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Abstract 
 

This paper presents a case study on the reuse of the 
on chip debug infrastructures, present in most recent 
microprocessors, to execute real time fault injection 
campaigns. It is based on a debugger customized for 
fault injection and designed for maximum performance 
and flexibility. The developed methodology can be 
applied on the verification of dependable systems. 
 
1. Introduction 
 

As electronic systems increase in complexity and 
decrease in size their correct operating behavior is 
becoming harder to guarantee. Fault injection is a 
possible solution to test fault effects and tolerance in 
order to evaluate the target system dependability. 
Specific instruments and tools must be used to induce 
faults and monitor their effects and in the case of 
microprocessor systems, access to the internal 
resources is of utmost importance. Many of today’s 
microprocessors provide such access through 
dedicated built-in debug circuitry, often designated as 
on chip debug (OCD). This paper describes recent 
research on real time fault injection (i.e. without 
halting application execution) using such devices, 
based on the development and use of a debugger 
optimized for fault injection.  

A major problem with OCD is the lack of a 
consistent set of capabilities and communications 
interface. An industry consortium has been working on 
the establishment of a standard for OCD, which is 
designated as “IEEE-ISTO 5001, The Nexus 5001 
Forum Standard for a Global Embedded Processor 
Debug Interface” [1]. The feature set that this standard 
proposes provides a useful set of tools for real time 
fault injection in the form real time access to memory 
and on-the-fly program and data trace. Experiments 
with commercial compliant devices, namely the 
MPC565 microprocessor and compatible debuggers, 
show that the available features and performance are 
somewhat limited for real time fault injection [2]. 

2. Case Study 
 

The debugger used for the presented case study was 
developed as a customized solution for real time fault 
injection on NEXUS compliant devices. The fault 
injection environment used consists of a target 
microprocessor with a compliant OCD, the debugger 
running the fault injection campaigns and the host 
machine being used for set up and data analysis. This 
is represented in Figure 1 . 
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Figure 1 – Fault Injection Environment 

The customized debugger consists of a controller 
core connected to two memory banks and to a NEXUS 
debug port, as represented in Figure 2.  

 
Figure 2 - Debugger 

All elements were designed to optimize the fault 
injection process, with emphasis on execution speed. 
The debugger core is a simple processor type device 
that (1) fetches commands from the input memory; (2) 
stores trace data on the output memory; (3) controls 
execution and communications and (4) manages 
possible error conditions. The fault injection 
experiments were structured into campaigns, each one 
defining a set of operations where a specific trigger 
condition (instruction address) and fault coordinates 
(location x value) were selected. Each campaign is 



described as a script with the necessary commands 
stored into the debugger memory. After the initial set 
up, the debugger waits for the triggering condition to 
be met (signaled by a watchpoint hit) before sending a 
message to the OCD instructing it to write into the 
target memory position the intended faulty value. 
During the entire operation the output memory stores 
the trace messages that are sent by the OCD (via 
debugger), to allow a subsequent fault effect analysis.  

 
3. Experimental Results 
 

A single 32 bit RISC CPU core and three different 
OCD (and compatible debugger) configurations were 
used, as summarized in Table 1, where the MPC565 is 
included for comparison.  

Table 1 - Target System Configurations 

Configuration CLK 
(MHz) 

MDI 
(bits) 

MDO 
(bits) 

Normal 25 2 bits 8 bits 
Extended 25 4 bits 8 bits 
Parallel 25 Parallel Link (72 bits) 
MPC565 40 2 bits 8 bits 

The Normal and Extended configurations vary in 
terms of NEXUS port width and on the size of the 
internal message buffers, with MDI being the Message 
Data In bus and MDO the Message Data Out bus. 
Normal represents a configuration equivalent to the 
best available for the MPC565 microprocessor and 
Extended represents an improved configuration for 
faster memory writing. The Parallel configuration 
replaces the NEXUS communication elements present 
on the OCD by synchronous access to the OCD input 
signals and requires a special version of the debugger.  

The simulation of about 100 fault campaigns, 
targeting memory space and triggered by the running 
application, repeated for each configuration, returned 
the results presented in Table 2. In this table 
inconclusive results represent experiments that had to 
be discarded due to the running application interfering 
with the fault injection process, and fault injection 
delay represents the time interval between the meeting 
of the trigger condition and the actual insertion of the 
faulty value. The synthesis results for the main 
components are also presented. 

Table 2 – Fault Injection and Synthesis Results 
Configuration Normal Extended Parallel 

Inconclusive Results 4% 3% 0% 
Fault Injection Delay 

(In Clock Cycles) 38 21 3 

CPU Core 53717 
OCD 17601 18801 15211 

Equivalent 
Logic 
Gates Debugger 992 1079 820 

The following analysis is also possible at this stage: 
• It wouldn’t be possible to execute the same fault 

campaigns (on real time) on a system using an 
MPC565 and a commercial controller as the 
reaction delay would be too high. 

• The width of the communication bus between the 
debugger and the OCD clearly affects the 
performance of the fault injection process, with 
the use of larger buses reducing the occurrence of 
inconclusive results. 

• The synthesis results confirm that the debugger 
(tasked only with fault campaign management 
and results storage) requires comparatively little 
space on a programmable device. 

 
4. Conclusions 
 

Dependability evaluation efforts sometimes neglect 
the possibilities of powerful OCD infrastructures, 
present on the target device, even knowing that their 
use as a mean to execute non-intrusive fault injection 
campaigns is often a good solution in terms of 
performance and capabilities. Our case study shows 
that the use of an optimized debugger and an OCD 
with real time access capabilities allows the execution 
of real time fault campaigns on the target memory 
space. The main advantage of this fault injection 
solution is the debugger capability to manage the entire 
fault injection process. Although the host machine is 
responsible for downloading the campaign data to the 
debugger and uploading the trace data after the 
campaign execution, the entire process is executed 
autonomously by the debugger. The possibilities in 
terms of fault triggering and fault injection delay are 
dependent on the OCD capabilities, with 
communication speed being a key factor. The use of 
larger communications ports allows faster operation 
and therefore minimizes the risk of the running 
application interfering with the process. The 
standardization of OCD capabilities and access ports 
would also benefit the reusability of this fault injection 
approach. 
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