
Real Time Fault Injection Using a Modified Debugging Infrastructure

André V. Fidalgo1,2, Gustavo R. Alves1, José M. Ferreira2

 anf@ isep.ipp.pt gca@isep.ipp.p jmf@fe.up.pt
1Instituto Superior de Engenharia do Porto

2Faculdade de Engenharia da Universidade do Porto

Abstract

Dependability is a critical factor in computer
systems, requiring high quality validation &
verification procedures in the development stage. At
the same time, digital devices are getting smaller and
access to their internal signals and registers is
increasingly complex, requiring innovative debugging
methodologies. To address this issue, most recent
microprocessors include an on-chip debug (OCD)
infrastructure to facilitate common debugging
operations. This paper proposes an enhanced OCD
infrastructure with the objective of supporting the
verification of fault-tolerant mechanisms through fault
injection campaigns. This upgraded On-Chip Debug
and Fault Injection (OCD-FI) infrastructure provides
an efficient fault injection mechanism with improved
capabilities and dynamic behavior. Preliminary results
show that this solution provides flexibility in terms of
fault triggering and allows high speed real-time fault
injection in memory elements.

1. Introduction

Dependability is extremely important in safety
critical applications. Dependable systems are designed
to handle errors that originate from software or
hardware faults and must be able to recover from them
while maintaining acceptable operating conditions. The
potentially destructive nature of a failure and the long
error latencies make it difficult to identify the cause of
failures in field operation and in the normal time that it
takes for a failure to occur. Experimentation with a real
device provides a better study scenario and helps to
improve its dependability. This experiment-based
approach requires knowledge of the system
architecture and behavior and especially of the
mechanisms implemented to provide tolerance to
faults, errors or failures, i.e. the events leading to a
service failure on microprocessor based systems [1].
Specific instruments and tools must be used to induce

hazards and monitor their effects. In the case of
microprocessor systems, access to internal resources is
of utmost importance. Many of today’s
microprocessors support access through dedicated
built-in debug circuitry, which is often referred as on-
chip debug (OCD). The use of these OCD
infrastructures for fault injection purposes is an
efficient solution for verifying and validating fault
tolerant designs. This paper describes recent research
on the extension of a fault injection environment in
order to allow efficient real time fault injection. Two
techniques were evaluated, one based on a customized
debugger and the other going a step further and
proposing the upgrade of the OCD infrastructure itself.

The next section provides an overview of fault
injection methodologies used on microprocessor
systems. Section 3 presents the system used in our case
study, consisting of a fault injection oriented debugger,
and also proposes a modification to existing OCD
infrastructures to enable enhanced fault injection.
Section 4 presents the experimental results obtained so
far and section 5 discusses these results and discusses
future work directions.

2. Fault Injection in Microprocessors

Usage of fault-tolerant components is one way to
achieve dependability. In such cases fault injection can
be used to:

Identify design or implementation faults.
Verify & validate and fault tolerance capabilities.
Estimate how often failures will occur and evaluate
the consequences of such failures.
Fault injection is normally structured in campaigns,

each campaign comprising a series of experiments
during which the target system is in operation (a
specific workload is activated) and a specific fault (or
set of faults) is inserted at specific trigger conditions.
The target system behavior is monitored and
information is recorded as comprehensively as

Proceedings of the 12th IEEE International On-Line Testing Symposium (IOLTS'06)
0-7695-2620-9/06 $20.00 © 2006 IEEE

necessary and possible, to understand and evaluate the
effects of the inserted faults. Existent microprocessor
fault injection techniques are commonly classified in
three broad groups, namely (1) simulation based fault
injection; (2) software based fault injection (SWIFI);
and (3) physical fault injection. Simulation techniques
can be used on an early phase of development but are
often time-consuming and may lack fault coverage as
they are intrinsically dependant on the quality of the
model. SWIFI techniques are less expensive but
require modifications to the running code (which in
fact modifies the target system) and faults can only be
inserted in those resources that are accessible by
software. Physical fault injection usually allows a
better representation of real world faults but it is
usually more expensive and less controllable.

The hardest part of microprocessor fault injection is
how to access those internal elements where faults are
more probable, generally the memory elements and
communication buses, without disturbing any running
applications. OCD infrastructures provide access to
internal resources in parallel with the target hardware
and running software, being an excellent mechanism
for modifying register and / or memory values (i.e.
insert faults) and subsequently retrieve the data
necessary for result analysis. The non-intrusive nature
of this form of fault injection is in itself an added-
value, as it requires no modification to the target
system. Most fault injection techniques that use OCD
rely on halting the processor, either by the use of
external control signals or via breakpoints, and
subsequently modifying the target registers or memory
locations to emulate a fault. The usual approach
involves a host machine running the fault injection
campaign and a debugger accessing the target
infrastructure. As a technological solution, the major
problem with OCD is the lack of a consistent set of
capabilities and of a standard communications interface
across processor architectures.

An industry consortium has been working on the
establishment of a standard for OCD, which is formally
designated “IEEE-ISTO 5001, The Nexus 5001 Forum
Standard for a Global Embedded Processor Debug
Interface” [2]. If widely adopted, it will be possible to
use the same debugger to access the core of multiple
processors and to use a similar set of debugging
features with all of them. This standard is still in a
proposal phase, but it represents an interesting
possibility for the development of common fault
injection methodologies addressing the verification &
validation of dependable microprocessor based
systems.

Experimental work has been done in our research
group and in the DISCA-UPV [3] using real-time fault

injection on a MPC565 based system, which is the
most widely used NEXUS compliant microprocessor.
The results obtained confirmed our expectations and
enabled the identification of some shortcomings
concerning fault triggering and performance issues.
Our experiments confirmed that it is possible to insert
faults in the memory space on-the-fly and then use the
trace information gathered as an effective means to
analyze program flow, before and after fault activation.

However, two problems arose from these
experiments, which are important for all real time fault
injection devices. As most NEXUS compliant
debuggers [4] [5] communicate with the host PC
through Ethernet or USB connections, this
communications channel imposes a bottleneck on the
time required for memory access. The time required to
read the contents of a memory cell and to write back a
modified value is in the order of milliseconds. This
delay allows the initial data to be overwritten by the
application running on the target system, the magnitude
of the problem depending of the running application
and memory position targeted. In the case of small
applications or frequently used memory cells, it
becomes impossible to insert the desired type of fault
without halting program execution. The second
problem consists of the triggering of a fault. The
required information is not readily available (even
when using watchpoints or reading trace data without
halting the processor), as it must reach the host
machine before it can be acted upon. This additional
delay effectively prevents its use for fault triggering,
limiting the available options to time-based
approaches.

This last problem can be solved by adding reactive
behavior to the debugger, to enable it to perform a
write operation upon the detection of a specific signal
or message from the target system. The insertion of a
specific fault on a memory cell used by a running
application is mainly a performance problem. Reducing
the writing delay of the fault injection process
minimizes the probability of the cell being accessed by
the target in the meantime.

3. Case Study

3.1 Target System

The use of a NEXUS compliant device benefits
from the useful debugging features defined in the
standard and increases the domain of immediate
applicability of the proposed solutions. As neither the
current commercial NEXUS debuggers nor the
compatible CPUs are easily modifiable, an alternative
microprocessor core where a NEXUS compliant OCD

Proceedings of the 12th IEEE International On-Line Testing Symposium (IOLTS'06)
0-7695-2620-9/06 $20.00 © 2006 IEEE

infrastructure could be implemented was selected. A
customized debugger was also necessary, as available
devices require specific libraries for each target. The
OCD and the debugger were developed in the form of
VHDL modules, to ensure portability and to maintain a
high level of compatibility with different target
architectures. In this way a complete proof-of-concept
solution was tested and the requirements for its
migration to existent systems (or to those under
development) were evaluated.

The cpugenerator [6] building tool was selected to
create the microprocessor targets. This tool is publicly
available through opencores [7] and allows the
automatic creation of 4, 8, 16 or 32 bit RISC
microprocessor cores, enabling the configuration of
several parameters such as bus type, interrupt support
features and memory configuration.

The OCD version implemented on the target system
is NEXUS Class-2+ compliant (all Class 2 plus some
Class 3 features) and includes some customization
capabilities to make it compatible with different CPU
configurations, requiring only minor adjustments. The
target application for testing is a matrix_addFT
program, which is a fault tolerant version of a matrix
adder. Fault tolerance is achieved by duplicating each
arithmetic operation and then comparing the obtained
results; any difference will trigger an error detection
routine. Although not as powerful as hardware fault
tolerance, this solution enables some degree of
dependability without requiring modifications to the
hardware, at the cost of memory space and
performance penalty.

The NEXUS standard defines a minimum set of
debugging features, the interface port and the
communication protocol. The implemented features
include all common OCD features plus real time access
to memory. The interface with the outside world is
made using the AUX port option, which provides two
message data buses for OCD data input and output
along with independent clock and control signals. Two
additional event pins allow halting the processor and
exact timing for watchpoint / breakpoint signaling.
The communication protocol was implemented as
defined in the standard, with all mandatory messages
being implemented and two optional messages added
for internal register access and OCD configuration. The
OCD infrastructure is divided in three main modules
and two bus access modules as represented in Figure 1.
The thinner arrows represent control and status signals
and the thicker arrows represent the flow of data and
trace information. The FI module represented is not
included in the original OCD and is used to build the
OCD-FI version explained further ahead on this paper.

Figure 1 – The OCD Infrastructure

The MQM (Message Queuing and Management)
module implements the NEXUS message handler and
the OCD controller. It translates all debugging
operations into messages and vice versa, manages the
message queues and provides the necessary control
signals to the other modules. The message queues are
implemented using FIFO (First-In First-Out) memory
blocks and in the case of an overflow, an error message
is sent from the MQM module to the debugger, via the
NEXUS port.

The RCT (Run Control & Trace) module receives
commands from both the MQM and RWA modules
and outputs trace data and watchpoint hit signals. It
also controls the CPU core clock and the signals
required to identify branch and exception occurrences
on the running application. It is possible to use up to
two instruction and one data breakpoint and both types
can be activated at the Nth occurrence of their trigger
condition. Additionally a watchpoint may be generated
in the same manner as either type of breakpoint. The
RCT is linked to the Bus Snooper which is used to
monitor data and instruction bus activity, to allow
program trace and breakpoint / watchpoint generation.
Program trace is performed using branch trace
messaging as defined in the NEXUS standard,
accounting for executed instructions and signaling
branch and exception occurrences.

The RWA (Read & Write Access) module is used to
access both the OCD registers and the CPU resources
(memory and registers). A register (RAW_REG) is
used to store the data and address of the next read /
write operation, as this information takes several clock
cycles to be transmitted by the MQM module. Conflicts
in RAM access are handled by the bus master with the
OCD taking priority on access by default. As inputs
and outputs are handled by the processor as directly
mapped addresses it is possible to access those
resources in the same manner as they would be
accessed by the microprocessor.

Proceedings of the 12th IEEE International On-Line Testing Symposium (IOLTS'06)
0-7695-2620-9/06 $20.00 © 2006 IEEE

3.2 Fault Injection Environment

In the case of microprocessor systems with built-in
debugging mechanisms two areas where the fault
injection capabilities can be improved are the debugger
and the OCD itself. In an effort to be as comprehensive
as possible, experiments were conducted on both areas
and the results compared. The selected fault model is
used in most common fault scenarios for
microprocessor based critical systems [8] and consists
of single bit-flip faults in random memory elements,
occurring at random moments during the application
execution. The fault trigger can be any instruction
occurrence of the application currently running,
covering the entire execution time. The fault location
can be any resource accessible via the OCD, including
memory, internal registers and stack. All experiments
are structured into fault injection campaigns, and each
of them defines a set of fault injection operations where
a specific fault location and trigger are selected. In each
of such operations the processor is reset and the
application runs from start. Each campaign is generated
by an external tool and then described as a script that
includes the necessary messages to be sent to the OCD
infrastructure, both for configuration and data
collection. The initialization phase loads the
application into memory and sets up the OCD
infrastructure as required by the specific operation. The
target memory value at the moment of the injection
must be determined beforehand, using either the
knowledge of the running application code or a prior
fault-free execution up to the fault triggering instant,
and then using the OCD to read the relevant memory
cell contents. In this manner it is possible to determine
the value that should be stored, so that a single bit-flip
is caused on the target with a single write operation.

The fault injection campaigns can be used for
experimental evaluation of the target device fault
tolerant characteristics and preliminary results were
analyzed to evaluate the fault injection procedure itself.
The normal fault injection scenario consists of the
NEXUS compliant target microprocessor, a host
machine running the fault injection campaigns and a
debugger connecting both. This scenario is represented
on Figure 2, where boxes #1 and #2 may represent
simulation modules, physical devices or parts of the
same FPGA.

Figure 2 – Fault Injection Scenario

Each fault injection operation consists of loading the
input memory bank with a series of instructions
describing the steps required for its execution. These
include the necessary OCD set-up and application
loading steps. After these are completed the debugger
waits for the triggering condition to be met which will
be signaled by a watchpoint hit signal. Although the
debugger allows an instant reaction to this signal, the
actual fault insertion still requires the transmission and
decoding (by the OCD) of at least one complete
message. During the entire operation the output
memory records the trace messages that are sent by the
OCD, to enable the reconstruction of program flow and
fault effect analysis. After the application runs the
OCD may be used to check if all final results are
correct. All steps can be done with the target processor
running normally, but the fault activation may only
take place after this set up is performed. The program
trace is not affected and operates normally before,
during, and after the fault injection process, reacting
exactly as if a “real” fault was inserted.

3.3 FI Module

The On-Chip Debug and Fault Injection (OCD-FI)
concept proposed on this paper consists of an
additional hardware module that automatically inserts
faults on the occurrence of a triggering condition,
without further commands from the debugger. This
Fault Injection (FI) module is represented in Figure 3
and is implemented within the OCD circuitry reusing
some of the debugging functions that are already
implemented.

Figure 3 – Fault Injection Module

Two requisites have to be met by the OCD
infrastructure to enable the usage of this module,
namely:

Write operations must be executed on the activation
of a specific control signal that can be controlled by
the FI module. This may be performed by pre-
loading one or more registers prior to the write
operation itself.
The OCD must signal watchpoint occurrences and
this signal must be available to the FI module.
Alternatively, a breakpoint signal may be used, but
for real time operation the actual halting of the
execution must be inhibited.

Proceedings of the 12th IEEE International On-Line Testing Symposium (IOLTS'06)
0-7695-2620-9/06 $20.00 © 2006 IEEE

Depending on the actual OCD architecture, some
additional logic may be necessary for signal
multiplexing and status control. Once enabled the FI
module monitors the watchpoint or breakpoint signal,
so that it can activate a fault injection action. The input
signals FI_SEL and FI_VAL are used to access the
FI_EN register, which enables and configures the FI
module. The TRIGGER input prompts the execution of
the FI operation. The output signal (FI_EXEC) is used
to activate a memory write operation in order to insert a
single bit-flip fault at a given address. This approach
requires that both the data value to be written and the
respective memory address that were previously
determined be preloaded in the OCD register
(RAW_REG) that is used for data writing. The required
data must be downloaded to the OCD infrastructure
prior to the watchpoint occurrence, and the RAW_REG
register must not be rewritten until the actual fault
activation. Once the fault is inserted, the FI module
disables itself and all the OCD resources can then be
used normally. Two dedicated (optional) NEXUS
messages are used, one to enable and configure the FI
module and the other one to set up the address and data
values for the actual fault injection. Fault triggering can
be done using either a breakpoint or a watchpoint. The
watchpoint option allows the injection of faults without
stopping the target system but can only be used for
memory, as access to internal register requires the
system to be halted. For the insertion of faults in
internal registers or the stack it is necessary to add a
breakpoint with the same address as the watchpoint, to
ensure that the processor is halted when fault injection
takes place. In this case, the signal used for fault
activation can also be used to restart program
execution, as represented in Figure 3 in the form of a
dotted line. In this case the OCD-FI infrastructure
allows the insertion of faults in all resources mapped in
the OCD, with a minimum time delay. The FI module
can also be programmed prior to the application start or
in runtime, the only limiting factor being the fault
activation instant.

4. Experimental Results

Three CPU configurations were used differing only
in terms of bus width, all including full interrupt
support and internal stack. All configurations include
separate ROM and RAM banks on the target system,
the first for storing the program code and the later for
application data. The fault campaigns were structured
as follows:

For the sake of simplicity, fault campaigns are
divided between those where activating the fault

injection can be done with the processor running
and those where it must be done during set up.
The instruction address that triggers each fault
injection is randomly generated from the accessed
ROM space and each target memory position is also
randomly selected from the used RAM space.
The OCD is configured once at the beginning of the
campaign, which is then loaded into memory and
the experiments executed sequentially.
The results are retrieved after all the experiments
are complete, their analysis being performed
externally to check if the final results are correct
and if the fault was detected.
Each set of fault campaigns was executed on each of

the configurations and repeated using both the original
OCD and the OCD-FI infrastructure. After simulating
several fault campaigns the following conclusions,
relative to the fault injection processes, were reached:

The OCD-FI infrastructure does not degrade the
maximum microprocessor clock frequency, and it is
possible to use the same frequency for all clocks.
Each infrastructure requires a minimum number of
clock cycles for system set up prior to each fault
injection operation and for the writing operation
itself, as represented in Table 1. Set up time
assumes that all configuration registers are already
set up (prior to the fault injection) and writing time
is measured from the watchpoint hit to the writing
instant of the intended value into memory.

Table 1 – Fault Injection Delay (in CLK cycles)
 OCD OCD-FI

CPU Set up Writing Set up Writing
8 bit 13 14 28 2
16 bit 14 18 32 2
32 bit 14 21 36 2

If targeting internal microprocessor registers,
execution must be halted for only 2 additional clock
cycles if using the OCD-FI infrastructure, which
increases slightly the time interval required to run
each fault campaign.
If using only the OCD for register access, the time
interval during which the processor must be halted
is 2 clock cycles higher that the time required for
memory writing.
When using only the OCD some experiments return
meaningless results because the CPU writes on the
memory cell being targeted before the fault is
inserted. This did not happen with the OCD-FI.
The number of equivalent gates for each module and

each CPU configuration is presented in Table 2. The
number of gates required for the Bus Snooper and the
Bus Master modules are included in the RCT and
RWA counts, respectively.

Proceedings of the 12th IEEE International On-Line Testing Symposium (IOLTS'06)
0-7695-2620-9/06 $20.00 © 2006 IEEE

Table 2 – Area Overhead
8 bit CPU 16 bit CPU 32 bit CPU Modules # Gates % # Gates % # Gates %

CPU core 9166 N/A 20212 N/A 53717 N/A
RCT 2391 34 3730 31 5113 27
RWA 369 5 516 4 643 3
MQM 4225 60 7715 65 13045 69

FI 75 1,1 75 0,6 75 0,4
OCD-FI 7060 100 11961 100 18876 100
Debugger 766 N/A 817 N/A 1079 N/A

Synthesis results confirm that the logic overhead of
the FI module is minimal. It is also possible to see that
a simple NEXUS compliant debugger loaded only with
fault injection campaigns management and results
storage requires comparatively little space on a
programmable device. The area of the OCD itself is
comparatively large, as the implemented CPU cores are
rather simple in terms of registers and instruction
support. This effect is less notorious as the CPUs
increase in complexity, because the OCD area mostly
depends on the size and complexity of the
communication buses.

5. Conclusions and Future Work

From the available results it is possible to conclude
that the proposed OCD-FI infrastructure is an efficient
mechanism for verifying and validating the fault
tolerance characteristics of microprocessor based
systems. The implementation of a fault injection
oriented debugger allows the inclusion of some
features that are lacking in the majority of commercial
devices, as they are not required for most debug
operations. The FI module main advantage is its
extremely fast reaction time. When compared with
other alternatives, it provides an efficient methodology
for fault injection, both in terms of reusability, resource
coverage, performance and cost. If the necessary HDL
modules are available, the OCD-FI can be used for
fault injection in the simulation phase, prototyping
phase or in the final device. Faults can be inserted on
most CPU resources with a minimum delay, allowing
non-intrusive and fast fault injection campaigns. The
achieved performance is better when targeting memory
space and when the faults are not injected early in the
application execution. In this case, fault campaigns can
be executed almost as fast as it takes to run the target
application and without stopping it. Even in less than
ideal circumstances, either by targeting microprocessor
registers or injecting early faults in memory, it is a very
efficient mean to execute fault injection campaigns.

The compliance with the NEXUS proposed standard
provides a common basis for development and
enhancement of the proposed methodology. In this
sense, the OCD-FI concept can easily be extended to
any NEXUS compliant microprocessor and even other
architectures as the more complex functions are
performed by the OCD infrastructure. As this is already
required for debug purposes, the added FI module
provides considerable advantages with a very low logic
overhead. It should be easy to add to most devices, and
with eventual modifications it is a lightweight solution
for most microprocessor architectures. As an added
feature, the debugger may be included into the same
programmable device as the target system, therefore
ensuring best performance and reducing the necessary
resources and associated costs, the only limitation
being the availability of memory for data storage. As a
downside, an adequate OCD infrastructure is needed
and both the OCD and the target CPU must be
available in the form of an HDL model. If injecting
faults on a physical device, an external debugger is also
required along with an adequate communications
channel. The ongoing work addresses the applicability
of this fault injection approach to different scenarios
and fault tolerant architectures. Different target
systems are also being considered, the LEON [9] being
a good prospective target due to its possible use in
space missions, where dependability is of utmost
importance.

6. References

[1] “Basic concepts and taxonomy of dependable and secure
computing”; A. Avizienis, J.C. Laprie, B. Randell, C.
Landwehr; IEEE Transactions on Dependable and Secure
Computing, Volume 1, Issue 1; Jan 2004.
[2] “The Nexus 5001 Forum Standard for a Global Embedded
Processor Interface version 2.0”, IEEE-ISTO 5001 2003.
[3] “INERTE: Integrated NExus-Based Real-Time Fault
Injection Tool for Embedded Systems”; Yuste P., de Andrés
D., Lemus L., Serrano J. J., Gil P. J.; The International
Conference on Dependable Systems and Networks; San
Francisco, USA; June 2003.
[4] www.isystem.com
[5] www.lauterbach.com
[6] “CPUGEN 2.00”, Giovanni Ferrante, 2003.
[7] www.opencores.org
[8] “How to characterize the problem of SEU in processors &
representative errors observed on flight”; R. Velazco, R.
Ecoffet, F. Faure; 11th IEEE International On-Line Testing
Symposium; Saint Raphael, France; July 2005.
[9] www.gaisler.com

Proceedings of the 12th IEEE International On-Line Testing Symposium (IOLTS'06)
0-7695-2620-9/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

