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Abstract
The detection of sound events has become increasingly important due to the development
of signal processing methods, social media, and the need for automatic labeling methods
in applications such as smart cities, navigation, and security systems. For example, in such
applications, it is often important to detect sound events at different levels, such as the
presence or absence of an event in the segment, or to specify the beginning and end of the
sound event and its duration. This study proposes a method to reduce the feature dimensions
of a Sound Event Detection (SED) system while maintaining the system’s efficiency. The
proposed method, using Empirical Mode Decomposition (EMD), Intrinsic Mode Functions
(IMFs), and extraction of locally regulated features from different IMFs of the signal, shows
a promising performance relative to the conventional features of SED systems. In addition,
the feature dimensions of the proposed method are much smaller than those of conventional
methods. To prove the effectiveness of the proposed features in SED tasks, two segment-based
approaches for event detection and sound activity detection were implemented using the
suggested features, and their effectiveness was confirmed. Simulation results on the URBAN
SEDdataset showed that the proposed approach reduces the number of input features bymore
than 99% compared with state-of-the-art methods while maintaining accuracy. According to
the obtained results, the proposed method is quite promising.
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1 Introduction

The detection of various events and, consequently, the prevention of many dangers can be
greatly enhanced using information obtained from sound signals, one of the most important
aids for humans to understand their surroundings. The vision influences many human reac-
tions; however, sounds are often used to announce alerts or make quick decisions, especially
in everyday situations. The advantage of the sound signal is that it is not limited to direct
vision, and this characteristic is one of the reasons why it is superior to an image in some sit-
uations. In many cases, by hearing sounds without seeing the event directly, one can prejudge
details or nature of the event and take the necessary action [1].

The emergence of various advances in hardware, software, and Machine Learning (ML)
algorithms, mainly of Deep Neural Networks (DNNs), has enabled researchers to perform
complex functions. Additionally, the ability ofDNNs to address various complex applications
has led to changes in many conventional ML methods in many areas, including image, natu-
ral language, and sound processing and analysis. While DNNs typically require substantial
computational resources for tasks such as image and video processing, the demand is compar-
atively lower for one-dimensional (1D)data.Workingwith 1Daudiodata or corresponding1D
features simplifies the computational requirements, unlike the intricate calculations required
for processing images and videos. Consequently, this issue is less prominent in 1D SED
systems [2].

A fundamental aspect of sound processing and analysis is detecting sound events, which
has several applications, such as in security, medicine, and monitoring of urban events,
and can be used simultaneously with information acquired by security and traffic cameras
to increase detection accuracy and coverage. For example, in security systems, namely, in
situationswhere an imaging camera cannot fully acquire the scene of an event for some reason,
sound signals can be used in parallel to increase the accuracy and efficiency of the event
detection system [3, 4]. In most sound event recognition systems based on DL, researchers
have attempted to improve their efficiency and accuracy using standard sound features and
modifying the structure of the used DL network. Few studies have focused on extracting
useful sound features to optimize the performance of those SED systems based on Deep
learning (DL). However, many different features can be extracted from sound signals, which
usually require less computation than those extracted from images. The inherent instability of
the features in the time and noise sensitivity of sound is also higher than those from images.
Therefore, it is interesting to increase the efficiency, speed, and accuracy of a DL-based
system by using a new feature extraction pattern that is particularly interesting in detecting
sound events. In most SED systems, Mel coefficients and standard time-frequency domain
features such aswavelets have been used to extract features. This study uses EMDand IMF for
feature extraction, confirming their effectiveness in the proposed SEDmethod. The proposed
approach reduces the number of features required to detect a sound event while maintaining
the system’s performance. The main contributions and advantages of the proposed method
can be categorized as follows:

1. Compared to conventional methods, the number of features required to detect a sound
event is reduced;

2. The EMD method shows more robust characteristics against noise and distortion than
other sound features;

3. The ability to detect multiple sound events simultaneously demonstrates the power of
the EMD method in SED systems.
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The article is organized as follows: In the next section, an overview of the related state-
of-art is given, including the advantages and disadvantages of the current approaches; in
the third section, the proposed method is described; in the fourth section, results of the
proposed method are presented and compared against the ones of other methods; and finally,
the findings of the current study are summarized and future works suggested.

2 Literature review

The approaches usually proposed in this area are based on multiclass classifiers because
SED is considered a multiclass classification problem. In the field of feature extraction, the
most commonly used features have beenMel-based features such as Log-Mel [5, 6], Log-Mel
Power Spectrograms (LMS) [7, 8] andMel Frequency Cepstral Coefficients (MFCC) [9–11].
In addition to MFCC, features such as linear predictive coding [12], discrete cosine trans-
forms [13, 14], wavelet [9, 15], Perceptual Linear Prediction (PLP) [16], Linear Prediction
Cepstral Coefficients (LPCC) [17], and Line Spectral Frequencies (LSF) [18] have been used
in various studies for SED.MFCC has been used as a usual feature in a wide range of acoustic
and sound-based machine-learning methods, for example, in voice disorder detection [19],
emotion recognition [20–22], singing voice separation [23], fault detection using acoustic
and sound data [24, 25], leak detection [26] and tree cutting events detection [27].

Several researches and experiments show that IMFs extracted using EMD from sound
signals show a good response. For example, Pandya et al. [28] used sound signals in con-
junction with IMF features and the K-nearest neighbor classifier to detect problems in ball
bearings.

Amarnath et al. [56] used IMF to detect faults in a helical gearbox using sound and
vibration signals and obtained good results. Zahra et al. [57] used Multivariate Empirical
Mode Decomposition to detect seizures from medical electroencephalogram signals with an
Artificial Neural Network (ANN) classifier. Bagherzadeh [58] used IMF to predict the sound
signal envelope. Cheema and Singh [59, 60] used EMD to capture nonlinear dynamics of
phonocardiogram signals to detect stress. Yao et al. [61] applied EMD to extract features
from sounds and detect faults in a planetary gearbox by using the Random Forest (RF)
classifier. Ning et al. [62] relied on EMD to extract sound features and detect gas pipe
leakage from sound data with an RF classifier. Erdogan and Narin [63] used the cough
signal, EMD, and a deep neural network to diagnose COVID-19 disease. Vican et al. [64]
detected the pulse in the fetal phonocardiography signal by EMD. Therefore, it can be said
that the EMD method has been successfully used for sound feature extraction in medicine
and industry and has proven its efficiency. In most new SED studies, DL algorithms have
shown their superiority in terms of classification accuracy compared to conventionalmethods.
Hence, conventional DL algorithms and Convolutional Neural Networks (CNNs) have been
frequently used individually and combined. For example, CNNs were used in [33–35, 42–44,
53]. ResNet was used as a CNN with some modifications in [32, 42, 55]. Recurrent Neural
Network (RNN) in combination with a CNN, called CRNN, was considered in several works,
such as the ones presented in [29, 37–40, 42, 45–51, 54], for SED.

Meng et al. [5] used a bidirectional gated recurrent unit (BGRU) as an RNN for sound
event detection. Politis et al. [65] analyzed the classifiers used in Sound Event Localization
and Detection in the DCASE 2019 Challenge and concluded that most were CRNN. Some
studies, such as [66], have also used Generative Adversarial Networks (GANs). A limited
number of researchers have used hidden Markov models [67], regular neural networks [68],
support vector machines [69], cross-correlation [70], and ensemble learning [71], which is far
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less than the number of researchers that usedDL algorithms. Table 1 identifies state-of-the-art
DL-based approaches used in SED systems.

As a summary, the advantages of previous methods are:

1. Widespread Use: MFCCs and spectrogram-based features have been widely used in SED
systems for their simplicity and effectiveness;

2. Interpretability: Those features are easily interpretable by humans, aiding in understand-
ing the characteristics of sound events;

3. Established Performance: Due to their extensive usage, there are well-established per-
formance metrics and benchmarks, making comparing different approaches easier.

The disadvantages of previous methods can be summarized as:

Table 1 Deep-learning approaches that have been used in SED systems

Reference Feature Classifier Metric

Mushtaq, Z. and Su, S.-F.: [8] LMS CNN Accuracy

Su, Y et al. [6] Log-Mel CNN Accuracy

Gontier, F et al. [29] Mel Spectrogram CRNN Accuracy

Wang, J et al. [30] Mel Spectrogram BGRU Accuracy

Jose, T et al. [31] MFCC LSTM Accuracy

Esmaeilpour, M et al. [32] MFCC ResNet Accuracy

Kong, Q et al. [33] Raw signal CNN Accuracy

Katsis, L.K et al. [7] LMS CNN F-score

Meng, J et al. [5] Log-Mel BGRU F-score

Lin, L al. [34] Log-Mel CNN F-score

Serizel, R et al. [35] Log-Mel CNN F-score

Gao, L et al. [36] Log-Mel CNN F-score

Nam, H et al. [37] Log-Mel CRNN F-score

Dinkel, H et al. [38] Log-Mel CRNN F-score

Nguyen, T.N.T et al. [39] Log-Mel CRNN F-score

Komatsu, T et al. [40] Log-Mel CRNN F-score

Tonami, N et al. [41] Log-Mel DNN F-score

Johnson, D.S et al. [42] Mel Spectrogram CNN F-score

Chan, T.K et al. [43] Mel Spectrogram CNN F-score

Huang, Y et al. [44] Mel Spectrogram CNN F-score

Turpault, N et al. [45] Mel Spectrogram CRNN F-score

Pankajakshan, A et al. [46] Mel Spectrogram CRNN F-score

Bear, H.L et al. [47] Mel Spectrogram CRNN F-score

De Benito-Gorrón, D et al. [48] Mel Spectrogram CRNN F-score

Pankajakshan, A et al. [49] Mel Spectrogram CRNN F-score

Martín-Morató, I et al. [50] Mel Spectrogram CRNN F-score

Park, H et al. [51] Mel Spectrogram CRNN F-score

Al-Banna, A.-K et al. [52] MFCC LSTM F-score

Turpault, N et al. [53] Raw signal CNN F-score

Turpault, N et al. [54] Raw signal CRNN F-score

Hershey, S et al. [55] Log-Mel ResNet ROC curve
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1. High Dimensionality: Conventional features such as MFCCs can result in high-
dimensional feature vectors, leading to increased computational complexity andmemory
requirements;

2. Limited Discriminative Power: While effective for many applications, conventional fea-
tures may lack the discriminative power needed to distinguish between subtle variations
in sound events;

3. Fixed Representations: Features like MFCCs provide fixed representations of sound,
which may not capture the dynamic nature of certain events or adapt well to changing
environments.

By addressing these limitations, the proposed method aims to overcome the challenges
associated with conventional feature extraction techniques. Using IMF and extracting locally
based features, the proposed scheme reduces the feature dimensions while maintaining or
improving the efficiency and accuracy of SED systems. In the current study, an LSTM was
used as the classifier.

3 Proposedmethod

This study developed two event detection approaches: a segment-based approach and an
activity-based approach. In the segment-based event detection approach, a sound clip is
cut into multiple fixed-size segments, and the system processes each segment individually.
Since multiple events may occur simultaneously, a practical solution in a segment-based
event detection system is to train a binary classifier for each event separately. This classifier
indicates whether or not an event occurred in a segment. Activity-based event detection
specifically detects the start and end of an event in a sound clip and can estimate the duration
of the event.

3.1 Segment-based event detection

The proposed method for segment-based event detection is depicted in Figs. 1 and 2. Accord-
ing to Figs. 1 and 2, the proposed segment-based event detection method includes two main
parts: feature extraction and classification. IMFs are used in feature extraction, and Long
Short-Term Memory (LSTM) or ensemble learning is used for classification.

3.2 Feature extraction

The input sound is divided into several time intervals in the feature extraction phase, depend-
ing on the selected approach. The intervals can be chosen with or without overlap, and should

Fig. 1 Block diagram of the proposed method for segment-based event detection based on DL
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Fig. 2 Schematic of the proposed method for segment-based event detection based on ensemble learning

not be so long that the online capability of the method is compromised or so short that the
feature extraction process cannot provide the desired result. Moreover, excessively shorten-
ing the time intervals amplifies the impact of noise. It is important to note that all feature
extraction methods inherently require a minimum number of samples to extract features,
which depends on the sampling frequency and feature type.

Algorithm 1 EMD for IMF Extraction.
Input:
1: Input signal: x(t)
2: Constant eps: a small positive value close to 0 (zero)
3: Initialize i = 1, c1 = eps, xb = x
4: while Until stopping condition is met do
5: Extract upper envelope env_max and lower envelope env_min using extremum points of x and cubic

spline interpolation
6: Calculate temp = env_max+env_min

2
7: Compute c2 = x − temp
8: if c2 satisfies IMF conditions then
9: Set IMFi = c2
10: Update x = xb − c2
11: if x is a monotonic function then
12: Set r = x and exit loop
13: else
14: Update xb = x , c1 = eps, N = i , and i = i + 1
15: end if
16: else
17: if (c1−c2)

2

c1
< γ then

18: Set r = x and exit loop
19: else
20: Update x = c2, c1 = c2, and xb = x
21: end if
22: end if
23: end while
Output:
24: Output: IMFs

3.3 IMF

Sound is considered a quasi-linear or non-stationary signal; hence, time series-basedmethods
are required to model its nonlinear and nonstationary behavior. Due to the wide application of
time series in various fields such as economics, medicine, and industry, many methods have

123

13520



Multimedia Tools and Applications (2025) 84:13515–13543

been proposed to analyze these signals quickly, such as the ones based on the spectrogram,
wavelet analysis, Wigner-Ville distribution, evolutionary spectrum, and principal component
analysis. Mel coefficients, which were specifically developed based on the human auditory
system and are very efficient in feature extraction from sound signals, have also been used. All
current methods attempt to identify and extract the inherent characteristics of the nonlinear
and nonstationary sound signal that change less over time and depend on the desired output.
However, most of these methods have problems with unstable and nonlinear signals, mainly:

1. When a signal is nonstationary, it is generally computed the harmonic components, which
require a large amount of data to extract the characteristics of the signal over time.

2. Most of those methods require a linear system to obtain signal information, and in non-
linear systems, a lot of data is needed to model the nonlinear components. In addition,
the EMD method produces a collection of IMFs that allows the system to extract instan-
taneous frequencies from the signal at different time scales.

IMFs are well-functioning Hilbert transforms that can extract the instantaneous frequen-
cies of a system in short periods andmodel the phenomenonunder studyon the time-frequency
axis, even if they are transient. The main concept used in IMF is the instantaneous frequency,
which differs from the time-independent frequency defined in most transforms, such as the
Fourier transform. In the concept of instantaneous frequency, the frequency can vary with
time, similar to frequency modulation. One must first understand the Hilbert transform to
understand the concept of IMF. The Hilbert transform of a signal, X(t), is defined as:

Y (t) = 1

π
p.v.

∫ ∞

−∞
X(t ′)
t − t ′

dt ′, (1)

where p.v. is the Cauchy principal value. The Hilbert transform of X(t) is combined with
the signal itself as a complex function, Z(t):

Z(t) = X(t) + iY (t) = α(t)eiθ(t), (2)

where α and θ are the absolute value and argument of the polar form of the complex function,
Z(t). Based on θ , the instantaneous frequency of the signal X(t) can be defined as:

ω = dθ

dt
. (3)

Even with the above definition, there is still ambiguity in the definition of instantaneous
frequency because calculating the Hilbert transform requires an infinite number of samples.
The Hilbert transform is limited within EMD; therefore, an alternative function class is
defined as IMF, which can define the instantaneous frequency locally. In the entire period,
the number of extrema and zero crossings of IMF should equal the original signal or the
maximum difference of this number should be 1 (one). After applying EMD and extracting
IMFs, one obtains:

X(t) =
N∑
i=1

I MFi (t) + r(t), (4)

where N is the number of IMFs and r(t) is the residual signal representing the computational
error. In most cases, the residual signal is monotonic and has low amplitude. The pseudocode
for EMD is given in Algorithm 1.

In Algorithm 1, γ is assumed to be 0.2, as suggested in the used Matlab software. The
maximum number of IMFs in this step is assumed to be 10, and all remaining IMFs in the
signal are discarded. After extracting IMFs, each IMF’s energy and average frequency are
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extracted as the final feature. The energy is calculated using the sum of the square powers of
the amplitudes in each IMF. The average frequency is defined by [72] as:

Average Frequency =

M∑
j=1

f j Pj

M∑
j=1

Pj

, (5)

where Pj is the power of the signal at frequency f j . If a signal has less than 10 IMFs, the
energy values and the average frequency of IMFs that do not exist are assumed to be 0 (zero).
If a signal has more than 10 IMFs, the first 10 IMFs are included in feature extraction, and
the rest is discarded.

3.4 Deep Learning

RNNs are particularly suited for processing serial data, where subsequent samples depend
on previous ones. In traditional RNNs, due to their simple structure and limited recurrent
coefficients in the hidden layers, weights are updated using the gradient relationship, which
fails in the case of long-time series. This limitation in maintaining and understanding long-
term patterns is a weakness of RNNs.

Several techniques have been proposed to address this weakness of RNNs, including
non-gradient-based training patterns such as simulated annealing and discrete error propaga-
tion [73, 74], explicitly introduced timedelays [75–77] or time constants [78], andhierarchical
sequence compression [79] are among them with each having its limitations and advantages.

3.4.1 LSTM

LSTM belongs to the modified RNN architectures [80]. This DL model is considered the
most effective for] simultaneously capturing long-term and short-term patterns. Considering
the importance of processing time series and video data whose results depend on current and
past data, LSTM is considered one of the most widely used Neural Network (NN) models.
Its structure is a modified RNN with the purpose of long-term data retention. In a typical
RNN, as the data are updated, the influence of the data on the more distant samples decreases
compared to the closer samples until it eventually becomes almost 0 (zero). Figure 3 depicts

Fig. 3 Reduction of the effect of distant samples in updating the hidden layer of an RNN
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Fig. 4 A typical RNN structure

the reduction of the effect of distant samples in updating the hidden layer of an RNN, which
indicates the small impact of distant samples and their ineffectiveness over time.

Figure 4 shows a typical RNNwhere the output depends on the previous states and the new
input. Figure 5 shows the LSTM structure, which is also essential to state that its cell is more
complex than a simple RNN. In Fig. 5, σ denotes the activation function. The cell’s input
and output activation functions (σg and σh) are usually hyperbolic tangent functions (tanh)
or logistic sigmoid functions, although in some cases, σh is the identity function. Dashed
lines represent weighted ’peephole’ connections. In peephole connections, in addition to the

Fig. 5 The usual LSTM network
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input and previous internal states, hidden states are also used to control input and output, and
forgetting gate activation functions assist in increasing the degrees of freedomand capabilities
ofLSTM.ForgetGate determineswhich inputs andprevious states affect the output andwhich
should be ignored. The presence of the forget gate allows the cell to learn long-term patterns.

Equations (6) to (11) show the effect of the blocks depicted in Fig. 5 on the LSTM output,
where xt is the input, ht−1 the previous state, ct the previous states of Forget Gate, W the
weights, b the bias of each part, σ the activator functions, � the Hedmard’s multiplication,
and the output is ht [81]:

it = σ f (Wxi xt + Whiht−1 + Wci � ct−1 + bi ) , (6)

ft = σ f
(
Wx f xt + Whf ht−1 + Wcf � ct−1 + b f

)
, (7)

gt = σg (Wxcxt + Whcht−1 + bc) , (8)

ct = ft � ct−1 + it � gt , (9)

ot = σ f (Wxoxt + Whoht−1 + Wco � ct + bo) , (10)

ht = ot � σh (ct ) . (11)

Based on our best knowledge, most SED methods used simplified LSTMs [31, 52]. Peep-
hole LSTM has been predominantly used in other domains [82–84]. Hence, the proposed
method uses the simplified LSTM shown in Fig. 6. In the used LSTM network, the previous
equations were changed as:

it = σ f (Wxi xt + Whiht−1 + bi ) , (12)

Fig. 6 Simplified LSTM network used in the current study
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ft = σ f
(
Wx f xt + Whf ht−1 + b f

)
, (13)

gt = σg (Wxcxt + Whcht−1 + bc) , (14)

ct = ft � ct−1 + gt � it , (15)

ot = σ f (Wxoxt + Whoht−1 + bo) , (16)

ht = ot � σg (ct ) . (17)

3.4.2 Fully connected layers

The fully connected layer is equivalent to the hidden layer in typicalNNs. This layer combines
an affine function and a nonlinear activation function. The affine function is defined as
y = Wx + b. The nonlinear activation function can be defined from a class such as sigmoid,
tanh, or rectified linear unit (ReLU). The fully connected layer in the proposed structure has
a no nonlinear function and only has 1 (one) affine function. The connections between the
LSTM and middle layers and the middle and output layers are usually made through this
layer.

3.4.3 Softmax

The softmax layer or softmax function, also known as softargmax or normalized exponential
function, maps the input vector to a set of numbers between 0 (zero) and (1) one. This
function provides a smooth and continuous approximation to the differentiable maximum
function. The sum of the output numbers of this function, which is a probability distribution,
is necessarily equal to 1 (one). This layer is not trained and maps the input to the interval: [0
1]. The formula for the softmax function is:

yi = exi

N∑
i=1

exi
, (18)

where xi is the input vector, i.e., the output of the fully connected layer, and yi is the output
corresponding to each input.

3.4.4 Cross entropy loss

Cross entropy is used to maximize the accuracy of the entire classifier. The value of cross
entropy increases rapidlywhen the predicted probability deviates from the actual value. Thus,
minimizing cross entropy is equivalent to bringing the predicted probability closer to the real
value. A classifier trained using cross entropy is more accurate and effective than a classifier
trained using other optimization criteria where the last layer can produce probability values.
In information theory and pattern recognition, minimizing cross entropy is equivalent to
achieving maximum likelihood. Minimizing the cross entropy is equivalent to minimizing
theKullback-Leibler divergence between the probability distribution of the real output and the
probability distribution of the classifier, corresponding to the maximum similarity between
the ideal output and the classifier’s output.
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3.4.5 Ensemble learning

In addition to DL, ensemble learning is used in the proposed method. Ensemble learning
methods use a set of weak classifiers instead of a single classifier to improve efficiency.
The parameters of an ensemble classifier are the number of weak classifiers, the type of
classifiers, and whether they are similar or different. Bootstrap aggregation,i.e., bagging,
performed better than other types of ensemble learning in our study. Finally, the results of all
classifiers are combined, and the dominant class, i.e., the class selected by most classifiers,
is chosen as the final output. The proposed method used decision trees as weak classifiers in
the ensemble learning structure.

3.5 Event Activity Detection System

A sound activity detection system determines the start and end of an event or the duration
of the event in a sound clip. Due to the complexity of detecting the beginning and end of a
sound event and its structural differences from the segment classification, this study takes
into account changes in the extracted features instead of the approach normally used in
conventional methods. The proposed sound activity detection method is divided into two
steps:

1. Detect if there is a sound event in the input clip;
2. And, if there is, find the start and end of the event based on the change in the used features.

Since this is a hierarchical method, the efficiency of both steps, which involve detecting
the sound occurrence and correctly labeling the start and end, directly impacts the method’s
accuracy. The block diagram of the first step is depicted in Fig. 7.

The first step of the activity detection system is similar to that of the segment-based event
detection system. In this case, the IMF features of the entire signal are obtained, so one has
only 20 features for each clip x(t). According to the studies conducted in this case, ANN
is a better choice than DL and ensemble learning methods because of the small number of
input features. The second step is initiated if the first part’s output is an event’s occurrence.
Figure 8 depicts the block diagram of the second step’s training phase.

Only audio clips containing selected events were used in the training phase. First, the
input signal is split into 1-second segments without overlap. The end of the segment before
the event is selected as the beginning of the event. The start of the segment after the ending
event is considered the end of the event. As in the segment-based approach, IMF features are
extracted for each segment. In this way, one has 20 features for each interval. Any feature
that changes when a sound event starts or ends can be used to detect event activity. This
process is very challenging because background noise and other events occur in different

Fig. 7 Block diagram of the first step of the sound activity detection method
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Fig. 8 Block diagram of the training phase of the second step of the sound activity detection method

segments and cause changes in the value of features while having no meaningful relationship
to the beginning and end of the event. To solve this problem, an averaging and regularization
step is added to the proposed method to separate the effects of noise and other sound events
from selected events. In the regularization block, the change in feature is measured relative
to the overall signal by dividing the derivative value by the average value of the derivative
in the entire signal. The regularization step removes the background noise effectively. In the
averaging block, the pattern of the derivative vector is determined by averaging the absolute
value of the regularized derivative of the features at the beginning and end of the selected
event.

In some cases, another sound event coincides with the selected event, and averaging
removes the effects of these interfering sound events. When a feature does not change with
a selected event, its regularized value average is approximately 1 (one). The threshold value
used to select or discard a feature is 1.3. The changed features, features whose averaged
regularized value is greater than 1.3, and their rate of change, i.e., the averaged regularized
value, are stored as the pattern of the selected event. The activity detection phase is depicted
in Fig. 9.

In the final phase, similar to the training phase, the signal is split into non-overlapping
one-second segments. For each segment, 10 IMFs are calculated, and the average frequency
and energy characteristics of IMFs are extracted as features. In the time domain, a derivative
of the obtained features is computed, followed by regularization, as in the training phase.
Some regularised features are selected based on the pattern stored in the training phase,
and the correlation coefficient between the stored pattern and regularized derivatives of all
segments is calculated. The maximum correlation coefficients are selected as the beginning
and end of the event. If only one maximum is detected, it is considered the event’s starting
point, and the event is assumed to last until the end of the clip.

Fig. 9 Block diagram of the final phase of the sound activity detection system
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4 Experimental settings

4.1 Dataset

The proposed method was tested on the URBAN-SED dataset1, which is widely used in this
field [85]. The URBAN-SED dataset contains 10000 labeled samples of ten events in the
urban area, which are classified as air conditioners, car horns, children playing, dog barking,
drilling, engine idling, gunshot, jackhammer, siren, and street music (Fig. 10). Regarding
time, all samples in the dataset have the same length of 10 seconds. The dataset contains
a total of 100,000 seconds (approximately 28 hours) of sound, with almost 50,000 events
tagged. All sounds contain background andBrownian noise, which can be heard as the typical
“hum” of most crowded urban environments.

The dataset was created using the Scaper library, a soundscape synthesis and enhancement
library. The sounds of the included events were taken from the UrbanSound8K dataset, which
is completely real, and the scaper library added the sounds of urban environments. The
labelingwas done automatically according to the time of the added event. TheUrbanSound8K
dataset contains 8732 urban environment events with times shorter than 4 seconds. The
UrbanSound8Kdataset is amodified version of theUrbanSound dataset, which contains 1302
samples totaling approximately 27 hours. To standardize the comparison between different
methods, UrbanSound8K was divided into three subsets: training, testing, and validation,
with 6000 samples in the training group and 2000 samples in the testing and validation
groups.

4.2 Evaluationmetrics

In both segment-based sound event detection and sound activity detection approaches, the
developed system was trained separately for each event. In the segment-based approach, a
binary classifier determines whether an event has occurred in the segment. In the activity
detection approach, each true label for the start and end of an event in a clip is assumed to
be a true positive label, making it possible to evaluate the system using binary classification
metrics. The following evaluation parameters were used for the segment-based approach
before evaluation:

1. True positive (TP) : The sound event occurred and was correctly detected;
2. True negative (TN) : The sound event did not happen, and the non-event is correctly

detected;
3. False positive (FP) : The system detected an event that did not occur;
4. False negative (FN) : The absence of an event has been detected when the sound event

occurred.

In the sound activity detection approach, the evaluation parameters were defined as fol-
lows:

1. True positive (TP) : The beginning and end of the sound event were correctly detected;
2. True negative (TN) : The sound event did not happen, and the non-event was correctly

detected;
3. False positive (FP) : The system detected an event, but it did not happen, or if the event

did occur, the beginning and end of the event were incorrectly marked;

1 http://urbansed.weebly.com/
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Fig. 10 Events included in the URBAN-SED dataset

4. False negative (FN) : Detecting the absence of an event when the sound event occurred.

It is essential to note the imbalance between the two classes: the presence or absence of
sound events. After specifying TP, TN, FP, and FN, the Precision (PR), Recall (RE), F-score
(F1 or F-score), and Accuracy (ACC) can be calculated. The ideal value for all of these
parameters is 1 (one). In the present study, Segment F1 and Event F-scores [38, 86, 87]
were used as primary assessment metrics, and precision, recall, and accuracy were used as
secondary assessment metrics [38, 86].

4.3 Other parameters

Another important parameter of the proposed method is the segment length. In [42], the
segment length was assumed to be 0.1 seconds, and in [55], 1 (one) second. A longer segment
length leads to more background noise, and a shorter length decreases valuable information
for event detection. Therefore, the choice of segment length is a trade-off between noise and
valuable information. In this study, the segment length was assumed to be 1 (one) second.
For IMF extraction, the parameters were selected as follows:

1. The Cauchy type convergence criterion (γ in the EMD pseudocode), which is one of the
stopping criteria, was set to 0.2;

2. The maximum number of iterations, which is one of the stopping criteria, was set to 100;
3. The maximum number of IMFs, which is one of the decomposition stop criteria, was

chosen to be 10;
4. The maximum number of extrema in the residual signal, which is one of the stopping

criteria for decomposition, was set to 1 (one):
5. The ratio between signal and residual energy, which refers to the ratio between the energy

of the signal at the beginning of the iteration and the average envelope energy, is one of
the decomposition’s stop criteria and was set to 20;

6. The envelope construction is based on the spline-based interpolation method.
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For the RNN, the first parameter is the number of hidden layers of LSTM, which was
assumed to be 200. Two Adaptive Moment Estimation (ADAM) and Root Mean Squared
Propagation (RMSprop) methods were used to train the RNN, and the results were compared.
The parameters of the ADAM method are listed in Table 2. During training in very large
datasets, the ADAM method is better than the Gradient Descent method. Gradient Descent
involves problems, such as many calculations and failure to reach the global minimum when
there are many local minima. By simplifying the calculation of the learning rate for each
parameter using the first and second moments of the gradient, the ADAM method reduces
the computational volume and memory consumption of conventional stochastic gradient
descent. On the other hand, RMSprop is a modified version of gradient descent where the
step size for each parameter is adjusted using a decaying average of partial gradients. A
decaying moving average allows the algorithm to eliminate early gradients and works based
on the most recently observed partial gradients during the search process.

5 Results and discussion

This section aims to analyze the impact of the different parameters on the proposed method’s
efficiency and compare the final results with the ones obtained by related state-of-the-art
methods. In the first step, the results of the segment-based event detection are reported, and
the effects of data balancing and some other parameters on accuracy are discussed. In the
second step, event-based results are reported and compared with the ones obtained by other
methods.

5.1 Segment-based event detection

In the first step, the proposed segment-based event detection method was tested for a segment
length of 1 (one) second without overlap using LSTM and ensemble learning. To show the
efficiency and effectiveness of the proposed method, the results were compared with the ones
using mel features such as MFCC and log-mel, which are the most commonly used features
in SED. The URBAN-SED is an unbalanced dataset for all events, and this unbalanced form

Table 2 Parameters of the
ADAM method

Parameter Value

Gradient Decay Factor 0.9000

Squared Gradient Decay Factor 0.9990

Epsilon 1e-08

Initial Learn Rate 1e-03

Learn Rate Drop Factor 0.1000

Learn Rate Drop Period 10

L2 Regularization 1e-04

Gradient Threshold Method ’l2norm’

Gradient Threshold 2

Max Epochs 100

Mini-Batch Size 128

Shuffle ’once’
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Table 3 Number of training
samples before and after data
balancing

Event Original Balanced data
Negative Positive Negative Positive

Air Conditioner 53746 6254 16156 6254

Car Horn 55453 4547 15203 4547

Children Playing 53875 6125 15995 6125

Dog Bark 54597 5403 16207 5403

Drilling 54149 5851 16599 5851

Engine Idling 53694 6306 16374 6306

Gun Shot 56219 3781 17439 3781

Jackhammer 54100 5900 16570 5900

Siren 53818 6182 16138 6182

Street Music 53684 6316 16174 6316

can significantly reduce the classification efficiency. To solve this problem, similar negative
segments were discarded by using the correlation coefficient as a similarity measure. Table 3
presents the number of training data in each class before and after the balancing process,
assuming a segment length of 1 (one) second. Table 4 presents the acceptable F-score results
of the proposed feature, which indicate a strong correlation between features extracted from
IMFs and events. In theworst case that corresponds to a gunshot event, even after the balancing
process, there is a significant imbalance in the ratio between the positive and negative samples
(Table 3), which may cause the system’s low accuracy.

5.2 Sound activity detection

In this experiment, the training and test data were approximately balanced; therefore, a
balancing process was unnecessary. Table 5 presents the number of clips of the two classes

Table 4 F-score of proposed features using different classifiers on the URBAN-SED dataset in the segment-
based approach

Event LSTM Adam LSTM RMSprop Ensemble learning
Train Test Validation Train Test Validation Train Test Validation

Air Conditioner 0.58 0.51 0.52 0.55 0.42 0.45 1 0.48 0.52

Car Horn 0.42 0.32 0.32 0.51 0.37 0.35 1 0.37 0.35

Children Playing 0.40 0.32 0.38 0.54 0.47 0.50 1 0.37 0.38

Dog Bark 0.45 0.43 0.45 0.48 0.41 0.46 1 0.38 0.42

Drilling 0.55 0.51 0.47 0.56 0.51 0.51 1 0.54 0.51

Engine Idling 0.54 0.55 0.52 0.54 0.51 0.49 1 0.52 0.51

Gun Shot 0.04 0.02 0.04 0.26 0.12 0.25 1 0.14 0.30

Jackhammer 0.53 0.59 0.51 0.51 0.47 0.49 1 0.59 0.51

Siren 0.60 0.48 0.60 0.63 0.50 0.63 1 0.52 0.60

Street Music 0.47 0.43 0.45 0.48 0.45 0.45 1 0.46 0.48

Average 0.458 0.416 0.426 0.506 0.423 0.458 1 0.437 0.458

Best values in bold

123

13531



Multimedia Tools and Applications (2025) 84:13515–13543

Table 5 Number of clips with (P)
and without (N) a sound event on
the URBAN-SED dataset

Event Train Test Validation
N P N P N P

Air Conditioner 3697 2303 1242 758 1182 818

Car Horn 3708 2292 1201 799 1257 743

Children Playing 3726 2274 1234 766 1255 745

Dog Bark 3677 2323 1212 788 1204 796

Drilling 3661 2339 1214 786 1220 780

Engine Idling 3685 2315 1227 773 1234 766

Gun Shot 3666 2334 1213 787 1241 759

Jackhammer 3681 2319 1260 740 1271 729

Siren 3709 2291 1238 762 1247 753

Street Music 3684 2316 1257 743 1208 792

for each sound event separately. For this step, different ANN structures were tested, including
Patternnet, Cascadeforwardnet, Feedforwardnet, and Fitnet, with Feedforwardnet being the
best ANN structure found. Various functions and values were considered when choosing the
training function and the number of hidden layers and nodes in each layer. The studied training
functions are listed in Table 6. Among the studied functions, trainbr and trainlm showed better
results (F-score), which was chosen because of the shorter training time. According to the
analysis performed, the structure with 1 (one) hidden layer and 10 nodes showed the best
F-score. Table 7 presents the F-score for some of the studied situations.

The results in Table 7 indicate that the feed-forward network with a hidden layer and 10
neurons is the best structure for this step. After training the forward ANN with the above
parameters, a Receiver Operating Characteristic Curve (ROC curve) was used to depict the
F-score. Figure 11 shows the ROC curve for several events and the chosen threshold level.
Maximizing the F-score was prioritized when choosing the threshold level based on the ROC.
Themain finding, depicted in Fig. 11, where one can observe themagnified area in themiddle
of the curve, is the divergent behavior of the events. Consequently, during the training phase,

Table 6 ANN training functions
that were considered in the first
part of the activity detection
method

Training Function Description

trainlm Levenberg-Marquardt

trainbr Bayesian Regularization

trainbfg BFGS Quasi-Newton

trainrp Resilient Backpropagation

trainscg Scaled Conjugate Gradient

traincgb Conjugate Gradient with Powell/Beale Restarts

traincgf Fletcher-Powell Conjugate Gradient

traincgp Polak-Ribiere Conjugate Gradient

trainoss One Step Secant

traingdx Variable Learning Rate Gradient Descent

traingdm Gradient Descent with Momentum

traingd Gradient Descent

123

13532



Multimedia Tools and Applications (2025) 84:13515–13543

Table 7 F-score values obtained for some of the investigated situations

Model Training function Hidden layers Nodes per layer Average F-score

Feedforwardnet trainlm 1 2 0.52

Feedforwardnet trainlm 1 3 0.531

Feedforwardnet trainlm 1 4 0.534

Feedforwardnet trainlm 1 5 0.541

Feedforwardnet trainlm 1 6 0.54

Feedforwardnet trainlm 1 7 0.545

Feedforwardnet trainlm 1 8 0.542

Feedforwardnet trainlm 1 9 0.547

Feedforwardnet trainlm 1 10 0.556

Feedforwardnet trainlm 1 11 0.551

Feedforwardnet trainlm 1 12 0.548

Feedforwardnet trainlm 1 13 0.531

Feedforwardnet trainlm 1 14 0.541

Feedforwardnet trainlm 1 15 0.534

Feedforwardnet trainlm 2 [10 10] 0.548

Feedforwardnet trainlm 2 [5 10] 0.54

Feedforwardnet trainlm 3 [5 10 5] 0.551

Feedforwardnet trainlm 3 [4 12 4] 0.549

Feedforwardnet trainbr 1 10 0.555

Feedforwardnet trainbr 3 [4 12 4] 0.547

Patternet trainlm 1 10 0.537

Patternet trainlm 3 [5 10 5] 0.531

Fig. 11 ROC curves of trained ANNs for different events

123

13533



Multimedia Tools and Applications (2025) 84:13515–13543

it is imperative to compute the threshold for each event independently. The chosen thresholds
are indicated in the legend of Fig. 11, positioned at the top right corner.

Table 8 presents the results of the proposed method after selecting the threshold based on
the ROC for each event. When a sound event is detected in the first step, the proposed method
submits it into the second step to determine the start and end points of the event. Therefore,
any error in the first step results in an error in the output, and reporting accuracy metrics for
this step seemed redundant as it does not show the overall system’s performance. The average
absolute value of the regularized derivatives for the start and end segments of the selected
event was calculated in the training phase of the second part. Table 9 lists the calculated
values for the different events. A threshold value of 1.3 was considered for selecting effective
features, and the values above the threshold are indicated in bold in Table 9.

Based on the results presented in Table 9, the following deductions can be stated:

1. Average frequency features are more critical than energy features;
2. 9th and 10th IMF are effective only in the gunshot and in the other events are useless;
3. In detecting a sound event’s start and end time, i.e., in the sound activity detection, based

on the bold values of the table, it can be realized that only 81 out of 200 features are
significant.

In the last phase of the second part, the selected IMF features, represented by the bold
values in Table 9, were compared with the corresponding features of all segments of the input
clip. The two maximum similarities are marked as the beginning and end of the event. Any
false markings in this step should be added to the FP value and subtracted from the TP value.
Tables 10 and 11 present the final results of the proposed sound activity detection system.

5.3 Comparison with existingmethods

In this section, a comparison with state-of-the-art methods in this field is presented, which
confirms the effectiveness of the proposed method. The number of features and the F-score
are used in this comparison. The proposed method requires much smaller features (20) than
existing ones, making it easier to implement with ML methods. The studies selected for the

Table 8 TN, FP, TP, and FN values of the proposed method after selecting the threshold based on the ROC
for each event

Event Train Test Validation
TN FP TP FN TN FP TP FN TN FP TP FN

Air conditioner 2329 1368 1413 890 740 502 434 324 701 481 512 306

Car horn 2257 1451 1519 773 755 446 528 271 768 489 407 336

Children playing 2253 1473 1320 954 701 533 450 316 773 482 426 319

Dog bark 2395 1282 1427 896 842 370 382 406 801 403 469 327

Drilling 2254 1407 1391 948 694 520 483 303 783 437 429 351

Engine idling 2323 1362 1473 842 818 409 487 286 705 529 527 239

Gunshot 2229 1437 1332 1002 719 494 407 380 815 426 435 324

Jackhammer 2318 1363 1481 838 749 511 419 321 770 501 434 295

Siren 2475 1234 1429 862 843 395 428 334 877 370 459 294

Street music 2304 1380 1405 911 785 472 468 275 729 479 470 322
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Table 10 Final results obtained by the proposed sound activity detection system

Event Train Test Validation
TN FP TP FN TN FP TP FN TN FP TP FN

Air conditioner 2329 1368 1413 890 740 666 270 324 701 673 320 306

Car horn 2257 1451 1519 773 755 721 253 271 768 692 204 336

Children playing 2253 1473 1320 954 701 715 268 316 773 686 222 319

Dog bark 2395 1282 1427 896 842 524 228 406 801 583 289 327

Drilling 2254 1407 1391 948 694 735 268 303 783 616 250 351

Engine idling 2323 1362 1473 842 818 552 344 286 705 681 375 239

Gunshot 2229 1437 1332 1002 719 660 241 380 815 609 252 324

Jackhammer 2318 1363 1481 838 749 694 236 321 770 661 274 295

Siren 2475 1234 1429 862 843 562 261 334 877 555 274 294

Street music 2304 1380 1405 911 785 619 321 275 729 658 291 322

Table 11 Final values of the evaluation metrics obtained by the proposed sound activity detection system

Sound Class Test Validation
PR REC F1 ACC PR REC F1 ACC

Air conditioner 0.29 0.45 0.35 0.51 0.32 0.51 0.4 0.51

Car horn 0.26 0.48 0.34 0.5 0.23 0.38 0.28 0.49

Children playing 0.27 0.46 0.34 0.48 0.24 0.41 0.31 0.5

Dog bark 0.3 0.36 0.33 0.54 0.33 0.47 0.39 0.55

Drilling 0.27 0.47 0.34 0.48 0.29 0.42 0.34 0.52

Engine idling 0.38 0.55 0.45 0.58 0.36 0.61 0.45 0.54

Gunshot 0.27 0.39 0.32 0.48 0.29 0.44 0.35 0.53

Jackhammer 0.25 0.42 0.32 0.49 0.29 0.48 0.36 0.52

Siren 0.32 0.44 0.37 0.55 0.33 0.48 0.39 0.58

Street music 0.34 0.54 0.42 0.55 0.31 0.47 0.37 0.51

Table 12 Details of the state-of-the-art methods used for comparison purpose

Ref Type of Feature Feature Length Classifier Segment Length

Huang et al. [44] Mel spectrogram 64,500 CNN 40ms

Tonami et al. [41] Mel spectrogram 64,500 CRNN 40ms

Ick and McFee [88] Mel spectrogram 128,862 CNN ...

Ye et al. [89] Mel spectrogram 64,500 1D Detection Trans-
former (1D-DETR)

1s

Dinkel et al. [38] LMS 64,500 Duration robust
CRNN

1s

Pankajakshan et al. [49] Spectrogram 40,500 CRNN 1s

Proposed method Energy and fre-
quency of IMFs

20 LSTM 1s
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Table 13 Average F-score values
obtained by the proposed and
state-of-the-art methods on the
URBAN-SED dataset in the
segment-based event detection
task

Reference Average F1

Huang et al. [44] 0.59

Ick and McFee [88] 0.356

Tonami et al. [41] 0.342

Ye et al. [89] 0.657

Dinkel et al. [38] 0.6475

Pankajakshan et al. [49] 0.4103

Proposed method 0.437

comparison were: [38, 41, 44, 49, 88, 89], which also used the Urban SED dataset in the
experiments.

As can be perceived from inTable 12, all the studied relatedmethods usedMel features, and
the only difference between them is as to the number ofMel bands and extraction details, such
as the overlap between segments or the number of short-time Fourier transform. Regarding
the number of features, the proposed method with 20 features has fewer features than any
of the other methods. In this study, the average F-score of the proposed method, despite the
smaller number of features compared to the state-of-the-art methods, showed an acceptable
average F-score in segment-based event detection across the entire dataset (Table 13). In
addition, the proposed DLmodel is more straightforward than those in the compared studies.

As to sound activity detection, [44] and [88] did not propose a method, so in Table 14,
the average F-score of the proposed method is compared with those of the methods proposed
by Ye et al. [89], Tonami et al. [41], Dinkel et al. [38], and Pankajakshan et al. [49]. The
results in Table 13, suggest that sthe proposed method outperforms the methods of Ick et
al. [88], Tonami et al. [41], and Pankajakshan et al. [49], while showing lower F-score values
compared to the methods of Huang et al. [44], Ye et al. [89] and Dinkel et al. [38]. Based on
the results in Table 14, it can be realized that the proposed method outperforms the methods
of Ick et al. [88], Tonami et al. [41], and Pankajakshan et al. [49], while showing lower
F-score values compared to the method of Ye et al. [89].

An important point to note is that the number of features used in the proposed method is
significantly fewer than all the related methods listed in Tables 13 and 14. This indicates that
the features employed in this study are highly informative yet concise representations of the
spectrograms. It seems that employing IMF spectrograms could lead to developing a SED
system with much fewer inputs, reduced computational complexity, and acceptable accuracy
compared to existing SEDmethods in both segment-based event detection and sound activity
detection tasks. The aim of this research was not only to enhance the accuracy but also to

Table 14 Average F-score values
obtained by the proposed and
state-of-the-art methods on the
URBAN-SED dataset in the
sound activity detection task

Reference Average F1

Ye et al. [89] 0.3727

Dinkel et al. [38] 0.2254

Pankajakshan et al. [49] 0.1113

Tonami et al. [41] 0.214

Proposed method 0.358

123

13537



Multimedia Tools and Applications (2025) 84:13515–13543

reduce the number of input features concurrently. Considering the obtained results, it appears
that the proposed method is quite promising.

6 Conclusion

This study proposed a novel feature extraction approach based on IMF features for SED
systems. Since the proposed method has fewer features than the Mel coefficients, the most
common feature in this field, it can be easily integrated with conventional ML methods.
To prove the effectiveness of the proposed features concerning the average frequency and
locally regulated energy of IMFs extracted from sound segments, the features were used as
input in LSTM, ensemble learning, and ANN structures, and their efficiency was analized in
comparison with state-of-the-art methods proposed in this field. Next, a novel approach for
detecting sound activity was proposed based on a statistical analysis of features and detection
of changes. The proposed approach uses just the features extracted from the IMF and achieves
good results in detecting an event’s start and end points. Finally, the proposed method was
applied to various events in the URBAN SED dataset, and its effectiveness was demonstrated
for both segment-based event detection and sound activity detection. Comparison with state-
of-the-art methods proposed in this field showed that the proposed features are as effective
as those based on Mel coefficients despite their much smaller number. As a limitation, the
effectiveness of IMF as the main part of the proposed method may vary depending on factors
such as signal-to-noise ratio, the complexity of the sound events, and environmental con-
ditions. Another limitation of the proposed approach is the small number of extracted IMF
features, which can cause issues in training DL methods; for instance, in cases of overfitting,
the test and validation sets may show significantly lower accuracy compared to the training
data.

Future developments could combine the proposed approach with approaches that use Mel
coefficients to improve the efficiency of various SED tasks. In addition, IMF properties can
be used in other speech languages such as sound persian phoneme articulation [90, 91] or
speech synthesis [92]. The analysis of IMF applicability in SED systems, considering varying
levels of signal-to-noise ratios, is another suggested topic for future investigation.
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