
OCD-FI: On-Chip Debug and Fault Injection

André V. Fidalgo1,2, Gustavo R. Alves1, José M. Ferreira2

1Instituto Superior de Engenharia do Porto
2Faculdade de Engenharia da Universidade do Porto
anf@isep.ipp.pt gca@isep.ipp.pt jmf@fe.up.pt

Abstract

This paper presents a set of modifications to
common processor on-chip debugging infrastructures
to support the execution of fault injection campaigns.
The proposed solution is applicable to different target
architectures and imposes a very low logic overhead,
providing a flexible and efficient mechanism for
verifying and validating fault tolerant components.

1. Introduction

Dependable systems are designed to handle errors
that originate from software or hardware faults and
recover from them, maintaining acceptable operating
conditions. A common mean to achieve dependability
is the use of fault-tolerant components and the
verification of their correct behavior is often
performed using fault injection techniques [1]. Most of
today’s microprocessors provide access to internal
resources through dedicated built-in debug circuitry,
often designated as on-chip debug (OCD), which can
also be used for fault injection purposes [2]. This paper
presents a proposal to improve the fault injection
process, in terms of performance and triggering
capabilities, by using a specialized debugger and also
migrating some of the required fault injection
operations to the inside of the OCD infrastructure.
All debugging components were designed to be
NEXUS [3] compliant, both to benefit from the useful
features defined in the proposed standard and to
increase the area of immediate applicability of the
proposed concepts and solutions.

2. Case Study

2.1 The OCD-FI concept

The On-Chip Debug and Fault Injection (OCD-FI)
concept proposed on this paper consists of additional
hardware included in the target device in order to

automatically insert faults on the occurrence of a
triggering condition. To minimize overhead, this fault
injection (FI) module is integrated within the OCD
circuitry reusing some of the already implemented
debugging functions. It requires the OCD to provide
some type of watchpoint or breakpoint support and
also the ability to read and write on the target memory
elements. After an initial set-up, the FI module will
wait for a watchpoint (or breakpoint) to activate the
writing of a faulty value into the target memory. The
fault-free value at the moment of the injection must be
determined beforehand, using either knowledge of the
running application code or an initial golden-run up to
the fault injection instant. All OCD resources related to
program trace must be operational during the entire
process to allow the reconstitution of the program
flow.

2.2 Fault Injection Environment

The fault injection environment is presented in
Figure 1 and is composed of the target system, a
debugger to manage the fault injection process and a
host running the experiment.

Figure 1 - Fault injection environment

The target microprocessor cores used were

developed using the cpugenerator [4] building tool
which automatically creates configurable CPU cores in
VHDL format. The OCD infrastructure was defined as
a customizable model that can be adapted to each
particular target. The debugger is oriented for fault
injection campaign management and includes all
common debugging functions, plus some dedicated to

fault injection operations. It communicates with the
OCD through a NEXUS port using full-duplex
messaging, and operates by reading scripts stored in
memory and recording trace data from the target (via
the OCD). Moreover, if the target system is
implemented on a FPGA the debugger can also be
included on the same device and later discarded.

All experiments were structured into fault injection
campaigns, each one defining a set of fault injection
operations where a specific fault location and trigger
condition were selected. The selected fault model is
used in most common fault scenarios for
microprocessor based critical systems [5] and consists
of single bit-flip faults in random memory elements at
random moments during the application execution. The
fault location can be any resource accessible for
writing through the OCD, including memory, internal
registers and stack. These fault injection campaigns
can be used for experimental evaluation of the target
device fault tolerant characteristics, as indicated by the
analysis of the preliminary results.

2.3. Preliminary Results

The target system, the debugger, the fault injection
module and the different memories were synthesized
with the ISE 7.1i development environment and
simulated using the Modelsim 6.0a simulation engine.
Each fault injection campaign was executed using the
OCD alone first, and then repeated using the OCD-FI
infrastructure. Table 1 compares both approaches.

Table 1 – Main features comparison

 OCD OCD-FI
Fault Triggering Breakpoint or watchpoint hit

Communication of
Trigger

Message from
OCD to Debugger

Signal from OCD
to FI module

Fault Activation Message from
Debugger to OCD

Signal from FI
module to OCD

Fault Injection Write operation by the OCD
Equivalent Gates

(8 bit version)
(32 bit version)

6985

18876

7060 (+ 1,1%)
18951 (+ 0,4%)

Activation Delay
(in clock cycles) 14 to 21 2

From the executed experiences, we extracted the

following conclusions:
 Both approaches allow the injection of faults in
memory space without halting processor execution.
 When only using the OCD (alone), about 2% of the
experiments return meaningless results due to CPU
writes during the fault injection process. This did
not happen with the OCD-FI (as the activation
delay is reduced by an order of 85%).

 The OCD-FI infrastructure does not affect the
maximum microprocessor clock frequency.

3. Conclusions

From the preliminary results it is possible to
conclude that the proposed OCD-FI infrastructure has
the potential to become an efficient mechanism for
verifying and validating the fault tolerance
characteristics of microprocessor based systems. When
compared with other alternatives, it provides an
efficient methodology for fault injection, both in terms
of reusability, resource coverage, performance and
cost. The FI module main advantage is the possibility
of injecting precisely controlled faults on CPU
memory elements without stopping the program
execution and without changing the target software or
hardware. Major benefits are the minimum delay that
minimizes the risk of the CPU accessing the target
memory during the fault injection process and the
possibility of using it in the simulation phase,
prototyping phase or on the final device.

The compliance with the NEXUS proposed
standard provides a common basis for the development
and enhancement of the proposed methodology. In this
sense, the OCD-FI concept can easily be extended to
any NEXUS compliant microprocessor and even to
other architectures as the more complex functions are
performed by the OCD infrastructure. As a downside,
there is the need of an adequate OCD infrastructure
and the ability to modify it (to include the FI module).

The ongoing work is focused on verifying the
applicability of this fault injection approach to
different fault tolerance solutions and microprocessor
architectures.

5. References

[1] A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr,

“Basic concepts and taxonomy of dependable and secure
computing”, IEEE Transactions on Dependable and
Secure Computing, Volume 1, Issue 1, Jan 2004.

[2] P. Yuste , D. de Andrés , L. Lemus , J.J. Serrano, P.J.
Gil, “INERTE: Integrated NExus-Based Real-Time Fault
Injection Tool for Embedded Systems”, The
International Conference on Dependable Systems and
Networks, San Francisco, USA, June 2003.

[3] “The Nexus 5001 Forum Standard for a Global
Embedded Processor Interface version 2.0”, IEEE-ISTO
5001, 2003.

[4] Giovanni Ferrante, “CPUGEN 2.00”, 2003.
[5] R. Velazco, R. Ecoffet, F. Faure, “How to characterize

the problem of SEU in processors & representative errors
observed on flight”, 11th IEEE International On-Line
Testing Symposium, Saint Raphael, France, July 2005.

