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 a b s t r a c t

Accurate traffic state prediction is fundamental to Intelligent Transportation Systems, playing a critical role in 
optimising traffic management, improving mobility, and enhancing the efficiency of transportation networks. 
Traditional methods often rely on feature engineering, statistical time-series approaches, and non-parametric 
techniques to model the inherent complexities of traffic states, incorporating external factors such as weather 
conditions and accidents to refine predictions. However, the effectiveness of long-term traffic state prediction 
hinges on capturing spatial-temporal dependencies over extended periods. Current models face challenges in 
dealing with (i) high-dimensional traffic features, (ii) error accumulation for multi-step prediction, and (iii) ro-
bustness to external factors effectively. To address these challenges, this study proposes a novel model with a 
Dynamic Feature Embedding layer designed to transform complex data sequences into meaningful representa-
tions and a Deep Linear Projection network that refines these representations through non-linear transformations 
and gating mechanisms. These two features make the model more scalable when dealing with high-dimensional 
traffic features. The model also includes a Spatial-Temporal Positional Encoding layer to capture spatial-temporal 
relationships, masked multi-head attention-based encoder blocks, and a Residual Temporal Convolutional Net-
work to process features and extract short- and long-term temporal patterns. Finally, a Time-Distributed Fully 
Connected Layer produces accurate traffic state predictions up to 24 timesteps into the future. The proposed ar-
chitecture uses a direct strategy for multi-step modelling to help predict timesteps non-autoregressively and thus 
circumvents the error accumulation problem. The model was evaluated against state-of-the-art baselines using 
two benchmark datasets. Experimental results demonstrated the model’s superiority, achieving up to 21.17% and 
29.30% average improvements in Root Mean Squared Error and 3.56% and 32.80% improvements in Mean Ab-
solute Error compared to the baselines, respectively. The Friedman Chi-Square statistical test further confirmed 
the significant performance difference between the proposed model and its counterparts. The adversarial pertur-
bations and random sensor dropout tests demonstrated its good robustness. On top of that, it demonstrated good 
generalizability through extensive experiments. The model effectively mitigates error accumulation in multi-step 
predictions while maintaining computational efficiency, making it a promising solution for enhancing Intelligent 
Transportation Systems.

1.  Introduction

Traffic state prediction plays a critical role in intelligent trans-
portation systems (ITS), serving as a foundation for optimising traffic
management, mitigating congestion, and improving mobility. Accurate 
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predictions of traffic states, such as flow, speed, and volume, are essen-
tial to addressing challenges posed by the increasing number of vehicles 
on roadways (Xing et al., 2022). These challenges include heightened 
accident rates, extended travel times, rising fuel consumption, and el-
evated greenhouse gas emissions (Miner et al., 2024). By anticipating 
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\begin {equation}\hat {x} \in \mathbb {R}^{B \times T \times D} = x w_d + b_d, \label {Xeqn11-13}\end {equation}
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traffic conditions, transportation planners can better organise networks 
and respond to critical events (Cao et al., 2024).

Traffic state prediction is inherently complex due to the stochas-
tic, non-linear, and time-dependent nature of traffic conditions.
Temporal dependencies arising from trends, cycles, seasonality, and dis-
ruptions caused by non-daily or extreme events, such as concerts or ad-
verse weather, further complicate the task (Ansari Esfeh et al., 2020; Li 
et al., 2024a; Sharma et al., 2024). Traditional methods, such as Auto-
Regressive Integrated Moving Average (ARIMA) and its variations, of-
ten fall short in handling such complexities (Ma et al., 2020; Xu et al., 
2021). Similarly, while Deep Learning (DL) algorithms, such as Recur-
rent Neural Networks (RNNs), have proven effective for modeling short- 
and medium-term dependencies (Cheng et al., 2022; Yang et al., 2019), 
they suffer from vanishing or exploding gradients, limiting their ability 
to capture long-term temporal dependencies (Ribeiro et al., 2020).

Advances such as Long Short-Term Memory (LSTM) networks and 
their combinations with Convolutional Neural Networks (CNNs) or at-
tention mechanisms have addressed some limitations, but challenges re-
main. LSTM networks, while capable of learning from moderately long 
sequences, are computationally expensive and struggle with long-term 
dependencies due to their sequential processing nature (Reza et al., 
2022). Transformer-based models offer an alternative, leveraging at-
tention mechanisms to capture global dependencies effectively. How-
ever, their architectural constraints, high computational cost, and lack 
of means to capture spatial-temporal correlations hinder their applica-
bility to long-term traffic state prediction (Chen et al., 2022; Wen et al., 
2023; Zhang et al., 2022).

Efforts to enhance prediction accuracy often rely on merging traffic 
state data with external factors, such as weather and accident infor-
mation, alongside denoising techniques to remove data outliers (Chen 
et al., 2021, 2020; Essien et al., 2021; Guo et al., 2015). While these 
approaches yield competitive results for short- and medium-term pre-
dictions, their dependence on additional data sources and preprocessing 
limits their scalability. Moreover, their effectiveness in capturing long-
term spatial-temporal dependencies remains limited.

Recent attention-based models have addressed some of these chal-
lenges. For instance, Tedjopurnomo et al. (2023) introduced a time-day 
embedding mechanism to enhance long-term traffic pattern learning, 
while Jiang et al. (2023) incorporated spatial self-attention to capture 
dynamic spatial relationships. On the other hand, Yu et al. (2024) pro-
posed a spatial-temporal Autoformer leveraging autocorrelation within 
data sequences. Despite these advancements, these models are compu-
tationally demanding, and their performance for long-term predictions, 
particularly in mitigating error accumulation, requires improvement.

This study addresses the critical challenges associated with long-term 
traffic state prediction tasks, eliminating the dependence on weather 
data and data outlier removal techniques. To this end, a novel Dy-
namic Feature Embedding (DFE) mechanism was developed to facili-
tate meaningful transformations of feature representations. A Deep Lin-
ear Projection (DLP) block is proposed to refine these representations 
by applying non-linear transformations and a gating mechanism. Fur-
thermore, a Spatial-Temporal Positional Encoding (STPE) mechanism is 
introduced to augment the data for each sensor at every time step with 
spatial-temporal positional information. The enhanced features are sub-
sequently encoded using a masked multi-head attention-based encoder 
block, followed by their processing through a Residual Temporal Convo-
lutional Network (RTCN) block designed to extract both short- and long-
term temporal dependencies. Finally, a Time-Distributed Dense layer en-
ables the model to generate predictions for up to 24 timesteps into the 
future.

The proposed methodology was validated using traffic flow data 
from the Caltrans Performance Measurement System (PeMS) database 
(Chen, 2002) and the PEMS-BAY traffic speed dataset (Li et al., 
2018a). Baseline models representing the state-of-the-art in long-term 
traffic state prediction tasks were implemented and trained on the 
same datasets to ensure comprehensive and unbiased performance

comparisons. Extensive experimental evaluations demonstrated that the 
proposed model consistently outperformed the baseline models across 
most evaluated metrics, with particularly noticeable improvements ob-
served for longer prediction horizons. The main contributions of this 
study are:

• This research proposes a Dynamic Feature Embedding mechanism 
to facilitate meaningful representation of the normalised inputs and 
a Deep Linear Projection block to refine these representations by 
applying non-linear transformations and a gating mechanism. These 
techniques help the model to learn the relationship between traffic 
state features more effectively.

• It proposes a Spatial-Temporal Positional Encoding mechanism to 
augment the data for each sensor at every time step with spatial-
temporal positional.

• It also incorporates a Residual Temporal Convolutional Network 
to efficiently process the encoded data representation and capture 
both short- and long-term temporal features. The residual connec-
tion within various stages of architecture helps the model to be deep 
enough to learn the outliers to achieve adequate prediction accuracy 
over extended time horizons.

• It eliminates dependency on external data sources, such as weather 
or accident information, and preprocessing steps, such as data outlier 
removal, while maintaining robust performance.
The remainder of this article is organised as follows: Section 2 pro-

vides a comprehensive summary of the selected state-of-the-art models, 
highlighting their performance and limitations. Section 3 introduces the 
proposed model in detail, while the experimental setup and correspond-
ing results are presented in Section 4. Section 5 discusses the overall 
performance of the proposed model, with an emphasis on the impact of 
various model parameters. Finally, the conclusions are pointed out in 
Section 6.

2.  Related works

This section presents state-of-the-art traffic state prediction mod-
els and discusses their main contributions based on the methods and 
datasets used. Traffic state features are stochastic and non-linear be-
cause of their spatial-temporal relationships and different seasonality 
granularity, such as monthly, weekly, and daily. Consequently, para-
metric approaches with linearity cannot provide high prediction perfor-
mance, motivating greater attention to non-parametric strategies such 
as DL-based strategies. According to Yang et al. (2019), models based 
on DL usually perform better due to their ability to handle indetermin-
istic and complex time-series traffic datasets. Therefore, many DL-based 
methods have been extensively tested, adapted, developed, and tuned 
for traffic prediction applications in the past few years.

Conventional DL-based models like RNNs and CNNs were used to 
address traffic state prediction problems with limited success (Lv et al., 
2018; Polson & Sokolov, 2017; Xiao & Yin, 2019). With the introduction 
of the attention mechanism (Vaswani et al., 2017), these approaches 
gained importance among researchers to overcome their limitations. 
Du et al. (2020) focused on capturing short-term information and con-
sidered multiple modes to improve the prediction performance. The 
suggested model uses an attention-based auxiliary architecture focused 
on learning the spatial-temporal correlation and long-term interdepen-
dence of multimodal traffic data. The base module of their method con-
sists of one-dimensional CNNs and GRUs with the attention mechanism, 
where the CNNs and GRUs capture the local trend features, such as the 
relationships between the data and the extended temporal dependen-
cies. The proposed architecture achieved an MAE of 5% on the PeMS 
dataset. A similar attention mechanism was proposed by Vijayalakshmi 
et al. (2021) to improve the performance further by using the same 
dataset to implement a multi-step prediction model, combining CNNs 
with LSTMs and an attention mechanism. The CNNs helped to extract 
specific features and relationships of the data samples, and the LSTM 
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networks allowed them to maintain the recurrence. The attention mech-
anism supported identifying near-term traffic data points, for example, 
daily seasonality, such as hours of the day, which are very important 
for predicting future traffic states. The results showed that the proposed 
model provided better accuracy than the considered baselines. Similar 
mechanisms were proposed to overcome the current shortcomings with 
some success (Grigsby et al., 2023; Li et al., 2019; Lim et al., 2021; Reza 
et al., 2022).

Chauhan et al. (2024) incorporated an attention mechanism with 
Bi-GRU networks, aiming to focus on the most recent relevant infor-
mation of the data sequence to make future predictions. Conventional 
feature engineering was performed to extract weekdays or holidays 
and passed to the model as inputs. It needed comprehensive compar-
isons with recent models and could not effectively capture long-term 
dependencies due to its sequential processing of each element simul-
taneously, constraining its ability to model extended temporal rela-
tionships. Also, errors accumulate with the increase in prediction time 
horizons. Similar methods suffer from the same problems because of 
their architectures (Li et al., 2024b). Zou et al. (2024) presented a 
spatial-temporal transformer network to address the shortcomings of 
vanilla transformer models. The authors incorporated spatial-temporal 
tokens and a positional encoding mechanism to capture spatial long-
term dependencies. A traffic accident prediction model using a trans-
former was presented in the works by Al-Thani et al. (2024), where an
advanced multi-head attention mechanism was built to overcome the 
limitations of CNNs and LSTMs. However, it lacks comprehensive ex-
periments for long-term prediction problems and suffers from the ac-
cumulation of errors. Moreover, the positional encoding layer lacks an 
efficient means to capture spatial-temporal positional relationships of 
the traffic states.

Graph Neural Networks (GNN) with attention mechanisms were ex-
plored to overcome the drawbacks of capturing spatial-temporal depen-
dencies. Luo et al. (2024) presented a spatial-temporal GNN with a long-
short term transformer network to capture the periodic and short-term 
features and long-term trends to perform future predictions. It obtained 
5.63 − 16.78% improvements compared to the baselines. However, the 
proposed model suffers from accumulation of error problems and is com-
putationally demanding. Chen et al. (2024) designed a traffic flow ma-
trix to represent the inter-node relationship better and used an attention 
mechanism-based Graph Convolutional Network (GCN) to make future 
predictions. Although the results demonstrated outperformance than the 
baselines, it suffered from predictive stability and lacked robustness. 
Aiming to enhance the model’s robustness, particularly to non-recurrent 
traffic incidents, Geng et al. (2024) proposed a transformer-based GNN 
model. The authors developed a multidimensional embedding method 
to effectively fuse spatial-temporal features and a gated temporal self-
attention technique to capture local and global temporal features. It was 
modelled to predict only 12 timesteps, and more experimental analyses 
are required to make efficient long-term predictions. Liu et al. (2024) 
incorporated prior physical knowledge into the adjacency matrix to im-
prove the performance of GCN. Xu et al. (2024) also explored a simi-
lar model. However, these models are computationally demanding, and 
more performance improvements are necessary.

In general, the aforementioned methods have common drawbacks: 
(i) lack of efficiency in addressing the problems of prediction over longer 
time horizons, (ii) error accumulation for multi-step prediction, and (iii) 
high computational complexity. This research aims to address these par-
ticular problems.

3.  Methodology

Traffic state prediction is usually modelled as a time-series predic-
tion problem where attempts are taken to predict its future state based 
on a series of past samples at regular intervals. Let’s assume that 𝑋
represents the dataset, partitioned into overlapping data windows us-
ing a sliding window approach. Each window comprises input and label

sequences spanning 𝑆 timesteps. For a sequence of traffic state data sam-
ples 𝑋𝑡 𝜖𝑋, 𝑋𝑡 denotes the observed traffic state at the 𝑡-th time interval, 
where 𝑡 = 1, 2,… , 𝑇 . The model uses learned patterns from preceding 
observations across sliding windows to predict the traffic state 𝑋𝑇+𝑆 at 
the next 𝑆 intervals. The prediction horizon, 𝑆, specifies the number 
of future timesteps for which the traffic states are predicted, enabling 
long-term multi-intersection traffic state prediction.

The main challenges of RNN-based models for traffic state predic-
tion are to (i) capture long-range dependencies, (ii) address gradient 
vanishing and exploding phenomena, (iii) reduce the number of train-
ing steps, and (iv) enhance efficient parallel computation. An attention 
mechanism can address most of these shortcomings primarily because 
of its architecture.

3.1.  Attention mechanism

From the 𝑋 dataset, the 𝑣𝑖 values can be retrieved based on a given 
query 𝑞𝑖 and corresponding keys 𝑘𝑖, through a probabilistic approach. 
For a given query, the attention mechanism assesses the degree of align-
ment between itself and all keys and calculates the result as a weighted 
sum of values. The weights show the similarity between the query and 
each key, indicating the relative relevance of each value concerning the 
query. This process is formally expressed as:

Attention(𝑞, 𝑘, 𝑣) =
∑

𝑖
similarity(𝑞, 𝑘𝑖) ⋅ 𝑣𝑖. (1)

The output corresponds to the value associated with the key having 
the highest similarity. The similarity computation is represented as 𝑠𝑖, a 
function of the query and key. This function can have numerous forms, 
such as matrix dot product, 𝑞𝑇𝑖 ⊗ 𝑘𝑖, scaled dot product, 

𝑞𝑇𝑖 ⊗𝑘𝑖
√

𝑑
, general 

dot product, 𝑞𝑇𝑖 ⊗𝑊 𝑘𝑖, or additive similarity, 𝑊 𝑇
𝑞 ⊗ 𝑞𝑖 +𝑊 𝑇

𝑘 ⊗ 𝑘𝑖, as 
follows (Vaswani et al., 2017):

𝑠𝑖 = (𝑞𝑖, 𝑘𝑖) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑞𝑇𝑖 ⊗ 𝑘𝑖,
𝑞𝑇𝑖 ⊗𝑘𝑖
√

𝑑
,

𝑞𝑇𝑖 ⊗𝑊 𝑘𝑖,
𝑊 𝑇

𝑞 ⊗ 𝑞𝑖 +𝑊 𝑇
𝑘 ⊗ 𝑘𝑖,

(2)

where 𝑑 denotes the dimensionality of each key, and 𝑊  is a collection 
of weights used to transform the query into a new space, allowing it to 
learn the appropriate content. The self-attention mechanism produces 
the following output:

𝑆𝐴 = 𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) =
∑

𝑖
𝑎𝑖 ⊗ 𝑣𝑖, (3)

where the attention weights 𝑎𝑖 is computed using 𝑎𝑖 = 𝑒𝑠𝑖
∑

𝑗 𝑒
𝑠𝑗 . The multi-

head attention is then derived by concatenating all the outputs of 𝑆𝐴
across the ℎ heads using:

𝑀𝐴 ∈ ℝ𝐵×𝑇×𝐷 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑆𝐴1
, 𝑆𝐴2

,… , 𝑆𝐴ℎ
), (4)

where ℎ is the number of attention heads, and each 𝑆𝐴𝑖
 corresponds to 

the output of the 𝑖-th self-attention head. The proposed model incor-
porates a masked multi-head attention mechanism to enhance the en-
coder’s performance. The fundamental concept is to mask certain values, 
effectively nullifying their probabilities and ensuring that the output at 
any step depends only on previous outputs and not on future ones. If 
𝑀 denotes the mask matrix consisting of elements 0 (zero) and −∞, 
the masked attention can be computed by adapting one of the methods 
presented in Eq. (2) and following the previously described procedures. 
For example, using the scaled dot-product attention:

𝑠𝑖 = (𝑞𝑖, 𝑘𝑖) =
𝑞𝑇𝑖 ⊗ 𝑘𝑖 +𝑀

√

𝑑
. (5)
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3.2.  Layer normalization

A layer normalisation (LayerNorm) helps to reduce the number of 
steps needed by the gradient descent algorithm to optimise the network. 
A network with multiple layers consists of weights in each layer, which 
are trained by gradient descent. The computation of the gradient of one 
set of weights depends on the outputs of the preceding and subsequent 
layers, which results in slow convergence. To address the problem, a 
LayerNorm operation is required, ensuring that the output of that layer, 
regardless of the setup of the weights, is the same by calculating the 
mean and variance. Let’s suppose a mini-batch, 𝐵, of inputs, 𝑋, is 𝐵 =
{𝑋1, 𝑋2, 𝑋3,… ., 𝑋𝑚}, and each sample, 𝑋𝑖, contains 𝑁 elements so that 
𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝑋𝑖) = {𝑋𝑖,1, 𝑋𝑖,2, 𝑋𝑖,3,… , 𝑋𝑖,𝑁}, and their mean and variance
are:

𝜇𝑖 =
1
𝑁

𝑁
∑

𝑋𝑖,𝑁 , (6)

𝜎2𝑖 = 1
𝑁

𝑁
∑

(𝑋𝑖,𝑁 − 𝜇𝑖)2. (7)

Then, each sample is normalised so that it possesses 0 (zero) mean and 
unit variance, such as:

𝑋̂𝑖,𝑁 =
𝑋𝑖,𝑁 − 𝜇𝑖
√

𝜎2𝑖 + 𝜖
, (8)

where 𝜖 is a stability factor that prevents any case of the denominator 
becoming 0 (zero). Finally, after performing some scaling and shifting, 
the output of the LayerNorm becomes (Ba et al., 2016):
𝐿𝑁 = 𝛾𝑋̂𝑖,𝑁 + 𝛽, (9)

where 𝛾 and 𝛽 are learnable parameters. Now, when a model becomes 
very deep, most often, it tends to learn the statistical noise of the dataset, 
resulting in over-fitting problems. Dropout layers are used to address 
this phenomenon (Baldi & Sadowski, 2013).

3.3.  Spatial-temporal positional encoding

Ordering traffic state data within a sequence is critical for predic-
tion tasks, and the positional embedding (PE) mechanism is often used 
in attention techniques to record sequential ordering. However, the typ-
ical PE mechanism cannot capture the spatial and temporal correlations 
required for long-term prediction tasks. This research suggests an STPE 
mechanism to overcome this constraint. The primary goal is to supple-
ment the data for each sensor at each time step with spatial and temporal 
location information.

A spatial embedding mechanism is built to capture a trainable rep-
resentation of sensors in a vector space to accomplish it. Let’s suppose 
that 𝑆 is the number of sensors, then 𝑆𝑒 ∈ ℝ𝑆×𝐷 represents the spatial 
embedding matrix, where each row corresponds to the embedding of a 
specific sensor. The spatial embedding for the 𝑖 sensor can be retrieved 
as 𝑠𝑒𝑖 ∈ ℝ𝐷 = 𝑆𝑒[𝑖].

Now, the temporal encoding can be computed as a sinusoidal func-
tion of the position using (Vaswani et al., 2017):

𝑇𝑒(𝑡) ∈ ℝ𝑇×𝐷 =

⎧

⎪

⎨

⎪

⎩

sin
(

𝑡 ⋅ 1
100002𝑖∕𝐷

)

, for even indices of 𝑖,
cos

(

𝑡 ⋅ 1
100002𝑖∕𝐷

)

, for odd indices of 𝑖,
(10)

where 𝑡 and 𝑖 represent the time step and dimension index, respectively, 
and the 100002𝑖∕𝐷 factor ensures that the encoding for different dimen-
sions has varying frequencies. Therefore, the STPE can then be defined 
as:

𝐸𝑆𝑇𝑃𝐸 ∈ ℝ𝑇×𝑆×𝐷 = 𝑆𝑒[𝑖] + 𝑇𝑒(𝑡). (11)

To obtain an output of size 𝐵 × 𝑇 ×𝐷, the following steps are performed: 
(i) a reduction operation is applied throughout the spatial dimension, 

and (ii) the result is broadcast throughout the batch size, 𝐵. Thus, the 
final output of the STPE layer is computed as:
𝑂𝑆𝑇𝑃𝐸 ∈ ℝ𝐵×𝑇×𝐷 = 𝑋 + 𝐸𝑆𝑇𝑃𝐸 , (12)

where 𝑋 ∈ ℝ𝐵×𝑇×𝐷 is the input.

3.4.  Dynamic feature embedding

The input features of a usual traffic state dataset are complex and 
high-dimensional. To transform it into a meaningful representation, this 
research uses a DFE layer. The aim is to help the model capture com-
plex spatial-temporal relationships within the data samples to improve 
long-term prediction performance. Let’s suppose that 𝑆 is the number of 
features of the raw input, 𝑥 ∈ ℝ𝐵×𝑇×𝑆 , then the DFE layer uses a learn-
able linear transformation to transform it into size (𝐵 × 𝑇 ×𝐷), where 
𝐷 is the model dimension using:
𝑥̂ ∈ ℝ𝐵×𝑇×𝐷 = 𝑥𝑤𝑑 + 𝑏𝑑 , (13)

where 𝑤𝑑 and 𝑏𝑑 represent the weight and bias matrices.

3.5.  Deep linear projection

The proposed DPL technique works as an intermediate-level fea-
ture transformation platform to enhance their representation using non-
linear transformations and gating mechanisms. It is used after the DFE 
layer to refine and project existing temporal feature representations into 
a desired dimension. Let’s assume now that the input is 𝑥̂ ∈ ℝ𝐵×𝑇×𝐷. 
Thus, it does a non-linear transformation with ReLU at each time step, 
followed by a gating mechanism with the sigmoid activation func-
tion. Then, an element-wise gating operation is done to obtain 𝑥̂2 ∈
ℝ𝐵×𝑇×𝑑ℎ𝑖𝑑𝑑𝑒𝑛  as:
𝑥̂1 ∈ ℝ𝐵×𝑇×𝑑ℎ𝑖𝑑𝑑𝑒𝑛 = 𝑅𝑒𝐿𝑈 (𝑥̂𝑤1 + 𝑏1), (14)

𝑔 ∈ ℝ𝐵×𝑇×𝑑ℎ𝑖𝑑𝑑𝑒𝑛 = 𝜎(𝑥̂𝑤2 + 𝑏2), (15)

𝑥̂2 ∈ ℝ𝐵×𝑇×𝑑ℎ𝑖𝑑𝑑𝑒𝑛 = 𝑥̂1 ⊙ 𝑔, (16)

where 𝑤𝑖 and 𝑏𝑖 represent the weight and bias matrices, and 𝑑ℎ𝑖𝑑𝑑𝑒𝑛
is the hidden dimension. Now, 𝑥̂2 ∈ ℝ𝐵×𝑇×𝑑ℎ𝑖𝑑𝑑𝑒𝑛  is projected back to 
𝑥̂2 ∈ ℝ𝐵×𝑇×𝐷 using a linear projection mechanism using:
𝑥̂3 ∈ ℝ𝐵×𝑇×𝐷 = 𝑥̂2𝑤3 + 𝑏3. (17)

Subsequently, a learnable scaling is introduced to allow the model to 
optimise the amplitude of features dynamically based on the data and 
training process. A parameter, 𝛼, equal to the 

√

𝐷, is used to achieve the 
purpose. Also, a LayerNorm is introduced to make the model’s training 
more stable and speed up its convergence. This ensures that the values 
are centred and have a consistent scale using:
𝑥̂4 ∈ ℝ𝐵×𝑇×𝐷 = 𝛼𝑥̂3, (18)

𝑥̂5 ∈ ℝ𝐵×𝑇×𝐷 = 𝐿𝑁 (𝑥̂4). (19)

Finally, a residual connection is used to allow the DPL layer to di-
rectly propagate the original input, 𝑥̂ ∈ ℝ𝐵×𝑇×𝐷, along with the trans-
formed output using:
𝑥̂𝑝𝑟𝑜𝑗 ∈ ℝ𝐵×𝑇×𝐷 = 𝑥̂𝑤4 + 𝑏4, (20)

𝑌𝐷𝑃𝐿 ∈ ℝ𝐵×𝑇×𝐷 = 𝑥̂𝑝𝑟𝑜𝑗 + 𝑥̂5. (21)

3.6.  Residual temporal convolutional network

This research incorporated an RTCN to preserve the temporal or-
der of the sequences and efficiently learn both short and long-term de-
pendencies. It applies a series of transformations on the data sequences 
using causal convolutions (Hamad et al., 2021), batch normalisation 
(Bjorck et al., 2018), ReLU activations, and dropout for regularisation. 
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It also contains a residual connection to allow deeper network construc-
tion. For an input 𝑋 ∈ ℝ𝐵×𝑇×𝐷, the RTCN first applies a one dimensional 
convolution (1DCNN) with dilation using (Kwon et al., 2021):

𝐶𝑡 ∈ ℝ𝐵×𝑇×𝐹 =
𝐾−1
∑

𝑘=0
𝑋𝑡−𝑘 ⋅𝑤𝑘, (22)

where 𝐹  denotes the number of filters, 𝐶𝑡 ∈ ℝ𝐵×𝑇×𝐹  represents the out-
put at the 𝑡 time step, 𝐾 denotes the size of the convolutional kernel, 
and 𝑘 indexes the kernel weights, specifying the contribution of the cor-
responding input sequence segment to the output at 𝑡. Furthermore, 𝑤𝑘
refers to the weight of the 𝑘𝑡ℎ kernel filter, and 𝑋𝑡−𝑘 signifies the input 
element at the 𝑡 − 𝑘 time step. The padding is causal to prevent infor-
mation leakage from future timesteps, i.e., ensuring that predictions at 𝑡
depend only on information from timesteps, ≤ 𝑡. It also helps to increase 
the receptive field without increasing the computational cost, which is 
key in modelling long-range dependencies. 𝐶𝑡 ∈ ℝ𝐵×𝑇×𝐹  then undergoes 
batch normalization and ReLU activation followed by a spatial dropout 
layer to get 𝐶̄𝑡 ∈ ℝ𝐵×𝑇×𝐹 . It helps stabilise the model’s training and in-
troduce non-linearity.

One of the most important parts of an RTCN is the residual con-
nection, aiming to enhance model stability and facilitate gradient flow. 
Specifically, a skip connection from the input, 𝑋𝑡 ∈ ℝ𝐵×𝑇×𝐷, is added to 
the output, 𝐶̄𝑡 ∈ ℝ𝐵×𝑇×𝐷, with 𝐹  equals 𝐷. It is then passed through an 
additional ReLU activation function, ensuring a non-linear combination 
of the input and transformed features using:
𝑅𝑡 ∈ ℝ𝐵×𝑇×𝐷 = 𝐶̄𝑡 +𝑋𝑡, (23)

𝑌𝑅 ∈ ℝ𝐵×𝑇×𝐷 = 𝑅𝑒𝐿𝑈 (𝑅𝑡), (24)

where 𝑌𝑅 ∈ ℝ𝐵×𝑇×𝐷 represents the residual output.

3.7.  Encoder layer

The encoder layer processes the input sequence, 𝑋 ∈ ℝ𝐵×𝑇×𝐷, where 
𝐵 is the batch size, 𝑇  is the sequence length, and 𝐷 is the model’s feature 
dimension. It also takes a padding mask, 𝑀 ∈ ℝ𝐵×1×1×𝑇 , to exclude in-
valid positions during the attention computation. The processing begins 
with a layer normalisation step: 
𝑋𝑛𝑜𝑟𝑚 ∈ ℝ𝐵×𝑇×𝐷 = 𝐿𝑁 (𝑋), (25)

where 𝐿𝑁  is defined by Eq. 9. Next, multi-head attention is applied using 
the normalised inputs and the padding mask: 
𝐴 ∈ ℝ𝐵×𝑇×𝐷 = 𝑀𝐴(𝑋𝑛𝑜𝑟𝑚,𝑀), (26)

where 𝑀𝐴 computes the attention scores using the mechanism defined 
in Eq. 4. A dropout layer is then applied to the attention output: 
𝐴𝑑𝑟𝑜𝑝𝑜𝑢𝑡 ∈ ℝ𝐵×𝑇×𝐷 = 𝐷𝑜(𝐴), (27)

where 𝐷𝑜 represents the dropout function. A residual connection adds 
the original input, 𝑋, to the attention output: 
𝐴𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ∈ ℝ𝐵×𝑇×𝐷 = 𝑋 + 𝐴𝑑𝑟𝑜𝑝𝑜𝑢𝑡. (28)

The second part of the encoder layer consists of a fully connected net-
work with a gating mechanism. First, the residual output is normalised: 
𝐴𝑛𝑜𝑟𝑚 ∈ ℝ𝐵×𝑇×𝐷 = 𝐿𝑁 (𝐴𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙). (29)

The gating mechanism is then applied as follows:
𝑔𝑒 = 𝜎(𝐴𝑛𝑜𝑟𝑚𝑊𝑔 + 𝑏𝑔), (30)

𝑓𝑒 = 𝑅𝑒𝐿𝑈 (𝐴𝑛𝑜𝑟𝑚𝑊𝑓 + 𝑏𝑓 ), (31)

𝑧𝑒 = 𝑔𝑒 ⊙ 𝑓𝑒, (32)

where 𝑔𝑒 is the gate vector, 𝑓𝑒 is the feature vector, ⊙ denotes element-
wise multiplication, and 𝑊𝑔 , 𝑏𝑔 , 𝑊𝑓 , and 𝑏𝑓  are learnable parameters of 
the fully connected layers. A feedforward network projects the output 
back to the model’s feature dimension, 𝐷: 
𝑂𝑒 ∈ ℝ𝐵×𝑇×𝐷 = 𝐷𝑜(𝑧𝑒𝑊𝑜 + 𝑏𝑜), (33)

where 𝑊𝑜 and 𝑏𝑜 are the projection parameters, and 𝐷𝑜 applies dropout. 
Finally, a residual connection is applied after the feedforward network 
to produce the final output of the encoder layer:

𝑂𝐸 ∈ ℝ𝐵×𝑇×𝐷 = 𝐴𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 + 𝑂𝑒, (34)

where 𝑂𝐸 is the output of the encoder layer.

3.8.  Proposed model

The core component of the proposed model is an encoder block com-
posed of several encoder layers. Unlike RNN-based models, which pro-
cess one value at a time in a sequence, the encoder block processes all 
data samples within the sequence, i.e., the data window simultaneously, 
enabling parallel computations.

Let the input be 𝑋 ∈ ℝ𝐵×𝑇×𝐷 and the padding mask 𝑀 ∈ ℝ𝐵×1×1×𝑇

computed as:

𝑀 = 𝑐𝑟𝑒𝑎𝑡𝑒_𝑝𝑎𝑑𝑑𝑖𝑛𝑔_𝑚𝑎𝑠𝑘

( 𝐷
∑

𝑑=1
𝑋𝑏,𝑡,𝑑

)

, (35)

where ∑𝐷
𝑑=1 𝑋𝑏,𝑡,𝑑 reduces the feature dimension for each time step 𝑡 and 

create_padding_mask(⋅) is a function that generates a mask to exclude 
invalid positions based on the reduced values. Now, a DFE layer maps 
input features to a learned dynamic embedding space and then joins the 
original features and the embeddings along the feature dimension using:

𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∈ ℝ𝐵×𝑇×𝐷 = 𝑥̂(𝑋), (36)

𝑌1 ∈ ℝ𝐵×𝑇×(𝐷+𝐷) = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑋, 𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠). (37)

Afterward, 𝑌1 ∈ ℝ𝐵×𝑇×(𝐷+𝐷) is passed through a DLP layer to produce 
𝑌2 ∈ ℝ𝐵×𝑇×𝐷 and then is scaled using the square root of the model di-
mension 𝐷 using:

𝑌2 ∈ ℝ𝐵×𝑇×𝐷 = 𝑌𝐷𝑃𝐿(𝑌1), (38)

𝑌2 ∈ ℝ𝐵×𝑇×𝐷 = 𝑌2 ⋅
√

𝐷, (39)

where 
√

𝐷 ensures that the projection values are scaled appropriately 
for subsequent processing. A STPE layer is then used to capture the 
spatial-temporal features and positional relationships using:

𝑌3 ∈ ℝ𝐵×𝑇×𝐷 = 𝑂𝑆𝑇𝑃𝐸 (𝑌2). (40)

A LayerNorm layer and a dropout layer are then used to stabilise the 
model training process. The encoder block has 𝑁 identical encoder lay-
ers. Each output of the encoder layer is repeatedly updated over 𝑁 to 
get:

𝑌 (𝑖)
4 ∈ ℝ𝐵×𝑇×𝐷 = 𝑂𝐸 (𝑌

(𝑖−1)
3 ,𝑀), (41)

where 𝑖 ∈ {1, 2,… , 𝑁}, and the after final iteration 𝑌 (𝑁
4 ∈ ℝ𝐵×𝑇×𝐷 con-

tains the refined and deeply encoded features of the input sequence. The 
RTCN block uses it to extract the temporal correlation of the timesteps 
and to help the Time-Distributed Fully Connected layer to make the final 
predictions using:

𝑌5 ∈ ℝ𝐵×𝑇×𝑈 = 𝑌𝑅(𝑌 𝑁
4 ), (42)

𝑌6 ∈ ℝ𝐵×𝑇×𝑈 = 𝐷𝑜(𝑌5), (43)

𝑌7 ∈ ℝ𝐵×𝑇×𝑈 = 𝑅𝑒𝐿𝑈 (𝑌6𝑤𝑦 + 𝑏𝑦), (44)

𝑌𝑜 ∈ ℝ𝐵×𝑇×𝑂 = 𝑇 𝑖𝑚𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑(𝑌7𝑤𝑜 + 𝑏𝑜), (45)

where 𝑈 and 𝑂 are the number of filters of the RTCN block and out-
put size of the model. The complete architecture of the proposed model 
is depicted in Fig. 1. One should note that the aforementioned equa-
tions were established considering only the forward pass processes for
simplicity.
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Fig. 1. Architecture of the proposed model.

3.9.  Weighted MSE-MAE loss function

The proposed model calculates the loss with the help of a weighted 
MSE-MAE loss function described by:

𝑙𝑜𝑠𝑠(𝑥𝑖, 𝑦𝑖) = 𝑀𝑆𝐸(𝑥𝑖, 𝑦𝑖) + 0.5 ⋅𝑀𝐴𝐸(𝑥𝑖, 𝑦𝑖). (46)

The goal is to minimise the loss value to support proper model learn-
ing effectively. Higher loss function values indicate that the model has 
not been learned properly. In backpropagation, the model uses gradient 
descent to update the weights based on an error, 𝐸, defined by the loss 
function. The aim is to calculate the gradient, 𝜕𝐸𝜕𝑤𝑖

, where 𝑤𝑖 represents 
the 𝑖𝑡ℎ weight of the network, and update the weight. Given the loss 
function, 𝐸 can be expressed as:

𝐸 = 1
𝑛

𝑛
∑

𝑖=1

[

(𝑥𝑖 − 𝑦𝑖)2 + 0.5 ⋅ |𝑥𝑖 − 𝑦𝑖|
]

, (47)

where 𝑥𝑖 and 𝑦𝑖 represent the true and predicted values, respectively. 
The gradient 𝜕𝐸𝜕𝑤𝑖

 is computed as:

𝜕𝐸
𝜕𝑤𝑖

= −1
𝑛

𝑛
∑

𝑖=1

[

2(𝑥𝑖 − 𝑦𝑖) + 0.5 ⋅ 𝑠𝑖𝑔𝑛(𝑥𝑖 − 𝑦𝑖)
] 𝜕𝑦𝑖
𝜕𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑖

𝜕𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑖
𝜕𝑤𝑖

, (48)

where 𝑠𝑖𝑔𝑛 represents the Signum function (Tatlıcıoğlu, 2024) and the 
term 𝜕𝑦𝑖

𝜕𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑖
 depends on the activation function. The 𝑅𝑒𝐿𝑈 activa-

tion function is employed in the fully connected layers of the proposed 
model. The derivative of 𝑅𝑒𝐿𝑈 for 𝑦𝑖 can be computed as (Lederer, 
2021):

𝑑(𝑅𝑒𝐿𝑈 )
𝑑𝑦𝑖

=

{

1 if 𝑦𝑖 > 0,
0 if 𝑦𝑖 ≤ 0.

(49)

If 𝜕𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑖
𝜕𝑤𝑖

= 𝑘𝑖, then the final gradient equation becomes:

𝜕𝐸
𝜕𝑤𝑖

= −1
𝑛

𝑛
∑

𝑖=1

[

2(𝑥𝑖 − 𝑦𝑖) + 0.5 ⋅ 𝑠𝑖𝑔𝑛(𝑥𝑖 − 𝑦𝑖)
]

⋅ 𝑅𝑒𝐿𝑈 ′(𝑦𝑖) ⋅ 𝑘𝑖. (50)

4.  Experiments

The training of the proposed model requires less computational 
power compared to other transformer-based models, and hence, the 
training procedures can be completed on a local computer with an In-
tel Core i7-10750H CPU @ 2.60GHz × 12 processor and a memory of 
16.0 GB. However, an NVIDIA Corporation TU117GLM [Quadro T1000 
Mobile] Graphical Processing Unit (GPU) on a 64-bit Ubuntu 22.04.5 
LTS operating system with a GNOME version of 42.9 was used to com-
plete training and is recommended. The open-source Tensorflow ma-
chine learning library facilitated the coding tasks.

4.1.  Code implementation

The proposed model was implemented in several stages, with the 
TensorFlow platform as the foundation. First, a scaled dot-product at-
tention mechanism was built using the tf.matmul and tf.nn.softmax func-
tions. The latter function computed the attention weights by scaling the 
dot product of the query and key tensors, normalised by the square root 
of the key’s depth. An optional masking operation was integrated to 
handle padded sequences. Second, a multi-head attention module was 
implemented using the tf.keras.layers.Dense layer to project query, key, 
and value tensors. These tensors were split into multiple heads for paral-
lel computation. The attention mechanism aggregated information from 
different subspaces and established residual connections for stability. 
The outputs of the attention module were concatenated and processed 
through a feedforward dense layer.

Third, a STPE layer was introduced to model spatial-temporal de-
pendencies. Spatial embeddings for sensors were initialised as learnable 
parameters, and temporal encodings were generated with sinusoidal 
functions. These encodings were paired with input features to boost the 
model’s representational power, using tf.broadcast_to and tf.reduce_sum
for operations across batches. Fourth, the transformer encoder was de-
signed using pre-normalisation with tf.keras.layers.LayerNormalization, 
multi-head attention, and a feedforward network with gating mecha-
nisms. Gated linear units were implemented to control feature selection 
dynamically. Residual connections ensured stable gradient flow during 
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training. The encoder block was stacked multiple times, and temporal 
convolutional blocks were added to refine temporal patterns using the 
Conv1D and Add layers.

Finally, a DFE layer and a DLP layer were used to embed input 
features into a higher-dimensional space. These embeddings were pro-
cessed through a dense layer with a learnable scaling factor and com-
bined with positional encodings. The entire architecture was trained us-
ing a composite loss function combining the MSE and MAE metrics. The 
Nadam optimiser with a cosine decay learning rate schedule ensured 
an efficient optimisation. Also, the Friedman Chi-Square function was 
developed using the scipy.stats module to facilitate the statistical testing 
mechanism.

4.2.  Evaluation metrics

The state-of-the-art MAE and RMSE metrics were used to assess the 
accuracy of the proposed model. Also, the Friedman Chi-Square test 
(Pereira et al., 2015) was conducted to find the statistical significance 
of the prediction distributions of the models under comparison. If 𝑥 and 
𝑦 are the actual and predicted values, 𝑛 is the number of samples, and 
𝑥𝑖 and 𝑦𝑖 are values of the 𝑖𝑡ℎ samples in 𝑥 and 𝑦, respectively, then their 
formulations have the following forms.

The mean absolute error is simply an arithmetic average of the ab-
solute errors:

𝑀𝐴𝐸(𝑥, 𝑦) = 1
𝑛

𝑁
∑

𝑖=1

|

|

𝑥𝑖 − 𝑦𝑖||. (51)

The root mean squared error is the standard deviation of the residuals, 
i.e., prediction errors, and, in terms of mathematics, has the form of:

𝑅𝑀𝑆𝐸(𝑥, 𝑦) =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑥𝑖 − 𝑦𝑖)2. (52)

Let’s suppose that there are 𝑀 models that are to be evaluated on 
𝐷 datasets, then the test statistic can be formulated as (Rainio et al., 
2024):

𝐹𝑠 =
(𝐷 − 1)𝜒2

𝐹

𝐷(𝑀 − 1) − 𝜒2
𝐹

, (53)

where 𝜒2
𝐹  represents the Friedman Chi-Square function. 𝐹𝑠 follows the 

𝐹 -distribution with (𝑀 − 1) and (𝑀 − 1)(𝐷 − 1) degrees of freedom un-
der the null hypothesis.

4.3.  Datasets

The PEMS traffic flow dataset of the year 2012 was gathered. This 
dataset contains the measurements of date-time, the location identifi-
cation (ID), and the number of vehicles passed by the sensors in a fre-
quency of 5 minutes. Another Caltrans-PeMS dataset with data about 
the readers’ locations was combined with the traffic information using 
SQL Server. The resultant dataset contained only two independent vari-
ables with missing values: Angle and City ID, which were not used in 
this study. Only the data acquired from readers installed in the Dwight 
D. Eisenhower Highway part of Interstate 80, between West Oakland 
and North San Francisco, in the USA, was used for this study. It was 
chosen based on high traffic flow peaks and the clear presence of sea-
sonality. It consists of traffic flow measurements recorded over 23 days, 
19 hours, and 5 minutes, from January 1, 2012, 00:00:00, to January 
24, 2012, 19:05:00. It includes 6854 data entries (rows) and 154 vari-
ables (columns). The first column, date_hour, contains the timestamps of 
each data point in the format YYYY-MM-DD HH:MM:SS, with no missing 
values observed. The remaining 153 columns correspond to individual 
sensor IDs, i.e., 200, 201, and 300, representing traffic flow data. No-
tably, a few sensor columns contain minimal missing values, with the 
maximum being 1 (one) missing value per column. The data observa-
tions were taken regularly, providing high temporal resolution for traffic 
flow analysis.

Also, the PEMS-BAY dataset was used for the model’s experimenta-
tion and validation. It contains traffic speed information collected over 
six months from January 1, 2017, to June 30, 2017, with 180 days 
and 23 hours, 55 minutes. It comprises 52,116 samples (rows) and 326 
features (columns). The first column (date_time) represents the times-
tamps of the recordings, formatted as YYYY-MM-DD HH:MM:SS, with 
no missing values. The subsequent 325 columns represent sensor IDs, 
i.e., 400,001 and 400017, each containing continuous traffic speed data 
recorded. No missing values were identified across these columns, en-
suring data completeness for analysis.

These two datasets were chosen because of their wide adaptability 
in traffic research, making them a community standard. Also, they are 
from different geographical locations with varying characteristics, de-
mand profiles, and animalities, helping the model to test its robustness. 
Lastly, they are large-scale and thus can test the model’s computational 
efficiency.

4.3.1.  Data analysis
The potential outliers were investigated using the Interquartile 

range (IQR) method (Wan et al., 2014), testing both conservative, 
i.e., 1.5𝐼𝑄𝑅, and non-conservative, i.e., 3𝐼𝑄𝑅, variation measures. 
These variations were subtracted from the first quartile 𝑄1, i.e., 25% 
of the data, and added to the third quartile 𝑄3, i.e., 75% of the 
data, to define the lower inner fence (𝐿𝐼𝐹 ), upper inner fence (𝑈𝐼𝐹 ), 
lower outer fence (𝐿𝑂𝐹 ), and upper outer fence (𝑈𝑂𝐹 ), respectively,
using:

𝐼𝑄𝑅 = 𝑄3 −𝑄1,

𝐿𝐼𝐹 = 𝑄1 − 1.5𝐼𝑄𝑅,

𝑈𝐼𝐹 = 𝑄3 + 1.5𝐼𝑄𝑅,

𝐿𝑂𝐹 = 𝑄1 − 3𝐼𝑄𝑅,

𝑈𝑂𝐹 = 𝑄3 + 3𝐼𝑄𝑅. (54)

A value may be classified as an outlier if it is not within these limits. 
Fig. 2 helps visualise the dataset’s outliers using box plot analysis of 
traffic flow values hourly. In this figure, the x-axis and y-axis represent 
hours of the day and traffic flow (vehicles per 5 minutes), respectively.

Table 1 presents the obtained 𝑄1, 𝑄3, 𝐼𝑄𝑅, 𝐿𝐼𝐹 , 𝑈𝐼𝐹 , 𝐿𝑂𝐹 , and 
𝑈𝑂𝐹  values of the traffic flow data samples of the whole dataset, re-
spectively.

The traffic flow, i.e., the number of vehicles per unit of time, values 
for July 2012 possess a mean, median, and standard deviation of 65.62, 
70.00, and 37.98, respectively. However, the mean, median, and standard 
deviation of their amplitude for December 2012 were equal to 74.71, 
79.00, and 44.43, respectively. Again, for July 2013, their mean was equal 
to 56.28, and median and standard deviation were equal to 60.00 and 
30.89, respectively. The traffic flow peak in December 2012 was 8.5% 
higher than that for July 2012. Interestingly, the traffic flow peaks in 
July 2013 were 19.2% lower than in July 2012.

Furthermore, the Isolation Forest algorithm (Liu et al., 2008) was 
applied to the dataset to double-check the presence of outliers. Fig. 3 
helps to visualise the found dataset’s outliers using this method.

In summary, the two analyses aforementioned reveal that the dataset 
contains some outliers, and this study aimed to propose a model 
that can efficiently deal with these outliers without sacrificing good
accuracy.

Table 1 
Summary of the PEMS dataset analysis to determine the outliers 
within the data samples based on the 𝐼𝑄𝑅 method.
   𝑄1 𝑄3 𝐼𝑄𝑅 𝐿𝐼𝐹 𝑈𝐼𝐹 𝐿𝑂𝐹 𝑈𝑂𝐹 
 32.0 107.0 75.0 −80.5 219.5 −193 332  
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Fig. 2. Box plot analysis of hourly traffic of the PEMS traffic flow dataset (the whole dataset is grouped hourly to build these box plots, the × sign represents the 
outliers).

Fig. 3. Visualisation of outliers of the PEMS dataset for sensor ID (a) 24,001 and (b) 24,200 built after fitting it to the Isolation Forest algorithm.

4.4.  Preprocessing

The traffic flow PEMS dataset contains only 6854 samples; hence, 
a data augmentation technique was used to generate two augmented 
samples per original sample. A random noise with a noise level of 0.01 
generated synthetic samples, which were added to the original dataset. 
In this way, the data samples were increased to 20,454. However, the 
PEMS-BAY dataset does not require any data augmentation process. The 
missing values in the dataset were handled using two techniques. First, 
any missing values were forward-filled using the Forward fill method 
(Cenitta et al., 2021), propagating the last valid observation to fill sub-
sequent missing entries. Then, any remaining missing values were in-
terpolated using a linear method, which estimates missing values based 
on the values of neighbouring data points. This combination ensures 
that missing values are appropriately addressed before further process-
ing. However, the PEMS-BAY dataset does not have any missing values; 
hence, these techniques do not apply to it. The PEMS-BAY and PEMS 
datasets have 325 and 153 sensors, respectively, and this research used 
all of them. The data was split into training, validation, and test datasets 
with a percentage ratio of 70 ∶ 20 ∶ 10 and was scaled between values 0
(zero) to 1 (one) using MinMaxScaler (Patro & Sahu, 2015) to facilitate 
efficient model training. It was fit on the training set only to avoid data 
leakage. Applying the proposed model for prediction tasks requires cre-
ating appropriate data windows and correctly designating the inputs and 
labels. This research divided the training, validation, and test sets into 
input-output pairs for multi-step traffic state prediction. For example, it 
can be configured into 24 consecutive timesteps of input data features to 

predict the next 24 timesteps as the target, as shown in Fig. 4. Here, the 
first data window started with 𝑡 = 0 timesteps and the next with 𝑡 = 1
timesteps. This process continued until the training set could not have a 
sequence of 24 consecutive labels. Each input window overlaps with the 
preceding one by all but one timestep, ensuring temporal continuity.

The forward fill and interpolation methods were used to tackle the 
missing values. However, they can create artificial patterns, underes-
timate volatility, and fail in the case of prolonged missingness. Since 
these two datasets have a very low/zero number of missing values, these 
effects were avoided. Again, the MinMaxScaler may cause the amplifi-
cation of sparse outliers, distorting relationships between multi-variate 
series. Lastly, the utilised data windowing technique eliminates trailing 
data points that do not conform precisely to the specified input-output 
windows, resulting in suboptimal utilisation of the dataset. Also, the 
model would find it challenging to learn the data patterns for a tiny 
pair of input-output windows.

4.5.  Model training

The proposed model contains 2.64𝑀 and 816𝑘 trainable parameters 
for the PEMS-BAY and PEMS traffic flow datasets. Different hyperparam-
eters can profoundly impact its outcomes. Hence, Keras Tuner provided 
a proper set of hyperparameters using the Random Search (Bergstra & 
Bengio, 2012) method, which ensured an efficient exploration of the 
hyperparameter space, as shown in Table 2, to identify optimal config-
urations. 89 and 83 trials were required for the PEMS and PEMS-BAY 
datasets to derive a final set of hyperparameters.
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Fig. 4. Visualisation of different data windows in a batch.

Table 2 
Hyperparameter search space explored in this study (values in bold 
correspond to the optimal hyperparameters identified for the PEMS 
dataset, while values marked with an asterisk (*) represent the op-
timal hyperparameters for the PEMS-BAY dataset).
    Hyperparameter  Values  
  Numb_heads (PEMS)  1, 3, 9, 17, 51  
  Numb_heads (PEMS-BAY)  1, 3, 5, 13, 25*, 65  
  Numb_layers  1*, 2, 3, …, 15  
  Units  32, 64, 96, 128, 160, 192, 224, 256* 
  Dropout rate  0.1*, 0.2, 0.3, 0.4, 0.5  
  Learning rate 1𝑒−4 , 𝟓𝐞−𝟒∗ , 1𝑒−3  
 

In Table 2, Numb_heads, Numb_layers, and Units represent the number 
of attention heads, encoder layers, and neurons of the fully connected 
layers, respectively. Two sets of optimal hyperparameters were derived 
for the two datasets used in this study. Given that the model dimension 
(𝐷) corresponds to the number of sensors (153 for the PEMS and 325 
for the PEMS-BAY datasets), the Numb_heads were selected from two 
distinct sets of values to ensure that the dimension per head is an integer. 
The other sets of values were selected as a common practice. The model 
was trained using the Nadam optimiser and a hybrid loss function, as 
described in Section 3.9. The traffic state values were normalised to 
the range [0, 1] using the MinMax scaling technique to ensure stable and 
efficient training, thereby mitigating the risk of large gradients. Training 
the proposed model (fully tuned) to reach convergence (around 105 
epochs) required approximately 10 to 17 minutes on a GPU with the 
mentioned configuration.

4.6.  Results

The proposed model was trained based on the previously mentioned 
experimental setup with a combination of optimal hyperparameters. 
Its performance was evaluated using state-of-the-art metrics on two 
datasets, as outlined in Section 4.2. The model’s performance was com-
pared with the results obtained by previously published state-of-the-art 
methods designed to address medium to long-term prediction problems. 
These methods were selected due to their recency and widespread recog-
nition within the research community. The used baselines were:

• LSTM-BiLSTM (Ma et al., 2021): The authors proposed a combination 
of an LSTM, a bidirectional LSTM, and Dense layers to address multi-

step traffic flow prediction tasks. A similar model was developed, 
trained, and tested on the two datasets used in this study.

• CNN-LSTM (Lee & Park, 2024): This approach used a CNN, an LSTM, 
and fully connected layers to achieve accurate predictions. An iden-
tical model was implemented, trained, and tested on the two datasets 
employed in this research.

• TrafFORMER (Tedjopurnomo et al., 2023): The authors introduced a 
spatio-temporal multi-head attention-based transformer model with 
a time-day embedding mechanism. A comparable model was imple-
mented and trained on the same datasets in this study.

• Autoformer (Wu et al., 2021): This method proposed a decomposi-
tion architecture with an auto-correlation mechanism for detecting 
dependencies and aggregating representations at the sub-series level. 
An identical model was implemented, trained, and tested on the two 
datasets employed in this research.

• Pdformer (Jiang et al., 2023): The authors introduced a propagation 
delay-aware dynamic long-range transformer model that employs a 
spatial self-attention mechanism. A comparable model was imple-
mented and trained on the same datasets in this study.

• ST-Autoformer (Yu et al., 2024): This work presented a spatio-
temporal autoformer model based on spatial-temporal sequence au-
tocorrelation. A similar model was implemented and trained on the 
same datasets in this study.

Table 3 summarises the obtained MAE(%) and RMSE(%) scores of the 
proposed model and the baselines under study for different prediction 
horizons (3–24 timesteps) on the traffic flow PEMS test dataset. For the 
3-step prediction horizon, the Autoformer model performed best by ob-
taining a 6.25% lower MAE(%) score than the 2nd best model. Also, the 
LSTM-BiLSTM outperformed the other models for 3- and 6-step predic-
tion lengths regarding MAE(%) and RMSE(%). However, the proposed 
model comprehensively outperformed all the baselines for 18- and 24-
step prediction horizons regarding the MAE(%) and RMSE(%) scores. 
For an 18-step prediction horizon, it demonstrated a 0.6% lower MAE 
compared to the next best model, LSTM-BiLSTM (3.10), and a 34.4%
lower RMSE compared to CNN-LSTM (8.16). For the 24-step prediction 
horizon, the proposed model’s MAE was 38.3% lower than the worst-
performing model (LSTM-BiLSTM, 5.19).

For shorter timesteps (3 and 6), the proposed model underperformed 
compared to Autoformer, which had a 39.3% lower MAE (1.95 vs. 3.21) 
and 17.2% lower RMSE (4.66 vs. 5.64) at step 3. Overall, the pro-
posed model and Autoformer outperformed the other models in their
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Table 3 
Performance of the proposed and baseline models for different prediction timesteps (3 - 24) on the PEMS test dataset 
based on MAE and RMSE scores (best and second-best values are in bold and italic, respectively).
    Models  MAE  RMSE
  3  6  12  18  24  3  6  12  18  24  
  LSTM-BiLSTM  2.08  2.28  2.77  3.10  5.19  4.45  5.57  7.06  8.16  11.38 
  CNN-LSTM  2.26  2.76  3.27  4.30  4.42  4.91  6.07  7.41  9.15  9.82  
  TrafFORMER  3.75  3.55  3.60  3.57  3.66  5.99  5.74  5.86  5.79  5.88  
  Autoformer  1.95  2.33  3.02  3.83  4.51  4.66  5.83  7.24  9.21  10.24 
  Pdformer  2.24  2.61  2.94  4.07  4.43  4.74  5.97  7.48  8.74  10.31 
  ST-Autoformer  2.99  3.05  3.51  3.95  4.59  5.47  5.89  6.86  7.73  8.75  
  Proposed  3.21  3.37  3.25  3.08  3.19  5.64  5.86  5.62  5.35  5.57  
 

Table 4 
Performance of the proposed and baseline models for different prediction timesteps (3 - 24) on the PEMS-BAY test 
dataset based on MAE and RMSE scores (best and second-best values are in bold and italic, respectively).
    Models  MAE  RMSE
  3  6  12  18  24  3  6  12  18  24  
  LSTM-BiLSTM  3.60  3.81  4.00  4.07  4.09  6.92  7.44  8.02  8.17  8.28  
  CNN-LSTM  3.93  4.00  4.26  4.46  5.87  7.53  7.91  8.42  8.84  10.70 
  TrafFORMER  2.65  3.33  3.02  3.06  3.57  4.33  5.39  5.19  5.34  6.18  
  Autoformer  4.01  4.29  4.52  4.65  4.91  7.29  7.81  8.73  9.08  9.28  
  Pdformer  3.93  4.23  4.35  4.48  4.50  7.32  8.19  8.38  8.65  8.84  
  ST-Autoformer  3.29  3.51  4.02  4.16  4.26  5.92  6.42  7.29  7.69  8.13  
  Proposed  2.64  2.65  2.55  2.62  2.86  5.15  5.22  5.06  5.17  5.47  
 

respective ranges, while TrafFORMER consistently showed the least ef-
fective performance across most timesteps.

From Table 4, it is possible to verify that the presented model is more 
capable of accurately predicting long-term future traffic speed compared 
to the baselines under consideration in terms of the MAE and RMSE 
scores on the PEMS-BAY dataset. As to the used statistic, it achieved 
an MAE and RMSE improvement of 0.4 − 51.3% and 2.5 − 48.9% com-
pared to the studied baselines for a prediction time horizon of 3 − 24
steps, respectively. The proposed model consistently outperformed all 
other models, achieving the lowest MAE and RMSE scores across all 
timesteps in this case. For example, at step 12, it achieved an MAE of 
2.55, which was 15.6% lower than the second-best model, TrafFORMER, 
and an RMSE of 5.06, which was 2.5% lower than 5.19 of the Traf-
FORMER model. Overall, it demonstrated superior performance across 
both short and long-term horizons for the PEMS-BAY dataset, highlight-
ing its robustness and accuracy compared to baselines.

It is a well-known fact that the prediction accuracy of the conven-
tional models tends to degrade rapidly with the increase in time horizon 
(Jia et al., 2016) because of the accumulation of errors. Interestingly, 
the presented model demonstrated that its prediction accuracy is inde-
pendent of that trend, as shown by both Tables 3 and 4.

This research applied the Friedman Chi-Square statistical test to eval-
uate whether there are significant differences in the prediction distri-
butions of the proposed model. Two hypotheses were considered: the 
null hypothesis, indicating no significant differences, and the alterna-
tive hypothesis, suggesting the presence of differences. A significance 
level of 5% was used. The null hypothesis holds if the p-value exceeds 
the significance level. However, as shown in Table 5, none of the p-
values exceeded the significance level, indicating that the null hypoth-
esis is rejected and that the prediction distributions exhibit significant
differences.

Fig. 5 helps to visualise the good performance achieved by the pro-
posed model on the PEMS test dataset for a prediction horizon of 24-
steps. In this figure, the blue and red represent the ground truth and 
predictions of the traffic states, respectively. The green band represents 
the confidence intervals, i.e., ±1 Standard Deviation (SD) surrounding 
the predicted values. The narrower the band, the more accurate the pre-
dictions.

Table 5 
Friedman Chi-Square statistical test results of the proposed 
model for different prediction lengths on the PEMS dataset.
    timesteps  Statistics  p-value 
  3 71.12 3.5𝑒−16  
  6 8.51 0.014  
  12 31.28 1.6𝑒−7  
  18 266.56 1.3𝑒−58  
  24 5.54 0.062  
 

Fig. 6 presents four scatter plots comparing the actual and predicted 
traffic speeds for four sensors. Each plot includes a red dashed line 
representing the ideal case of perfect predictions, where the predicted 
values match the actual values. The blue dots represent the expected 
traffic speeds for each sensor, with the x-axis displaying the actual
values and the y-axis displaying predicted values. The closeness of the 
points to the red line indicates how accurate the model’s predictions 
are, with tighter clusters suggesting greater performance. The varia-
tion observed in the plots reflects sensor-specific prediction challenges 
and the proposed model’s overall generalizability across different sensor
locations.

5.  Discussion

Capturing long-term spatial-temporal dependencies of traffic states 
is vital for achieving accurate predictions over longer time horizons. 
With a substantial amount of data, spanning many sensors, it is possible 
to address this problem. Then, another problem arises: Which models 
can effectively deal with the vast amount of data samples? DL-based 
models like LSTMs and GRUs are best suited to deal with this prob-
lem. These models process each data sample sequentially, one at a time, 
and, hence, tend to be less effective in parallel data processing. On 
top of that, these models suffer from gradient vanishing and explod-
ing phenomena, resulting in ineffectiveness in capturing long-term de-
pendencies. In addition, they need to complete many training steps to 
achieve reasonable accuracy. Attention mechanism-based models have
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Fig. 5. Traffic speed prediction for a 24-step horizon on the PEMS test dataset achieved by the proposed model for four different sensors (denoted by (a), (b), (c), 
and (d)). The green band represents ±1 Standard Deviation (SD) surrounding the predicted values.

the potential to address these problems. However, current transformer 
models lack efficient means to capture spatial-temporal positional infor-
mation at each time step. These models are computationally demanding 
and, on top of that, suffer from error accumulation problems for longer 
prediction timesteps.

Additionally, traffic states are affected by various events like 
rainy/snowy weather, summer/winter seasons, office peak/off-peak 
hours, and accidents. Hence, some state-of-the-art models include 
weather/accident information data with the raw dataset to increase the 
prediction accuracy over extended timesteps (Liu et al., 2022). Also, 
some methods rely on denoising mechanisms to remove outliers from 
the input datasets before passing them into the models for good accuracy 
(Chen et al., 2021). However, if the dataset contains substantial samples 
over extended periods, those effects are likely already hidden within the 
dataset. The proposed model addresses these problems by combining the 
attention mechanism with an RTCN block. The DFE mechanism facili-
tated the meaningful transformation of raw feature representations. A 
DLP block enhanced this representation using a non-linear transforma-
tion and a gating mechanism. The STPE layer augmented these trans-
formed features with spatial-temporal positional information at each 
time step. Multiple encoder layers were used to deeply encode the data 
representations, and an RTCN block extracted both short and long-term 
temporal features. Finally, a Time Distributed Dense layer predicted the 
future traffic states up to 24 output timesteps. Table 6 depicts the main 
architectural differences between the proposed model and three other 
recently proposed models. In this context, out-of-distribution (OOD) 
denotes a generalisation method whereby a model is assessed on an

unknown dataset that was excluded from the training, validation, and 
testing phases.

Two state-of-the-art PEMS traffic flow and speed datasets were used 
for model training and testing. Five recent state-of-the-art baseline mod-
els were trained and tested using identical experimental setups for com-
prehensive performance comparisons. The proposed architecture out-
performed the studied baselines on the two used datasets regarding 
the MAE and RMSE scores, particularly for higher prediction lengths. 
Also, the Friedman Chi-Square statistical test revealed the worthiness 
of the presented model by exhibiting a significant difference in predic-
tion distributions compared to the baselines under consideration. Other 
statistical test methods are available in the literature, for example, the 
Wilcoxon signed-rank test (Demšar, 2006) was also performed. How-
ever, the proposed model demonstrated less impressive outcomes in this 
case.

Comprehensive ablation studies were performed to investigate the 
effect of different proposed components on the model’s architecture.
Table 7 presents the results of the ablation study conducted on the PEMS 
traffic flow dataset for 24 timesteps prediction length. In this table, w/o 
denotes the absence of specific components. The configuration without 
the DFE achieved a 3.75% increase in MAE. At the same time, the exclu-
sion of the DLP led to a 9.38% and 18.16% increase in MAE and RMSE, 
respectively. However, the STPE demonstrated little influence on the 
model’s outcomes. On the other hand, additional studies indicated that 
the absence of the STPE marginally reduced the model’s generalizability. 
The absence of the RTCN resulted in a 15.61% increase in MAE; without 
data augmentation, the model showed a 5.61% increase in MAE.
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Fig. 6. Scatter plots comparing the actual vs. predicted traffic speeds for a 24-step horizon on the PEMS-BAY test dataset, achieved by the proposed model: the plots 
represent predictions for four different sensors (denoted by (a), (b), (c), and (d)) with the red dashed line indicating the ideal case of perfect predictions.

Table 6 
Architectural innovations of the proposed model compared to recent state-of-the-art.
Tasks uTransformer

(Li et al., 2025)
RPConvformer
(Wen et al., 2023)

HDT
(Feng et al., 2025)

Proposed

Architecture Unified transformer Convolution and 
transformer

Hierarchical discrete 
transformer

Attention mechanism 
and RTCN

Scalability in high 
dimensions

Not addressed Not addressed Discrete token 
representations

DFE and DLP

Spatial-temporal 
dependencies

3D spatial-temporal 
correlation map

Partially addressed Not Addressed STPE

Short- and long-term 
dependencies

Self-attention Self-attention Hierarchical prediction 
approach

Attention and RTCN

Error accumulation Not addressed Not addressed Indirectly using 
hierarchy

Using non-autoregressive 
decoding

Computational costs Less Not available high Moderate
Generalizability test Partial Partial No OOD generalization OOD generalization
Robustness test Partial Missing data robustness Not addressed Random noise, missing 

data robustness

This study also investigated the effects of the number of encoder 
layers and attention heads on the model’s performance. Table 8 sum-
marises these findings for the PEMS traffic flow dataset. Two encoder 
layers with three attention heads led to the best overall outcomes in 
this case. The increased number of encoder layers increased the com-
putational cost and did not lead to the best outcomes. On the contrary, 
configurations with fewer encoder layers and attention heads generally 

achieved better performance with lower computational costs. The inves-
tigation also found that a lower number of encoder layers and attention 
heads resulted in late convergence, as can be observed in Fig. 7. These 
plots were obtained by training the proposed model for different num-
bers of encoder layers and attention heads. The model was permitted 
to train for a maximum of 150 epochs; however, training was halted 
upon achieving convergence. These findings suggest the importance of 

Neural Networks 192 (2025) 107897 

12 



S. Reza et al.

Fig. 7. Evolution of the MAE convergence for different encoder layers/attention heads combinations.

Table 7 
Ablation study on the PEMS traffic flow dataset for 24 prediction 
steps using the proposed model (w and w/o represent with and with-
out, best values in bold).
    Attribute  Parameters  MAE  RMSE 
  w/o DFE 676𝐾 3.31 5.72  
  w/o DLP 581 3.49 6.60  
  w/o STPE 792𝐾 3.19 5.52  
  w/o RTCN 576𝐾 3.77 6.58  
  w/o Data Augmentation 816𝐾 3.38 5.79  
  Proposed 816𝐾  3.19  5.57  
 

Table 8 
Performance of the proposed model on the number of encoder 
layers and attention heads on the PEMS test dataset for a 24-
step prediction horizon (the bold values correspond to the best 
performance).
    Num_layers  Num_heads  Parameters  MAE Train Time

(sec/epoch)
 

  15  51  3.01M  3.41 30.63  
  10  51  2.17M  3.39 20.43  
  4  17  1.15M  3.44 8.05  
  9  9  1.99M  3.41 14.68  
  8  3  1.83M  3.34 13.64  
  7  1  1.66M  3.51 11.79  
  5  17  1.32M  3.36 9.19  
  2  3  816K  3.19 5.29  
 

selecting an appropriate balance between the model’s complexity and 
parameterisation.

While the proposed model took only 9.24 seconds per epoch 
for the PEMS-BAY dataset to train with the previously mentioned 
GPU configuration, the state-of-the-art models under consideration re-
quire higher computational resources, as is shown in Table 9. The
Diffusion Convolutional Recurrent Neural Networks (DCRNN), Graph 
Multi-attention Network (GMAN), Multivariate Time-series Graph 
Convolutional Networks (MTGCN), Spatio-temporal Graph Convolu-
tional Networks (STGCN), Lightweight Spatio-temporal Neural Network 
(LSTNN), and Hybrid Spatial-temporal Gated Convolution (HSTGCNN) 

Table 9 
Computational efficiency comparisons between the different models 
under study on the PEMS-BAY dataset (the values with bold corre-
spond to the best performances found). NA represents the unavail-
ability of corresponding values.
    Model  Param  Training Memory

(MB)
 

  Proposed  2.64M  9.24 2697  
  DCRNN (Li et al., 2018b)  372K  246.06 9603  
  GMAN (Zheng et al., 2020)  900K  87.67 7867  
  MTGCN (Wu et al., 2020)  573K  53.12 2837  
  STGCN (Yu et al., 2018)  320K  21.54 4765  
  LSTNN (Wang et al., 2025)  NA  114 NA  
  HSTGCNN (Zhang et al., 2025)  503K  134.7 NA  
 

models were used to compare the computational demands of the pre-
sented model. It requires less training time and GPU memory usage com-
pared to its counterparts. This feature would allow it to present excellent 
results with a much lower training cost, which helps deployment into 
edge devices, such as intelligent car systems or smartphones, for serv-
ing traffic prediction. Based on this comparison, it can be argued that 
the presented model is computationally lighter than its counterparts. 
It is to be noted that these models were not implemented/trained in 
this research. Instead, the computational statistics were taken from their
respective works, and each required a different GPU configuration and 
experimental setup.

The accuracy score for the conventional state-of-the-art models starts 
reducing quickly with the increase in prediction length because of the 
error accumulation problem. This research aimed to reduce this trend 
by incorporating residual connections with the DLP and RTCN blocks. 
It also used a direct strategy where it predicts all future timesteps si-
multaneously, instead of forecasting one step at a time and incorporat-
ing the output into subsequent predictions. Fig. 8 illustrates the evo-
lution of the MAE and RMSE scores with variations of the prediction 
time length. The accuracy of the CNN-LSTM model was quickly re-
duced with increasing time length. However, the TrafFORMER model 
provided the second-best performance compared to the others. Over-
all, the proposed model showed more capability in addressing this
problem.
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Fig. 8. Prediction accuracy in terms of (a) MAE and (b) RMSE for the studied models concerning the output timesteps on the PEMS-BAY test dataset.

Table 10 
Performance of the proposed model for 
various noise levels based on the PEMS-
BAY test dataset for a 24-step prediction 
horizon (the bold values correspond to the 
best performance).
    Noise Level  MAE  RMSE 
  0.00 (Original)  2.86  5.47  
  0.10  9.13  11.84 
  0.20  17.37  22.01 
  0.30  25.41  33.99 
 

Table 11 
Results after performing a random sensor dropout test of the 
proposed model based on the PEMS test dataset for a 24-step 
prediction horizon (the bold values correspond to the best per-
formance).
   Sensor
Dropout (%)

 MAE  RMSE 

 Original  3.19  5.57  
 10  3.75  8.36  
 20  3.81  8.04  
 30  5.12  10.18 
 40  5.51  10.82 
 50  6.87  13.32 
 

This study also investigated the robustness of the proposed model 
by simulating the arrival of non-recurrent events, such as accidents and 
abrupt weather changes, using the PEMS-BAY test dataset, as illustrated 
in Fig. 9. The original MAE and RMSE scores for a prediction time step of 
24 were 2.86 and 5.47, respectively. However, the experimental results 
reveal a minimal change in the MAE and RMSE scores due to the sudden 
spikes, with values of 2.87 and 5.50, respectively. This investigation 
demonstrated the model’s enhanced robustness capability.

On the other hand, with the addition of various levels of noise, 
the proposed model failed to maintain original prediction accuracy, as
presented in Table 10. It presents the performance of the proposed 
model under varying noise levels based on the PEMS-BAY test dataset, 
specifically for a 24-step prediction horizon. As the noise level increases 
from 0.00 to 0.30, the model’s performance deteriorates, with both MAE 
and RMSE values rising significantly. These results demonstrate that the 

Table 12 
The adversarial perturbations test of the proposed model for various 
perturbation levels based on the PEMS test dataset for a 24-step 
prediction horizon.
   Perturbation
Magnitude 
(𝜖)

MAE
Change (%)

RMSE
Change (%)

 

 0.05 0.46 3.19  
 0.10 0.79 4.92  
 0.20 1.38 7.46  
 0.30 1.87 9.20  
 

model’s predictive accuracy declines as noise levels rise, indicating its 
sensitivity to noise in the data samples. So, it is one of the main draw-
backs of the proposed model. Also, it was not tested on another category 
of time-series datasets; hence, applying only to traffic state datasets is 
recommended.

Also, the random sensor dropout test was conducted to examine the 
proposed model’s robustness further. It assessed the resilience of the 
trained model in the event of random sensor failures, simulating a situa-
tion where a portion of sensors becomes inactive, resulting in the omis-
sion of their values, and quantified the consequent decline in model 
performance using MAE and RMSE. Table 11 tabulates the results of 
this experiment concerning different sensor dropout percentages rang-
ing from 10% to 50%. The MAE and RMSE scores increased with the 
increased percentage of sensor dropout. However, the changes are in an 
acceptable range, though, and room for further improvements persists.

In addition, the adversarial perturbations test was performed to 
check the model’s robustness. For different perturbation magnitudes, 
𝜖, the MAE and RMSE deviations were computed by taking the differ-
ence between the original and perturbed scores. Table 12 tabulates the 
obtained MAE and RMSE deviation for different perturbation magni-
tudes. The proposed model demonstrated resilience in the lower and 
higher magnitudes of adversarial attacks regarding MAE. However, re-
garding RMSE, the proposed model failed under strong attack, i.e., for 𝜖
of 0.30.

This research used another state-of-the-art dataset named METR-LA 
(Li et al., 2018a) to examine the generalizability of the proposed model. 
This dataset was split into train and test sets, and the test set was split 
weekly. The saved proposed model, which had never seen this dataset, 
was evaluated based on the weekly split test sets. Table 13 presents the 
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Fig. 9. Traffic speed with sudden increase and decrease on the PEMS-BAY test dataset to mimic the arrival of non-recurrent events.

Fig. 10. Residual distribution between the true and predicted values based on the PEMS test dataset.

Table 13 
The generalizability test of the proposed model on the METR-LA test 
dataset for a 24-step prediction horizon.
    Test Set  MAE  RMSE 
  2012-03-07 to 2012-03-13  5.19  5.88  
  2012-03-14 to 2012-03-20  5.61  6.12  
  2012-03-21 to 2012-03-27  4.89  5.68  
  2012-03-28 to 2012-04-03  5.66  7.18  
  2012-04-04 to 2012-04-10  4.80  5.66  
  2012-04-11 to 2012-04-17  5.65  6.15  
  2012-04-18 to 2012-04-24  5.54  6.08  
  2012-04-25 to 2012-05-01  5.22  5.93  
  2012-05-02 to 2012-05-08  5.61  6.14  
  2012-05-09 to 2012-05-15  5.61  6.13  
  2012-05-16 to 2012-05-22  5.58  6.11  
  2012-05-23 to 2012-05-29  5.75  6.25  
  2012-05-30 to 2012-06-05  5.19  5.89  
  2012-06-06 to 2012-06-12  5.18  5.86  
  2012-06-13 to 2012-06-19  4.23  5.27  
 

results of this experiment for different weekly test sets. It demonstrated 
good generalizability of the proposed model, although the obtained MAE 
and RMSE were higher than those of the PEMS-BAY and PEMS datasets. 
Nevertheless, it needs to be further increased, which is a potential future 
work.

On top of that, the investigation also covered the Wilcoxon sign-rank 
(Rainio et al., 2024) and the Analysis of Variance (ANOVA) (Kennedy & 
Wang, 2025) tests to find out if there are statistically significant differ-
ences in the model’s performance. In the case of the Wilcoxon test, first, 
the residual was computed from the difference between the true and 
predicted values and then the test was performed based on the residual 
values. The test statistic was very high, and the p_value was zero, indi-
cating the presence of model bias. Although the residual contained tiny 
entities, the null hypothesis was rejected because they were not centred 
around the zero (median), as is shown in Fig. 10. In the case of ANOVA, 
the test was performed on the MAE and RMSE values of the models. The 
results indicated higher test statistics and p_value, indicating no signif-
icant differences between them. These tests indicated the drawbacks of 
the proposed model.

This study additionally used confidence intervals between runs to 
completely validate the performance disparities. In 10 runs, the average 
MAE was 3.10 ± 0.20 while the mean RMSE was 5.37 ± 0.35. The ±
values denote 95% confidence intervals calculated from the standard 
error of the mean across the runs. Over 10 trials, MAE changes by only 
0.20% and RMSE by 0.35%. Since long-term prediction is necessary for 
real-world applications, the proposed model bears great potential in this 
regard. Its direct multi-step approach is ideal for cases requiring long-
term prediction accuracy and stability. It is capable of fast inference as 
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well. Nonetheless, additional research is required to assess its viability 
as a backend service in urban traffic control centres or its incorporation 
into navigation applications for rerouting based on predictions.

6.  Conclusion

This study proposed a hybrid model combining attention mecha-
nisms and RTCN structures to address long-term traffic state predic-
tion tasks. State-of-the-art transformer-based methods often fall short 
in effectively integrating spatial-temporal positional information into 
data features and are computationally intensive, especially for multi-
step ahead prediction tasks prone to error accumulation. The proposed 
model mitigates these issues by introducing innovative components tai-
lored for transportation applications.

The Dynamic Feature Embedding layer transforms raw traffic data 
into meaningful feature representations. At the same time, the Deep
Linear Projection further enhances these representations using non-
linear transformations and a gating mechanism. The Spatial-Temporal 
Positional Encoding layer enriches these features by embedding spatial-
temporal information for each sensor at every time step. These enriched 
features are encoded through a masked multi-head attention mecha-
nism, followed by an RTCN block to capture both short- and long-term 
temporal dependencies. Finally, a Time-Distributed Dense layer pro-
duces accurate long-term predictions.

Performance evaluations demonstrated the superiority of the pro-
posed model over six state-of-the-art baseline models using two bench-
mark traffic datasets. On the PEMS-BAY test dataset, the model
improved in MAE and RMSE, ranging from 0.4 to 51.3% and 2.5 to 
48.9%, respectively, across 3 to 24-step prediction horizons. These re-
sults were achieved without incorporating additional contextual factors 
like weather or accident data and after removing outliers, showcas-
ing the model’s robustness. Moreover, the computational cost analysis
highlighted a significant reduction in resource requirements compared 
to recently published transformer-based models, making it a practical 
solution for large-scale traffic state prediction tasks. The model also 
demonstrated resilience under scenarios of sudden fluctuations in traf-
fic conditions, adversarial perturbation, and random sensor dropouts, 
which are critical for real-world transportation systems.

However, the study acknowledges certain limitations. The model’s 
performance is sensitive to external noise, highlighting the need for fu-
ture work on noise-resilient architectures. Furthermore, the requirement 
for substantial data samples to learn long-term dependencies suggests 
potential avenues for optimising data efficiency. Another critical con-
sideration is the model’s dependency on the inherent characteristics of 
the training data, such as trends, seasonality, and extreme events. The 
model performs well when applied to regions with traffic conditions 
similar to the training data. Extending its applicability to heterogeneous 
traffic networks with varying characteristics remains an important area 
for future research.

By addressing these challenges, the proposed model is a promis-
ing solution for enhancing Intelligent Transportation Systems, enabling 
transportation stakeholders to anticipate traffic dynamics more accu-
rately, optimise resource allocation, and enhance mobility across diverse 
urban environments.

Source code

The source code can be found from: GitHub Repository
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