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Loss of hyperbolicity changes the number
of wave groups in Riemann problems

Vitor Matos'*, Julio D. Silva? and Dan Marchesin?

Abstract. The main goal of our work is to show that there exists a class of 2 x 2 Riemann
problems for which the solution comprises a single wave group for an open set of initial
conditions. This wave group comprises a 1-rarefaction joined to a 2-rarefaction, not
by an intermediate state, but by a doubly characteristic shock, 1-left and 2-right char-
acteristic. In order to ensure that perturbations of initial conditions do not destroy the
adjacency of the waves, local transversality between a composite curve foliation and a
rarefaction curve foliation is necessary.

Keywords: hyperbolic conservation laws, Riemann problem, structural stability, trans-
versality, adsorption systems.

Mathematical subject classification: 351.65, 35Q86, 35L67.

1 Introduction

The Riemann solutions for moderately nonlinear generic 2 x 2 systems of con-
servation laws are composed of a sequence of elementary waves, that is, contact
discontinuities, rarefactions and shocks of various types, and of constant states.
They are organized in waves groups, i.e, sequences of waves without any em-
bedded constant state.
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The following stands for generic Riemann initial conditions sets. Close to
a strictly-hyperbolic and genuinely-nonlinear point, the Riemann solution is
formed by two classical Lax waves, [6]. Failure of the two basic hypotheses
of Lax, genuine non-linearity and strictly hyperbolicity, has effects that were
studied over time. If genuine non-linearity is lost, the solution may be formed
by wave groups with several waves rather than by two simple waves, [7]. In the
presence of transitional (or undercompressive) waves (except for doubly char-
acteristic transitional waves), there are three wave groups, [2, 13]. On the other
hand, if doubly characteristic transitional waves were present in the solution then
there would exist more than three wave groups. Transitional waves and high am-
plitude solutions for small amplitude data, [10], were found in systems where
strictly hyperbolicity is lost.

The transport of a substance in a porous media without adsorption was studied
in [3]. In that model, the flux function depends on the viscous ratio of the two
fluids that changes with the concentration of the transported component. Despite
this dependence, the family of problems is degenerate in the sense that some
transversality condition fails everywhere.

In the present work, we study a class of conservation laws that models two-
phase flow in porous media with adsorption of a transported component. These
PDE’s respect certain symmetries imposed by the physics. We show that there
is an open set of initial conditions for which the Riemann solution consists
of only one wave group. In this single wave group, a slow-rarefaction joins a
fast-rarefaction through a doubly characteristic overcompressive shock. Within
the class of problems we are concerned, this new kind of solution is struc-
turally stable. The persistence of the doubly characteristic overcompressive shock
is related to a transversality condition that depends on the adsorption term.
We remark that this stability does not hold under general (and nonphysical)
perturbations.

The new phenomenon of structurally stable Riemann solutions with a single
wave group was found in [11], which built the complete Riemann solution for a
system modeling thermal multiphase flow in porous media. However, the solution
for a very similar Riemann problem in the context of polymer flooding was found
in [4]. In [11] and here, structural stability is given in the sense of [1], i.e., the
wave groups that comprise the Riemann solutions persist if both L and R states
are allowed to vary in open sets.

Due to the complexity of the original system, in [12] a new, simpler, fam-
ily of systems with two conservation laws was coined to reproduce the wave
patterns and interactions found in [11]. The effort was made of proving the ex-
istence of structurally stable Riemann solutions without intermediate constant
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state. However, since the physical nature of the original system was found, no
additional effort was made to guarantee that the family of systems given in [12]
itself represent any physical system.

The present work fills in the gap, showing that the phenomenon of structurally
stable Riemann solutions without intermediate constant states does appear in a
well known class of physical systems, namely the adsorption models, which is
still simple enough to allow the proof of most of the facts found in [12]. Fur-
thermore, we exploit properties of the adsorption models to provide a new and
stronger proof of the transversality that supports the existence of the aforemen-
tioned phenomenon.

2 Transport model with adsorption

We consider a class of systems of two conservation laws that models the motion
of two liquid phases in a porous media and the adsorption of a substance trans-
ported by a solvent. Here, 0 < s < 1 represents the saturation of the solvent, and
0 < ¢ < 1 represents the concentration of the chemical component transported
in the solvent. This is represented by the system of PDE’s

0 0
- —F = 1
8tG(s’C)+ ™ (s,c) =0, (D

where the accumulation and the flux functions are written as
T T
G(s,c) = <s, sc —l—ﬁ(c)) , F(s,c)= <f(s, c),c f(s, c)> , Where

2 2)

D(s, c)

f(S,C) =

is the fractional flow function, with D(s, ¢) = s> + R(c)(1 — s5)>. The viscos-
ity ratio between liquid phases R (c) depends solely on the concentration. The
adsorption term f is a smooth function of the concentration which satisfies the
following inequalities:

B(c)>0; B(c)>0 and p(c) > 0; 3)

in which each superimposed dot denotes a derivative with respect to the com-
position. In this work, the adsorption term B will play a similar role to the
perturbation of the flux that appeared in [12]. Setting S to zero, System (1) re-
duces to the model studied by [3], [5] and [8]. Setting ﬂ < 0, System (1) reduces
to the model studied by [4].
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2.1 Eigenvalues, Rarefactions, Coincidence and Inflection locus

Rarefaction waves are smooth self-similar solutions of Eq. (1), which satisfy
the generalized eigenvalue problem:

fs(s,¢) — A fe(s, ) )
cfs(s,c) —ch  f(s,c)+cfe(s,c) — (B(c) + s)A

By substitutingA = f; (s, ¢) into Eq. (4), one easily obtains that its first column
vanishes. Analogously, by substituting A = f(s, ¢)/ (B(c) + s) in Eq. (4), one
easily verifies that the second line will equal ¢ times the first one. Therefore, the
eigenvalues of Eq. (4) are given as:

(DF—ADG)r:[ }r=0. “4)

B B 25R(c)(1—)
Ay = fi(s,c) = D60 and
. fls,0) 52
s+ BO Dis,0)(Ble) +s)

Strict hyperbolicity is lost on the coincidence locus, defined as follows.

&)

Definition 1. The coincidence locus C is the null set of Ay — A..

Here, C is the union of the vertical axis with a smooth curve. Indeed, from
Eq. (5), we obtain that this curve is the zero level set of

(R(c) + 1)s + R(c) (2 B(c) — 1)s — 2R(c) B(c). (6)

A simple calculation verifies that (6) is smooth function with nonvanishing
gradient.

Lemma 1. The coincidence curve disconnects state space in two components
(see Fig. 1b).

Proof. To prove the lemma it is sufficient to observe that, forany 0 < ¢ < 1
fixed, the cubic polynomial p.(s) = (R(c) + 1)s* + R(c) (28(c) — 1)s —
27R(c) B(c)), see Eq. (6), has a single root s € [0, 1]. We have that p.(0) =
—2R(c) ﬂ (¢) < 0 and p.(1) = 1, therefore, the mean value theorem yields
that p.(s) has at least one root in [0, 1]. We now prove that this root is unique
in [0, 1]. The derivative p.(s) is a parabola with positive leading coefficient,
namely p.(s) = 3(R(c)+ 1)s? +R(2 B(c) — 1), and p.(0) = R(c)(2B(c) —1).
We have two cases: (i) for B(c) < 1/2 we have p.(0) < 0, then the cubic p,
has a maximum for s < 0 and a minimum for 0 < s. With no maximum in
0 < s < 1, there can be only one root therein; (ii) for ﬁ (c) > 1/2 the derivative
De is positive for s € R, thus p. has only one root. O
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(a) As = Ao f(s’c) (b) ¢

£(c) 1, C=1, 1, C=1,

Figure 1: Relative position of inflections and coincidence locus. (a) Sketch of the
fractional flow function f (s, ¢). The eigenvalue A is represented by the tangent
tothe graph of f. The eigenvalue A is represented by the slope of the straight line
that joins H = (—B(c), 0) to (s, f(s,c)). Black dot: H. Gray dot: saturation
inflection point. White dot: coincidence point. (b)Relative position on the space
state of the saturation inflection, 7, and the coincidence locus, C. Gray curve:
7,. Railway: C.

The eigendirections corresponding to A, and A. in Eq. (5) are spanned by:

ro= (1,07 and 1o = (fels, B +9). —ﬁ(s,c)(ﬁ(c)+s)+f(s,c))T. %

The matrix in (4) vanishes only at the intersection of the coincidence with the
null set of f.(s, c). We have f.(s,c) =0 & .’R(c) = 0, therefore we chose the
viscosity ratio to satisfy R(c) # 0 for all 0 < ¢ < 1, thus impliying that the
eigenvector of the compositional family r. does not vanish in state space. We
now focus on the states for which genuine nonlinearity is lost. The Inflection
locus associated to the saturation family is

7, = {(s, &) | V(5. ¢) - (s, ¢) = 2R(C)
(8)
x (2(R(@ +1)5* =3 (R(@) +1) > + R(©) =0 .

Lemma 2. The saturation inflection curve disconnects the state space in two
components (see Fig. 1D).

Proof. As was done in the previous Lemma we intend to show that, for any
fixed 0 < ¢ < 1, the cubic polynomial ¢.(s) = VA - (s, ¢) has a single root
ins € [0, 1]. Notice that, since the leading coefficient of ¢, is positive, we have
from g.(0) = 2R(c)*> > 0 and ¢.(1) = —2R(c) < O that its first root must

be smaller than 0, because lim;_, _, g¢.(s) = —o0; its second root must lie in
the interval [0, 1], because of the mean value theorem; and its third root must be
greater than 1, because lim,_, o, g.(s) = +00. Il
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The Inflection locus associated to the compositional family is
I ={(5,0) | Viels,©) - re(s, )

(£ 0@ +5) = f6.0) G0 ©)
: 3 =0,
(Be) +5)

Notice that the compositional inflection 7. and the coincidence C are the same
curve, because S(c) > 0. One can verify through the use of geometrical argu-
ments that 7; lies on the left-hand side of 7. = C, see Figure (1b). The concen-
tration ¢ decreases throughout a rarefaction of the compositional family, since
VA:(s, c) - r.(s, c) equals the second coordinate of .. (s, ¢) multiplied by the fac-
tor — f (s, ¢) B(c) / (,8 (c) + s)z, which is negative. The rarefactions are depicted
in Figure 2.

(a) < (b)

Figure 2: Railway: coincidence and inflection of compositional family. Solid
line: slow rarefactions. Double line: fast rarefactions. Arrows point to increasing
speed direction. (a) Rarefactions of saturation family. Gray line: inflection of
saturation family. (b) Rarefactions of compositional family.

2.2 Hugoniot curve
Discontinuous solutions of Eq. (1) must satisfy the Rankine-Hugoniot relation:
F(s,c) — F3,¢) —o(G(s,c) — G@3,¢) = 0. (10)

For a fixed (s, ¢) in state space one is usually concerned with the locus of states
(s, ¢) that satisfy Eq. (10); the resulting set is called the Hugoniot locus of the

base state (s, ¢). It satisfies:
X(B) —B@)+Y(—¢) =0, where (11a)
X(s,¢,5,¢) =51 —=35)>R@) —35>(1 —5)>R(c), and (11b)
Y(s, e, 3,¢) =525 (1 —3)?R©E) —s52 (1 —5)>R(c) — s25%(s — 3). (llc)
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From (11a) we see that ¢ = ¢ belongs to the Rankine-Hugoniot curve.
The shock speed is given by:

. s2(1 = $)?R(¢) — (1 — 5)°R(c)

o(s,c,s,c)= DG.ODG.O (12)

We outline the Hugoniot loci close to the coincidence in Figure 3. This figure
is based on both analytic and numerical evidence; major computations were
performed in Maple, [9].

(a) Nc (b) MNc
S
o S
; L
> S s > S

Figure 3: Black dot: left state .. Solid line: slow shocks. Double line: fast shocks.
Gray lines: Hugoniot points that do not represent shocks. Railway: coincidence.
(a) Hugoniot for L. on left of the coincidence. Black dot: extension of L (dou-
bly characteristic overcompressive shock). (b) Hugoniot for L. on right of the
coincidence.

2.3 Doubly characteristic shock

The construction of the Riemann solution relies on the fact that for any state (s, ¢)
in a neighbourhood of the coincidence curve there is a companion (s, ¢) # (s, ¢)
that lies on the intersection of the two branches of the Hugoniot locus, such
that the shock between (s, ¢) and (s, ¢) is doubly characteristic with respect to
the compositional speed: A.(s,¢) = o = A.(S, ¢), where o is the shock speed
in (10). Thus we introduce the following notation: for a set y (typically, a curve)
in state space, the extension set is

Fy) ={E.H136.0)ey; ¢=¢ and 0 =1:(5,0) }. (13)

Here the extension is the map defined by associating to every state (s, ¢)
near the coincidence curve its pair ‘F (s, ¢), for which one can construct a dou-
bly characteristic shock. This can be proved in a similar fashion as was done
in [12], if one assumes that the compositional branches of the Hugoniot locus
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are regular (here we just verified numerically this fact). The extension map can
be rewritten as:

FG,0) = (56,0),0), (14)
where §(s, ¢) is defined implicitly by (s — s) E(s, ¢, §) = 0, and

3, 8,§) = (R@) +1)5%§°

s Ay s (15)
+(3(B@ = 1) + B© (5 = 1)) RO 5 +3 BO RO,
Therefore, Z (s, ¢, §) = 0 excludes from the extension the trivial solution (s, ¢).
We intend to show that the extension of compositional integral curves is transver-
sal to the compositional eigen-direction field. First we need a definition:

Definition 2. The Singular Extension locus is the set of (s, ¢) where E has a
double root S.

This set will be the non-trivial (i.e., different from the coincidence curve) part
of state space for which the extension of the compositional rarefactions will
intersect tangentially the compositional eigen-direction field.

We record for later use the discriminant of £ given in Eq. (15):

48(c) (R(e) +1) 8> + R(c) 2 (c) — 1)7s?

. ., (16)
—2R(c) B(c) (2 B(c) — l)s + R(c) B (c).

Lemma 3. Let us denote by y(t), y(t) = r.(y(t)) an integral curve of the
composition family. Assume that no (s, ¢) € y is part of the Coincidence Locus
or the Singular Extension Locus. Then the extension of y is transversal to the
composition eigen-direction field, defined in Eq. (7). (The extension may lie
outside of the physical domain.)

Proof. Any non-null vector in the tangent space of ‘F(y(¢)) is parallel to
%f(y(t)) which equals:

d
77 v@®) = DF(y®)y ()

[_fs(y(t)) E(y (@) '|
E(y()  E®) | rpe)),

0 1

a7

where the derivatives on the first row were calculated by using the implicit func-
tion theorem in Eq. (15). Letus fix a t*, and write y (r*) = (s, ¢). For this choice
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of the parameter, there will correspond a doubly characteristic extension, which
we will denote by (s, ¢). Using this notation, the condition of transversality
between DF (s, ¢)r.(s, ¢), given by Eq. (17), and r.(s, ¢) can be written as:

T (3,¢,8) =det[ DF @, &)re(3,0), re(5,é) ] #0. (18)

The numerator of T is a fifth degree polynomial on s. We obtained the resultant
of T and £ (as polynomials on § with coefficients on (s, ¢)) with the Maple
software [9]. The resultant is the product of the following seven factors:

(@), BE@), RE, RE+1, DG, 3§ (19a)
(R@+1)3 + R (2@ —1)5 - 2RE p@) and (19b)

4B@) (R@) + 13 +RE 2@ —1)37
—2R(©) BE) (2B) — 1)3 + R (@) B*(0). (19¢)

Notice that Eq. (19b) vanishes on the coincidence curve, see Eq. (6), and Eq. (19¢)
vanishes at the singular extension locus, see Eq. (16). Those observations to-
gether with the hypothesis on 8, R and D(s, ¢) implies that for any (s, ¢) not
on the coincidence curve nor on the singular extension locus, all factors of the
resultant will be non-null and, therefore, Z and 7 will not have any coincid-
ing roots. This proves that at the extension (£ = 0) we have transversality

(T #0). O

Of course, by setting § = 0 this transversality disappears.

3 Riemann solution

A typical Riemann solution can be decomposed into a sequence of constant
states and wave groups: groups of elementary waves (shocks or rarefactions)
that move together as a single entity. We introduce the notation P 1 = P2to
express the fact that the states P1, P2 are connected by an elementary wave
w. Here, elementary shocks and rarefactions are saturation or compositional
transport waves; they may be slow or fast depending on the ordering between the
characteristic speeds, which varies. Deciding if a wave is a s-wave or an c-wave
for rarefactions is a matter of verifying which is the associated eigenvalue; for
shocks one must verify in which branch of the Hugoniot-locus lies the pair of
left, right states.

To construct the Riemann solutions we will use the R-Regions method, for
every left-state L, state space will be decomposed into a collection of N < oo
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@REDy LN .\;\“ !
4
'! . P \\rc (5,0

Figure 4: Transversality between the extension of slow compositional rarefaction
curves and the corresponding fast compositional rarefaction curves. Figures (a)
and (b): solid black lines, slow compositional rarefactions; double lines, fast
compositional rarefactions; gray lines, extension of slow compositional rarefac-
tions; railway, coincidence locus. Figure (a): Dashed black line, space spanned
by r.(s, ¢); Double dashed line, space spanned by r.(s, ¢); Dashed gray line,
space spanned by DF (s, ¢)r.(s, ¢); Pointed gray lines, representation of the
doubly characteristic shocks between states on the slow compositional rarefac-
tion and its extension (composite curve).

open sets (the R-Regions) which we will denote as K, 1 < K < N, such that the
Riemann solutions from the fixed left-state LL to the varying right-state R € K
will possess the same topology. Here, we will use roman numbers to identify
the R-Regions, which are depicted in Figure 5.a.

The elementary waves will be written as R for rarefactions and S for shocks.
Rarefaction waves may be slow (R™) or fast (R™). Shock waves may be slow,
fast or doubly characteristic (S¢). The waves may pertain to the compositional
family c, or to the saturation family s. We indicate that two adjacent elementary
waves join characteristically at an state M by appending a hat: M.

The Riemann solutions for any left state LL on the right-hand side of the coin-
cidence and sufficiently close to it are as follows (see Fig. 5.b):

(A) R states in 1, 111, VIII and IX. Those regions give rise to classical Lax
constructions, the solutions will be briefly described. Here, the intermediate
constant state will be denoted by A, B or C, accordingly to the solution.

S St Ry St

I: L—-— A—R, I: L— C - R, (20a)
RS RF S RF

vill . L — C — R, IX: L—-— B—5R; (20b)

(B) R statesin /I and V. In the transition from region / to region /1 as well as
from 111 to region IV, the fast compositional shock S becomes characteristic
with respect to the saturation family. The composite wave that follows joins
the fast S shock with the fast R} rarefaction at state N (notice that we depict
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Y‘
L A
VIII\( IX

Figure 5: Black circle: L left state. Single solid curves with arrows: slow rar-
efactions. Single dashed curves: slow shocks. Double solid curves with arrows:
fast rarefactions. Double dashed curves: fast shocks. Dotted lines: extensions
of slow wave curves from L. (a¢) Rough draft of the R-Regions. Railway: part
of the coincidence curve. (b) Stable solutions for R € K. Gray circles: M states
(see relation with letters A to E in section 3). Squares: N , 5 P and Q states.
White circles: R states. Dashed gray line: doubly characteristic overcompressive
shock. Shadowed region: single wave group solution.

(b)

the fact that two waves are characteristic by appending a hat on the state that
bounds them in the solution). The intermediate constant state B lies on the slow
saturation shock curve emanting from L, whereas the intermediate constant state
D lies on the slow saturation rarefaction curve emanating from L. The solution
is given as:
Ry S& =~ RY Sy S& =~ RY

l: L—B—N—R, IV: L—D—N—R. (21)

(C) Rstates in V. In the transition from region /V to region V the fast, charac-
teristic, compositional shock S ceases to exist. The slow saturation rarefaction
R is followed by a slow compositional rarefaction R, that lies in the left-hand
side of the coincidence curve. Those two slow rarefactions join at the state P,
which is depicted in the Riemann solution as P. The intermediate constant state
E lies on the compositional rarefaction curve emanating from state P.

RS =~ RS RS
V: L—P E R. (22)

(D) R states in VI. In the transition from region V' to region VI the fast,
saturation rarefaction R is replaced by a fast, saturation shock S;". This is a
classical construction, similar to case R € V.

Ry & RS S
vi: L— P— E— R. (23)
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(E) R states in VII.

This R-Region will contain the Riemann solutions without constant interme-
diate state. In the transition from region VI to region VII the fast, saturation
shock S;F becomes slow, thus it is not an option to reach the R states. However,
for each O state lying in the rarefaction curve emanating from P, there will cor-
respond a Q state on the extension of the referred rarefaction curve, for which a
doubly contact saturation shock can be constructed. From such Q state, an ad-
missible, fast, compositional rarefaction R} emanate; allowing us to complete
the Riemann solution:

Ry ~ RZ ~ S¢ ~ R
vil: L—P— O — Q — R (24)

The wave S¢ is a doubly characteristic compositional shock. This Riemann

solution is shown in Figure 6.

(@, to)
>

Figure 6: Sketch of the single wave group solution. (a) Ilustration of the
wave-curves in state space. (b) Diagram of characteristics in x¢ plane. (c) Satu-
ration s and composition ¢ profiles for a fixed time.

4 Single wave group for arbitrarily small rarefactions

Let a left state L be on the left-hand side of the coincidence sufficiently close to it
and out of the singular extension locus. There exists an open set of right states R

Bull Braz Math Soc, Vol. 47, N. 2, 2016



LOSS OF HYPERBOLICITY CHANGES THE NUMBER OF WAVE GROUPS 557

for which the solution comprises just a single wave group with arbitrarily small
compositional rarefactions waves, see Figure 7. This is a direct consequence of
Lemma 3, therefore, it holds for every model in our family.

Figure 7: Sketch of the single wave group solution for arbitrarily small compo-
sitional rarefactions. Black dot: left state, L. White dot: extension of L, F(L).
Solid line with arrows: slow compositional rarefaction, R . Dashed gray line:
doubly characteristic shocks, S¢. Railway: coincidence locus. Dotted line: ex-
tension of the slow compositional rarefaction, F(R_). Double line with arrows:
fast compositional rarefactions, R;. Shadowed area: R-region where the single
wave group solution for arbitrarily small compositional rarefactions holds.

We performed numerical experiments using the standard PDE integration
method and verified that, for our choices of the functions R and B, the
Riemann solutions without intermediate constant state persisted under pertur-
bations of the left and right states. See an example of a Riemann problem simu-
lated in Figure 8.
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