60E-02 (0.00)

Pol 15.6E+00 (3.70) 2.79E+00 (0.05) 14.7E+00 (5.53) 26.5E+00 (0.21) 23.3E+00 (4.08) 6.56E+00 (0.45) 20.1E+00 (15.1) 30.5E+00 (0.16)
Elevators 1.90E-03 (0.00) 1.70E-03 (0.00) 2.10E-03 (0.00) 2.00E-03 (0.00) 2.20E-03 (0.00) 2.23E-03 (0.00) 2.23E-03 (0.00) 2.29E-03 (0.00)

Fried 1.13E+00 (0.01) 1.25E+00 (0.00) 1.35E+00 (0.03) 2.03E+00 (0.00) 1.67E+00 (0.25) 1.60E+00 (0.00) 1.69E+00 (0.04) 2.62E+00 (0.00)
Bank8FM 4.30E-02 (0.00) 2.20E-02 (0.00) 2.60E-02 (0.00) 2.90E-02 (0.00) 4.30E-02 (0.00) 3.10E-02 (0.00) 3.40E-02 (0.00) 3.80E-02 (0.00)
Kin8nm 1.60E-01 (0.00) 1.30E-01 (0.00) 1.30E-01 (0.00) 1.60E-01 (0.00) 2.00E-01 (0.00) 1.70E-01 (0.00) 1.60E-01 (0.00) 2.00E-01 (0.00)

Fig. 2. Root mean squared error of streaming algorithms using the
dataset Fried.

Fig. 3. Mean absolut error of streaming algorithms using the dataset
Airlines.

Fig. 4. Root mean squared error of streaming algorithms using the
dataset Airlines.

the best of our knowledge, in the literature there is no other
method that addresses this issue.

AMRules learns ordered and unordered rule sets. The ex-
perimental results point out that unordered rule sets, in com-
parison to ordered rule sets, are more competitive in terms
of error metrics (MAE and RMSE). AMRules achieves bet-
ter results than the others algorithms even for medium sized
datasets. The AMRule algorithm is equipped with explicit
change detection mechanisms that signals change points dur-
ing the learning process. This information is relevant to un-
derstand the dynamics of evolving streams.
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Abstract
The rising fuel costs is disallowing random cruis-
ing strategies for passenger finding. Hereby, a rec-
ommendation model to suggest the most passenger-
profitable urban area/stand is presented. This
framework is able to combine the 1) underlying
historical patterns on passenger demand and the
2) current network status to decide which is the
best zone to head to in each moment. The ma-
jor contribution of this work is on how to com-
bine well-known methods for learning from data
streams (such as the historical GPS traces) as an ap-
proach to solve this particular problem. The results
were promising: 395.361/506.873 of the services
dispatched were correctly predicted. The experi-
ments also highlighted that a fleet equipped with
such framework surpassed a fleet that is not: they
experienced an average waiting time to pick-up a
passenger 5% lower than its competitor.

1 Introduction
The taxis became crucial for human mobility in
medium/large-sized urban areas. They provide a direct,
comfortable and speedy way to move in and out of big town
centers - as complement to other transportation means or as
a main solution. In the past years, the city councils tried to
guarantee that the running vacant taxis will always meet the
demand in their urban areas by emitting more taxi licenses
than the necessary. As result, the cities’ cores are commonly
crowded by a huge number of vacant taxis - which take
desperate measures to find new passengers such as random
cruise’ strategies. These strategies have undesirable side
effects like large wastes of fuel, an inefficient traffic handling,
an increase of the air pollution.

The taxi driver mobility intelligence is one of the keys to
mitigate this problems. The knowledge about where the ser-
vices (i.e. the transport of a passenger from a pick-up to a
drop-off location) will actually emerge can truly be useful to
the driver – especially where there are more than one com-
petitor operating. Recently, the major taxi fleets are equipped
with GPS sensors and wireless communication devices. Typ-
ically, these vehicles will transmit information to a data cen-
ter about their location and the events undergoing like the

Figure 1: Taxi Stand choice problem.

passenger pick-up and drop-off. These historical traces can
reveal the underlying running mobility patterns. Multiple
works in the literature have already explored this kind of
data successfully with distinct applications like smart driv-
ing [Yuan et al., 2010], modeling the spatiotemporal struc-
ture of taxi services [Deng and Ji, 2011; Liu et al., 2009;
Yue et al., 2009], building passenger-finding strategies [Li et
al., 2011; Lee et al., 2008] or even predicting the taxi location
in a passenger-perspective [Phithakkitnukoon et al., 2010].
Despite their useful insights, the majority of the techniques
reported are offline, discarding the main advantages of this
signal (i.e. a streaming one).

In our work, we focus on the online choice problem about
which is the best taxi stand to go to after a passenger drop-
off (i.e. the stand where we will pick-up another passenger
quicker). Our goal is to use the vehicular network communi-
cational framework to improve their reliability by combining
all drivers’ experience. In other words, the idea is to fore-
cast how many services will arise in each taxi stand based on
the network past behavior to feed a recommendation model to
calculate the best stand to head to. An illustration about our
problem is presented in Fig. 1 (the five blue dots represent
possible stands to head to after a passenger drop-off; our rec-
ommendation system outputs one of them as the best choice
at the moment).

Such recommendation model can present a true advantage
for a fleet when facing other competitors, which will work
with less information than you do. This tool can improve
the informed driving experience by transmitting to the driver
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which is the stand where 1) he will wait less time to get a pas-
senger in; or where 2) he will get the service with the greatest
revenue.

The smart stand-choice problem is based on four key de-
cision variables: the expected price for a service over time,
the distance/cost relation with each stand, how many taxis are
already waiting at each stand and the passenger demand for
each stand over time. The taxi vehicular network can be a
ubiquitous sensor of taxi-passenger demand from where we
can continuously mine the reported variables. However, the
work described here will just address the decision process
based on the last three variables.

In our previous work [Moreira-Matias et al., 2012], we al-
ready proposed a model to predict the spatiotemporal distri-
bution of the taxi passenger demand (i.e. the number of ser-
vices that will emerge along the taxi stand network). This
study departed from this initial work to extend it along three
different dimensions:

1. The Recommendation System: we use these predic-
tions as input to a Recommendation System that also
accounts the number of taxis already in a stand and the
distance to it. Such framework will improve the taxi
driver mobility intelligence in real time, helping him to
decide which is the most profitable stand in each mo-
ment. It will be based not only in his own past decisions
and outcomes, but on a combination of everyone experi-
ence, taking full advantage of the ubiquitous charac-
teristics of the vehicular communicational networks.

2. Test-bed: Our experiments took advantage of the ve-
hicular network online information to feed the predic-
tive framework. Moreover, the recommendation perfor-
mance was evaluated in real-time, demonstrating its
robustness and its ability to learn, decide and evolve
without a high computational effort;

3. Dataset: 506.873 services were dispatched to our 441
vehicle fleet during our experiments. This large scale
test was carried out along 9 months.

There are some works in the literature related with this prob-
lem, namely: 1) mining the best passenger-finding strate-
gies [Li et al., 2011; Lee et al., 2008], 2) dividing the ur-
ban area into attractive clusters based on the historical pas-
senger demand (i.e.: city zones with distinct demand pat-
terns) [Deng and Ji, 2011; Liu et al., 2009; Yue et al., 2009]
and even 3) predicting the passenger demand at certain ur-
ban hotspots [Li et al., 2012; Kaltenbrunner et al., 2010;
Chang et al., 2010]. The major contribution of this work
facing this state-of-the-art is to build smart recommenda-
tions about the taxi stand to head to in an online streaming
environment (i.e. real-time; while the taxis are operating)
based not only on their historical trace but also on the current
network status. In fact, the reported works present offline
frameworks and/or test-beds or just account a low number of
decision variables.

The results were obtained using two distinct test-beds:
firstly, (1) we let the stream run continuously between Au-
gust 2011 and April 2012. The predictive model was trained
during the first five months and it was stream-tested in the
last four. Secondly, (2) we used a traffic simulator to test

if our Recommendation System could beat the drivers’ ex-
pected behavior. We simulated a competitive scenario – with
two fleets - using the services historical log and on the exist-
ing road network system. The obtained results validated that
our method can effectively help the drivers to decide where
they can achieve more profit.

The remainder of the paper is structured as follows. Sec-
tion 2 formally presents our predictive model while Section
3 details our recommendation one. The fourth section de-
scribes our case study, how we acquired and preprocessed the
data used as well as some statistics about it. The fifth section
describes how we tested the methodology in a concrete sce-
nario: firstly, we introduce the two experimental setups and
the metrics used to evaluate both models. Then, the obtained
results are detailed, followed by some important remarks. Fi-
nally, conclusions are drawn.

2 The Predictive Model
In this section we present some relevant definitions and a brief
description of the predictive model on taxi passenger demand.
The reader should consult the section II in [Moreira-Matias et
al., 2012] for further details. Let S = {s1, s2, ..., sN} be the
set of N taxi stands of interest and D = {d1, d2, ..., dj} a
set of j possible passenger destinations. Our problem is to
choose the best taxi stand at the instant t according with our
forecast about passenger demand distribution over the time
stands for the period [t, t+ P ].

Consider Xk = {Xk,0, Xk,1, ..., Xk,t} to be a discrete
time series (aggregation period of P-minutes) for the number
of demanded services at a taxi stand k. The goal is to build
a model which determines the set of service counts Xk,t+1

for instant t + 1 and per taxi stand k ∈ {1, ..., N}. To do
so, three distinct short-term prediction models are proposed,
as well as a well-known data stream ensemble framework to
use all models. We briefly describe these models along this
section.

2.1 Time Varying Poisson Model
Consider the probability for n taxi assignments to emerge in
a certain time period - P (n) - following a Poisson Distribu-
tion.It is possible to define it using the following equation

P (n;λ) =
e−λλn

n!
(1)

where λ represents the rate (average demand for taxi services)
in a fixed time interval. However, in this specific problem,
the rate λ is not constant but time-variant. Therefore, it was
adapted as a function of time, i.e. λ(t), transforming the Pois-
son distribution into a non homogeneous one. Let λ0 be the
average (i.e. expected) rate of the Poisson process over a full
week. Consider λ(t) to be defined as follows

λ(t) = λ0δd(t)ηd(t),h(t) (2)

where δd(t) is the relative change for the weekday d(t) (e.g.:
Saturdays have lower day rates than Tuesdays); ηd(t),h(t) is
the relative change for the period h(t) in the day d(t) (e.g. the
peak hours); d(t) represents the weekday 1=Sunday, 2=Mon-
day, ...; and h(t) represents the period when time t falls (e.g.
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the time 00:31 is contained in period 2 if we consider 30-
minutes periods).

2.2 Weighted Time Varying Poisson Model
The model previously presented can be faced as a time-
dependent average which produces predictions based on the
long-term historical data. However, it is not guaranteed that
every taxi stand will have a highly regular passenger demand:
actually, the demand in many stands can often be seasonal.
The sunny beaches are a good example on the demand sea-
sonality: the taxi demand around them will be higher on sum-
mer weekends rather than other seasons along the year.

To face this specific issue, a weighted average model is
proposed based on the one presented before: the goal is to
increase the relevance of the demand pattern observed in the
recent week (e.g. what happened on the previous Tuesday
is more relevant than what happened two or three Tuesdays
ago). The weight set ω is calculated using a well-known time
series approach to these type of problems: the Exponential
Smoothing [Holt, 2004]. This model will enhance the impor-
tance of the mid-term historical data rather than the long-term
one already proposed in the above section.

2.3 Autoregressive Integrated Moving Average
Model

The two previous models assume the existence of a regular
(seasonal or not) periodicity in taxi service passenger demand
(i.e. the demand at one taxi stand on a regular Tuesday during
a certain period will be highly similar to the demand verified
during the same period on other Tuesdays). However, the
demand can present distinct periodicities for different stands.
The ubiquitous features of this network force us to rapidly
decide if and how the model is evolving so that it is possible
to adapt to these changes instantly.

The AutoRegressive Integrated Moving Average Model
(ARIMA) [Box et al., 1976] is a well-known methodology
to both model and forecast univariate time series data such
as traffic flow data [Min and Wynter, 2011], electricity price
[Contreras et al., 2003] and other short-term prediction prob-
lems such as the one presented here. There are two main
advantages to using ARIMA when compared to other algo-
rithms. Firstly, 1) it is versatile to represent very differ-
ent types of time series: the autoregressive (AR) ones, the
moving average ones (MA) and a combination of those two
(ARMA); Secondly, 2) it combines the most recent samples
from the series to produce a forecast and to update itself to
changes in the model. A brief presentation of one of the sim-
plest ARIMA models (for non-seasonal stationary time se-
ries) is presented below following the existing description in
[Zhang, 2003] (however, our framework can also detect both
seasonal and non-stationary series). For a more detailed dis-
cussion, the reader should consult a comprehensive time se-
ries forecasting text such as the one presented in Chapters 4
and 5 in [Cryer and Chan, 2008].

2.4 Sliding Window Ensemble Framework
Three distinct predictive models have been proposed which
focus on learning from the long, medium and short-term his-
torical data. However, a question remains open: Is it pos-

sible to combine them all to improve our prediction? Over
the last decade, regression and classification tasks on streams
attracted the community attention due to their drifting char-
acteristics. The ensembles of such models were specifically
addressed due to the challenge related to this type of data.
One of the most popular models is the weighted ensemble
[Wang et al., 2003]. This error-based model was employed in
this framework. The Averaged Weighted Error(AVE) metric
was used to measure such error.

3 Recommendation Model
Let Xk,t+1 be the number of services to be demanded in the
taxi stand k during the 30-minutes period next to the time
instant t. Then, a passenger is dropped-off somewhere by
a vehicle of interest w minutes after the last forecast on the
instantt. The problem is to choice one of the possible taxi
stands to head to. This choice is related with four key vari-
ables: the expected price for a service over time, the distance
to each stand, how many taxis are already waiting at each
stand and the predicted passenger demand. However, here we
solve this issue like a minimization problem: we want to rank
the stands according the minimum waiting time (target vari-
able) to pick-up a passenger, whenever it is directly picked-up
or dispatched by the central.

Let Ck,t+1 be the number of taxis already parked in the
stand k in the drop-off moment and Lk,w be the number of
services departed from the same stand between this moment
and the moment of the last forecast (i.e.: t).We can define the
service deficit - SDk,t+w on the taxi stand k i.e.: a prediction
on the number of services that still will be demanded in the
stand discounting the vehicles already waiting in the line) as

SDk,t+w = (Xk,t+1 − Ck,t+1 − Lk,w) ∗ ρH (3)
where ρH is the similarity (i.e.: 1 – error) obtained by our
forecasting model in this specific stand during the sliding
training window H. In fact, ρH works as a certainty about
our prediction (i.e.: if two stands have the same SD but our
model is experiencing a bigger error in one of them, the other
stand should be picked instead).

Let υk be the distance (in kilometres) between the drop-off
location and the taxi stand k. We can define the normalized
distance to the stand - Uk - as follows

Uk = 1− υk
ξ

(4)

where ξ is the distance to the farthest stand. We can calculate
the Recommendation Score of the taxi stand k as

RSk = Uk ∗ SDk,t+w (5)

Then, we calculate the Recommendation Score of every
stands and we recommend to the driver the stand with the
highest one.

4 Data Acquisition and Preprocessing
The stream events data of a taxi company operating in the city
of Porto, Portugal, was used as case study. This city is the
center of a medium-sized urban area (consisting of 1.3 mil-
lion inhabitants) where the passenger demand is lower than
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the number of running vacant taxis, resulting in a huge com-
petition between both companies and drivers. The data was
continuously acquired using the telematics installed in each
one of the 441 running vehicles of the company fleet through-
out a non-stop period of nine months. This study just uses
as input/output the services obtained directly at the stands or
those automatically dispatched to the parked vehicles (more
details in the section below). This was done because the pas-
senger demand at each taxi stand is the main feature to aid the
taxi drivers’ decision.

Statistics about the period studied are presented. Table 1
details the number of taxi services demanded per daily shift
and day type. Table 2 contains information about all ser-
vices per taxi/driver and cruise time. The service column in
Table 2 represents the number of services taken by the taxi
drivers, while the second represents the total cruise time of
every service. Additionally, it is possible to state that the cen-
tral service assignment is 24% of the total service (versus the
76% of the service requested directly on the street) while 77%
of the service is demanded directly to taxis parked in a taxi
stand (and 23% is assigned while they are cruising). The av-
erage waiting time (to pick-up passengers) of a taxi parked at
a taxi stand is 42 minutes while the average time for a ser-
vice is only 11 minutes and 12 seconds. Such low ratio of
busy/vacant time reflects the current economic crisis in Portu-
gal and the regulators’ inability to reduce the number of taxis
in the city. It also highlights the importance of the predictive
system presented here, where the shortness of services could
be mitigated by obtaining services from the competitors.

5 Experimental Results
In this section, we firstly describe the experimental setup de-
veloped to test our predictive model on the available data.
Secondly, we introduce our simulation model and the exper-
iments associated with. Thirdly, we present our Recommen-
dation System and the metrics used to evaluate our methods.
Finally, we present the results.

5.1 Experimental Setup for the Predictive Model
Our model produces an online forecast for the taxi-passenger
demand at all taxi stands at each P-minutes period. Our test-

Table 1: Taxi Services Volume (Per Daytype/Shift)

Daytype Total Services Averaged Service Demand per Shift
Group Emerged 0am to 8am 8am to 4pm 4pm to 0am

Workdays 957265 935 2055 1422
Weekends 226504 947 2411 1909

All Daytypes 1380153 1029 2023 1503

Table 2: Taxi Services Volume(Per Driver/Cruise Time)

Services per Driver Total Cruise Time (minutes)
Maximum 6751 71750
Minimum 100 643
Mean 2679 33132
Std. Dev. 1162 13902

bed was based on prequential evaluation: data about the net-
work events was continuously acquired.

Each data chunk was transmitted and received through a
socket. The model was programmed using the R language.
The prediction effort was divided into three distinct processes
running on a multicore CPU (the time series for each stand
is independent from the remaining ones) which reduced the
computational time of each forecast. The pre-defined func-
tions used and the values set for the models parameters are
detailed along this section.

An aggregation period of 30 minutes was set (i.e. a new
forecast is produced each 30 minutes; P=30) and a radius of
100 m (W = 100 ¿ 50 defined by the existing regulations). It
was set based on the average waiting time at a taxi stand, i.e.
a forecast horizon lower than 42 minutes.

The ARIMA model (p,d,q values and seasonality) was
firstly set (and updated each 24h) by learning/detecting the
underlying model (i.e. autocorrelation and partial autocor-
relation analysis) running on the historical time series curve
for each considered taxi stand. To do so, we used an auto-
matic time series function in the [forecast] R package [Yeas-
min and Rob, 1999] - auto-arima – with the default parame-
ters. The weights/parameters for each model are specifically
fit for each period/prediction using the function arima from
the built-in R package [stats].

The time-varying Poisson averaged models (both weighted
and non-weighted) were also updated every 24 hours. A slid-
ing window of 4 hours (H=8) was considered in the ensemble.

5.2 Traffic Simulator: An Online Test-Bed
The DIVERT [Conceicao et al., 2008] is a high-performance
traffic simulator framework which uses a realistic micro-
scopic mobility model. The main advantage of this frame-
work when facing others is the easiness to create new sim-
ulation modules efficiently. Hence, we have created a new
model that simulates the real behavior of a taxi fleet. Upon
a request, a central entity elects one taxi to do the requested
service. Once the service is finished, the same entity recom-
mends a new taxi-stand for the taxi to go to and wait for a
new service.

This framework was employed as an online test-bed for our
Recommendation System. Firstly, the realistic map of the city
of Porto - containing the real road network topology and the
exact location of the 63 taxi stands in the city – was loaded.
). Secondly, we fed the framework with a service log (i.e.
a time-dependent origin-destination matrix) correspondent to
the studied period. However, we just accessed the log of one
out of the two running fleets in Porto (the largest one, with
441 vehicles). To simulate a scenario similar to our own, we
divided this fleet into two using a ratio close to real one (60%
for the fleet A1 and 40% to the fleet B1). The services dis-
patched from the central were also divided in the same pro-
portion while the services demanded in each taxi stand will
be the same. The fleet B1 will use the most common and tra-
ditional way to choose the best taxi-stand: it will go to the
nearest taxi stand of each drop-off location (i.e. after a drop-
off, each driver has to head to a specific taxi stand of its own
choice). However, the fleet A1 will use our Recommendation
System to do an informed driving, which considers multiple
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variables – like the number of taxis in each stand or the de-
mand prediction on them - to support this important decision.
Finally, we ran the simulation and we extract the metrics for
each fleet. The framework is used to calculate the optimal
paths between the taxi stand and the passenger location and
the dependent behavior of the fleets (the location of each ve-
hicle will affect the way they get the services). Our main
goal is to simulate a real scenario behavior and its competi-
tive characteristics while we are testing the Recommendation
System. It is important to notice that both fleets would get
similar results if they did not use any Recommendation Sys-
tem. We also highlight that the vehicles will remain parked in
the stand waiting for a service whenever the time it takes to
appear. In this case, we consider the maximum threshold of
120 minutes that is deeply detailed in the following section,
along with the remaining evaluation metrics.

5.3 Evaluation Methods
We used the data obtained from the last four months to eval-
uate our both experimental setups (where 506873 services
emerged). Firstly, we present two error measurements which
were employed to evaluate our output: one from the literature
and another from our own specifically adapted to our current
problem. Secondly, we detail the two performance metrics
used to evaluate our recommendation models.

Consider Rk = {Rk,0, Rk,1, ..., Rk,t} to be a discrete time
series (aggregation period of P -minutes) with the number of
services predicted for a taxi stand of interest k in the pe-
riod {1, t} and Xk = {Xk,0, Xk,1, ..., Xk,t} the number of
services actually emerged in the same conditions. The (1)
Symmetric Mean Percentage Error (sMAPE) is a well-known
metric to evaluate the success of time series forecast models.
However, this metric can be too intolerant with small magni-
tude errors (e.g. if two services are predicted on a given pe-
riod for a taxi stand of interest but no one actually emerges,
the error within that period would be 1). Then, we propose
to also use an adapted version of Normalized Mean Absolute
Error (NMAE).

The (2) Average Weighted Error (AVE) is a metric of our
own based on the NMAE. We defined it as

AV E′ =
t∑

i=1

θk,i ∗Xk,i

σk,i ∗ ψk
(6)

σk,i =

{
Xk,i if Xk,i > 0
1 if Xk,i = 0

}
(7)

θk,i =

{
|Rk,i −Xk,i| if Xk,i > th
0 if Xk,i ≤ th

}
(8)

ψk =
t∑

i=1

Xk,i, AV E =

{
AV E′ if AVE’ ≤ 1
1 if AVE’ > 1

}
(9)

where ψk is the total of services emerged at the taxi stand
k during the time period {1, t}. The main feature about this
metric is to weight the error in each period by the number of
real events actually emerged (i.e. the errors on periods where
more services were actually demanded are more relevant than
the remaining ones).

Both metrics are focused just on one time series for a given
taxi stand. However, the results presented below use an aver-
aged error measured based on all stands series – GA. Consider
β to be an error metric of interest. AGβ is an aggregated met-
ric given by a weighted average of the error in all stands. It is
formally presented in the following equation.

AGβ =

N∑

k=1

GAβ,k ∗ ψk
µ

, µ =

N∑

k=1

ψk (10)

We considered three performance metrics in the evaluation of
our recommendation models: (1) the Waiting Time (WT) and
(2) the Vacant Running Distance (VRD) and the number of
No Services (NS). The Waiting Time is the total time that a
driver takes between a drop-off and a pick-up (i.e. to leave
a stand with a passenger or to get one in his/her current lo-
cation). The Vacant Running Distance is the distance that a
driver does to get into a stand after a drop-off (i.e.: without
any passenger inside). Independently on the time measured
on the simulation, we always consider a maximum threshold
of 120 minutes to the Waiting Time. The No Service metric
is a ratio between the number of times that a taxi parked on a
stand had a waiting time greater than the 120 minutes thresh-
old and the number of services effectively dispatched by the
respective fleet.

5.4 Results
Firstly, we present the results obtained by the online experi-
ments done with the predictive models. The error measured
for each model is highlighted in Table 3 and Table 4. The
results are firstly presented per shift and then globally. These
error values were aggregated using the AGβ previously de-
fined.

Secondly, the values calculated for our performance met-
rics using the traffic simulator previously described are de-
tailed in the Table 5. The fleet A1 used the Recommendation
Model 1 (RS1) while the B1 uses the common expected be-
havior (previously defined). Distinct metrics values are pre-
sented for the two using different aggregations like the arith-
metic mean (i.e. average), the median and the standard devi-
ation. The No Services ratio is also displayed.

6 Final Remarks
In this paper, we present a novel application of time series
forecasting techniques to improve the taxi driver mobility
intelligence. We did it in three distinct steps: firstly (1) we
mined both GPS and event signals emitted by a company op-
erating in Porto, Portugal (where the passenger demand is

Table 3: Error Measured on the Models using AV E

Periods
Model

00h−08h 08h−16h 16h−00h 24h

Poisson Mean 21.28% 24.88% 22.88% 23.43%
W. Poisson Mean 23.32% 28.37% 26.77% 26.74%
ARIMA 20.85% 26.12% 22.92% 20.91%
Ensemble 14.37% 18.18% 17.19% 15.89%
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Table 4: Error Measured on the Models using sMAPE

Periods
Model

00h−08h 08h−16h 16h−00h 24h

Poisson Mean 15.09% 19.20% 17.51% 16.84%
W. Poisson Mean 17.32% 20.66% 19.88% 18.47%
ARIMA 16.81% 18.59% 17.85% 18.51%
Ensemble 14.37% 18.18% 17.19% 15.89%

Table 5: An Analysis on the Recommendation Performance

Performance Metrics A1(RS) B1(common)
Average WT 38.98 40.84
Median WT 26.29 27.92

Std. Dev. WT 33.79 33.22
Average VRD 3.27 1.06
Median VRD 2.80 0.98

Std. Dev. VRD 2.53 0.54

No Service (%) 11.08% 19.26%

lower than the vacant taxis). Secondly, we predicted - in a
real-time experiment - the distribution of the taxi-passenger
demand for the 63 taxi stands at 30-minute period intervals.
Finally, we recreated the scenario running in Porto, where
two fleets (the fleet A and B, which contain 441 and 250 ve-
hicles, respectively) compete to get as many services as pos-
sible. We did it using a traffic simulation framework fed by
the real services historical log of the largest operating fleet.
One of the fleets used our Recommendation System for the
Taxi Stand choice problem while the other one just picked
the stand using a baseline model corresponding to the driver
common behavior in similar situations.

Our predictive model demonstrated a more than satisfac-
tory performance, anticipating in real time the spatial distri-
bution of the passenger demand with an error of just 20%.
We believe that this model is a true novelty and a major
contribution to the area through its online adapting charac-
teristics:

• It takes advantage of the ubiquitous characteristics of
a taxi communicational network, assembling the expe-
rience and the knowledge of all vehicles/drivers while
they usually use just their own;

• It simultaneously uses long-term, mid-term and short
term historical data as a learning base;

• It rapidly produces real-time short-term predictions of
the demand, which can truly improve drivers’ mobility
intelligence and consequently, their profit.

This approach meets no parallel in the literature also by
its test-bed: the models were tested in a streaming environ-
ment, while the state-of-art presents mainly offline experi-
mental setups. Our simulation results demonstrated that such
informed driving can truly improve the drivers’ mobility in-
telligence: the fleet A1 had an Average Waiting Time 5% lower
than its competitor – even if it has a larger fleet. We also high-
light the reduction of the No Service ratio in 50% while the

Vacant Running Time faced an increase. It is important to
state that this Recommendation System is focused on a Sce-
nario like our own – two or more competitors operating in a
medium/large city where the demand is lower than the num-
ber of running vehicles. Its main goal is to recommend a
stand where a service will rapidly emerge – even if this stand
is far away. The idea is to be in a position able to pick-up
the emerging service demand before the remaining compe-
tition. This factor can provoke a slight increase on the Va-
cant Running Time but it will also reduce the usually large
Waiting Times to pick-up passengers. Other scenarios may
require a distinct calibration of the model to account different
needs/goals.
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Abstract
In this paper, we develop a clustering approach
based on variational incremental learning of a
Dirichlet process of generalized Dirichlet (GD) dis-
tributions. Our approach is built on nonparametric
Bayesian analysis where the determination of the
complexity of the mixture model (i.e. the number
of components) is sidestepped by assuming an in-
finite number of mixture components. By leverag-
ing an incremental variational inference algorithm,
the model complexity and all the involved model’s
parameters are estimated simultaneously and effec-
tively in a single optimization framework. More-
over, thanks to its incremental nature and Bayesian
roots, the proposed framework allows to avoid
over- and under-fitting problems, and to offer good
generalization capabilities. The effectiveness of the
proposed approach is tested on a challenging appli-
cation involving visual scenes clustering.

1 Introduction
Incremental clustering plays a crucial role in many data min-
ing and computer vision applications [Opelt et al., 2006;
Sheikh et al., 2007; Li et al., 2007]. Incremental clustering
is particularly efficient in the following scenarios: when data
points are obtained sequentially, when the available memory
is limited, or when we have large-scale data sets to deal with.
Bayesian approaches have been widely used to develop pow-
erful clustering techniques. Bayesian approaches applied for
incremental clustering fall basically into two categories: para-
metric and non-parametric, and allow to mimic the human
learning process which is based on iterative accumulation of
knowledge. As opposed to parametric approaches in which
a fixed number of parameters is considered, Bayesian non-
parametric approaches use an infinite-dimensional parameter
space and allow the complexity of models to grow with data
size. The consideration of an infinite-dimensional parame-
ter space allows to determine appropriate model complexity,
which is normally referred to as the problem of model selec-
tion or model adaptation. This is a crucial issue in clustering
since it permits to capture the underlying data structure more
precisely, and also to avoid over- and under-fitting problems.
This paper focuses on the latter one since it is more adapted

to modern data mining applications (i.e. modern applications
involve generally dynamic data sets).
Nowadays, the most popular Bayesian nonparametric formal-
ism is the Dirichlet process (DP) [Neal, 2000; Teh et al.,
2004] generally translated to a mixture model with a count-
ably infinite number of components in which the difficulty
of selecting the appropriate number of clusters, that usu-
ally occurs in the finite case, is avoided. A common way
to learn Dirichlet process model is through Markov chain
Monte Carlo (MCMC) techniques. Nevertheless, MCMC ap-
proaches have several drawbacks such as the high compu-
tational cost and the difficulty of monitoring convergence.
These shortcomings of MCMC approaches can be solved
by adopting an alternative namely variational inference (or
variational Bayes) [Attias, 1999], which is a deterministic
approximation technique that requires a modest amount of
computational power. Variational inference has provided
promising performance in many applications involving mix-
ture models [Corduneanu and Bishop, 2001; Constantinopou-
los et al., 2006; Fan et al., 2012; 2013]. In our work, we
employ an incremental version of variational inference pro-
posed by [Gomes et al., 2008] to learn infinite generalized
Dirichlet (GD) mixtures in the context where data points are
supposed to arrive sequentially. The consideration of the
GD distribution is motivated by its promising performance
when handling non-Gaussian data, and in particular propor-
tional data (which are subject to two restrictions: nonneg-
ativity and unit-sum) which are naturally generated in sev-
eral data mining, machine learning, computer vision, and
bioinformatics applications [Bouguila and Ziou, 2006; 2007;
Boutemedjet et al., 2009]. Examples of applications include
textual documents (or images) clustering where a given doc-
ument (or image) is described as a normalized histogram of
words (or visual words) frequencies.
The main contributions of this paper are listed as the follow-
ing: 1) we develop an incremental variational learning al-
gorithm for the infinite GD mixture model, which is much
more efficient when dealing with massive and sequential data
as opposed to the corresponding batch approach; 2) we ap-
ply the proposed approach to tackle a challenging real-world
problem namely visual scenes clustering. The effectiveness
and merits of our approach are illustrated through extensive
simulations. The rest of this paper is organized as follows.
Section 2 presents the infinite GD mixture model. The incre-
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mental variational inference framework for model learning is
described in Section 3. Section 4 is devoted to the experimen-
tal results. Finally, conclusion follows in Section 5.

2 The Infinite GD Mixture Model
Let ~Y = (Y1, . . . , YD) be a D-dimensional random vector
drawn from an infinite mixture of GD distributions:

p(~Y |~π, ~α, ~β) =

∞∑

j=1

πjGD(~Y |~αj , ~βj) (1)

where ~π represents the mixing weights that are positive and
sum to one. ~αj = (αj1, . . . , αjD) and ~βj = (βj1, . . . , βjD)
are the positive parameters of the GD distribution associated
with component j, while GD(~Y |~αj , ~βj) is defined as

GD(~Y |~αj , ~βj) =

D∏

l=1

Γ(αjl + βjl)

Γ(αjl)Γ(βjl)
Y
αjl−1

l

(
1−

l∑

k=1

Yk

)γjl

(2)
where

∑D
l=1 Yl < 1 and 0 < yl < 1 for l = 1, . . . , D,

γjl = βjl − αjl+1 − βjl+1 for l = 1, . . . , D − 1, and
γjD = βjD − 1. Γ(·) is the gamma function defined by
Γ(x) =

∫∞
0
ux−1e−udu. Furthermore, we exploit an inter-

esting and convenient mathematical property of the GD dis-
tribution which is thoroughly discussed in [Boutemedjet et
al., 2009], to transform the original data points into another
D-dimensional space where the features are conditionally in-
dependent and rewrite the infinite GD mixture model in the
following form

p( ~X|~π, ~α, ~β) =

∞∑

j=1

πj

D∏

l=1

Beta(Xl|αjl, βjl) (3)

where Xl = Yl and Xl = Yl/(1 −
∑l−1
k=1 Yk) for l > 1.

Beta(Xl|αjl, βjl) is a Beta distribution parameterized with
(αjl, βjl).
In this work, we construct the Dirichlet process through a
stick-breaking representation [Sethuraman, 1994]. There-
fore, the mixing weights πj are constructed by recursively
breaking a unit length stick into an infinite number of pieces
as πj = λj

∏j−1
k=1(1 − λk). λj is known as the stick break-

ing variable and is distributed independently according to
λj ∼ Beta(1, ξ), where ξ > 0 is the concentration param-
eter of the Dirichlet process.
For an observed data set ( ~X1, . . . , ~XN ), we introduce a set of
mixture component assignment variables ~Z = (Z1, . . . , ZN ),
one for each data point. Each element Zi of ~Z has an integer
value j specifying the component from which ~Xi is drawn.
The marginal distribution over ~Z is given by

p(~Z|~λ) =

N∏

i=1

∞∏

j=1

[
λj

j−1∏

k=1

(1− λk)

]1[Zi=j]

(4)

where 1[·] is an indicator function which equals to 1 when
Zi = j, and equals to 0 otherwise. Since our model frame-
work is Bayesian, we need to place prior distributions over

random variables ~α and ~β. Since the formal conjugate prior
for Beta distribution is intractable, we adopt Gamma pri-
ors G(·) to approximate the conjugate priors of ~α and ~β as:
p(~α) = G(~α|~u,~v) and p(~β) = G(~β|~s,~t), with the assumption
that these parameters are statistically independent.

3 Model Learning
In our work, we adopt an incremental learning framework
proposed in [Gomes et al., 2008] to learn the proposed in-
finite GD mixture model through variational Bayes. In this
algorithm, data points can be sequentially processed in small
batches where each one may contain one or a group of data
points. The model learning framework involves the following
two phases: 1) model building phase: to inference the opti-
mal mixture model with the currently observed data points;
2) compression phase: to estimate which mixture component
that groups of data points should be assigned to.

3.1 Model Building Phase
For an observed data set X = ( ~X1, . . . , ~XN ), we define Θ =

{~Z, ~α, ~β,~λ} as the set of unknown random variables. The
main target of variational Bayes is to estimate a proper ap-
proximation q(Θ) for the true posterior distribution p(Θ|X ).
This problem can be solved by maximizing the free energy
F(X , q), where F(X , q) =

∫
q(Θ) ln[p(X ,Θ)/q(Θ)]dΘ. In

our algorithm, inspired by [Blei and Jordan, 2005], we trun-
cate the variational distribution q(Θ) at a value M , such
that λM = 1, πj = 0 when j > M , and

∑M
j=1 πj =

1, where the truncation level M is a variational parame-
ter which can be freely initialized and will be optimized
automatically during the learning process [Blei and Jor-
dan, 2005]. In order to achieve tractability, we also as-
sume that the approximated posterior distribution q(Θ) can
be factorized into disjoint tractable factors as: q(Θ) =

[
∏N
i=1 q(Zi)][

∏M
j=1

∏D
l=1 q(αjl)q(βjl)][

∏M
j=1 q(λj)].

By maximizing the free energy F(X , q) with respect to each
variational factor, we can obtain the following update equa-
tions for these factors:

q(~Z) =

N∏

i=1

M∏

j=1

r
1[Zi=j]
ij , q(~α) =

M∏

j=1

D∏

l=1

G(αjl|u∗jl, v∗jl) (5)

q(~β) =

M∏

j=1

D∏

l=1

G(βjl|s∗jl, t∗jl), q(~λ) =

M∏

j=1

Beta(λj |aj , bj) (6)

where we have defined

rij =
exp(ρij)∑M

j=1
exp(ρij)

(7)

ρij =

D∑

l=1

[
R̃jl + (ᾱjl − 1) lnXil + (β̄jl − 1) ln(1−Xil)

]

+
〈
lnλj

〉
+

j−1∑

k=1

〈
ln(1− λk)

〉

u∗jl = ujl +

N∑

i=1

〈
Zi = j

〉
[Ψ(ᾱjl + β̄jl)−Ψ(ᾱjl) + β̄jl
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×Ψ′(ᾱjl + β̄jl)(〈lnβjl〉 − ln β̄jl)]ᾱjl

s∗jl = sjl +

N∑

i=1

〈
Zi = j

〉
[Ψ(ᾱjl + β̄jl)−Ψ(β̄jl) + ᾱjl

×Ψ′(ᾱjl + β̄jl)(〈lnαjl〉 − ln ᾱjl)]β̄jl

v∗jl = vjl −
N∑

i=1

〈
Zi = j

〉
lnXil, bj = ξj +

N∑

i=1

M∑

k=j+1

〈Zi = k〉

t∗jl = tjl −
N∑

i=1

〈
Zi = j

〉
ln(1−Xil), aj = 1 +

N∑

i=1

〈Zi = j〉

where Ψ(·) is the digamma function, and 〈·〉 is the ex-
pectation evaluation. Note that, R̃ is the lower bound of
R =

〈
ln Γ(α+β)

Γ(α)Γ(β)

〉
. Since this expectation is intractable,

the second-order Taylor series expansion is applied to find
its lower bound. The expected values in the above formu-
las are given by 〈Zi = j〉 = rij , ᾱjl = 〈αjl〉 = u∗jl/v

∗
jl,

β̄jl = 〈βjl〉 = s∗jl/t
∗
jl, 〈lnλj〉 = Ψ(aj) − Ψ(aj + bj),

〈ln(1−λj)〉 = Ψ(bj)−Ψ(aj+bj), 〈lnαjl〉 = Ψ(u∗jl)−ln v∗jl
and 〈lnβjl〉 = Ψ(s∗jl)− ln t∗jl .
After convergence, the currently observed data points are
clustered into M groups according to corresponding respon-
sibilities rij through Eq. (7). According to [Gomes et al.,
2008], these newly formed groups of data points are also de-
noted as “clumps”. Following [Gomes et al., 2008], these
clumps are subject to the constraint that all data points ~Xi in
the clump c share the same q(Zi) ≡ q(Zc) which is a key
factor in the following compression phase.

Algorithm 1
1: Choose the initial truncation level M .
2: Initialize the values for hyper-parameters ujl, vjl, sjl, tjl and
ξj .

3: Initialize the values of rij by K-Means algorithm.
4: while More data to be observed do
5: Perform the model building phase through Eqs. (5) and (6).
6: Initialize the compression phase using Eq. (10).
7: whileMC ≥ C do
8: for j = 1 to M do
9: if evaluated(j) = false then

10: Split component j and refine this split using Eqs (9).
11: ∆F(j) = change in Eq. (8).
12: evaluated(j) = true.
13: end if
14: end for
15: Split component j with the largest value of ∆F(j).
16: M = M + 1.
17: end while
18: Discard the current observed data points.
19: Save resulting components into next learning round.
20: end while

3.2 Compression Phase
Within the compression phase, we need to estimate clumps
that are possibly belong to the same mixture component while
taking into consideration future arriving data. Now assume
that we have already observed N data points, our aim is to

make an inference at some target time T where T ≥ N . we
can tackle this problem by scaling the observed data to the tar-
get size T , which is equivalent to using the variational poste-
rior distribution of the observed data N as a predictive model
of the future data [Gomes et al., 2008]. We then have a mod-
ified free energy for the compression phase in the following
form

F =

M∑

j=1

D∑

l=1

[〈
ln
p(αjl|ujl, vjl)

q(αjl)

〉
+
〈

ln
p(βjl|sjl, tjl)

q(βjl)

〉]

+

M∑

j=1

〈
ln
p(λj |ξj)
q(λj)

〉
+
T

N

∑

c

|nc| ln
M∑

j=1

exp(ρcj) (8)

where |nc| represents the number of data points in clump
c and T

N is the data magnification factor. The corresponding
update equations for maximizing this free energy function can
be obtained as

rcj =
exp(ρcj)∑M

j=1
exp(ρcj)

(9)

ρij =

D∑

l=1

[
R̃jl + (ᾱjl − 1) ln〈Xcl〉+ (β̄jl − 1) ln(1− 〈Xcl〉)

]

+
〈
lnλj

〉
+

j−1∑

k=1

〈
ln(1− λk)

〉

u∗jl = ujl +
T

N

∑

c

|nc|rcj [Ψ(ᾱjl + β̄jl)−Ψ(ᾱjl) + β̄jl

×Ψ′(ᾱjl + β̄jl)(〈lnβjl〉 − ln β̄jl)]ᾱjl

s∗jl = sjl +
T

N

∑

c

|nc|rcj [Ψ(ᾱjl + β̄jl)−Ψ(β̄jl) + ᾱjl

×Ψ′(ᾱjl + β̄jl)(〈lnαjl〉 − ln ᾱjl)]β̄jl

v∗jl = vjl − T

N

∑

c

|nc|rcj ln〈Xcl〉

t∗jl = tjl − T

N

∑

c

|nc|rcj ln(1− 〈Xcl〉)

aj = 1 +
T

N

∑

c

|nc|〈Zc = j〉

bj = ξj +
T

N

∑

c

|nc|
M∑

k=j+1

〈Zc = k〉

where 〈Xcl〉 denotes average over all data points contained
in clump c.
The first step of the compression phase is to assign each
clump or data point to the component with the highest re-
sponsibility rcj calculated from the model building phase as

Ic = arg max
j
rcj (10)

where {Ic} denote which component the clump (or data
point) c belongs to in the compression phase. Next, we cy-
cle through each component and split it along its principal
component into two subcomponents. This split is refined by
updating Eqs. (9). The clumps are then hard assigned to one
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of the two candidate components after convergence for refin-
ing the split. Among all the potential splits, we select the one
that results in the largest change in the free energy (Eq. (8)).
The splitting process repeats itself until a stopping criterion
is met. According to [Gomes et al., 2008], the stoping crite-
rion for the splitting process can be expressed as a limit on
the amount of memory required to store the components. In
our case, the component memory cost for the mixture model
isMC = 2DNc, where 2D is the number of parameters con-
tained in a D-variate GD component, and Nc is the number
of components. Accordingly, We can define an upper limit
on the component memory cost C, and the compression phase
stops whenMC ≥ C. As a result, the computational time and
the space requirement is bounded in each learning round. Af-
ter the compression phase, the currently observed data points
are discarded while the resulting components can be treated
in the same way as data points in the next round of leaning.
Our incremental variational inference algorithm for infinite
GD mixture model is summarized in Algorithm 1.

coast forest highway inside-city

mountain open country street tall building

Figure 1: Sample images from the OT data set.

4 Visual Scenes Clustering
In this section, the effectiveness of the proposed incremental
infinite GD mixture model (InGDMM) is tested on a chal-
lenging real-world application namely visual scenes cluster-
ing. The problem is important since images are being pro-
duced at exponential increasing rates and very challenging
due to the difficulty of capturing the variability of appearance
and shape of diverse objects belonging to the same scene,
while avoiding confusing objects from different scenes. In
our experiments, we initialize the truncation level M as
15. The initial values of the hyperparameters are set as:
(ujl, vjl, sjl, tjl, ξj) = (1, 0.01, 1, 0.01, 0.1), which have
been found to be reasonable choices according to our experi-
mental results.

4.1 Database and Experimental Design
In this paper, we test our approach on a challenging and pub-
licly available database known as the OT database, which was
introduced by Oliva and Torralba [Oliva and Torralba, 2001]
1. This database contains 2,688 images with the size of 256×

1OT database is available at: http://cvcl.mit.edu/database.htm.

256 pixels, and is composed of eight urban and natural scene
categories: coast (360 images), forest (328 images), highway
(260 images), inside-city (308 images), mountain (374 im-
ages), open country (410 images), street (292 images), and
tall building (356 images). Figure 1 shows some sample im-
ages from the different categories in the OT database.
Our methodology is based on the proposed incremental infi-
nite GD mixture model in conjunction with a bag-of-visual
words representation, and can be summarized as follows:
Firstly, we use the Difference-of-Gaussians (DoG) interest
point detector to extract Scale-invariant feature transform
(SIFT) descriptors (128-dimensional) [Lowe, 2004] from
each image. Secondly, K-Means algorithm is adopted to
construct a visual vocabulary by quantizing these SIFT vec-
tors into visual words. As a result, each image is repre-
sented as the frequency histogram over the visual words. We
have tested different sizes of the visual vocabulary |W| =
[100, 1000], and the optimal performance was obtained for
|W| = 750 according to our experimental results. Then, the
Probabilistic Latent Semantic Analysis (pLSA) model [Hof-
mann, 2001] is applied to the obtained histograms to rep-
resent each image by a 55-dimensional proportional vector
where 55 is the number of latent aspects. Finally, the pro-
posed InGDMM is deployed to cluster the images supposed
to arrive in a sequential way.

Table 1: Average rounded confusion matrix for the OT
database calculated by InGDMM.

C F H I M O S T

Coast (C) 127 10 4 2 3 31 2 1

Forest (F) 2 155 1 2 1 3 0 0

Highway (H) 0 0 122 1 0 3 3 1

Inside-city (I) 2 4 2 119 3 2 15 7

Mountain (M) 6 21 4 5 139 9 1 2

Open country (O) 2 22 19 15 9 131 3 4

Street (S) 0 1 4 8 5 5 122 1

Tall building (T) 4 9 7 23 3 19 3 110

4.2 Experimental Results
In our experiments, we randomly divided the OT database
into two halves: one for constructing the visual vocabulary,
another for testing. Since our approach is unsupervised, the
class labels are not involved in our experiments, except for
evaluation of the clustering results. The entire methodology
was repeated 30 times to evaluate the performance. For com-
parison, we have also applied three other mixture-modeling
approaches: the finite GD mixture model (FiGDMM), the in-
finite Gaussian mixture model (InGMM) and the finite Gaus-
sian mixture model (FiGMM). To make a fair comparison,
all of the aforementioned approaches are learned through
incremental variational inference. Table 1 shows the aver-
age confusion matrix of the OT database calculated by the
proposed InGDMM. Table 2 illustrates the average catego-
rization performance using different approaches for the OT
database. As we can see from this table, it is obvious that
our approach (InGDMM) provides the best performance in
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terms of the highest categorization rate (77.47%) among all
the tested approaches. In addition, we can observe that better

Table 2: The average classification accuracy rate (Acc) (%)
obtained over 30 runs using different approaches.

Method InGDMM FiGDMM InGMM FiGMM

Acc(%) 77.47 74.25 72.54 70.19

performances are obtained for approaches that adopt the in-
finite mixtures (InGDMM and InGMM) than the correspond-
ing finite mixtures (FiGDMM and FiGMM), which demon-
strate the advantage of using infinite mixture models over fi-
nite ones. Moreover, according to Table 2, GD mixture has
higher performance than Gaussian mixture which verifies that
the GD mixture model has better modeling capability than the
Gaussian for proportional data clustering.

5 Conclusion
In this work, we have presented an incremental nonpara-
metric Bayesian approach for clustering. The proposed ap-
proach is based on infinite GD mixture models with a Dirich-
let process framework, and is learned using an incremental
variational inference framework. Within this framework, the
model parameters and the number of mixture components
are determined simultaneously. The effectiveness of the pro-
posed approach has been evaluated on a challenging applica-
tion namely visual scenes clustering. Future works could be
devoted to the application of the proposed algorithm for other
data mining tasks involving continually changing or growing
volumes of proportional data.
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Abstract

Human-activity and gesture recognition are two
problems lying at the core of human-centric
and ubiquitous systems: knowing what activi-
ties/gestures users are performing allows systems to
execute actions accordingly. State-of-the-art tech-
nology from computer vision and machine intelli-
gence allow us to recognize gestures at acceptable
rates when gestures are segmented (i.e., each video
contains a single gesture). In ubiquitous environ-
ments, however, continuous video is available and
thus systems must be capable of detecting when a
gesture is being performed and recognizing it. This
paper describes a new method for the simultane-
ous segmentation and recognition of gestures from
continuous videos. A multi-window approach is
proposed in which predictions of several recogni-
tion models are combined; where each model is
evaluated using a different segment of the contin-
uous video. The proposed method is evaluated
in the problem of recognition of gestures to com-
mand a robot. Preliminary results show the pro-
posed method is very effective for recognizing the
considered gestures when they are correctly seg-
mented; although there is still room for improve-
ment in terms of its segmentation capabilities. The
proposed method is highly efficient and does not
require learning a model for no-gesture, as opposed
to related methods.

1 Introduction
Human-computer interaction technology plays a key role in
ubiquitous data mining (i.e., the extraction of interesting pat-
terns from data generated in human-centric environments),
see [Eunju, 2010]. From all of the alternative forms of
interaction, gestures are among the most natural and intu-
itive for users. In fact, gestures are widely used to comple-
ment verbal communication between humans. Research ad-
vances in computer vision and machine learning have lead
to the development of gesture recognition technology that
is able to recognize gestures at very acceptable rates [Ag-
garwal and Ryoo, 2011; Mitra, 2007]. However, most of

the available methods for gesture recognition require ges-
tures to be segmented before the recognition process be-
gins [Aviles et al., 2011]. Clearly, this type of methods
is not well suited for ubiquitous systems (and real appli-
cations in general), where the recognition of gestures must
be done from a continuous video in real time [Eunju, 2010;
Huynh et al., 2008].

This paper introduces a new approach for the simultane-
ous segmentation and recognition of gestures in continuous
video. The proposed method implements a voting strategy
using the predictions obtained from multiple gesture models
evaluated at different time-windows, see Figure 1. Windows
are dynamically created by incrementally scanning the con-
tinuous video. When the votes from the multiple models favor
a particular gesture, we segment the video and make a predic-
tion: we predict the gesture corresponding to the model that
obtained the majority of votes across windows.

We use as features the body-part positions obtained by
a KinectTM sensor. As predictive model we used Hidden
Markov Models (HMMs), one of the most used for gesture
recognition [Aviles et al., 2011; Aggarwal and Ryoo, 2011;
Mitra, 2007]. The proposed method is evaluated in the prob-
lem of recognition of gestures to command a robot. Prelim-
inary results show the proposed method is very effective for
recognizing the considered gestures when they are correctly
segmented. However, there is still room for improvement in
terms of its segmentation capabilities. The proposed method
is highly efficient and does not require learning a model for
no-gesture, as opposed in related works.

The rest of this paper is organized as follows. The next sec-
tion briefly reviews related works on gesture spotting. Sec-
tion 3 describes the proposed approach. Section 4 reports
experimental results that show evidence of the performance
of proposed technique. Section 5 outlines preliminary con-
clusions and discusses future work direction.

2 Related work
Several methods for the simultaneous segmentation and
recognition of gestures (a task also known as gesture spot-
ting) have been proposed so far [Derpanis et al., 2010;
Yuan et al., 2009; Malgireddy et al., 2012; Kim et al., 2007;
Yang et al., 2007]. Some methods work directly with spatio-
temporal patterns extracted from video [Derpanis et al., 2010;
Yuan et al., 2009]. Although being effective, these methods
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are very sensitive to to changes in illumination, scale, appear-
ance and viewpoint.

On the other hand, there are model-based techniques that
use the position of body-parts to train probabilistic models
(e.g., HMMs) [Aggarwal and Ryoo, 2011; Mitra, 2007]. In
the past, these type of methods were limited because of the
need of specialized sensors to obtain body-part positions.
Nowadays, the availability of KinectTM (which can extract
skeleton information in real time) has partially circumvented
such limitation [Webb and Ashley, 2012].

Besides the data acquisition process, some of these meth-
ods require the construction of a no-gesture model (e.g., [Kim
et al., 2007]) or transition-gesture model (e.g., [Yang et al.,
2007]). The goal of such models is to determine within a
video when the user (if any) is not performing any gesture or
the transition between different gestures. Building a model
for no-gesture is a complicated and subjective task that de-
pends on the particular application where the gesture recogni-
tion system is to be implemented [Kim et al., 2007]. In ubiq-
uitous systems, however, we want gesture recognition meth-
ods to work in very general conditions and under highly dy-
namic environments. Hence, a model for no-gesture is much
more complicated to generate in these conditions.

Finally, it is worth to mention that many of the available
techniques for gesture spotting can be very complex to im-
plement. This is a particularly important aspect to consider
for some domains, for example in mobile devices and/or for
human-robot interaction; where there are limited resources
and restricted programming tools for the implementation of
algorithms. Thus, sometimes simplicity is preferred at the
expense of loosing a little bit in precision in these domains.

The method we propose in this paper performs segmenta-
tion and recognition of gestures simultaneously and attempts
to address the limitations of most of the available techniques.
Specifically, our proposal is efficient and very simple to im-
plement; it is robust, to some extend, to problems present in
appearance-based methods; and, more importantly, does not
require the specification of a no-gesture model.

3 Multiple-windows approach
We face the problem of simultaneously segmenting and rec-
ognizing gestures in continuous video1. That is, given a se-
quence of images (video) we want to determine where a ges-
ture is being performed (independently of the type of gesture)
and next to recognize what is the actual gesture being per-
formed. We propose a solution based on multiple windows
that are incrementally and dynamically created. Each window
is passed through predictive models each trained to recognize
a particular gesture. The predictions of models for different
windows are accumulated, when the model for a particular
gesture obtains a majority of votes, we segment the video and
make a prediction, cf. Figure 1.

The underlying hypothesis of our work is that when a win-
dow covers a large portion of a particular gesture, the confi-
dence in the prediction of the correct model will be high and

1Although we use (processed) body-part positions as features,
we refer to the sequence of these features as video. This is in order
to simplify explanations.

Figure 1: Graphical illustration of the proposed approach. On
the top we show a video sequence that can be divided into
sections of no gesture (NG) and gesture, which are identified
by the class of gesture (G1, G2, G3). Below we illustrate a
series of windows that are dynamically created and extended
each ∆ time units. That is, at the beginning W1 is created,
then at t1, W2 is created and W1 is extended by ∆, and so on.
At t5 there are 5 windows of different size, for each window
we estimate the probability of all gestures using HMMs.

those of other models will be low. Accumulating predictions
allow us to be more confident in that the gesture is being per-
formed within a neighborhood of temporal windows.

The rest of this section describes in detail the proposed
technique. First we describe the considered features, next the
predictive models and finally the approach to simultaneous
segmentation and recognition of gestures.

3.1 Features
We use the information obtained through a KinectTM as in-
puts for our gesture spotting method. The KinectTM is ca-
pable of capturing RGB and depth video, as well as the posi-
tions of certain body-parts at rates up to 30 frames-per-second
(fps). In this work we considered gestures to command a
robot that are performed with the hands. Therefore, we used
the position of hands as given by KinectTM as features. For
each hand, we obtain per each frame a sextuple indicating the
position of both hands in the x, y, and z coordinates. Since we
consider standard hidden Markov models (HMMs) for clas-
sification, we had to preprocess the continuous data provided
by the considered sensor. Our preprocessing consisted in es-
timating tendencies: we obtain the difference in the positions
obtained in consecutive frames and codify them into two val-
ues: +1 when the difference is positive and a 0 when the
difference is zero or negative. Thus, the observations are sex-
tuples of zeros and ones (the number of different observations
is 26). These are the inputs for the HMMs.

3.2 Gesture recognition models
As classification model we consider an HMM2, one of the
most popular models for gesture recognition [Aviles et al.,
2011; Aggarwal and Ryoo, 2011; Mitra, 2007]. For each ges-
ture i to be recognized we trained an HMM, letMi denote the

2We used the HMM implementation from MatlabR’s statistics
toolbox.
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HMM for the ith gesture, where i = {1, . . .K} when con-
sidering K different gestures. The models are trained with
the Baum-Welch algorithm using complete sequences depict-
ing (only) the gestures of interest. Each HMM was trained
for a maximum of 200 iterations and a tolerance of 0.00001
(the training process stops when changes between probabili-
ties of successive transition/emission matrices do not exceed
this value); the number of states in the HMM was fixed to 3,
after some preliminary experimentation.

For making predictions we evaluate the different HMMs
over the test sequence using the Forward algorithm, see [Ra-
biner, 1990] for details. We use the probabilities returned by
each HMM as its confidence on the gesture class for a partic-
ular window.

3.3 Simultaneous segmentation and recognition
The multi-windows approach to gesture segmentation and
recognition is as follows, see Figure 1. For processing a con-
tinuous video we trigger windows incrementally: at time t0
a temporal window W0 of length ∆ is triggered and all of
the (trained) HMMs are evaluated in this window. At time
t1 we trigger another window W1 of length ∆ and increase
window W0 by ∆ frames, the HMMs are evaluated in these
two windows too. This process is repeated until certain con-
dition is met (see below) or until window W1 surpass a max-
imum length, which corresponds to the maximum number of
allowed simultaneous window, q.

In this way, at a time tg we have g− windows of varying
lengths, and the outputs of the K−HMMs for each window
(i.e., a total of g×K probabilities, where K is the number of
gestures or activities that the system can recognize). The out-
puts of the HMMs are given in the form of probabilities. To
obtain a prediction for each window i we simply keep the la-
bel/gesture corresponding to the model that obtains the high-
est probability in window i, that is, argmaxkP (Mk,Wi).

In order to detect the presence of a gesture in the continu-
ous video we estimate at each time tj the percentage of votes
that each of the K−gestures obtains, by considering the pre-
dictions for the j−windows. If the number of votes exceeds
a threshold, τ , we trigger a flag indicating that a gesture has
been recognized. When the flag is on, we keep increasing
and generating windows and storing predictions until there is
a decrement in the percentages of votes for the dominant ges-
ture. That is, end of the gesture happens in the frame where
there is a decrement in the number of votes. Alternatively, we
also experimented with varying the window in which we seg-
ment the gesture: we segmented the gesture 10 frames before
and 10 frames after we detect the decrement in the percent-
age of votes, we report experimental results under the three
settings in Section 4. At this instant the votes for each type
of gesture are counted, and the gesture with the maximum
number of votes is selected as the recognized gesture. Once a
gesture is recognized, the system is reset; that is, all ongoing
windows are discarded and a the process starts again with a
single window.

One should note that the less windows we consider for tak-
ing a decision the higher the chances that we make a mistake.
Therefore, we ban the proposed technique for making pre-
dictions before having analyzed at least p−windows. Under

these settings, our proposal will try to segment and recognize
gestures only when the number of windows/predictions is be-
tween (p, q).

Figure 2 illustrates the process for simultaneous segmenta-
tion and recognition for a particular test sequence containing
one gesture. The first three plots show the probabilities re-
turned by the HMMs for three gestures; we show the proba-
bilities for windows starting at different frames of the contin-
uous sequence. The fourth plot shows the percentage of votes
for a particular gesture at different segments of the video.
For this particular example, the proposed approach is able to
segment correctly the gesture (the boundaries for the gesture
present in the sequence are shown in gray). In the next sec-
tion we report experimental results obtained with our method
for simultaneous segmentation and recognition of gestures.

4 Experimental results
We performed experiments with the multi-windows approach
by trying to recognize gestures to command a robot. Specif-
ically, we consider three gestures: move-right (MR), atten-
tion (ATTN), move-left (ML), these are illustrated in Figure 3.
For evaluation we generated sequences of gestures of varying
lengths and applied our method. The number of training and
testing gestures are shown in Table 1. Training gestures were
manually segmented. Test sequences are not segmented; they
contain a single gesture, but the gesture is surrounded by large
portions of continuous video without a gesture, see Figure 2.

Figure 3: The three gestures considered for experimentation.
From left to right: move-right, attention, move-left.

Three different subjects recorded the training videos. The
test sequences were recorded by six subjects (three of which
were different from those that recorded the training ones).
The skeleton information was recorded with the NUI Capture
software3 at a rate of 30fps. The average duration of training
gestures was of 35.33 frames, whereas the average duration
of test sequences was of 94 frames (maximum and minimum
durations were of 189 and 55 frames respectively).

All of the parameters of our model were fixed after pre-
liminary experimentation. The better values we found for
them are as follows: ∆ = 10; p = 30; q = 60; τ = 100.
After training the HMMs individually, we applied the multi-
windows approach to each of the test sequences.

We evaluate the segmentation and recognition performance
as follows. We say the proposed method correctly segments

3http://nuicapture.com/
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Figure 2: Multi-windows technique in action. The first three plots show probabilities obtained per each HMM for windows
starting at different times. In the bottom-right plot we show the number of votes obtained by the dominant HMM, note that the
number of votes start to diminish, this is taken as an indication of the end of the gesture (best viewed in color).

Table 1: Characteristics of the data set considered for exper-
imentation. We show the number of training videos per ges-
ture, and, in row two, the number of gestures present in the
test sequences.

Feature MR ATTN ML
Training vids. 30 30 30
Testing vids. 18 18 21

a video when the segmentation prediction is at a distance of
δ−frames (or less) from the final frame for the gesture; we
report results for δ = 5, 10, 15, 20. On the other hand, we say
the proposed method correctly recognizes a gesture, when the
gesture predicted by our method (previously segmented) was
the correct one.

Table 2 shows the segmentation and recognition perfor-
mance obtained by the multi-windows approach. We report
results when segmenting the gesture before, in and after the
decrement in percentage of votes is detected, see Section 3.

From Table 2 it can be observed that segmentation perfor-
mance is low under a hard criteria (i.e., δ = 5 frames of dis-
tance), the highest performance in this setting was of 29.82%.
However, the recognition performance is quite high for the
same configuration, achieving recognition rates of 82.35%.
Thus, the method offers a good tradeoff4 between segmenta-

4Despite the fact that segmentation performance may seem low,
one should note that for the considered application it is not too bad
for an user to repeat a gesture 3 times in order that a robot correctly

Table 2: Segmentation (Seg.) and recognition (Rec.) perfor-
mance of the multi-windows technique. .

Before In After
δ Seg. Rec. Seg. Rec. Seg. Rec.
5 29.82% 82.35% 26.32% 60.00% 26.32% 80.00%
10 54.39% 67.74% 63.16% 66.67% 50.88% 68.97%
15 59.65% 64.71% 70.18% 67.50% 56.14% 68.75%
20 78.95% 62.22% 80.70% 63.04% 73.68% 66.67%

tion and recognition performance.
In order to determine how good/bad our recognition results

were, we performed an experiment in which we classified all
of the gestures in test sequences after we manually segmented
them (top-line). The average recognition performance for that
experiment was of 85.96%. This performance represents the
best recognition performance we could obtain with the fea-
tures and trained models. By looking at our best recognition
result (columns Before, row 1), we can see that the recogni-
tion performance of the multi-windows approach is very close
to that we would obtain when classifying segmented gestures.

As expected, segmentation performance improves when
we relax the distance to the boundaries of the gesture (i.e.,
for increasing δ). When the allowed distance is of δ = 20

identifies the command we want to transmit. Instead, accurate recog-
nition systems are required so that the robot clearly understand the
ordered command, even when the user has to repeat the gesture a
couple of times.
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frames, we were able to segment up to 80% of the gestures.
Recognition rates decreased accordingly. When we compare
the segmentation performance obtained when segmenting the
gesture before, in or after the decrement of votes, we found
that the performance was very similar. Although, segment-
ing the gesture 10 frames before we detected the decrement
seems to be a better option. This makes sense, as we would
expect to see a decrement of votes when the gesture already
has finished.

Regarding efficiency, in preliminarily experiments we have
found the proposed method can run in near real-time. In a
state-of-the art workstation, it can process data at a rate of
30fps, which is enough for many human-computer interaction
tasks. Nevertheless, we still have to perform a comprehensive
evaluation of our proposal in terms of efficiency and taking
into account that in some scenarios a high-performance com-
puters are not available.

From the experimental study presented in this section we
can conclude that the proposed method is a promising solu-
tion to the problem of simultaneous gesture segmentation and
recognition. The simplicity of implementation and the effi-
ciency of our approach are beneficial for the development of
ubiquious and human-centric systems.

5 Conclusions and future work directions
We proposed a new method for simultaneous segmentation
and recognition of gestures in continuous video. The pro-
posed approach combines the outputs of classification mod-
els evaluated in multiple temporal windows. These windows
are dynamically and incrementally created as the video us
scanned. We report preliminary results obtained with the pro-
posed technique for segmenting and recognizing gestures to
command a robot. Experimental results reveal that the recog-
nition performance of our method is very close to that ob-
tained when using manually segmented gestures. Segmenta-
tion performance of out proposal is still low, yet current per-
formance is acceptable for the considered application. The
following conclusions can be drawn so far:

• The proposed method is capable of segmenting gestures
(with an error of 5 frames) at low-mild recognition rates.
Nevertheless, these rates are accurate-enough for some
applications. Recall we are analyzing a continuous se-
quence of video and that we do not require of a model
for no-gesture, as required in related models.

• Recognition rates achieved by the method are acceptable
for a number of applications and domains. In fact, recog-
nition results were very close to what we would obtain
when classifying manually-segmented gestures.

• The proposed method is very easy to implement and can
work in near real-time, hence its applicability in ubiq-
uitous data mining and human-centric applications are
quite possible.

The proposed method can be improved in several ways, but
it remains to be compared to alternative techniques. In this
aspect we have already implemented the method from [Kim
et al., 2007], but results are too bad in comparison with our

proposal. We are looking for alternative methods to compare
our proposal.

Current and future work includes extending the number
of gestures considered in this study and implementing the
method in the robot of our laboratory5. Additionally, we
are working in different ways to improve the segmentation
performance of our method, including using different voting
schemes to combine the outputs of the different windows.
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Abstract

Smart-devices with information sharing capabili-
ties anytime and anywhere have opened a wide
range of ubiquitous applications. Within urban en-
vironments citizens have a plethora of locations to
choose from, and in the advent of the smart-cities
paradigm, this is the scope of location-based rec-
ommender systems to provide citizens with the ad-
equate suggestions. In this work we present the de-
sign of an in-situ location-based recommender sys-
tem, where the venue recommendations are built
upon the users’ location at request-time, but also
incorporating the social dimension and the exper-
tise of the neighboring users knowledge used to
build the recommendations. Moreover, we propose
a specific easy-to-deploy architecture, that bases its
functioning in the participatory social media plat-
forms such as Twitter or Foursquare. Our system
constructs its knowledge base from the accesible
data in Foursquare, and similarly obtains ratings
from geopositioned tweets.

1 Introduction
Urban environments host a plethora of interesting locations
such as restaurants, shops, museums, theaters and a wide
range of other venues that neither can be known by all users
nor they might be interested in visiting all. However, each
citizen can potentially become an expert of the neighborhood
he visits more often or lives, as he will know, and maybe have
visited, more venues in such area. Therefore, it is straighfor-
ward to see how for an specific citizen might not be a problem
to find an adequate venue for his taste on his neighborhood of
expertise, but it potentially becomes cumbersome to do the
same task when in a different less-known neighborhood. It
becomes then a problem for citizens to find locations they
might enjoy when away of their area of expertise. The prob-
lem of finding adequate items for specific users is that clasi-
cally solved by recommender systems.
In our case, we focus on location-based recommender sys-
tems [Zheng et al., 2009; Park et al., 2007], where users are
recommended locations to visit expecting to maximize users’
satisfaction. These type of recommenders complement the

previously analyzed ones as they also have to take into ac-
count the context, distance from the user to the recommended
venue, and maybe several other factors.
With the penetration of smart-devices, users have the pos-
sibility to access information anytime anywhere, and the
system we present in this work profits from those ubiqui-
tious computing capabilities; our on-site location-based rec-
ommender system allows users to obtain the most adequate
venue with respect to their current position. Our approach
profits from a different dimension of the users’ parameters
space, namely their social relationships and their relative geo-
graphical knowledge with respect to the location of the items.
This model provides an alternative solution to the problem
of providing personalized recommendations in a geospatial
domain: user expertise in this type of domain conveys an
implicit continuum knowledge of the surrounding geospatial
area and the locations within that area. Our solution intelli-
gently combines this user geospatial knowledge to the clas-
sical social distances amongst users used in state-of-the-art
recommenders.
Our system personalizes recommendations of locations not
only considering the past history of a specific user, but also
(1) the current location of the user, (2) the social distance with
other similar users and (3) their expertise in the area where
the recommendation is going to be provided. This aggrega-
tion function basically expresses a tendency of a user to visit
a certain location given its distance to the location, and the
past history of the user and its friends and their knowledge of
the area.
To the best of our knowledge, there are no existing recom-
mender systems that profit from the inherent characteristics of
the geographical location, such as continuity in space, user’s
area expertise or word-of-mouth location suggestions, to gen-
erate recommendations to users.

2 State of the Art
As we have discussed previously, the problem of finding ad-
equate venues for citizens to visit is a problem already tack-
led by the recommender community, under the location-based
recommender systems [Zheng et al., 2009; Park et al., 2007].
Despite the impressive amount of literature in such area, this
is still an open problem, even for those with access to com-
plete datasets and user profiles [Sklar et al., 2012], as new
methods and algorithms are being proposed to boost their ef-
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ficiency.
In this work however, we propose the integration of social in-
formation into the calculation of the recommendations. Some
autors have investigated the potential of the explicit inclusion
of information of user’s relationships from social networks to
generate the neighborhood used in classical collaborative fil-
tering (CF) algorithms (social filtering), improving the resutls
obtained by the classic CF in the analyzed scenarios [Groh
and Ehmig, 2007].
Others [Bonhard and Sasse, 2006] have analyzed how the
relationship between advice-seeker and recommender is ex-
tremely important in the user-centered recommendations,
concluding that familiarity and similarity amongst the dif-
ferent roles in the recommendation process aid judgement
and decision making. As well as in our approach, some re-
searchers have considered the important role of experts [Am-
atriain et al., 2009; Bao et al., 2012], however in our case,
these experts are calculated automatically for each specific
area of the city and weighted with respect to the social dis-
tance amongst the advice-seeker and recommender.
A similar recommendation approach is presented [Ye et al.,
2010], where authors also propose the usage of Foursquare
information to provide venue recommendations to users;
more importantly the social perspective is integrated into their
recommendations, developing a Friend-Based Collaborative
Filtering (where the neighbours for CF are selected from the
social network of users), and an extension of this method
Geo-measured Friend-Based Collaborative Filtering (where
only closely located friends are selected as neighbours for
CF).
Our method then proposes a combination of the Geo-
measured Friend-Based Collaborative Filtering [Ye et al.,
2010] and experts [Amatriain et al., 2009; Bao et al., 2012],
in our specific case, neighborhood or area experts.

3 Cicerone Recommender System
In this section we provide the theoretical framework of the
Cicerone location-based recommender system. Firstly we de-
scribe the basic terminology used later in the recommenda-
tion algorithm. As we have sketched previously, our system
bases its functioning in three information elements: the users’
social network, the users’ area knowledge and the current lo-
cation of the requesting user.

3.1 Basic Terminology
As used herein, the term “location data item” stands for any
location item or representation of a location. A “location
item” is intended to encompass any type of location which
can be represented in a map using a latitude, a longitude, and
possibly a category.

The location recommender may be capable of selecting rel-
evant locations for a given target user. To do so, users should
be comparable entities and locations as well. It should be
understood that the implementations described herein are not
item-specific and may operate with any other type of item vis-
ited/shared by a community of users. For the specific case of
bars or restaurants items, users may interact with the items by
visiting them. The Recommendations Set is the locations set

formed by the items the user is being recommended. A User
A’s Recommendations set will be denoted herein as RA.

An essential concept is the one of “Check-in” (CItU,L)
which represents the attendance1 of a user U to a certain lo-
cation L in the last t days, and therefore. Our system will
generate Location recommendations to the users by consid-
ering not only its geographical position, but also its social
relationship with other users and their degree of knowledge
of the visited locations.

In order to obtain more adequate recommendations in this
type of environments, we envision the necessity of certain
estimators. Firstly, we need to quantify how well a certain
user knows a specific area (by considering the attendance fre-
quency to locations in such area with respect to the rest of
the city). Moreover, it becomes necessary to understand the
social distance between the target user and the other users,
whose opinions are being used to create the recommendations
for the target user.

These measures are clearly described and specified next:
The Area Knowledge (AKt

U,L) of a user U with respect to a
location L is calculated:

AKt
U,L =

∑
l′∈PostalCodeL

CItU,l′

∑
∀a∈Locations

CItU,a

(1)

and represents how familiar a user is within an specific area
of the city (represented by its postal code).
The Location Frequency (LF t

U,L) of a user U in a certain
location L is calculated:

LF t
U,L =

CItU,L∑
∀a∈Locations

CItU,a

(2)

and normalizes the number of visits of the user U to the loca-
tion L.
The Social Importance (SItU,U ′ ) of a user U ′ for a user U is
calculated:

SItU,U ′ =
(DegreeU ′)

1
d(U,U′)

(nodes− 1)
(3)

where DegreeU represents the number of connections
that U has in its social network, nodes represents the total
number of nodes in the social network (and used to normalize
the SI), and d(U,U ′) represents the geodesic distance, i.e.
minimum number of hops necessary to reach U ′ from U
using the shortest path in their social network2.

The Location Value (LV t
L,U ) of a location L for a user U

at time t is calculated:

LV t
L,U =

∑
usersinL

(LF t
U,L ×AKt

U,L × SItU,U ′)

|users| (4)

1The attendance of a user to a certain location can be captured in
several ways, for example, a Foursquare Check-in, a geopositioned
tweet, or a CDR trace of a phone call.

2d(U,U ′) < 0 means that there is no possible path that connects
U and U ′
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Figure 1: Twitter-sensed Barcelona Social Network

where |users| represents the number of users that have
“checked-in” to that Location.

The resulting value basically aggregates the information
of surrounding detected locations considering the social dis-
tance of our specific user to the users that visited that location
(social information), and their familiarity in the area of the
location (geographical information).

3.2 Cicerone Recommendation Algorithm
The general algorithm for the functioning is the following:

1. Once the position of a user A is detected, the system
automatically captures its Latitude and Longitude and
launches the process that builds the personalized recom-
mendation set for that position and user at that certain
moment.

2. The system retrieves all the locations in 100m radius of
the current position.

3. The recommendation set for user A, Ra, is a set con-
structed with all the locations in 100m radius of the user
current position.

4. The system calculates the location value of each of the
locations in that set.

5. The system orders the retrieved locations according to
the calculated Location Values and constructs the Rec-
ommendation Set with the 3 with a highest value.

4 Functional implementation of Cicerone
As explained previously, the theoretical framework to build
the recommendation needs from a number of data sources,
namely, users locations, venues and the social relationships
amongst users. As this recommendation process is envisioned
to be executed when users are in-situ, the main functional re-
quirement for our system is to work from a mobile device.
Working prototypes have decided to opt for the development
of a dedicated app (such as Yelp, TimeOut or TripAdvisor),
that users have to download within their devices. The app
provides several advantages as the explicit user profiling as
well as the definition of the necessary information to obtain
the recommendation. However, for us it implies the big prob-
lem of reaching a critical mass of users that would made the
knowledge base and the recommendation more accurate. To
avoid this limitation we have opted to develop our system as

a service embedded within already massive social networks.
Twitter seems to be the ideal candidate for us for the follow-
ing reasons:

• Twitter shows a widespread uniform penetration almost
worldwide, with an continously increasing numebr of
users (288 million monthly active users in July 2012,
showing an increase of 40% since July 2009 [Global-
WebIndex, 2013]).

• It allows users to associate their location when posting a
message, and associate the specific coordinates as meta-
information.

• It provides developers with an accesible API to obtain in
near real-time the publicly published tweets.

• Twitter captures a social network of followers and fol-
lowings, publicly available for each user.

As we have initially decided to deploy our application in the
city of Barcelona, Twitter confirms to be an ideal candidate.
The number of captured geopositioned tweets daily within
Barcelona is 6200 (from data coming from 2012), and the
social network inferred from the users posting them can be
seen in Figure 1 (with an average degree of 2.93).

Similarly, and to populate our items database, we opt to
use the crowdsourced database of Foursquare. Foursquare is
a location-based social media platform to communicate the
venues a user is in. This platform allows users to input into
their databases new locations, by introducing not only the
venue’s name and specific location (with the GPS position
and postal address) but also a semantic category. Foursquare
describes the places according to a rather complete taxonomy,
where about 400 kinds of places are identified and grouped in
9 wide categories3. Foursquare provides an accesible API al-
lowing us to take snapshots of the existing locations in a cer-
tain city. Within the city of Barcelona, from a snapshot taken
April 2013, we have detected over 66.000 foursquare loca-
tions, uniformly distributed amongst the different districts.

Moreover, within the OpenData movement, the city of
Barcelona provides a machine-readable administrative divi-
sion necessary for our theoretical calculations (namely the
District divisions).

5 System Architecture
In this section we will describe the system architecture
(sketched in Figure 2) needed to implement a functional in-
statiation of the theoretical framework previously described.
Firstly we will describe the social network monitoring used
as data input for our platform, and also as user interface inter-
action with the recommendation engine. After that, we will
sketch the persistence infrastructure used to save the informa-
tion related to venues and users, and finally we will describe
the information update process and the component needed to
develop the recommendation platform.

3The detailed categorization of Foursquare categories and parent
categories can be found at http://aboutfoursquare.com/
foursquare-categories/ (Last access April 2nd 2013).
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Figure 2: Cicerone Architecture

Figure 3: Cicerone Workflow

5.1 Social Networks Monitoring: Sensing the City
The usage of social media platforms in our system are
twofold: (1) information acquisition to feed the knowledge
base of our platform, and (2) a channel for users’ interaction
with our technology.

The participatory information provided by users in
Foursquare will be used to populate our items database; sim-
ilarly, we will use geopositioned tweets to calculate users’
Area Knowledge. Therefore, the social network monitor is
the first layer of our architecture and it is composed by two
crawlers: a Foursquare crawler and a Twitter crawler. The
Foursquare crawler is in charge to scan the target city for new
venues. Once a new venue is identified, it is stored in the
items database with its associated metainformation such as
its specific coordinates, the address or the category. The Twit-
ter crawler is in charge to capture all the tweets generated in
the target city. Its scope is threefold: (1) build and update
the users’ social network, (2) update the user area knowledge
using its geopositioned tweets, and (3) permits users’ com-
munication with the system.

Moreover, and given its popularity, we use Twitter as the
communication channel of our recommender system through
a bot account managed by our intelligent agent.

5.2 Persistence Infrastructure: Urban data Model
Any recommender system bases its functioning in three main
elements: users, items and ratings. These three elements have
to be stored according to the inherent properties of the sys-
tem, which in this case, imply real-time information access

and update. Fed by the crawlers, the data required for our rec-
ommendation solution arrives to the persistence manager and
each of these elements are stored in a persistence infrastruc-
ture in the following way: Users: One of the main functional
requirements of the recommendation algorithm is the access
to the social network of users. In order to effectively store
this information, we opt for using a graph-oriented database,
namely Neo4j4. These type of databases allow us to per-
sist users’ social network in the form of a directed weighted
graph. In this database, we persist users as nodes and then
establish edges amongst nodes if there exist a social relation
amongst them. Consequently, an edge between two nodes is
created if there exists a social relation amongst them, accord-
ing to users’ Twitter profiles; specifically, an edge is created
amongst from user A towards user B if userA follows user B
in Twitter. At this edge level, the edge’s weight will be de-
fined depending on the users interactions: different types of
Twitter interactions (such as mentions, retweets or favourited)
will affect the weight differently.5 Another important infor-
mation about users is saved, namely his “Check-ins” (as de-
scribed in Sec. ). These “check-ins” (the specific coordinates
of each user geopositioned tweet) is stored into a MongoDB6,
as we can profit from the implemented geo-spatial index.
Items: The items in our system are the locations within the
target city. The locations database needs to provide efficient
information access, as the recommender algorithm needs a
high average number of accesses to it to build the recom-
mendations. Moreover, an imporant item’s characteristic is
its location within space, that is proffited from when using
geo-spatial indexing. Given these two characteristics (rapid
information access and geo-spatial indexing), as well as the
potential for distributed computing, we opt to implement this
database using MongoDB.
Ratings: The notion of rating is clasically treated as an ex-
plicit evaluation of users about an item. However, in this
work, we take an alternative approach for ratings: we con-
sider as a constant rating value the users presence in a loca-
tion, sensed through the geopositioned tweets posted from or
close to the venue location. This value is not obtained di-
rectly, the Ratings will be part of knowledge obtained by the
recomendation engine and their information update process
capturing user’s visits to specific locations but this will be ex-
plained on the Section 5.3.

5.3 Recomendation Engine: Information Update
Process

The last component in our proposed architecture is the re-
comendation engine containing the implementation of the
theoretical algorithms previously explained in the Section 3.
Once we have our social networks monitor as an urban data
sensor, and the ability to persist all the raw data required
by the system, this component will be the responsible of the
knowledge extraction process and the bussines logic triggered

4http://www.neo4j.org
5Specific values and functions for edge weight determination

will be developed at later versions of our software using empirical
information.

6http://www.mongodb.org
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to generate a recommendation.
Because of the real-time aspect of our system, our recom-

mendation platform (whose workflow is detailed in Figure 3)
needs to continously update some information elements such
as users’ Area Knowledge and Location Frequency, the cre-
ation or update of social relationships amongst users or the
appearance of new locations. Specifically, we envision the
users’ communication with our system through a Twitter per-
sonality that encapsules our recommendation platform; ev-
erytime a user mentions our system’s username, the plat-
form will capture this tweet (through the Mention’s Service
sketched in Figure 2) and identify it as an explicit request
for a recommendation that will trigger the whole intelligent
process. Eventhough our technological platform allows us to
generate recommendations everytime a user’s location is cap-
tured (with every geopositioned tweet), we rather restrict its
functioning with a mention system reducing the overall intru-
siveness.

After the recommendation is generated, it is returned to
the user also through Twitter with a message posted by our
intelligent agent.

6 Conclusion and Future Work
The designed recommender system plans to profit from the
information proactively shared by users in the analyzed par-
ticipatory platforms. However, as recently argued in [Jeske,
2013], these type of crowdsourced systems is sensible to ma-
licious attacks: in our case, and given the lack of restrictions
to post geo-positioned content from Twitter, someone could
easily envision the method to create a fake user to become the
one with higher area knowledge in every area of the city, and
then influence directly the resulting recommendations to his
own will.

Despite this potential problem associated to the publishing
policy of Twitter and Foursquare, and as we have analyzed in
Sec. 2, many others have used information from these sources
to generate location-based recommendations. However, and
to the best of our knowledge, the presented algorithm is the
first to include explicitly the user’s expertise about one of the
fundamental properties of the items: the area where it is lo-
cated. By combining this information, with some social infor-
mation, we hypothesize that our system will be able to out-
perform other location-based recommender systems.

Our main long term research task to be performed is the
development of a user profiling in term of the type of venues
the user attends to, with the overall objective of combining
the area expertise and with specific user profiles.
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Abstract
The paper proposes a embedded surface road clas-
sifier for smartphones used to track and classify
routes on bikes. The main idea is to provide, along
with the route tracking, information about surface
quality of the cycling route (is the surface smooth,
rough or bumpy?). The main problem is the quan-
tity of accelerometer data that would have to be up-
loaded along with GPS track, if the analysis was
done off-line. Instead, we propose to classify road
surfaces online with an embedded classifier, that
has been trained off-line. More specifically, we rely
on the accelerometer of a bicycle-mounted smart-
phone for online classification. We carry out exper-
iments to collect cycling tracks consisting of GPS
and accelerometer data, label the data and learn a
model for classification, which again is deployed
on the smartphone. We report on our experiences
with classification accuracy on and runtime perfor-
mance of the classifier on the smartphone.

1 Introduction
The main motivation of this work is to provide a community
based cycling route road quality classification service. There
are many community based services providing cycling routes
together with altitude profiles, but none of them is providing
information about the road quality of the route, i.e. whether
the road is smooth, rough, or bumpy. Many bicycling com-
munity web-portals like [http://www.bikemap.net] offer facil-
ities for uploading and downloading GPS tracks for cycling
routes. To our knowledge, none of them provides information
about road surface quality of the cycling route. Route quality
information could be gathered together with GPS track using
the accelerometer data coming from bicycle mounted smart-
phone. Obviously, including all accelerometer raw data in the
data upload would increase data traffic significantly and may
not be tolerable for the user, especially when gathering long
tracks. The solution is to implement a road surface classifi-
cation algorithm on the smartphone and to upload the clas-
sification results together with the GPS track. Similar ap-
proaches already have been successfully applied for other ve-
hicles than bicycles. Pothole detection using GPS data and
accelerometer data with dedicated hardware devices mounted

in Taxi cabs has already been successfully explored in [Eriks-
son et al., 2008], [Strazdins12 et al., 2011] and [Mednis et
al., 2012] investigate road condition monitoring for vehicular
sensor networks based on time series analysis. We investi-
gate experimentally, whether we can achieve a road surface
classification using smartphones mounted on bicycles. In or-
der to cope with the restricted computational power of these
devices, we apply a machine learning approach: we learn a
classifier off-line on a standard PC and apply the classifier
online on the smartphone.

We collected GPS tracks and acceleration data (based on
the mobile phone’s accelerometer sensor) and applied two
different approaches for classification of road surface qual-
ity, both based on standard machine learning classifiers: in
a direct segmentation classification approach, we used man-
ual labeling of road segments of fixed length (smooth, rough,
bumpy) to train a classifier, based of various parameter set-
tings for feature extraction. The best result that we obtained
in a cross-validation was a 20% increase of accuracy against a
standard Kappa-Statistics. In a second approach, we trained
a classifier for detecting bumps. Here we achieved an ac-
curacy of 97%. Using this bump detector, we performed a
threshold-based road segment classification, which delivered
much more comprehensible results. A closer look at input
data, manual labeling, classification results, and comparison
with the real-world, revealed that the manual labeling was er-
ror prone . We conclude that the simple bump-detector based
classification approach can be used for road surface quality
classification and even does not require further manual label-
ing of road segments.

2 Classification approach and Results
Most of today’s smartphones are equipped with GPS and ac-
celeromater sensors. In order to ensure that our algorithm
performs not only on today’s top range models, we carried
out the experiments with a 2-years old Nokia 5800, one of
the first mass models providing accelerometer data. Figure
1 illustrates a track of accelerometer data collected with a
smartphone.

Figure 1 shows the length of the accelerometer vector plot-
ted over a track. We see that the data provides a more or
less continuos signal (at 37 Hz in our case) over the complete
track. As we want to explore a machine learning classifica-
tion approach for road surface classification, we first have to
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Figure 1: This figure shows a recorded test track of one road.
The peeks s in this chart are bumps on the road. The smart-
phone was attached to the handle of the bike

define the features which are used to train the classifier. The
raw data consists of GPS positions and their time stamps, and
acceleration values only. Acceleration values are represented
by a three-dimensional vector. In a first step, we extract as
many features from the data as possible and evaluate experi-
mentally, which feature selection yields the best classification
result.

In our first approach to classification described in section
2.1, we divide the road into segments of varying length. In our
second approach described in section 2.2, we just consider
two subsequent GPS points as boundary of a segment. In
both cases, we get a segmentation of the cycling route in a
sequence of segments as shown in Figure 2. As a result, the
recorded acceleration data is associated to a certain segment.

Figure 2: This figure shows how a track will be segmented
into a set of segments

The segmentation shown in 2 allows to indicate, which po-
sition of the road has a certain surface property or would even
contain potholes. We can now analyze segment by segment
depending on the data recorded for the segment and make
statements about its road surface quality. These information’s
can be used as features for our machine learning approach.
At the end each segment contains GPS and acceleration data
which can be used for creating features for this segment.

Features which can be extracted from the GPS data are
speed and inclination. To simplify the handling of the accel-
eration data provided by the accelerometer, which is made up
of an 3D vector, we will further use L2-norm of this vector
which is defined as ||x|| =

√
x21 + . . .+ x2n. The example

shown in Figure 1 already illustrates, that changes in these

values and sometimes even potholes can be detected by (hu-
man) visual inspection of the data. For our machine learning
approach, we extract the mean, the variance and the standard
deviation of the acceleration values of a segment as features
for this segment.

2.1 Direct road surface classification
In this section, we apply standard classification methods to
segments of varying length, based on the features described
above. For our analysis we consider a number of previ-
ous segments which are before the segment that we want
to classify. We define a whole road as a set of segments
S = {s1, s2, . . . , sn}. We consider the previous x segments
si−x, si−(x−1), . . . , si of the segment i which we want to
classify as features for si. In this case the features of the
previous segments serve us (primarily our machine learning
algorithm) as additional information’s for our analysis. How
much these feature information’s are relevant and how many
segments we must consider has be analyzed experimentally.

The organization of the training data is shown in Table 1.
Now we use all extracted features of such a set of segments
as training data. Every segment has its own row with its own
features and additional features of previous segments. Each
row in this table also contains the class as entry in the column
named label. This column contains class which later on will
be learned by the machine learning algorithm. For example
row 1 has the label smooth as class for segment S1.

fSi−2
fSi−1

fSi
label(Si)

- fS0
fS1

smooth
fS0

fS1
fS2

smooth
fS1

fS2
fS3

smooth
fS2

fS3
fS4

rough
...

...
...

...

Table 1: This table illustrates how the features of each seg-
ment are arranged in order to generate a training set of data

We want to evaluate how well the classifiers can learn from
the provided data and which features and parameters influ-
ence the performance of these classifiers. The goal is to eval-
uate whether it is possible at all to learn from the data and
if so, which are the best parameters (for example segment
length, number of segments to be included in the table).

As raw data we recorded one route several times. The route
for direct surface classification was recorded 16 times and
leads through urban terrain mostly the city of Bonn and they
have a length of approximate 13-14km per track (the devia-
tion in length results from the GPS inaccuracy). Each track
was labeled for classification by hand with the tool presented
in [Guc et al., 2008].

The previously mentioned segment arrangement
si−x, si−(x−1), . . . , si will further be called Sline which
only consist of previous segments and where i is our current
position. For the segments length , The other Fixed segment
length is fixed from the beginning (during the evaluation
fixed values of 1m, 2m, 5m, 10m, 15m and 20m are used).
For the fixed length parameter the amount of acceleration
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values can vary, because the amount of values is speed
dependant. For classification we will use two different
Algorithms the K-Nearest-Neighbor and the Naı̈ve Bayesian
Classifier. Five different features were extracted from
the training data :speed, inclination, acceleration mean,
acceleration variance, acceleration standard deviation.

The following table shows a compact overview of all pa-
rameters which were evaluated.

Parameter type Parameter Value
ML-algorithm K-NN, Naive Bayes

segments lengths variabe length: gps
fixed length: 1m, 2m, 5m, 10m, 15m, 20m

number of segments 3, 5, 7, 9, 11, 13
extracted features inclination, speed, acceleration (mean, variance, std)

Table 2: This table gives an overview of all parameters which
were changed during evaluation. The acceleration contains
three features, acceleration-mean, -variance and -standard de-
viation)

To measure the performance of the classification algorithm
on the evaluation data, a 10-folded cross-validation was in-
cluded. A N -folded cross validation splits the test data into
N equally large sets and then uses N − 1 set for training to
classifier and 1 set for validating the learned concept this is re-
peated N times where for every iteration a different set of the
N sets is used for validation. At the end a confusion matrix
is provided from the cross-validation module which consists
of the average performance values of the classification.

Additionally we performed a feature selection optimization
in order to find the best feature combination. This optimiza-
tion allows to find a feature combination wich only contains
features which influence the learning algorithm positivly and
result in hoch accuracy. Features which confuse the learning
scheme will not be selected anymore. We found thaht the pre-
viously mentioned speed and inclination feature confuses the
learning scheme and results in performances which are worse
than the corresponding kappa statistics.

true smooth true bumpy true rough class precision
pred. smooth 5785 882 92 85,590%
pred. bumpy 836 1052 62 53,949%
pred. rough 151 110 492 65,339%

class recall 85,425% 51,468% 76,161% accuracy: 77,457%

Table 3

The classification performance for the Naive Bayes and the
K-NN were almost similar, but the K-NN performed (on av-
erage) slightly better than the Naive Bayes.

For K-NN algorithm, the performance increases with an
increasing number of the segments which are considered
for classification. The Naive Bayes classifier, however, has
a more constant performance, independently of the num-
ber of segments included in the table. The evaluation also
showed that the classification results which use longer seg-
ments lengths (15m and 20m) perform much better than the
ones with short segment length’s (2m). When looking at the

influences of all features, we observed that the speed feature
does not contribute to the classification. The inclination fea-
ture, even worse, confuses the classifier.

The best results (table 3) are achieved with the features ac-
celeration (mean, variance, standard deviation) and a segment
length of 20m and 13 segments must be considered for classi-
fication. The used segment setup is the Sline setup. The cor-
responding kappa statistic achieves an accuracy of 56,357%
which makes a difference of 21,101% between the classifier
and its kappa statistic.

The overall results of the classification (at best 78%) are
not very satisfying for a classification model. We will see in
section 2.2 that the bump detection just based on GPS-defined
segments performs much better.

2.2 Bump detection based classification
In this approach, we first consider the detection of sin-
gle bumps or potholes. The classifier in this first just dis-
tinguishes the two classes: ”bump” and ”no bump”. For
the bump classification a different route was selected and
recorded 15 times. Each of them has a length between 110m
and 130m per track (here the deviation in length also results
from the GPS inaccuracy). Again each track was labeled for
classification by hand via the already mentioned annotator
tool.

The performance of the bump classification works out
much better compared to the highest accuracy of the sur-
face classification. Again, the feature ”speed” turned out to
be irrelevant and the feature ”inclination” was confusing the
classifier. It was also observed that (for surface- not bump-
classification), the more segments are considered the more
the accuracy declines. The reason for this is that the longer
the considered area the more unimportant information is con-
tained in the data which should be classified. In compari-
son to the surface classification, the bump classification needs
shorter segment length’s (1m to 5m) to reach high classifica-
tion accuracy. The longer the segment lengths, the worse the
classification performance gets. The long segment also con-
fuse the classification algorithm, this was verified by com-
paring the results of the classification with the corresponding
kappa statistic. The best result were achieved with the seg-
ment length GPS parameter. This is quite expected, because
”bumps” are short term events and GPS-based segmentation
(i.e. every two succeeding GPS points define a segment) is
the smallest achievable spatial granularity.

true no bump true bump class precision
pred. no bump 404 6 98,537%

pred. bump 2 29 93,548%

class recall 99,507% 82,857% accuracy: 98,186%

Table 4

As we can see it is indeed possible to do pothole and
bumpy detection with a very high accuracy, just using the
Naive Bayes Classifier on a single segment. This led us to
extend this simple approach to be applicable in road surface
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classification, with the three classes ”smooth”, ”rough”, and
”bumpy”, as described in the following.

Extended bump classification The bump detection can be
altered slightly to derive another concept for surface classi-
fication. The main idea is to count the number of bumpy
segments in a certain road section. Depending on that num-
ber, one of the classes ”smooth”, ”rough”, and ”bumpy” is
assigned as follows:
• For 0 ≤ |bumps| ≤ N

3 , the class smooth is assigned.

• For N
3 < |bumps| ≤ 2N

3 , the class rough is assigned

• For 2N
3 < |bumps| ≤ N , the class bumpy is assigned

Not surprisingly, the best results were achieved for N=3,
i.e. just considering the GPS-Segments Si−1, Siand Si+1 for
the classification of GPS-segment Si. In other words, a GPS
segment is considered as, for example, smooth, if at most one
of its preceding, the GPS-segment itself, and the succeeding
GPS-segment have a bump. The results are shown in Table 5.

true smooth true bumpy true rough class precision
pred. smooth 27865 1113 2129 89,578%
pred. bumpy 2249 1823 3315 24,678%
pred. rough 1488 537 2893 58,825%

class recall 88,175% 52,491% 34,701% accuracy: 75,051%

Table 5: Confusion matrix of a the best performing classifi-
cation which considered 3 segments during its classification

The classifier with the best accuracy for surface classifica-
tion achieves≈ 75% the classifiers from the previous sections
which directly learn the labels from the training data perform
much worse. For the extended bump classification the K-NN
classifier achieves 61% accuracy. A random classifier with
the same label distribution performs with ≈ 57% accuracy.

The confusion matrix of the extended bump classifier ex-
plains why the accuracy is not higher. The classifier is quite
good for smooth data, but it confuses rough and bumpy data.
A closer look and comparison with the recorded variances in
Figure 3 reveals that most probably, the labeling was not con-
sistent in assigning the labels ”rough” and ”bumpy”.

Figure 3: This diagram illustrates the results of inaccurate
manual data labeling

Figure 3 visualizes the acceleration variance combined
with their manual labels of a section from a recorded track.

For each label class the figure shows the manual labels (light
gray bars) and the predicted labels (dark gray bars). It can
be seen that the light gray labels for the rough class are not
modeled with sufficient detailness (on the left side of the di-
agram). It can also be seen from the acceleration values that
this label contains parts of different labels like smooth and
bumpy which were not correctly labeled. The diagram shows
that the classifier indeed is more often correct than the man-
ual label which is unfortunately the reference for the perfor-
mance. This is the main reason for the ”bad” performance of
the classifiers and explains also the confusion matrix (table
5).

2.3 Classifier implementation on the smartphone
In this section we will discuss the runtime of the whole classi-
fication process which was implemented in J2ME. The one of
initial goals of this work is to make the classification process
possible in the online mode of the client.

Once learned, the classifier has to execute the following
steps online on the smartphone.

• calculate the mean, variance and standart deviation of all
previous absolute acceleration vector values

• assemble classification data

• applies Naive Bayes classifier for bump detection

• put prediction to bump LIFO (these LIFO stores previ-
ous classifications, which are needed to calculate surface
prediction)

• put GPS coordinates and prediction for this segment to
ObservationBuilder

• builds observation

• sends observation

The execution time of the learned classifier took less than 2
ms in a JME implementation on a Nokia 5800 with an ARM
CPU execution at 400 Mhz. The accelerator delivered data
at 37 Hz, resulting in 37 values which must be evaluated at
each GPS point (given that GPS is running at 1Hz). This
means that the overall impact of the classifier on the device
performance was very low and that classifier execution fin-
ished safely before the next accelerometer values came in.

3 Conclusion
It was shown that in general a surface and a bump classifi-
cation can be realized via a machine learning approach. It
was shown how the data must be preprocessed to achieve
good classification results and which features play an impor-
tant role in this classification process. At the current state,the
classification is not as good as it could be. We showed that the
correctness and accuracy of the labels in training data should
be improved for training a machine learning algorithm. How-
ever, we also achieved very good bump detection The learned
classifier is fast enough to be executed online on a moder-
ately fast smartphone hardware and needs no further learning
or labeling. Surface classification may derived from this. As
the classifier performed best for short segments, mainly based
on the variance of the length of the acceleration vector, we
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also see a good chance for just time-series based analysis ap-
proaches such as used in [Mednis et al., 2012] or [Mladenov
and Mock, 2009] to be applied for road surface classification.
As application, biking communities can profit from the pre-
sented approach for displaying route quality information on a
community portal, or cylcing-friendly cities can monitor the
surface quality of their cycling route network for detecting
damage and initiating road repair.
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Abstract

This position paper proposes a framework based
on a feature clustering method using Emergent
Self-Organizing Maps over streaming data (Ubi-
SOM) and Ramex-Forum – a sequence pattern min-
ing model for financial time series modeling based
on observed instantaneous and long term relations
over market data. The proposed framework aims at
producing realistic monte-carlo based simulations
of an entire portfolio behavior over distinct market
scenarios, obtained from models generated by these
two approaches.

1 Introduction

Grasping the apparently random nature of financial time se-
ries has proven to be a difficult task and countless methods
of forecasting are presented in literature. Nowadays, this is
even more difficult due to a global economy with strong in-
terconnections. Most traders forecast future price using some
combination of fundamentals, indicators, patterns and expe-
rience in the expectation that recent history will forecast the
probable future often enough to make a profit. Detecting cor-
relations between financial time series and being able to simu-
late both short and long term interactions in virtual scenarios
using models extracted from observed market data can pro-
vide an increasingly needed tool to minimize risk exposure
and volatility for a given portfolio of securities. This position
paper argues that feature clustering methods using Emergent
Self-Organizing Maps over streaming data (UbiSOM) [Silva
et al., 2012], [Silva and Marques, 2010b] can be conjoined
with Ramex-Forum – a sequence pattern mining model [Mar-
ques and Cavique, 2013], for financial time series modeling
based on observed instantaneous and long term relations over
market data. Since the lower the correlation among the indi-
vidual securities, the lower the overall volatility of the entire
portfolio, this makes possible to propose a tool to minimize
risk exposure and volatility for a given portfolio of securi-
ties. The proposed framework aims at producing more realis-
tic Monte Carlo-based simulations of the entire portfolio be-
havior over distinct market scenarios, obtained from models
generated by these two approaches.

Figure 1: Proposed framework (description in text).

2 Proposed Framework
The proposed modular framework is depicted in Figure 1 and
consists of i) The UbiSOM, an ESOM algorithm tailored
from streaming data ii) The Ramex-Forum, a sequence pat-
tern mining model and iii) A Monte Carlo-based simulator.
The first two are fed with a stream of log-normalized raw as-
set prices, which are then used by the third module to produce
future different and possible market scenarios, based on the
observed data. The UbiSOM can model instantaneous short-
term correlations between the various assets and its topologi-
cal map (Section 2.1) can be used as a starting point to gener-
ate alternate time-series based on a trajectory model (Section
3.1) by the simulation module. The input from the Ramex-
Forum module should be useful to incorporate in the simula-
tions long-term dependencies between the assets to produce
more realistic market scenarios.

2.1 Emergent Self-Organizing Maps
Self-Organizing Maps [Kohonen, 1982] can use the ability of
neural networks to discover nonlinear relationships in input
data and to derive meaning from complicated or imprecise
data for modeling dynamic systems such as the stock mar-
ket. The Self-Organizing Map (SOM) is a single layer feed-
forward network where the output neurons are arranged in
a 2-dimensional lattice, whose neurons become specifically
tuned to various input vectors (observations) in an orderly
fashion. Each input xd is connected to all output neurons
and attached to each neuron there is a weight vector wd with
the same dimensionality as the input vectors. These weights
represent prototypes of the input data. The topology preser-
vation of the SOM projection is extensively used by focus-
ing SOM on using larger maps – ESOM [Ultsch and Her-
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Figure 2: Time series (closing prices) for the described eight
financial products from 2006 to 2012 (description in text).
The values have been normalized to logarithmic scale.

rmann, 2005]. A previous work [Silva and Marques, 2010a]
showed that ESOMs provide a way of representing multivari-
ate financial data on two dimensions and are a viable tool
to detect instantaneous short-term correlations between time-
series. We illustrate this in Section 3, within our preliminary
results. Additionally, and supported by the detected corre-
lations, the topological ordered map can be used as a good
starting point to generate realistic multivariate financial data
based on the short-term relationships.

2.2 The Ramex-Forum Algorithm
Ramex-Forum solves the problem of huge number of rules
that avoid a global visualization in many pattern discovery
techniques (e.g., [Agrawal and Srikant, 1995] ). Ramex-
Forum is a sequential pattern mining algorithm that includes a
two-phase; the transformation phase and the search phase. In
the transformation phase the dataset is converted into a graph
where cycles are allowed. The raw data must be sorted in such
a way that each time interval can be identified. In the search
phase the maximum weighted spanning poly-tree is found. A
poly-tree is a direct acyclic graph with one path between any
pair of nodes at the most. The in-degree of any vertex of a
tree is 0 (the root) or 1. On the other hand, the in-degree of a
vertex can be greater than 1. A maximum weighted spanning
poly-tree is the spanning poly-tree with a weight that is up-
per than or equal to the weight of every other spanning poly-
tree. The Ramex-Forum algorithm develops a new heuristic
inspired in Prim’s algorithm [Prim, 1957] and assures a new
way of visualization long term patterns in polynomial execu-
tion time.

3 Preliminary Results
In this section we provide a proof-of-concept of the proposed
methodology within the framework. The proposed method is
illustrated with historical data representing the world econ-

Figure 3: Component planes for studied time series (20× 30
trained SOM). Similarities indicate correlated time series.

Figure 4: Projection of obtained distances between the com-
ponent planes in Figure 3.

omy in the recent past (years 2006 to 2012) – Figure 2. The
huge economic changes during this period are good to show
the usefulness of data mining algorithms over financial data.
Top financial products such as average Indexes for compa-
nies based in different countries (DJI – Dow Jones, in the
United States; BVSP – Bovespa, in Brazil; FCHI, Euronext
in Paris; N225, Nikkei in Japan; the HSI — Hang Seng Index,
in Hong Kong; and DAX, German Index) and relevant com-
modities exchange-traded funds (ETF) such as United States
Oil Fund (USO) and GLD for a physically backed gold ETF,
were considered.

Each time series is considered a feature of the training data,
i.e., observations are the prices of the financial products for
consecutive days. After performing a logarithmic normaliza-
tion of the values, so that the specific range of each asset price
is disregarded, the historical data forms the training dataset
that is fed into the UbiSOM and Ramex-Forum modules.

The trained UbiSOM map contains a topologically orga-
nized projection of the historical data. Correlations between
individual time-series are extracted through a visualization
technique for the UbiSOM map. By component plane rep-
resentation we can visualize the relative component distribu-
tions of the input data. Component plane representation can
be thought as a sliced version of the UbiSOM. Each compo-
nent plane has the relative distribution of one data vector com-
ponent. In this representation, dark values represent relatively
large values while white values represent relatively small val-
ues. By comparing component planes we can see if two com-
ponents correlate. If the outlook is similar, the components
strongly correlate. The component planes for the resulting
trained map are represented in Figure 3. Visual inspection
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may suffice to detect correlations, but in [Silva and Marques,
2010a] we provided an automated algorithm to cluster time-
series based on a distance metric computed for pairs of com-
ponent planes (Figure 4). However, this ability is only of
relevance in this paper to justify the use of ESOM maps to
generate multivariate time-series based on a trajectory model
(Section 3.1).

Figure 5 presents a Ramex-Forum generated graph for this
financial data, considering interactions with a latency of up
to 160 (long-term) trading days over a period of 2000 days
– results presented in [Marques and Cavique, 2013]. Each
arc represents the number of synchronous positive price ten-
dencies (buying signals given by a moving average indica-
tor). During the studied period Hong Kong HSI Index has
a behavior that was preceded by 273 times by similar vari-
ations in American Dow Jones (DJI) and 179 times by Ger-
man DAX. We should notice that USA DJI is influencing
most major assets in the world. The only exception to this is
European GermanDAX , that strongly co-influences Chinese
HSI . Another correlation found is between HSI and GLD
tendencies in these long term dependencies. This is some-
thing that UbiSOM cannot capture and can be incorporated
when generating more realistic market scenarios.

3.1 Generating Scenarios
By projecting again the historical data over the UbiSOM we
get a set of trajectories over the map that are used to generate
these alternate time series. A trajectory is formed by project-
ing two consecutive observations from the training data and
storing the pair of neurons that were activated, in the form
of a trajectory (bare in mind that loops are frequent, because
two similar observations are prone to be projected in the same
neuron). Figure 6 depicts these trajectories in the form of a
directed graph in which each vertex represents a neuron and
the edges the obtained trajectories. The weight of the edge
indicates how many times the trajectory was followed in the
projection of the training data.

Based on this trajectory model, we can generate alternate
time series using Monte Carlo simulations. Starting at a ver-
tex with edges and randomly choosing the next trajectory of
the model to follow we can create paths of arbitrary lengths
(dependent of the desired number of daily prices). Each ver-
tex/neuron contains the prototype of data that contains the set

Figure 5: Correlation Ramex-Forum graph considering inter-
actions with a latency of up to 160 trading days over a period
of 2000 days.

Figure 7: Simulated outcome of a possible market scenario
from the trajectory model of a 15× 10 trained UbiSOM.

of daily prices for similar observed days. The totality of the
path then gives us the multivariate time series. Details on how
to generate the path are currently being studied, it must not
be totally random, i.e., the weight on the edges must be taken
into account so as to give more importance to trajectories that
are more common. Also, when creating the trajectory model
we store at each vertex/neuron the statistical variation of the
training vectors that are projected on that particular neuron.
This allows generating a Gaussian around each prototype vec-
tor component to introduce variability on a particular virtual
daily price. This is particularly important when loops are be-
ing followed in the path, so that generated time series doesn’t
contain “flat” lines.

Figure 7 depicts a sample of a generated outcome that can
be obtained from trajectories over the trained UbiSOM. It can
be seen that the multivariate time series maintain the observed
correlations in the original historical data. This can be very
useful in generating possible scenarios for risk estimation.

3.2 Discussion
Visual inspection of the similarity of component planes in
Figure 3 shows that the results of the UbiSOM model are co-
herent, e.g., DJI and DAX are strongly correlated in their his-
torical behavior. GLD, as it was expected, is very far from any
other financial product. Its historical behavior is extremely
different in the analysis period, mainly always in a upward
movement. All the other assets maintain a significant dis-
tance from the others, showing that the correlation is not that
strong. Interesting additional long term relations were found
by Ramex-Forum algorithm. The example shown in Figure 5,
presents the USA DJI index influencing most other indexes.
Also China (HSI) is detected as a major player in world econ-
omy and seems to be the major influence on the price of gold
(GLD). Indeed, during the analyzed period, People’s Repub-
lic of China was one of the major buyers of gold in the world
and has the largest reserves of Gold and Foreign Exchange in
the world (CIA World Factbook, 2013).

However, it is the conjunction of the long term relations
detected in Ramex-Forum with the magnitude of short time
multivariate dependencies of UbiSOM, that should be the
most interesting application. Different long term trajectories
can now be generated on the UbiSOM map, based on the long
term sequences detected by Ramex-Forum. E.g., neurons cor-
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Figure 6: Trajectories generated for the projection of the historical training data over a 15× 10 trained UbiSOM.
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responding to highest increases in gold values can be easily
selected from a SOM map. The same could be done for high
values for the Chinese (HSI), or USA (DJI) economy. Highly
probable pathways should then be made among those neu-
rons. In practice these will encode the Ramex-Forum graph as
a probable pathway among distinct UbiSOM neurons. Then
for a given trading day (e.g. today) starting point, we can
then generate random walks in the map. Since each neuron
represents a possible market state, we can easily generate for
each neuron a possible virtual trading day that is strongly re-
lated with observed data. However it will be the pathways
to provide the most interesting effect on this map. Indeed, in
average, virtual trading days will follow possible sequences
given (and measured) by Ramex-Forum graph.

4 Conclusions
Both algorithms should provide a realistic and easily usable
framework to study and simulate possible effects of either
economic or political decisions. Even extreme events, e.g.,
Acts of God, may them be given some probability. We be-
lieve that such a time-series based model is a much needed
tool in todays strongly interdependent and complex world
where over-simplistic assumptions frequently lead to poor de-
cisions.

On one hand UbiSOM provides the daily correlation be-
tween products and can be made self-adjustable to continu-
ously changing streams of data (i.e., both collaborative learn-
ing [Silva and Marques, 2010b] and detecting concept drift
[Silva et al., 2012]). On the other hand Ramex-Forum graphs
shows sequences of the more representative events and can
be easily used to model the dynamic of the occurrences. So,
we believe that these complementary tools, one more static
and the other more dynamic, can intrinsically guarantee re-
alistic modeling on different scenarios and provide a major
breakthrough in decision support systems.
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Abstract
Predictions of uprising or falling trends are helpful
in different scenarios in which users have to deal
with huge amount of information in a timely man-
ner,such as during financial analysis. This tempo-
ral aspect in various cases of data analysis requires
novel data mining techniques. Assuming that a
given set of data, e.g. web news, contains informa-
tion about a potential trend, e.g. financial crisis, it
is possible to apply statistical or probabilistic meth-
ods in order to find out more information about this
trend. However, we argue that in order to under-
stand the context, the structure, and explanation of
a trend, it is necessary to take a knowledge-based
approach. In our study we define trend mining and
propose the application of an ontology-based trend
model for mining trends from textual data. We in-
troduce the preliminary definition of trend mining
as well as two components of our trend model: the
trend template and the trend ontology. Further-
more, we discuss the results of our experiments
with trend ontology on the test corpus of German
web news. We show that our trend mining approach
is relevant for different scenarios in ubiquitous data
mining.

1 Introduction
When discussing trends some of us may think about the ups
and downs of NASDAQ1, or DAX2 curves, or changes in pub-
lic opinion on politics before elections. Likewise, one can
think about web trends, life style trends or daily trends, i.e.
hot topics, in the news or on social networks. Changes in a
mobile data stream also fall within the definition of a trend.
Understanding a trend as a hot topic is related to the research
in Emerging Topic Detection (EDT) and Topic Detection and
Tracking (TDT), the subfields of information retrieval [Allan,
2002][Kontostathis et al., 2003]. A trend is defined there as
a topic that emerges in interest and utility over time. Accord-
ingly, common examples of trends may be the “Arab Spring”

1
http://www.nasdaq.com/ online accessed 04-17-2013

2
http://dax-indices.com/EN/index.aspx?pageID=4 online accessed 04-17-

2013

which emerged in political news worldwide in the beginning
of 2011, as well as the financial and real estate crisis which
started to emerge on business news worldwide in 2008. A
graphical representation of a trend, based on GoogleTrends3,
is shown in Fig. 1.

Figure 1: This graph shows a search volume index for the terms “fi-
nancial crisis” (blue curve) and “insolvent” (red curve) in Germany
from 2006 to 2011. Source: GoogleTrends

Several methods have been proposed for detecting trends in
texts or discovering trends in the web news (see Section 3).
Other works provide approaches from statistics and time se-
ries analysis that can be applied for analyzing trends in non-
textual data. Our work contributes to the general understand-
ing of trend mining that we see as highly relevant to ubiqui-
tous data mining. In this paper, we explain our abstract con-
cept of a trend template and go on to describe a trend ontology
which is an instance of the trend template.

2 Ubiquitous data mining and trend mining
The Ubiquitous Data Mining (UDM) is defined as the essen-
tial part of the ubiquitous computing [Witten and Eibe, 2005].
The UDM techniques help in extracting useful knowledge
from data that describes the world in movement, including
the aspects of space and time. Time is the necessary dimen-
sion for trend mining– there is no trend without time. And a
trend is one of the aspects of a world in movement. Before
we discuss general trend characteristics, we want to mention
the sociological and statistical perspectives on the trend, as
well as define trend mining. This helps in understanding the
trend characteristics that create the basis for the definition of
our trend template later in this paper.

3
http://www.google.com/trends/ online accessed 04-17-2013

49



2.1 Trend from different perspectives
Detecting trends from the sociological point of view is an an-
alytical method for observing changes in peoples behavior
over time with regard to “six attitudes towards trends” [Ve-
jlgaard, 2008]. The definition of these six attitudes is based
on eight different personality profiles of groups who partici-
pate in the trend process: trend creators, trend setters, trend
followers, early mainstreamers, mainstreamers, late main-
streamers, conservatives and anti-innovators.
Detecting trends from the statistics perspective is based on
trend analysis of time-series data with two goals in mind:
“modeling time series (i.e. to gain insight into the mecha-
nisms or underlying forces that generate the time series) and
forecasting time series (i.e. to predict the future values of the
time-series variables)” [Han and Kamber, 2006]. The trend
analysis process consists of four major components: trend or
long-term movements, cyclic movements or cyclic variations,
seasonal movements or seasonal variations, and irregular or
random movements [Han and Kamber, 2006]. A trend, in this
context, is an indicator for a change in the data mean [Mitsa,
2010].

2.2 Trend mining
Since data mining can be described as “the extraction of
implicit, previously unknown, and potentially useful infor-
mation from data” [Witten and Eibe, 2005], we propose the
use of the term trend mining as defined below:

DEF 2.1 Trend mining is the extraction of implicit,
previously unknown and potentially useful knowledge from
time-ordered text or data. The trend mining techniques
can be used for capturing trend in order to support user in
providing previously unknown information and knowledge
about the general development in users field of interests.

3 Related Research
In general, when mining trends from textual data, at least the
following three research areas should be mentioned: emer-
gent trend detection, topic detection and tracking, and tem-
poral data mining.
In [Kontostathis et al., 2003] several systems that detect
emerging trends in textual data are presented. These ETD
systems are classified into two main categories: semi-
automatic and fully-automatic. For each system there is a
characterization based on the following aspects: input data
and attributes, learning algorithms and visualization. This
comparison includes an overview over the research published
in [Allan et al., 1998][Lent et al., 1997][Agrawal et al.,
1995][Swan and Jensen, 2000][Swan and Allan, 1999][Watts
et al., 1997]. TDT research [Allan, 2002] is predomi-
nantly related to the event-based approaches. Event-based
approaches for trend mining underlie the assumption that
trends are always triggered by an event, which is often de-
fined as “something happening” or “something taking place”
[Lita Lundquist, 2000] in the literature. Considering a trend
from the event research perspective means that trend detec-
tion has to be understood as a monitoring task. This is mostly

the case for so-called short-term trends that are indeed trig-
gered by some events and in order to detect them we have
to monitor the stream in which they occur, e.g. the occur-
rence of “Eyjafjallajkull eruption”4 which was reported in
social networks and on the news in March 2010. However,
so-called long-term trends, e.g. “financial crisis”, that started
to be on-topic in 2008 are not necessarily conjoined with one
specific event. It is more a chain of events or even the “soft”
indicators as public opinion or news. No sharp distinction
has been made between the TDT and ETD research fields,
which means that some research such as [Swan and Allan,
1999] or [Lavrenko et al., 2000] can be in fact classified into
both fields. Temporal data mining research [Mitsa, 2010] of-
fers methods for clustering, classification, dimension reduc-
tion and processing of time-series data [Wang et al., 2005].
It addresses in general the temporal data and the techniques
of time series analysis on these data. One definition of tem-
poral data is “time series data which consist of real valued
sampled at regular time intervals” [Mitsa, 2010]. Temporal
data mining applies the data mining methodology and deals
with the same approaches for classification or clustering, that
are relevant for mining trends in textual data.

4 Trend template
Based on our experiments and considerations, we outline the
following assumptions about trends in the general context of
this work;
A trend can be described by the following characteristics:
trigger, context, amplitude, direction, time interval, and re-
lation. Fig. 2 illustrates the trend template.
In 4.1, we more precisely define each characteristic.

4.1 Definitions
Trigger is a thing. They can be: an event, a person, or a topic
anything that triggers the trend. A trigger can but does not
have to cause a trend. A trigger makes the trend visible. An
example of a trigger is Lehman Brothers5 insolvency that can
be classified as both a topic and an event.
Context is the area of the trigger. If the trigger is a topic
then the context is this topic’s area, e.g. Lehman Brothers
insolvency is mentioned in the context of real estate market.
Amplitude is the strength of a given trend. It can be
expressed by a number, the higher the number the more
impact the trend has or by a qualitative value that describes
the trend phase, e.g. beginning (setter), emerging (follower),
mainstream, fading (conservative).
Time is necessary while spotting trend, since there can be
no trend without time. It is the interval in which the trend
is appearing, independent from the amplitude, e.g. the real
estate crisis appeared between the years 2008-2011.
Relation expresses the dependency between the trigger and
the context, it puts the given trigger, e.g. Lehman Brothers
insolvency within the given context of the real estate crisis
in a relation, e.g. Lehman Brothers insolvency is part of the

4
The eruption of an Icelandic volcano in March 2010 that caused air travel chaos in Eu-

rope and revenue lost for the airlines http://www.volcanodiscovery.com/iceland/
eyjafjallajoekull.html online accessed 04-17-2013

5
http://www.lehman.com/ online accessed 04-17-2013
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Figure 2: Trend template– an abstract conceptualization

real estate crisis.

4.2 Formal description
The trend template is an abstract model that describes
the main concepts that are important and necessary for
knowledge-based trend mining. In following, we more ex-
plicitly define the trend template:
DEF. 4.1: Trend template (TT) is a quintuple:

TT := 〈T,C,R, TW,A〉
where: T is trigger, C is context, R is relation, TW is time
window, and A is amplitude.

DEF. 4.2: T- Trigger is set of concepts:

T := {t0, . . . , tn}, n ∈ N ∧ t ∈ T
so that if E, P , To are the sets defining:
events: E := {e0, . . . , en}, n ∈ N ∧ e ∈ E
persons: P := {p0, . . . , pn}, n ∈ N ∧ p ∈ P
locations: L := {l0, . . . , ln}, n ∈ N ∧ l ∈ L
topics: To := {to0, . . . , ton}, n ∈ N ∧ to ∈ To
then:

T := E ∪ P ∪ To ∪ L
DEF. 4.3: C- Context is a union set consisting of a set of
concepts and a set of relations between them where c is a
context element:

C := Cco ∪Rco, c ∈ C
with Cco the set of concepts

Cco := {cco0, . . . , ccon}, n ∈ N ∧ cco ∈ Cco

and Rco the set of relations:

Rco := {rco0, . . . , rcon}, n ∈ N∧rco ∈ Rco∧Rco ⊆ Cco × Cco

whereas rco defines a binary relation:

rco : ccox, ccoy −→ rco(ccox, ccoy) ∧ ccox 6= ccoy

and the context element is defined by:

c = cco ∪ (ccoi, ccoj)

C = Cco ∪ Cco × Cco

DEF. 4.4: R-Relational is a set of relations:

R := {r0, . . . , rn}, n ∈ N ∧ r ∈ R ∧R := {T × C}
with

ri : ti, ci −→ ri(ti, ci)

DEF. 4.5: TW- Time window is a function that assigns time
slice to the time points:

TP := {tpoint|tpoint =
= ms ∨ second ∨minute ∨ hour ∨ day ∨month ∨ year}

TS := 〈tpoint0 . . . tpointn〉
TW : TP −→ TS

DEF. 4.6: A- Amplitude is a function that assigns a value to
the quadruple of 〈T,C,R, TW 〉

A : T × C ×R× TW −→ N ∪ V
where N is the set of natural numbers and V is the set of
categorical values

a : (t, c, r, tw) −→ n ∨ v
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5 Trend Ontology
One way of implementing the trend template is the realization
of this model in the form of an ontology. We can understand
the ontology as an instance of the trend template.

Based on the trend template described above, we created an
applicable model, using SKOS6 and RDFS/OWL7 concepts
and properties. Our model serves as a general model that
can be extended regarding the particular application domain
and applied for annotating a text corpus in order to retrieve
the trend structure. The trend ontology is divided into levels
meta, middle and low which correspond to three abstract lay-
ers of the model. Whereas the low level and the middle level
relate to the corresponding application domain (in our case it
is the German Stock Exchange, DAX), the meta level is the
most interesting one. Meta ontology incorporates the general
trend characteristics and can be applied to any application do-
main.
The central concepts of the ontology are Trigger, Trig-
gerCollection, Indication, Relational and ValuePartition
and have been modeled as subconcepts of skos:Concept,
skos:Collection and time:TemporalEntity, with different se-
mantic construction, e.g. skos:related, skos:member. The
concepts mirror the composition of the trend template. Trig-
ger consists of three subconcepts: event, person, location.
The main goal of the meta ontology is to offer all necessary
concepts and relations in order to span the trend template as
a structure over a text corpus. To actually translate a specific
document corpus into such a structure, meta ontology needs
to be combined with a domain specific trend ontology which
defines domain specific concepts, their keywords and possi-
bly also their relations. This can either be done manually by
extracting common terms as keywords and linking them to
their respective concepts, or automatically by entity recog-
nition. The pseudocode 6.1 describes the algorithm that we
applied to build up the trend description on the test corpus.

6 Experiments
The text corpus which we call German finance data8 that
served as our test corpus consists of about 40,500 news ar-
ticles related to the fields of business and finance, provided
as XML files. The corpus is available in German and pro-
vides news articles from January 2007 to May 2008. The text
was parsed in cooperation with neofonie9 from the following
sources: comdirect10, derivatecheck11, Handelsblatt12, God-
modeTrader13, Yahoo14, Financial Times Deutschland15, and
finanzen.net16.

6
http://www.w3.org/2004/02/skos/ online accessed 04-17-2013

7
http://www.w3.org/TR/owl-features/ online accessed 04-17-2013

8
Currently (May 2013) in the publishing process at Linguistic Data Consortium http://www.

ldc.upenn.edu/
9
http://www.neofonie.de, online accessed 04-25-2012

10
http://www.comdirect.de/inf/index.html, online accessed 04-25-2012

11
http://derivatecheck.de/, online accessed 04-25-2012

12
http://www.handelsblatt.com/weblogs/, online accessed 04-25-2012

13
http://www.godmode-trader.de/, online accessed 04-25-2012

14
http://de.biz.yahoo.com/, online accessed 04-25-2012

15
http://www.ftd.de/, online accessed 04-25-2012

16
http://www.finanzen.net, online accessed 04-30-2012

Algorithm
6.1: CREATETRENDDESCRIPTION(c, o)

comment: parse ∀ document ∈ corpus

comment: into ontology

parse(c, inO, outO){
model.read(inO)
create.reasoner(inO)
for each d∈ c

do {
parse(keywords);
match.model(keywords, inO){
for keyword← 0 to i
if inO.concept.label==keyword or
keyword∈ inO.concept.label
keyword.prefix or keyword.postfix==
inO.concept.label.prefix or .postfix

then matches.add(keyword)}
relate.model(matches, inO){
if model.getRelation(matches).isEmpty

then model.createRelation(matches)
else model.incCounter(matches)}}

model.write(outO)

In general, the content of the corpus is focused on finance
and business information concerning German companies and
stocks. It focuses on the situation at DAX, as well as on re-
views and ratings of German companies and shares. For eval-
uation purposes regarding usefulness and practicability, the
trend ontology has been filled with two different parts of the
test corpus: stock market specific documents in Part 1 and the
general business news in Part 2 (subsequently first and second
part). They contain over 5,000 and 16,000 documents respec-
tively. We specified several basic questions and respective
queries as relevant for trends in general and specifically for
stock market trends. Querying the ontology for the total oc-
currence of concepts yields the following output (shortened to
some of the most relevant concepts): Germany (9,137), USA
(4,808), Deutsche Telekom (442), Allianz (433), Switzerland
(382), Starbucks (104). The output corresponds directly to
the corpus of German stock news with a clear focus on Ger-
man companies followed by the still dominant US market. A
similar query for often mentioned lines of business in the con-
text of Germany in contrast to the USA yields a major focus
on the industry for Germany. 4.5% to 7.1% of the total oc-
currences of Germany appear in the context of different lines
of industry. The USA is strong in the context of IT (9%) and
services (6.9%). Moreover, we checked so-called topic struc-
ture by using our ontology. Here a general example for the
concept Germany:

trendonto:#Germany (9137) has Topic
trendonto:#Financial : 1142
trendonto:#buy : 1003
trendonto:#MachineBuildingIndustry : 650
trendonto:#Share : 606
trendonto:#StockPrice : 562
trendonto:#Up : 520
trendonto:#Industry : 510
trendonto:#Investment : 468
trendonto:#Supplier : 422
trendonto:#AutomobilIndustry : 414
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Figure 3: Performance of shares in the first corpus (5,000 docu-
ments) by ontology based ranking and comparison with share in-
dices in the time window July 2007 to July 2011.

In Fig. 3 we show the comparison of the performance val-
ues for the stock markets as ranked by ontology (test based on
time window: July 2007 to April 2008) and reported in real
(time window July 2007 to July 2011). Applying the trend
ontology to the test set enables to find out specific informa-
tion about the certain trend that is described in the documents
of the test set. Our preliminary experiments results that we
partially present in this paper show that our idea of a trend
template could help in harvesting knowledge from the given
test data in a timely manner.

7 Conclusions and future work
This paper presents our research on knowledge-based trend
mining, wherein the main contribution is our semi-formal
model of a trend template. We showed that the implemen-
tation of the trend template in the form of a trend ontology
allows for capturing the trend structure out of a test docu-
ment set. Our experiments confirm that a knowledge-based
approach for mining trends out of data allows for extended
trend explanations. Currently we are comparing the trend on-
tology experiment results with the results from adapted K-
Means clustering and LDA-based topic modeling algorithms
applied on our test set.
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Knowledge discovery in ubiquitous environments are usu-
ally conditioned by the data stream model, e.g., data is poten-
tially infinite, arrives continuously and is subject to concept
drift. These factors present additional challenges to standard
data mining algorithms. Artificial Neural Networks (ANN)
models are still poorly explored in these settings.

State-of-the-art methods to deal with data streams are
single-pass modifications of standard algorithms, e.g., K-
means for clustering, and involve some relaxation of the qual-
ity of the results, i.e., since the data cannot be revisited to re-
fine the models, the goal is to achieve good approximations
[Gama, 2010]. In [Guha et al., 2003] an improved single pass
k-means algorithm is proposed. However, k-means suffers
from the problem that the initial k clusters have to be set either
randomly or through other methods. This has a strong impact
on the quality of the clustering process. CluStream [Aggar-
wal et al., 2003] is a framework that targets high-dimensional
data streams in a two-phased approach, where an online phase
produces micro-clusterings of the incoming data, while pro-
ducing on-demand offline models of data also with k-means.

In this position paper we address the use of Self-
Organizing Maps (SOM) [Kohonen, 1982] and argue its
strengths over current methods and directions to be explored
on its adaptation to ubiquitous environments, which involve
dynamic estimation of the learning parameters based on mea-
suring concept drift on, usually, non-stationary underlying
distributions. In a previous work [Silva and Marques, 2012]
we presented a neural network-based framework for data
stream mining that explored the two-phased methodology,
where the SOM produced offline models. In this paper we
advocate the development of a standalone Ubiquitous SOM
(UbiSOM), that is capable of producing models in an online
fashion, to be integrated in the framework. This allows de-
rived knowledge to be accessible at any time.

The Self-Organizing Map is a well-established data-
mining algorithm with hundreds of applications throughout
enumerate scientific domains for tasks of classification, clus-
tering and detection of non-linear relationships between fea-
tures [Oja et al., 2003]. It can be visualized as a sheet-
like neural-network array, whose neurons become specifically
tuned to various input vectors (observations) in an orderly
fashion. The SOM is able to project high-dimensional data
onto a 2D lattice, while preserving topological relationships

among the input data, thus electing it as a data-mining tool of
choice [Vesanto, 1999], either for clustering, data inspection
and/or classification. The powerful visualization techniques
for SOM models allow the detection of complex cluster struc-
tures, detection of non-linear relationships between features
and even allow the clustering of time series.

As with most standard data mining methods, classical
SOM training algorithms are tailored to revisit the data sev-
eral times to build good models. As training progresses, ex-
isting learning parameters are decreased monotonically over
time through one of a variety of decreasing functions. This
is required for the network to converge to a topological or-
dered state and to estimate the input space density. The con-
sequence is that the maps lose plasticity over time, i.e., if a
training sample presented at a later point in time is very dif-
ferent from what it has learned so far it does not have the
ability to represent this new data appropriately because these
parameters do not allow large updates at that time. In ubiqui-
tous environments data is expected to be presented to the net-
work over time, i.e., the network should be learning gradually
and derived knowledge should be accessible at any time. This
means that the SOM must be able to retain an indefinite plas-
ticity over time, with the ability to incorporate very different
data from what it has learned at a particular time, i.e., to be in
conformance with the “dynamic environment” requirement.

Ubiquitous SOMs , i.e., self-organizing maps tailored for
ubiquitous environments with streaming data, should define
those parameters not based on time t, but in the error on the
network for a particular observation.

An underused variant of the SOM, called the parameter-
less SOM (PLSOM) [Berglund, 2010]), was first introduced
to address the difficulty os estimating the initial learning pa-
rameters. The PLSOM has only one parameter β (neighbor-
hood range) that needs to be specified in the beginning of the
training process, after which α (learning rate) and σ (neigh-
borhood radius) are estimated dynamically at each iteration.
The basic idea behind the PLSOM is that for an input pat-
tern that the network already represents well, there is no need
for large adjustments – learning rate and neighborhood radius
are kept small. On the other hand, if an input vector is very
dissimilar of what was seen previously, then those parame-
ters are adjusted to produce large adjustments. However, in
its current form, it fails in mapping the input space density
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Figure 1: Learned Gaussian distribution for the classical
SOM (left) and for the PLSOM (right). The later does not
maintain the density of the input space, which undermines
the use of visualization techniques for cluster detection and
feature correlation.

onto the 2D lattice (Figure 1). This undermines the visual-
ization capabilities of the PLSOM, namely for cluster detec-
tion. Also, by estimating the values of the learning parame-
ters solely based on the network error for a given observation,
it is very sensible to outliers.

Nevertheless, this variant of the SOM retains an indefinite
plasticity, which allows the SOM to react to very different in-
put samples from what has been presented to it, at any point
in time; and converges faster to an initial global ordered state
of the lattice. These two capabilities makes PLSOM an inter-
esting starting point for the proposed goal.

Concept drift means that the concept about which data is
being collected may shift from time to time, each time after
some minimum permanence. Changes occur over time. The
evidence of drift in a concept is reflected in the training sam-
ples (e.g., change of mean, variance and/or correlation). Old
observations, which reflect the behavior in nature in the past,
become irrelevant to the current state of the phenomena un-
der observation [Gama, 2010]. In [Silva et al., 2012] we ad-
dressed concept drift detection using a different type of neu-
ral network, namely Adaptive Resonance Theory (ART) net-
works. Figure 2 illustrates its applicability to financial time
series. It works by measuring the quantization error of the last
built micro-cluster ART model, over a predefined number of
previous ones. We propose to use the ideas of the PLSOM
algorithm using the network error as an input to a concept
drift module, either ANN-based or not. While the concept is
stable, the learning parameters are being decreased monoton-
ically so as to map the input space density; when the concept
begins to drift the parameters are adjusted to higher values so
as to cope with the different observations. If the, possibly, un-
derlying non-stationary distribution is drifting rapidly, main-
taining higher learning parameters will, consequently, make
the model “forget” old and irrelevant observations to the cur-
rent state.

Conclusion ANN methods exhibit some advantages in
ubiquitous data mining: they have the ability to adapt to
changing environments; have the ability to generalize from
what they have learned; and through the ANN error it is pos-
sible to determine if the new information that arrives is very

Figure 2: a) Measuring concept drift over a stream of finan-
cial statistical indicators in [Silva et al., 2012]. b) The corre-
sponding time series of the Dow Jones Index.

different from what it has learned so far. A purely online
Ubiquitous Self-Organizing Map (UbiSOM) that can learn
non-stationary distributions is relevant for data stream min-
ing, namely because of its c. The SOM mining capabilities
greatly surpass K-means, without introducing a big overhead
in computation needs. Measuring concept drift as a way to
estimate the learning parameters of the learning algorithm is,
in our belief, a promising path.

References
[Aggarwal et al., 2003] C.C. Aggarwal, J. Han, J. Wang, and

P.S. Yu. A framework for clustering evolving data streams.
In VLDB, pages 81–92, 2003.

[Berglund, 2010] E. Berglund. Improved PLSOM algorithm.
Applied Intelligence, 32(1):122–130, 2010.

[Gama, 2010] João Gama. Knowledge discovery from data
streams. Chapman & Hall/CRC Data Mining and Knowl-
edge Discovery Series, 2010.

[Guha et al., 2003] S. Guha, A. Meyerson, N. Mishra,
R. Motwani, and L. O’Callaghan. Clustering data streams:
Theory and practice. IEEE Transactions on Knowledge
and Data Engineering, pages 515–528, 2003.

[Kohonen, 1982] T. Kohonen. Self-organized formation of
topologically correct feature maps. Biological cybernetics,
43(1):59–69, 1982.

[Oja et al., 2003] Merja Oja, Samuel Kaski, and Teuvo Ko-
honen. Bibliography of self-organizing map (som) papers:
1998-2001, 2003.

[Silva and Marques, 2012] Bruno Silva and Nuno Marques.
Neural network-based framework for data stream mining.
In Proceedings of the Sixth Starting AI Researchers’ Sym-
posium. IOS Press, 2012.

[Silva et al., 2012] Bruno Silva, Nuno Marques, and Gisele
Panosso. Applying neural networks for concept drift de-
tection in financial markets. In ECAI2012, Ubiquitous
Data Mining Workshop, 2012.

[Vesanto, 1999] J. Vesanto. SOM-based data visualization
methods. Intelligent-Data-Analysis, 3:111–26, 1999.

55


