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Abstract 
 

This paper presents a set of modifications to 
common processor on-chip debugging infrastructures 
to support the execution of fault injection campaigns. 
The proposed solution is applicable to different target 
architectures and imposes a very low logic overhead, 
providing a flexible and efficient mechanism for 
verifying and validating fault tolerant components. 
 
1. Introduction 
 

Dependable systems are designed to handle errors 
that originate from software or hardware faults and 
recover from them, maintaining acceptable operating 
conditions. A common mean to achieve dependability 
is the use of fault-tolerant components and the 
verification of their correct behavior is often 
performed using fault injection techniques [1]. Most of 
today’s microprocessors provide access to internal 
resources through dedicated built-in debug circuitry, 
often designated as on-chip debug (OCD), which can 
also be used for fault injection purposes [2]. This paper 
presents a proposal to improve the fault injection 
process, in terms of performance and triggering 
capabilities, by using a specialized debugger and  also 
migrating some of the required fault injection 
operations to the inside of the OCD infrastructure. 
All debugging components were designed to be 
NEXUS [3] compliant, both to benefit from the useful 
features defined in the proposed standard and to 
increase the area of immediate applicability of the 
proposed concepts and solutions. 
 
2. Case Study 
 
2.1 The OCD-FI concept 
 

The On-Chip Debug and Fault Injection (OCD-FI) 
concept proposed on this paper consists of additional 
hardware included in the target device in order to 

automatically insert faults on the occurrence of a 
triggering condition. To minimize overhead, this fault 
injection (FI) module is integrated within the OCD 
circuitry reusing some of the already implemented 
debugging functions. It requires the OCD to provide 
some type of watchpoint or breakpoint support and 
also the ability to read and write on the target memory 
elements. After an initial set-up, the FI module will 
wait for a watchpoint (or breakpoint) to activate the 
writing of a faulty value into the target memory. The 
fault-free value at the moment of the injection must be 
determined beforehand, using either knowledge of the 
running application code or an initial golden-run up to 
the fault injection instant. All OCD resources related to 
program trace must be operational during the entire 
process to allow the reconstitution of the program 
flow. 

 
2.2 Fault Injection Environment  
 

The fault injection environment is presented in 
Figure 1 and is composed of the target system, a 
debugger to manage the fault injection process and a 
host running the experiment.  

 

 
Figure 1 - Fault injection environment 

 
The target microprocessor cores used were 

developed using the cpugenerator [4] building tool 
which automatically creates configurable CPU cores in 
VHDL format. The OCD infrastructure was defined as 
a customizable model that can be adapted to each 
particular target. The debugger is oriented for fault 
injection campaign management and includes all 
common debugging functions, plus some dedicated to 



fault injection operations. It communicates  with the 
OCD through a NEXUS port using full-duplex 
messaging, and operates by reading scripts stored in 
memory and recording trace data from the target (via 
the OCD). Moreover, if the target system is 
implemented on a FPGA the debugger can also be 
included on the same device and later discarded. 

All experiments were structured into fault injection 
campaigns, each one defining a set of fault injection 
operations where a specific fault location and trigger 
condition were selected. The selected fault model is 
used in most common fault scenarios for 
microprocessor based critical systems [5] and consists 
of single bit-flip faults in random memory elements at 
random moments during the application execution. The 
fault location can be any resource accessible for 
writing through the OCD, including memory, internal 
registers and stack. These fault injection campaigns 
can be used for experimental evaluation of the target 
device fault tolerant characteristics, as indicated by the 
analysis of the preliminary results. 
 
2.3. Preliminary Results 
 

The target system, the debugger, the fault injection 
module and the different memories were synthesized 
with the ISE 7.1i development environment and 
simulated using the Modelsim 6.0a simulation engine. 
Each fault injection campaign was executed using the 
OCD alone first, and then repeated using the OCD-FI 
infrastructure. Table 1 compares both approaches. 

 
Table 1 – Main features comparison 

 OCD OCD-FI 
Fault Triggering Breakpoint or watchpoint hit 

Communication of 
Trigger  

Message from 
OCD to Debugger 

Signal from OCD 
to FI module 

Fault Activation Message from 
Debugger to OCD 

Signal from FI 
module to OCD 

Fault Injection Write operation by the OCD 
Equivalent Gates 

(8 bit version) 
(32 bit  version) 

 
6985 

18876 

 
7060 (+ 1,1%) 
18951 (+ 0,4%) 

Activation Delay 
(in clock cycles) 14 to 21 2 

 
From the executed experiences, we extracted the 

following conclusions: 
 Both approaches allow the injection of faults in 
memory space without halting processor execution. 
 When only using the OCD (alone), about 2% of the 
experiments return meaningless results due to CPU 
writes during the fault injection process. This did 
not happen with the OCD-FI (as the activation 
delay is reduced by an order of 85%). 

 The OCD-FI infrastructure does not affect the 
maximum microprocessor clock frequency. 

 
3. Conclusions 
 

From the preliminary results it is possible to 
conclude that the proposed OCD-FI infrastructure has 
the potential to become an efficient mechanism for 
verifying and validating the fault tolerance 
characteristics of microprocessor based systems. When 
compared with other alternatives, it provides an 
efficient methodology for fault injection, both in terms 
of reusability, resource coverage, performance and 
cost. The FI module main advantage is the possibility 
of injecting precisely controlled faults on CPU 
memory elements without stopping the program 
execution and without changing the target software or 
hardware. Major benefits are the minimum delay that 
minimizes the risk of the CPU accessing the target 
memory during the fault injection process and the 
possibility of using it in the simulation phase, 
prototyping phase or on the final device.  

The compliance with the NEXUS proposed 
standard provides a common basis for the development 
and enhancement of the proposed methodology. In this 
sense, the OCD-FI concept can easily be extended to 
any NEXUS compliant microprocessor and even to 
other architectures as the more complex functions are 
performed by the OCD infrastructure. As a downside, 
there is the need of an adequate OCD infrastructure 
and the ability to modify it (to include the FI module).  

The ongoing work is focused on verifying the 
applicability of this fault injection approach to 
different fault tolerance solutions and microprocessor 
architectures.  

 
5. References 
 
[1] A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr, 

“Basic concepts and taxonomy of dependable and secure 
computing”, IEEE Transactions on Dependable and 
Secure Computing, Volume 1,  Issue 1,  Jan 2004. 

[2] P. Yuste , D. de Andrés ,  L. Lemus , J.J. Serrano, P.J. 
Gil, “INERTE: Integrated NExus-Based Real-Time Fault 
Injection Tool for Embedded Systems”, The 
International Conference on Dependable Systems and 
Networks, San Francisco, USA, June 2003. 

[3] “The Nexus 5001 Forum Standard for a Global 
Embedded Processor Interface version 2.0”, IEEE-ISTO 
5001, 2003. 

[4] Giovanni Ferrante, “CPUGEN 2.00”, 2003. 
[5] R. Velazco, R. Ecoffet, F. Faure, “How to characterize 

the problem of SEU in processors & representative errors 
observed on flight”, 11th IEEE International On-Line 
Testing Symposium, Saint Raphael, France, July 2005. 


