
An Enhanced Debugger for Real-Time Fault Injection

André V. Fidalgo1,2, Gustavo R. Alves1, José M. Ferreira2

 anf@isep.ipp.pt gca@isep.ipp.pt jmf@fe.up.pt
1Instituto Superior de Engenharia do Porto

2Faculdade de Engenharia da Universidade do Porto

Abstract

This paper presents a case study on the reuse of the
on chip debug infrastructures, present in most recent
microprocessors, to execute real time fault injection
campaigns. It is based on a debugger customized for
fault injection and designed for maximum performance
and flexibility. The developed methodology can be
applied on the verification of dependable systems.

1. Introduction

As electronic systems increase in complexity and
decrease in size their correct operating behavior is
becoming harder to guarantee. Fault injection is a
possible solution to test fault effects and tolerance in
order to evaluate the target system dependability.
Specific instruments and tools must be used to induce
faults and monitor their effects and in the case of
microprocessor systems, access to the internal
resources is of utmost importance. Many of today’s
microprocessors provide such access through
dedicated built-in debug circuitry, often designated as
on chip debug (OCD). This paper describes recent
research on real time fault injection (i.e. without
halting application execution) using such devices,
based on the development and use of a debugger
optimized for fault injection.

A major problem with OCD is the lack of a
consistent set of capabilities and communications
interface. An industry consortium has been working on
the establishment of a standard for OCD, which is
designated as “IEEE-ISTO 5001, The Nexus 5001
Forum Standard for a Global Embedded Processor
Debug Interface” [1]. The feature set that this standard
proposes provides a useful set of tools for real time
fault injection in the form real time access to memory
and on-the-fly program and data trace. Experiments
with commercial compliant devices, namely the
MPC565 microprocessor and compatible debuggers,
show that the available features and performance are
somewhat limited for real time fault injection [2].

2. Case Study

The debugger used for the presented case study was
developed as a customized solution for real time fault
injection on NEXUS compliant devices. The fault
injection environment used consists of a target
microprocessor with a compliant OCD, the debugger
running the fault injection campaigns and the host
machine being used for set up and data analysis. This
is represented in Figure 1 .

Host Machine
(PC Computer)

Debugger (FI)

Trace Data

Data
 Link

Campaign Data

NEXUS DebuggerNot Used during Fault Injection

 CPUOCD

Target CPU

NEXUS

Figure 1 – Fault Injection Environment

The customized debugger consists of a controller
core connected to two memory banks and to a NEXUS
debug port, as represented in Figure 2.

Figure 2 - Debugger

All elements were designed to optimize the fault
injection process, with emphasis on execution speed.
The debugger core is a simple processor type device
that (1) fetches commands from the input memory; (2)
stores trace data on the output memory; (3) controls
execution and communications and (4) manages
possible error conditions. The fault injection
experiments were structured into campaigns, each one
defining a set of operations where a specific trigger
condition (instruction address) and fault coordinates
(location x value) were selected. Each campaign is

described as a script with the necessary commands
stored into the debugger memory. After the initial set
up, the debugger waits for the triggering condition to
be met (signaled by a watchpoint hit) before sending a
message to the OCD instructing it to write into the
target memory position the intended faulty value.
During the entire operation the output memory stores
the trace messages that are sent by the OCD (via
debugger), to allow a subsequent fault effect analysis.

3. Experimental Results

A single 32 bit RISC CPU core and three different
OCD (and compatible debugger) configurations were
used, as summarized in Table 1, where the MPC565 is
included for comparison.

Table 1 - Target System Configurations

Configuration CLK
(MHz)

MDI
(bits)

MDO
(bits)

Normal 25 2 bits 8 bits
Extended 25 4 bits 8 bits
Parallel 25 Parallel Link (72 bits)
MPC565 40 2 bits 8 bits

The Normal and Extended configurations vary in
terms of NEXUS port width and on the size of the
internal message buffers, with MDI being the Message
Data In bus and MDO the Message Data Out bus.
Normal represents a configuration equivalent to the
best available for the MPC565 microprocessor and
Extended represents an improved configuration for
faster memory writing. The Parallel configuration
replaces the NEXUS communication elements present
on the OCD by synchronous access to the OCD input
signals and requires a special version of the debugger.

The simulation of about 100 fault campaigns,
targeting memory space and triggered by the running
application, repeated for each configuration, returned
the results presented in Table 2. In this table
inconclusive results represent experiments that had to
be discarded due to the running application interfering
with the fault injection process, and fault injection
delay represents the time interval between the meeting
of the trigger condition and the actual insertion of the
faulty value. The synthesis results for the main
components are also presented.

Table 2 – Fault Injection and Synthesis Results
Configuration Normal Extended Parallel

Inconclusive Results 4% 3% 0%
Fault Injection Delay

(In Clock Cycles) 38 21 3

CPU Core 53717
OCD 17601 18801 15211

Equivalent
Logic
Gates Debugger 992 1079 820

The following analysis is also possible at this stage:
• It wouldn’t be possible to execute the same fault

campaigns (on real time) on a system using an
MPC565 and a commercial controller as the
reaction delay would be too high.

• The width of the communication bus between the
debugger and the OCD clearly affects the
performance of the fault injection process, with
the use of larger buses reducing the occurrence of
inconclusive results.

• The synthesis results confirm that the debugger
(tasked only with fault campaign management
and results storage) requires comparatively little
space on a programmable device.

4. Conclusions

Dependability evaluation efforts sometimes neglect
the possibilities of powerful OCD infrastructures,
present on the target device, even knowing that their
use as a mean to execute non-intrusive fault injection
campaigns is often a good solution in terms of
performance and capabilities. Our case study shows
that the use of an optimized debugger and an OCD
with real time access capabilities allows the execution
of real time fault campaigns on the target memory
space. The main advantage of this fault injection
solution is the debugger capability to manage the entire
fault injection process. Although the host machine is
responsible for downloading the campaign data to the
debugger and uploading the trace data after the
campaign execution, the entire process is executed
autonomously by the debugger. The possibilities in
terms of fault triggering and fault injection delay are
dependent on the OCD capabilities, with
communication speed being a key factor. The use of
larger communications ports allows faster operation
and therefore minimizes the risk of the running
application interfering with the process. The
standardization of OCD capabilities and access ports
would also benefit the reusability of this fault injection
approach.

5. References

[1] “The Nexus 5001 Forum Standard for a Global
Embedded Processor Interface version 2.0”, IEEE-ISTO
5001, 2003.

[2] Fidalgo A., Alves G., Ferreira J., “A Modified Debugging
Infrastructure to Assist Real Time Fault Injection
Campaigns”, 9th IEEE Workshop on Design and Diagnostics
of Electronic Circuits and Systems (DDECS), Prague, Czech
Republic, Mar 2006.

