
Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Full Length Article

Enhancing intelligent transportation systems with a more efficient model
for long-term traffic predictions based on an attention mechanism and a

residual temporal convolutional network

Selim Reza a, Marta Campos Ferreira b, J. J. M. Machado c,
João Manuel R.S. Tavares c,∗

a Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
b INESC TEC, Departamento de Engenharia e Gestão Industrial, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
c Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do
Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal

a r t i c l e i n f o

Keywords:
Multi-step prediction
Dynamic feature embedding
Deep linear projection
Spatial-temporal relationship
Gating mechanism
Residual temporal convolutional network

 a b s t r a c t

Accurate traffic state prediction is fundamental to Intelligent Transportation Systems, playing a critical role in
optimising traffic management, improving mobility, and enhancing the efficiency of transportation networks.
Traditional methods often rely on feature engineering, statistical time-series approaches, and non-parametric
techniques to model the inherent complexities of traffic states, incorporating external factors such as weather
conditions and accidents to refine predictions. However, the effectiveness of long-term traffic state prediction
hinges on capturing spatial-temporal dependencies over extended periods. Current models face challenges in
dealing with (i) high-dimensional traffic features, (ii) error accumulation for multi-step prediction, and (iii) ro-
bustness to external factors effectively. To address these challenges, this study proposes a novel model with a
Dynamic Feature Embedding layer designed to transform complex data sequences into meaningful representa-
tions and a Deep Linear Projection network that refines these representations through non-linear transformations
and gating mechanisms. These two features make the model more scalable when dealing with high-dimensional
traffic features. The model also includes a Spatial-Temporal Positional Encoding layer to capture spatial-temporal
relationships, masked multi-head attention-based encoder blocks, and a Residual Temporal Convolutional Net-
work to process features and extract short- and long-term temporal patterns. Finally, a Time-Distributed Fully
Connected Layer produces accurate traffic state predictions up to 24 timesteps into the future. The proposed ar-
chitecture uses a direct strategy for multi-step modelling to help predict timesteps non-autoregressively and thus
circumvents the error accumulation problem. The model was evaluated against state-of-the-art baselines using
two benchmark datasets. Experimental results demonstrated the model’s superiority, achieving up to 21.17% and
29.30% average improvements in Root Mean Squared Error and 3.56% and 32.80% improvements in Mean Ab-
solute Error compared to the baselines, respectively. The Friedman Chi-Square statistical test further confirmed
the significant performance difference between the proposed model and its counterparts. The adversarial pertur-
bations and random sensor dropout tests demonstrated its good robustness. On top of that, it demonstrated good
generalizability through extensive experiments. The model effectively mitigates error accumulation in multi-step
predictions while maintaining computational efficiency, making it a promising solution for enhancing Intelligent
Transportation Systems.

1. Introduction

Traffic state prediction plays a critical role in intelligent trans-
portation systems (ITS), serving as a foundation for optimising traffic
management, mitigating congestion, and improving mobility. Accurate

∗ Corresponding author.
 E-mail addresses: up202003355@fe.up.pt (S. Reza), mferreira@fe.up.pt (M.C. Ferreira), jjmm@fe.up.pt (J. J. M. Machado), tavares@fe.up.pt
(J.M.R.S. Tavares).

predictions of traffic states, such as flow, speed, and volume, are essen-
tial to addressing challenges posed by the increasing number of vehicles
on roadways (Xing et al., 2022). These challenges include heightened
accident rates, extended travel times, rising fuel consumption, and el-
evated greenhouse gas emissions (Miner et al., 2024). By anticipating

https://doi.org/10.1016/j.neunet.2025.107897
Received 2 February 2025; Received in revised form 21 May 2025; Accepted 21 July 2025

Neural Networks 192 (2025) 107897

Available online 23 July 2025
0893-6080/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/neunet
https://www.elsevier.com/locate/neunet
https://orcid.org/0000-0002-2877-2980

5

$5.63 - 16.78\,\%$

X

S

$X_t ~\epsilon X$

X_t

t

$t = 1, 2, \ldots , T$

X_{T+S}

S

S

X

v_i

q_i

k_i

\begin {equation}\label {attention} \text {Attention}(q, k, v)=\sum _{i}\text {similarity}(q, k_i)\cdot v_i.\end {equation}

s_i

$q_i^T\otimes k_i$

$\frac {q_i^T \otimes k_i}{\sqrt {d}}$

$q_i^T\otimes Wk_i$

$W_q^T\otimes q_i + W_k^T\otimes k_i$

\begin {equation}\label {dotattn} s_i = (q_i, k_i) = \begin {cases} q_i^T \otimes k_i, \\ \frac {q_i^T \otimes k_i}{\sqrt {d}}, \\ q_i^T \otimes W k_i, \\ W_q^T \otimes q_i + W_k^T \otimes k_i, \end {cases}\end {equation}

d

W

\begin {equation}\label {selfattn} S_A = SelfAttention(Q, K, V) = \sum _{i} a_i \otimes v_i,\end {equation}

a_i

$a_i = \frac {e^{s_i}}{\sum _{j} e^{s_j}}$

S_A

h

\begin {equation}\label {ma} M_A \in \mathbb {R}^{B \times T \times D} = Concat(S_{A_1}, S_{A_2}, \dots , S_{A_h}),\end {equation}

h

S_{A_i}

i

M

$-\infty $

\begin {equation}s_i = (q_i, k_i) = \frac {q_i^T \otimes k_i + M}{\sqrt {d}}. \label {Xeqn5-5}\end {equation}

B

X

$B = \{X_1, X_2, X_3, \ldots ., X_m\}$

X_i

N

$flatten(X_i) = \{X_{i,1}, X_{i,2}, X_{i, 3}, \ldots , X_{i, N}\}$

\begin {align}&\mu _i = \frac {1}{N} \sum ^N{X_{i, N}}, \\ &\sigma _{i} ^2 = \frac {1}{N} \sum ^N {(X_{i, N} - \mu _i)^2}.\end {align}

\begin {equation}\hat {X}_{i, N} = \frac {X_{i, N} - \mu _i}{\sqrt {\sigma _{i} ^2 + \epsilon }}, \label {Xeqn6-8}\end {equation}

$\epsilon $

\begin {equation}\label {layernorm} L_N = \gamma \hat {X}_{i, N} + \beta ,\end {equation}

$\gamma $

$\beta $

S

$S_e \in \mathbb {R}^{S \times D}$

i

$s_{e_i} \in \mathbb {R}^D = S_e[i]$

\begin {equation}T_e(t) \in \mathbb {R}^{T \times D} = \begin {cases} \sin \left (t \cdot \frac {1}{10000^{2i/D}}\right), & \text {for even indices of } i, \\ \cos \left (t \cdot \frac {1}{10000^{2i/D}}\right), & \text {for odd indices of } i, \end {cases} \label {Xeqn8-10}\end {equation}

t

i

$10000^{2i/D}$

\begin {equation}E_{STPE} \in \mathbb {R}^{T \times S \times D} = S_e[i] + T_e(t). \label {Xeqn9-11}\end {equation}

$B \times T \times D$

B

\begin {equation}O_{STPE} \in \mathbb {R}^{B \times T \times D} = X + E_{STPE}, \label {Xeqn10-12}\end {equation}

$X \in \mathbb {R}^{B \times T \times D}$

S

$x \in \mathbb {R}^{B \times T \times S}$

$(B \times T \times D)$

D

\begin {equation}\hat {x} \in \mathbb {R}^{B \times T \times D} = x w_d + b_d, \label {Xeqn11-13}\end {equation}

w_d

b_d

$\hat {x} \in \mathbb {R}^{B \times T \times D}$

$\hat {x}_2 \in \mathbb {R}^{B \times T \times d_{hidden}}$

\begin {gather}\hat {x}_1 \in \mathbb {R}^{B \times T \times d_{hidden}} = ReLU(\hat {x} w_1 + b_1), \\ g \in \mathbb {R}^{B \times T \times d_{hidden}} = \sigma (\hat {x} w_2 + b_2), \\ \hat {x}_2 \in \mathbb {R}^{B \times T \times d_{hidden}} = \hat {x}_1 \odot g,\end {gather}

w_i

b_i

d_{hidden}

$\hat {x}_2 \in \mathbb {R}^{B \times T \times d_{hidden}}$

$\hat {x}_2 \in \mathbb {R}^{B \times T \times D}$

\begin {equation}\hat {x}_3 \in \mathbb {R}^{B \times T \times D} = \hat {x}_2 w_3 + b_3. \label {Xeqn12-17}\end {equation}

$\alpha $

$\sqrt {D}$

\begin {gather}\hat {x}_4 \in \mathbb {R}^{B \times T \times D} = \alpha \hat {x}_3, \\ \hat {x}_5 \in \mathbb {R}^{B \times T \times D} = L_N(\hat {x}_4).\end {gather}

$\hat {x} \in \mathbb {R}^{B \times T \times D}$

\begin {gather}\hat {x}_{proj} \in \mathbb {R}^{B \times T \times D} = \hat {x} w_4 + b_4, \\ Y_{DPL} \in \mathbb {R}^{B \times T \times D} = \hat {x}_{proj} + \hat {x}_5.\end {gather}

$X \in \mathbb {R}^{B \times T \times D}$

\begin {equation}C_t \in \mathbb {R}^{B \times T \times F} = \sum ^{K-1} _{k=0} {X_{t-k} \cdot w_k}, \label {Xeqn13-22}\end {equation}

F

$C_t \in \mathbb {R}^{B \times T \times F}$

t

K

k

t

w_k

k^{th}

X_{t-k}

$t-k$

t

$\leq t$

$C_t \in \mathbb {R}^{B \times T \times F}$

$\bar {C_t} \in \mathbb {R}^{B \times T \times F}$

$X_t \in \mathbb {R}^{B \times T \times D}$

$\bar {C_t} \in \mathbb {R}^{B \times T \times D}$

F

D

\begin {gather}R_t \in \mathbb {R}^{B \times T \times D} = \bar {C_t} + X_t, \\ Y_R \in \mathbb {R}^{B \times T \times D} = ReLU(R_t),\end {gather}

$Y_R \in \mathbb {R}^{B \times T \times D}$

$X \in \mathbb {R}^{B \times T \times D}$

B

T

D

$M \in \mathbb {R}^{B \times 1 \times 1 \times T}$

\begin {gather}X_{norm} \in \mathbb {R}^{B \times T \times D} = L_N(X),\end {gather}

L_N

\begin {gather}A \in \mathbb {R}^{B \times T \times D} = M_A(X_{norm}, M),\end {gather}

M_A

\begin {gather}A_{dropout} \in \mathbb {R}^{B \times T \times D} = D_o(A),\end {gather}

D_o

X

\begin {gather}A_{residual} \in \mathbb {R}^{B \times T \times D} = X + A_{dropout}.\end {gather}

\begin {gather}A_{norm} \in \mathbb {R}^{B \times T \times D} = L_N(A_{residual}).\end {gather}

\begin {gather}g_e = \sigma (A_{norm} W_g + b_g), \\ f_e = ReLU(A_{norm} W_f + b_f), \\ z_e = g_e \odot f_e,\end {gather}

g_e

f_e

$\odot $

W_g

b_g

W_f

b_f

D

\begin {gather}O_e \in \mathbb {R}^{B \times T \times D} = D_o(z_e W_o + b_o),\end {gather}

W_o

b_o

D_o

\begin {equation}O_E \in \mathbb {R}^{B \times T \times D} = A_{residual} + O_e, \label {Xeqn14-34}\end {equation}

O_E

$X \in \mathbb {R}^{B \times T \times D}$

$M \in \mathbb {R}^{B \times 1 \times 1 \times T}$

\begin {equation}M = create_padding_mask \left (\sum _{d=1}^D X_{b, t, d} \right), \label {Xeqn15-35}\end {equation}

$\sum _{d=1}^D X_{b, t, d}$

t

$\text {create}_\text {padding}_\text {mask}(\cdot)$

\begin {align}& dynamic_features \in \mathbb {R}^{B \times T \times D} = \hat {x}(X), \\ & Y_1 \in \mathbb {R}^{B \times T \times {(D+D)}} = concat(X, dynamic_features).\end {align}

$Y_1 \in \mathbb {R}^{B \times T \times {(D+D)}}$

$Y_2 \in \mathbb {R}^{B \times T \times D}$

D

\begin {align}& Y_2 \in \mathbb {R}^{B \times T \times D} = Y_{DPL}(Y_1), \\ & Y_2 \in \mathbb {R}^{B \times T \times D} = Y_2 \cdot \sqrt {D},\end {align}

$\sqrt {D}$

\begin {equation}Y_3 \in \mathbb {R}^{B \times T \times D} = O_{STPE}(Y_2). \label {Xeqn16-40}\end {equation}

N

N

\begin {equation}Y_4 ^{(i)} \in \mathbb {R}^{B \times T \times D} = O_E(Y_3 ^{(i-1)}, M), \label {Xeqn17-41}\end {equation}

$i \in \{1, 2, \dots , N \}$

$Y_4 ^{(N} \in \mathbb {R}^{B \times T \times D}$

\begin {gather}Y_5 \in \mathbb {R}^{B \times T \times U} = Y_R(Y_4 ^{N}), \\ Y_6 \in \mathbb {R}^{B \times T \times U} = D_o(Y_5), \\ Y_7 \in \mathbb {R}^{B \times T \times U} = ReLU(Y_6 w_y + b_y), \\ Y_o \in \mathbb {R}^{B \times T \times O} = TimeDistributed(Y_7 w_o + b_o),\end {gather}

U

O

\begin {equation}loss(x_i, y_i) = MSE(x_i, y_i) + 0.5 \cdot MAE(x_i, y_i). \label {Xeqn18-46}\end {equation}

E

$\frac {\partial E}{\partial w_i}$

w_i

i^{th}

E

\begin {equation}E = \frac {1}{n} \sum _{i=1}^{n} \left [(x_i - y_i)^2 + 0.5 \cdot |x_i - y_i| \right], \label {Xeqn19-47}\end {equation}

x_i

y_i

$\frac {\partial E}{\partial w_i}$

\begin {equation}\frac {\partial E}{\partial w_i} = -\frac {1}{n} \sum _{i=1}^{n} \left [2(x_i - y_i) + 0.5 \cdot sign(x_i - y_i) \right] \frac {\partial y_i}{\partial {network}_i} \frac {\partial {network}_i}{\partial w_i}, \label {Xeqn20-48}\end {equation}

$sign$

$\frac {\partial y_i}{\partial {network}_i}$

$ReLU$

$ReLU$

y_i

\begin {equation}\frac {d(ReLU)}{dy_i} = \begin {cases} 1 & \text {if } y_i > 0, \\ 0 & \text {if } y_i \leq 0. \end {cases} \label {Xeqn21-49}\end {equation}

$\frac {\partial {network}_i}{\partial w_i} = k_i$

\begin {equation}\frac {\partial E}{\partial w_i} = -\frac {1}{n} \sum _{i=1}^{n} \left [2(x_i - y_i) + 0.5 \cdot sign(x_i - y_i) \right] \cdot ReLU'(y_i) \cdot k_i. \label {Xeqn22-50}\end {equation}

$\times $

x

y

n

x_i

y_i

i^{th}

x

y

\begin {equation}\label {mae} MAE(x, y)=\frac {1}{n}\sum _{i=1}^{N}\left |x_i - y_i\right |.\end {equation}

\begin {equation}\label {rmse} RMSE(x, y)=\sqrt {\frac {1}{n}\sum _{i=1}^{n}(x_i - y_i)^2}.\end {equation}

M

D

\begin {equation}F_s = \frac {(D-1)\chi _{F} ^2}{D(M-1)-\chi _{F} ^2}, \label {Xeqn25-53}\end {equation}

$\chi _{F} ^2$

F_s

F

$(M-1)$

$(M-1)(D-1)$

2012

5

80

$1.5IQR$

$3IQR$

Q_1

25

Q_3

75

LIF

UIF

LOF

UOF

\begin {align}& IQR = Q_3 - Q_1, \notag \\ & LIF = Q_1 - 1.5 IQR, \notag \\ & UIF = Q_3 + 1.5 IQR, \notag \\ & LOF = Q_1 - 3 IQR, \notag \\ & UOF = Q_3 + 3 IQR. \label {Xeqn26-54}\end {align}

$\times $

IQR

Q_1

Q_3

IQR

LIF

UIF

LOF

UOF

2012

65.62

70.00

37.98

2012

74.71

79.00

44.43

2013

56.28

60.00

30.89

2012

8.5

2012

2013

19.2

2012

$70:20:10$

0

1

24

24

$t=0$

$t=1$

24

$2.64M$

$816k$

D

$[0, 1]$

$\%$

$\%$

$6.25\,\%$

$\%$

$\%$

$\%$

$\%$

$\%$

$0.6\,\%$

$34.4\,\%$

$38.3\,\%$

$39.3\,\%$

$17.2\,\%$

$0.4 - 51.3\,\%$

$2.5 - 48.9\,\%$

$3-24$

$15.6\,\%$

$2.5\,\%$

$5\,\%$

± 1

± 1

$\epsilon $

$\epsilon $

$\pm $

$\pm $

$\pm $

0.4

$51.3\,\%$

2.5

$48.9\,\%$

https://orcid.org/0000-0001-9505-5730
https://orcid.org/0000-0002-1094-0114
https://orcid.org/0000-0001-7603-6526
mailto:up202003355@fe.up.pt
mailto:mferreira@fe.up.pt
mailto:jjmm@fe.up.pt
mailto:tavares@fe.up.pt
https://doi.org/10.1016/j.neunet.2025.107897
https://doi.org/10.1016/j.neunet.2025.107897
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2025.107897&domain=pdf
http://creativecommons.org/licenses/by/4.0/

S. Reza et al.

traffic conditions, transportation planners can better organise networks
and respond to critical events (Cao et al., 2024).

Traffic state prediction is inherently complex due to the stochas-
tic, non-linear, and time-dependent nature of traffic conditions.
Temporal dependencies arising from trends, cycles, seasonality, and dis-
ruptions caused by non-daily or extreme events, such as concerts or ad-
verse weather, further complicate the task (Ansari Esfeh et al., 2020; Li
et al., 2024a; Sharma et al., 2024). Traditional methods, such as Auto-
Regressive Integrated Moving Average (ARIMA) and its variations, of-
ten fall short in handling such complexities (Ma et al., 2020; Xu et al.,
2021). Similarly, while Deep Learning (DL) algorithms, such as Recur-
rent Neural Networks (RNNs), have proven effective for modeling short-
and medium-term dependencies (Cheng et al., 2022; Yang et al., 2019),
they suffer from vanishing or exploding gradients, limiting their ability
to capture long-term temporal dependencies (Ribeiro et al., 2020).

Advances such as Long Short-Term Memory (LSTM) networks and
their combinations with Convolutional Neural Networks (CNNs) or at-
tention mechanisms have addressed some limitations, but challenges re-
main. LSTM networks, while capable of learning from moderately long
sequences, are computationally expensive and struggle with long-term
dependencies due to their sequential processing nature (Reza et al.,
2022). Transformer-based models offer an alternative, leveraging at-
tention mechanisms to capture global dependencies effectively. How-
ever, their architectural constraints, high computational cost, and lack
of means to capture spatial-temporal correlations hinder their applica-
bility to long-term traffic state prediction (Chen et al., 2022; Wen et al.,
2023; Zhang et al., 2022).

Efforts to enhance prediction accuracy often rely on merging traffic
state data with external factors, such as weather and accident infor-
mation, alongside denoising techniques to remove data outliers (Chen
et al., 2021, 2020; Essien et al., 2021; Guo et al., 2015). While these
approaches yield competitive results for short- and medium-term pre-
dictions, their dependence on additional data sources and preprocessing
limits their scalability. Moreover, their effectiveness in capturing long-
term spatial-temporal dependencies remains limited.

Recent attention-based models have addressed some of these chal-
lenges. For instance, Tedjopurnomo et al. (2023) introduced a time-day
embedding mechanism to enhance long-term traffic pattern learning,
while Jiang et al. (2023) incorporated spatial self-attention to capture
dynamic spatial relationships. On the other hand, Yu et al. (2024) pro-
posed a spatial-temporal Autoformer leveraging autocorrelation within
data sequences. Despite these advancements, these models are compu-
tationally demanding, and their performance for long-term predictions,
particularly in mitigating error accumulation, requires improvement.

This study addresses the critical challenges associated with long-term
traffic state prediction tasks, eliminating the dependence on weather
data and data outlier removal techniques. To this end, a novel Dy-
namic Feature Embedding (DFE) mechanism was developed to facili-
tate meaningful transformations of feature representations. A Deep Lin-
ear Projection (DLP) block is proposed to refine these representations
by applying non-linear transformations and a gating mechanism. Fur-
thermore, a Spatial-Temporal Positional Encoding (STPE) mechanism is
introduced to augment the data for each sensor at every time step with
spatial-temporal positional information. The enhanced features are sub-
sequently encoded using a masked multi-head attention-based encoder
block, followed by their processing through a Residual Temporal Convo-
lutional Network (RTCN) block designed to extract both short- and long-
term temporal dependencies. Finally, a Time-Distributed Dense layer en-
ables the model to generate predictions for up to 24 timesteps into the
future.

The proposed methodology was validated using traffic flow data
from the Caltrans Performance Measurement System (PeMS) database
(Chen, 2002) and the PEMS-BAY traffic speed dataset (Li et al.,
2018a). Baseline models representing the state-of-the-art in long-term
traffic state prediction tasks were implemented and trained on the
same datasets to ensure comprehensive and unbiased performance

comparisons. Extensive experimental evaluations demonstrated that the
proposed model consistently outperformed the baseline models across
most evaluated metrics, with particularly noticeable improvements ob-
served for longer prediction horizons. The main contributions of this
study are:

• This research proposes a Dynamic Feature Embedding mechanism
to facilitate meaningful representation of the normalised inputs and
a Deep Linear Projection block to refine these representations by
applying non-linear transformations and a gating mechanism. These
techniques help the model to learn the relationship between traffic
state features more effectively.

• It proposes a Spatial-Temporal Positional Encoding mechanism to
augment the data for each sensor at every time step with spatial-
temporal positional.

• It also incorporates a Residual Temporal Convolutional Network
to efficiently process the encoded data representation and capture
both short- and long-term temporal features. The residual connec-
tion within various stages of architecture helps the model to be deep
enough to learn the outliers to achieve adequate prediction accuracy
over extended time horizons.

• It eliminates dependency on external data sources, such as weather
or accident information, and preprocessing steps, such as data outlier
removal, while maintaining robust performance.
The remainder of this article is organised as follows: Section 2 pro-

vides a comprehensive summary of the selected state-of-the-art models,
highlighting their performance and limitations. Section 3 introduces the
proposed model in detail, while the experimental setup and correspond-
ing results are presented in Section 4. Section 5 discusses the overall
performance of the proposed model, with an emphasis on the impact of
various model parameters. Finally, the conclusions are pointed out in
Section 6.

2. Related works

This section presents state-of-the-art traffic state prediction mod-
els and discusses their main contributions based on the methods and
datasets used. Traffic state features are stochastic and non-linear be-
cause of their spatial-temporal relationships and different seasonality
granularity, such as monthly, weekly, and daily. Consequently, para-
metric approaches with linearity cannot provide high prediction perfor-
mance, motivating greater attention to non-parametric strategies such
as DL-based strategies. According to Yang et al. (2019), models based
on DL usually perform better due to their ability to handle indetermin-
istic and complex time-series traffic datasets. Therefore, many DL-based
methods have been extensively tested, adapted, developed, and tuned
for traffic prediction applications in the past few years.

Conventional DL-based models like RNNs and CNNs were used to
address traffic state prediction problems with limited success (Lv et al.,
2018; Polson & Sokolov, 2017; Xiao & Yin, 2019). With the introduction
of the attention mechanism (Vaswani et al., 2017), these approaches
gained importance among researchers to overcome their limitations.
Du et al. (2020) focused on capturing short-term information and con-
sidered multiple modes to improve the prediction performance. The
suggested model uses an attention-based auxiliary architecture focused
on learning the spatial-temporal correlation and long-term interdepen-
dence of multimodal traffic data. The base module of their method con-
sists of one-dimensional CNNs and GRUs with the attention mechanism,
where the CNNs and GRUs capture the local trend features, such as the
relationships between the data and the extended temporal dependen-
cies. The proposed architecture achieved an MAE of 5% on the PeMS
dataset. A similar attention mechanism was proposed by Vijayalakshmi
et al. (2021) to improve the performance further by using the same
dataset to implement a multi-step prediction model, combining CNNs
with LSTMs and an attention mechanism. The CNNs helped to extract
specific features and relationships of the data samples, and the LSTM

Neural Networks 192 (2025) 107897

2

S. Reza et al.

networks allowed them to maintain the recurrence. The attention mech-
anism supported identifying near-term traffic data points, for example,
daily seasonality, such as hours of the day, which are very important
for predicting future traffic states. The results showed that the proposed
model provided better accuracy than the considered baselines. Similar
mechanisms were proposed to overcome the current shortcomings with
some success (Grigsby et al., 2023; Li et al., 2019; Lim et al., 2021; Reza
et al., 2022).

Chauhan et al. (2024) incorporated an attention mechanism with
Bi-GRU networks, aiming to focus on the most recent relevant infor-
mation of the data sequence to make future predictions. Conventional
feature engineering was performed to extract weekdays or holidays
and passed to the model as inputs. It needed comprehensive compar-
isons with recent models and could not effectively capture long-term
dependencies due to its sequential processing of each element simul-
taneously, constraining its ability to model extended temporal rela-
tionships. Also, errors accumulate with the increase in prediction time
horizons. Similar methods suffer from the same problems because of
their architectures (Li et al., 2024b). Zou et al. (2024) presented a
spatial-temporal transformer network to address the shortcomings of
vanilla transformer models. The authors incorporated spatial-temporal
tokens and a positional encoding mechanism to capture spatial long-
term dependencies. A traffic accident prediction model using a trans-
former was presented in the works by Al-Thani et al. (2024), where an
advanced multi-head attention mechanism was built to overcome the
limitations of CNNs and LSTMs. However, it lacks comprehensive ex-
periments for long-term prediction problems and suffers from the ac-
cumulation of errors. Moreover, the positional encoding layer lacks an
efficient means to capture spatial-temporal positional relationships of
the traffic states.

Graph Neural Networks (GNN) with attention mechanisms were ex-
plored to overcome the drawbacks of capturing spatial-temporal depen-
dencies. Luo et al. (2024) presented a spatial-temporal GNN with a long-
short term transformer network to capture the periodic and short-term
features and long-term trends to perform future predictions. It obtained
5.63 − 16.78% improvements compared to the baselines. However, the
proposed model suffers from accumulation of error problems and is com-
putationally demanding. Chen et al. (2024) designed a traffic flow ma-
trix to represent the inter-node relationship better and used an attention
mechanism-based Graph Convolutional Network (GCN) to make future
predictions. Although the results demonstrated outperformance than the
baselines, it suffered from predictive stability and lacked robustness.
Aiming to enhance the model’s robustness, particularly to non-recurrent
traffic incidents, Geng et al. (2024) proposed a transformer-based GNN
model. The authors developed a multidimensional embedding method
to effectively fuse spatial-temporal features and a gated temporal self-
attention technique to capture local and global temporal features. It was
modelled to predict only 12 timesteps, and more experimental analyses
are required to make efficient long-term predictions. Liu et al. (2024)
incorporated prior physical knowledge into the adjacency matrix to im-
prove the performance of GCN. Xu et al. (2024) also explored a simi-
lar model. However, these models are computationally demanding, and
more performance improvements are necessary.

In general, the aforementioned methods have common drawbacks:
(i) lack of efficiency in addressing the problems of prediction over longer
time horizons, (ii) error accumulation for multi-step prediction, and (iii)
high computational complexity. This research aims to address these par-
ticular problems.

3. Methodology

Traffic state prediction is usually modelled as a time-series predic-
tion problem where attempts are taken to predict its future state based
on a series of past samples at regular intervals. Let’s assume that 𝑋
represents the dataset, partitioned into overlapping data windows us-
ing a sliding window approach. Each window comprises input and label

sequences spanning 𝑆 timesteps. For a sequence of traffic state data sam-
ples 𝑋𝑡 𝜖𝑋, 𝑋𝑡 denotes the observed traffic state at the 𝑡-th time interval,
where 𝑡 = 1, 2,… , 𝑇 . The model uses learned patterns from preceding
observations across sliding windows to predict the traffic state 𝑋𝑇+𝑆 at
the next 𝑆 intervals. The prediction horizon, 𝑆, specifies the number
of future timesteps for which the traffic states are predicted, enabling
long-term multi-intersection traffic state prediction.

The main challenges of RNN-based models for traffic state predic-
tion are to (i) capture long-range dependencies, (ii) address gradient
vanishing and exploding phenomena, (iii) reduce the number of train-
ing steps, and (iv) enhance efficient parallel computation. An attention
mechanism can address most of these shortcomings primarily because
of its architecture.

3.1. Attention mechanism

From the 𝑋 dataset, the 𝑣𝑖 values can be retrieved based on a given
query 𝑞𝑖 and corresponding keys 𝑘𝑖, through a probabilistic approach.
For a given query, the attention mechanism assesses the degree of align-
ment between itself and all keys and calculates the result as a weighted
sum of values. The weights show the similarity between the query and
each key, indicating the relative relevance of each value concerning the
query. This process is formally expressed as:

Attention(𝑞, 𝑘, 𝑣) =
∑

𝑖
similarity(𝑞, 𝑘𝑖) ⋅ 𝑣𝑖. (1)

The output corresponds to the value associated with the key having
the highest similarity. The similarity computation is represented as 𝑠𝑖, a
function of the query and key. This function can have numerous forms,
such as matrix dot product, 𝑞𝑇𝑖 ⊗ 𝑘𝑖, scaled dot product,

𝑞𝑇𝑖 ⊗𝑘𝑖
√

𝑑
, general

dot product, 𝑞𝑇𝑖 ⊗𝑊 𝑘𝑖, or additive similarity, 𝑊 𝑇
𝑞 ⊗ 𝑞𝑖 +𝑊 𝑇

𝑘 ⊗ 𝑘𝑖, as
follows (Vaswani et al., 2017):

𝑠𝑖 = (𝑞𝑖, 𝑘𝑖) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑞𝑇𝑖 ⊗ 𝑘𝑖,
𝑞𝑇𝑖 ⊗𝑘𝑖
√

𝑑
,

𝑞𝑇𝑖 ⊗𝑊 𝑘𝑖,
𝑊 𝑇

𝑞 ⊗ 𝑞𝑖 +𝑊 𝑇
𝑘 ⊗ 𝑘𝑖,

(2)

where 𝑑 denotes the dimensionality of each key, and 𝑊 is a collection
of weights used to transform the query into a new space, allowing it to
learn the appropriate content. The self-attention mechanism produces
the following output:

𝑆𝐴 = 𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉) =
∑

𝑖
𝑎𝑖 ⊗ 𝑣𝑖, (3)

where the attention weights 𝑎𝑖 is computed using 𝑎𝑖 = 𝑒𝑠𝑖
∑

𝑗 𝑒
𝑠𝑗 . The multi-

head attention is then derived by concatenating all the outputs of 𝑆𝐴
across the ℎ heads using:

𝑀𝐴 ∈ ℝ𝐵×𝑇×𝐷 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑆𝐴1
, 𝑆𝐴2

,… , 𝑆𝐴ℎ
), (4)

where ℎ is the number of attention heads, and each 𝑆𝐴𝑖
 corresponds to

the output of the 𝑖-th self-attention head. The proposed model incor-
porates a masked multi-head attention mechanism to enhance the en-
coder’s performance. The fundamental concept is to mask certain values,
effectively nullifying their probabilities and ensuring that the output at
any step depends only on previous outputs and not on future ones. If
𝑀 denotes the mask matrix consisting of elements 0 (zero) and −∞,
the masked attention can be computed by adapting one of the methods
presented in Eq. (2) and following the previously described procedures.
For example, using the scaled dot-product attention:

𝑠𝑖 = (𝑞𝑖, 𝑘𝑖) =
𝑞𝑇𝑖 ⊗ 𝑘𝑖 +𝑀

√

𝑑
. (5)

Neural Networks 192 (2025) 107897

3

S. Reza et al.

3.2. Layer normalization

A layer normalisation (LayerNorm) helps to reduce the number of
steps needed by the gradient descent algorithm to optimise the network.
A network with multiple layers consists of weights in each layer, which
are trained by gradient descent. The computation of the gradient of one
set of weights depends on the outputs of the preceding and subsequent
layers, which results in slow convergence. To address the problem, a
LayerNorm operation is required, ensuring that the output of that layer,
regardless of the setup of the weights, is the same by calculating the
mean and variance. Let’s suppose a mini-batch, 𝐵, of inputs, 𝑋, is 𝐵 =
{𝑋1, 𝑋2, 𝑋3,… ., 𝑋𝑚}, and each sample, 𝑋𝑖, contains 𝑁 elements so that
𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝑋𝑖) = {𝑋𝑖,1, 𝑋𝑖,2, 𝑋𝑖,3,… , 𝑋𝑖,𝑁}, and their mean and variance
are:

𝜇𝑖 =
1
𝑁

𝑁
∑

𝑋𝑖,𝑁 , (6)

𝜎2𝑖 = 1
𝑁

𝑁
∑

(𝑋𝑖,𝑁 − 𝜇𝑖)2. (7)

Then, each sample is normalised so that it possesses 0 (zero) mean and
unit variance, such as:

𝑋̂𝑖,𝑁 =
𝑋𝑖,𝑁 − 𝜇𝑖
√

𝜎2𝑖 + 𝜖
, (8)

where 𝜖 is a stability factor that prevents any case of the denominator
becoming 0 (zero). Finally, after performing some scaling and shifting,
the output of the LayerNorm becomes (Ba et al., 2016):
𝐿𝑁 = 𝛾𝑋̂𝑖,𝑁 + 𝛽, (9)

where 𝛾 and 𝛽 are learnable parameters. Now, when a model becomes
very deep, most often, it tends to learn the statistical noise of the dataset,
resulting in over-fitting problems. Dropout layers are used to address
this phenomenon (Baldi & Sadowski, 2013).

3.3. Spatial-temporal positional encoding

Ordering traffic state data within a sequence is critical for predic-
tion tasks, and the positional embedding (PE) mechanism is often used
in attention techniques to record sequential ordering. However, the typ-
ical PE mechanism cannot capture the spatial and temporal correlations
required for long-term prediction tasks. This research suggests an STPE
mechanism to overcome this constraint. The primary goal is to supple-
ment the data for each sensor at each time step with spatial and temporal
location information.

A spatial embedding mechanism is built to capture a trainable rep-
resentation of sensors in a vector space to accomplish it. Let’s suppose
that 𝑆 is the number of sensors, then 𝑆𝑒 ∈ ℝ𝑆×𝐷 represents the spatial
embedding matrix, where each row corresponds to the embedding of a
specific sensor. The spatial embedding for the 𝑖 sensor can be retrieved
as 𝑠𝑒𝑖 ∈ ℝ𝐷 = 𝑆𝑒[𝑖].

Now, the temporal encoding can be computed as a sinusoidal func-
tion of the position using (Vaswani et al., 2017):

𝑇𝑒(𝑡) ∈ ℝ𝑇×𝐷 =

⎧

⎪

⎨

⎪

⎩

sin
(

𝑡 ⋅ 1
100002𝑖∕𝐷

)

, for even indices of 𝑖,
cos

(

𝑡 ⋅ 1
100002𝑖∕𝐷

)

, for odd indices of 𝑖,
(10)

where 𝑡 and 𝑖 represent the time step and dimension index, respectively,
and the 100002𝑖∕𝐷 factor ensures that the encoding for different dimen-
sions has varying frequencies. Therefore, the STPE can then be defined
as:

𝐸𝑆𝑇𝑃𝐸 ∈ ℝ𝑇×𝑆×𝐷 = 𝑆𝑒[𝑖] + 𝑇𝑒(𝑡). (11)

To obtain an output of size 𝐵 × 𝑇 ×𝐷, the following steps are performed:
(i) a reduction operation is applied throughout the spatial dimension,

and (ii) the result is broadcast throughout the batch size, 𝐵. Thus, the
final output of the STPE layer is computed as:
𝑂𝑆𝑇𝑃𝐸 ∈ ℝ𝐵×𝑇×𝐷 = 𝑋 + 𝐸𝑆𝑇𝑃𝐸 , (12)

where 𝑋 ∈ ℝ𝐵×𝑇×𝐷 is the input.

3.4. Dynamic feature embedding

The input features of a usual traffic state dataset are complex and
high-dimensional. To transform it into a meaningful representation, this
research uses a DFE layer. The aim is to help the model capture com-
plex spatial-temporal relationships within the data samples to improve
long-term prediction performance. Let’s suppose that 𝑆 is the number of
features of the raw input, 𝑥 ∈ ℝ𝐵×𝑇×𝑆 , then the DFE layer uses a learn-
able linear transformation to transform it into size (𝐵 × 𝑇 ×𝐷), where
𝐷 is the model dimension using:
𝑥̂ ∈ ℝ𝐵×𝑇×𝐷 = 𝑥𝑤𝑑 + 𝑏𝑑 , (13)

where 𝑤𝑑 and 𝑏𝑑 represent the weight and bias matrices.

3.5. Deep linear projection

The proposed DPL technique works as an intermediate-level fea-
ture transformation platform to enhance their representation using non-
linear transformations and gating mechanisms. It is used after the DFE
layer to refine and project existing temporal feature representations into
a desired dimension. Let’s assume now that the input is 𝑥̂ ∈ ℝ𝐵×𝑇×𝐷.
Thus, it does a non-linear transformation with ReLU at each time step,
followed by a gating mechanism with the sigmoid activation func-
tion. Then, an element-wise gating operation is done to obtain 𝑥̂2 ∈
ℝ𝐵×𝑇×𝑑ℎ𝑖𝑑𝑑𝑒𝑛 as:
𝑥̂1 ∈ ℝ𝐵×𝑇×𝑑ℎ𝑖𝑑𝑑𝑒𝑛 = 𝑅𝑒𝐿𝑈 (𝑥̂𝑤1 + 𝑏1), (14)

𝑔 ∈ ℝ𝐵×𝑇×𝑑ℎ𝑖𝑑𝑑𝑒𝑛 = 𝜎(𝑥̂𝑤2 + 𝑏2), (15)

𝑥̂2 ∈ ℝ𝐵×𝑇×𝑑ℎ𝑖𝑑𝑑𝑒𝑛 = 𝑥̂1 ⊙ 𝑔, (16)

where 𝑤𝑖 and 𝑏𝑖 represent the weight and bias matrices, and 𝑑ℎ𝑖𝑑𝑑𝑒𝑛
is the hidden dimension. Now, 𝑥̂2 ∈ ℝ𝐵×𝑇×𝑑ℎ𝑖𝑑𝑑𝑒𝑛 is projected back to
𝑥̂2 ∈ ℝ𝐵×𝑇×𝐷 using a linear projection mechanism using:
𝑥̂3 ∈ ℝ𝐵×𝑇×𝐷 = 𝑥̂2𝑤3 + 𝑏3. (17)

Subsequently, a learnable scaling is introduced to allow the model to
optimise the amplitude of features dynamically based on the data and
training process. A parameter, 𝛼, equal to the

√

𝐷, is used to achieve the
purpose. Also, a LayerNorm is introduced to make the model’s training
more stable and speed up its convergence. This ensures that the values
are centred and have a consistent scale using:
𝑥̂4 ∈ ℝ𝐵×𝑇×𝐷 = 𝛼𝑥̂3, (18)

𝑥̂5 ∈ ℝ𝐵×𝑇×𝐷 = 𝐿𝑁 (𝑥̂4). (19)

Finally, a residual connection is used to allow the DPL layer to di-
rectly propagate the original input, 𝑥̂ ∈ ℝ𝐵×𝑇×𝐷, along with the trans-
formed output using:
𝑥̂𝑝𝑟𝑜𝑗 ∈ ℝ𝐵×𝑇×𝐷 = 𝑥̂𝑤4 + 𝑏4, (20)

𝑌𝐷𝑃𝐿 ∈ ℝ𝐵×𝑇×𝐷 = 𝑥̂𝑝𝑟𝑜𝑗 + 𝑥̂5. (21)

3.6. Residual temporal convolutional network

This research incorporated an RTCN to preserve the temporal or-
der of the sequences and efficiently learn both short and long-term de-
pendencies. It applies a series of transformations on the data sequences
using causal convolutions (Hamad et al., 2021), batch normalisation
(Bjorck et al., 2018), ReLU activations, and dropout for regularisation.

Neural Networks 192 (2025) 107897

4

S. Reza et al.

It also contains a residual connection to allow deeper network construc-
tion. For an input 𝑋 ∈ ℝ𝐵×𝑇×𝐷, the RTCN first applies a one dimensional
convolution (1DCNN) with dilation using (Kwon et al., 2021):

𝐶𝑡 ∈ ℝ𝐵×𝑇×𝐹 =
𝐾−1
∑

𝑘=0
𝑋𝑡−𝑘 ⋅𝑤𝑘, (22)

where 𝐹 denotes the number of filters, 𝐶𝑡 ∈ ℝ𝐵×𝑇×𝐹 represents the out-
put at the 𝑡 time step, 𝐾 denotes the size of the convolutional kernel,
and 𝑘 indexes the kernel weights, specifying the contribution of the cor-
responding input sequence segment to the output at 𝑡. Furthermore, 𝑤𝑘
refers to the weight of the 𝑘𝑡ℎ kernel filter, and 𝑋𝑡−𝑘 signifies the input
element at the 𝑡 − 𝑘 time step. The padding is causal to prevent infor-
mation leakage from future timesteps, i.e., ensuring that predictions at 𝑡
depend only on information from timesteps, ≤ 𝑡. It also helps to increase
the receptive field without increasing the computational cost, which is
key in modelling long-range dependencies. 𝐶𝑡 ∈ ℝ𝐵×𝑇×𝐹 then undergoes
batch normalization and ReLU activation followed by a spatial dropout
layer to get 𝐶̄𝑡 ∈ ℝ𝐵×𝑇×𝐹 . It helps stabilise the model’s training and in-
troduce non-linearity.

One of the most important parts of an RTCN is the residual con-
nection, aiming to enhance model stability and facilitate gradient flow.
Specifically, a skip connection from the input, 𝑋𝑡 ∈ ℝ𝐵×𝑇×𝐷, is added to
the output, 𝐶̄𝑡 ∈ ℝ𝐵×𝑇×𝐷, with 𝐹 equals 𝐷. It is then passed through an
additional ReLU activation function, ensuring a non-linear combination
of the input and transformed features using:
𝑅𝑡 ∈ ℝ𝐵×𝑇×𝐷 = 𝐶̄𝑡 +𝑋𝑡, (23)

𝑌𝑅 ∈ ℝ𝐵×𝑇×𝐷 = 𝑅𝑒𝐿𝑈 (𝑅𝑡), (24)

where 𝑌𝑅 ∈ ℝ𝐵×𝑇×𝐷 represents the residual output.

3.7. Encoder layer

The encoder layer processes the input sequence, 𝑋 ∈ ℝ𝐵×𝑇×𝐷, where
𝐵 is the batch size, 𝑇 is the sequence length, and 𝐷 is the model’s feature
dimension. It also takes a padding mask, 𝑀 ∈ ℝ𝐵×1×1×𝑇 , to exclude in-
valid positions during the attention computation. The processing begins
with a layer normalisation step:
𝑋𝑛𝑜𝑟𝑚 ∈ ℝ𝐵×𝑇×𝐷 = 𝐿𝑁 (𝑋), (25)

where 𝐿𝑁 is defined by Eq. 9. Next, multi-head attention is applied using
the normalised inputs and the padding mask:
𝐴 ∈ ℝ𝐵×𝑇×𝐷 = 𝑀𝐴(𝑋𝑛𝑜𝑟𝑚,𝑀), (26)

where 𝑀𝐴 computes the attention scores using the mechanism defined
in Eq. 4. A dropout layer is then applied to the attention output:
𝐴𝑑𝑟𝑜𝑝𝑜𝑢𝑡 ∈ ℝ𝐵×𝑇×𝐷 = 𝐷𝑜(𝐴), (27)

where 𝐷𝑜 represents the dropout function. A residual connection adds
the original input, 𝑋, to the attention output:
𝐴𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ∈ ℝ𝐵×𝑇×𝐷 = 𝑋 + 𝐴𝑑𝑟𝑜𝑝𝑜𝑢𝑡. (28)

The second part of the encoder layer consists of a fully connected net-
work with a gating mechanism. First, the residual output is normalised:
𝐴𝑛𝑜𝑟𝑚 ∈ ℝ𝐵×𝑇×𝐷 = 𝐿𝑁 (𝐴𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙). (29)

The gating mechanism is then applied as follows:
𝑔𝑒 = 𝜎(𝐴𝑛𝑜𝑟𝑚𝑊𝑔 + 𝑏𝑔), (30)

𝑓𝑒 = 𝑅𝑒𝐿𝑈 (𝐴𝑛𝑜𝑟𝑚𝑊𝑓 + 𝑏𝑓), (31)

𝑧𝑒 = 𝑔𝑒 ⊙ 𝑓𝑒, (32)

where 𝑔𝑒 is the gate vector, 𝑓𝑒 is the feature vector, ⊙ denotes element-
wise multiplication, and 𝑊𝑔 , 𝑏𝑔 , 𝑊𝑓 , and 𝑏𝑓 are learnable parameters of
the fully connected layers. A feedforward network projects the output
back to the model’s feature dimension, 𝐷:
𝑂𝑒 ∈ ℝ𝐵×𝑇×𝐷 = 𝐷𝑜(𝑧𝑒𝑊𝑜 + 𝑏𝑜), (33)

where 𝑊𝑜 and 𝑏𝑜 are the projection parameters, and 𝐷𝑜 applies dropout.
Finally, a residual connection is applied after the feedforward network
to produce the final output of the encoder layer:

𝑂𝐸 ∈ ℝ𝐵×𝑇×𝐷 = 𝐴𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 + 𝑂𝑒, (34)

where 𝑂𝐸 is the output of the encoder layer.

3.8. Proposed model

The core component of the proposed model is an encoder block com-
posed of several encoder layers. Unlike RNN-based models, which pro-
cess one value at a time in a sequence, the encoder block processes all
data samples within the sequence, i.e., the data window simultaneously,
enabling parallel computations.

Let the input be 𝑋 ∈ ℝ𝐵×𝑇×𝐷 and the padding mask 𝑀 ∈ ℝ𝐵×1×1×𝑇

computed as:

𝑀 = 𝑐𝑟𝑒𝑎𝑡𝑒_𝑝𝑎𝑑𝑑𝑖𝑛𝑔_𝑚𝑎𝑠𝑘

(𝐷
∑

𝑑=1
𝑋𝑏,𝑡,𝑑

)

, (35)

where ∑𝐷
𝑑=1 𝑋𝑏,𝑡,𝑑 reduces the feature dimension for each time step 𝑡 and

create_padding_mask(⋅) is a function that generates a mask to exclude
invalid positions based on the reduced values. Now, a DFE layer maps
input features to a learned dynamic embedding space and then joins the
original features and the embeddings along the feature dimension using:

𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∈ ℝ𝐵×𝑇×𝐷 = 𝑥̂(𝑋), (36)

𝑌1 ∈ ℝ𝐵×𝑇×(𝐷+𝐷) = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑋, 𝑑𝑦𝑛𝑎𝑚𝑖𝑐_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠). (37)

Afterward, 𝑌1 ∈ ℝ𝐵×𝑇×(𝐷+𝐷) is passed through a DLP layer to produce
𝑌2 ∈ ℝ𝐵×𝑇×𝐷 and then is scaled using the square root of the model di-
mension 𝐷 using:

𝑌2 ∈ ℝ𝐵×𝑇×𝐷 = 𝑌𝐷𝑃𝐿(𝑌1), (38)

𝑌2 ∈ ℝ𝐵×𝑇×𝐷 = 𝑌2 ⋅
√

𝐷, (39)

where
√

𝐷 ensures that the projection values are scaled appropriately
for subsequent processing. A STPE layer is then used to capture the
spatial-temporal features and positional relationships using:

𝑌3 ∈ ℝ𝐵×𝑇×𝐷 = 𝑂𝑆𝑇𝑃𝐸 (𝑌2). (40)

A LayerNorm layer and a dropout layer are then used to stabilise the
model training process. The encoder block has 𝑁 identical encoder lay-
ers. Each output of the encoder layer is repeatedly updated over 𝑁 to
get:

𝑌 (𝑖)
4 ∈ ℝ𝐵×𝑇×𝐷 = 𝑂𝐸 (𝑌

(𝑖−1)
3 ,𝑀), (41)

where 𝑖 ∈ {1, 2,… , 𝑁}, and the after final iteration 𝑌 (𝑁
4 ∈ ℝ𝐵×𝑇×𝐷 con-

tains the refined and deeply encoded features of the input sequence. The
RTCN block uses it to extract the temporal correlation of the timesteps
and to help the Time-Distributed Fully Connected layer to make the final
predictions using:

𝑌5 ∈ ℝ𝐵×𝑇×𝑈 = 𝑌𝑅(𝑌 𝑁
4), (42)

𝑌6 ∈ ℝ𝐵×𝑇×𝑈 = 𝐷𝑜(𝑌5), (43)

𝑌7 ∈ ℝ𝐵×𝑇×𝑈 = 𝑅𝑒𝐿𝑈 (𝑌6𝑤𝑦 + 𝑏𝑦), (44)

𝑌𝑜 ∈ ℝ𝐵×𝑇×𝑂 = 𝑇 𝑖𝑚𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑(𝑌7𝑤𝑜 + 𝑏𝑜), (45)

where 𝑈 and 𝑂 are the number of filters of the RTCN block and out-
put size of the model. The complete architecture of the proposed model
is depicted in Fig. 1. One should note that the aforementioned equa-
tions were established considering only the forward pass processes for
simplicity.

Neural Networks 192 (2025) 107897

5

S. Reza et al.

Fig. 1. Architecture of the proposed model.

3.9. Weighted MSE-MAE loss function

The proposed model calculates the loss with the help of a weighted
MSE-MAE loss function described by:

𝑙𝑜𝑠𝑠(𝑥𝑖, 𝑦𝑖) = 𝑀𝑆𝐸(𝑥𝑖, 𝑦𝑖) + 0.5 ⋅𝑀𝐴𝐸(𝑥𝑖, 𝑦𝑖). (46)

The goal is to minimise the loss value to support proper model learn-
ing effectively. Higher loss function values indicate that the model has
not been learned properly. In backpropagation, the model uses gradient
descent to update the weights based on an error, 𝐸, defined by the loss
function. The aim is to calculate the gradient, 𝜕𝐸𝜕𝑤𝑖

, where 𝑤𝑖 represents
the 𝑖𝑡ℎ weight of the network, and update the weight. Given the loss
function, 𝐸 can be expressed as:

𝐸 = 1
𝑛

𝑛
∑

𝑖=1

[

(𝑥𝑖 − 𝑦𝑖)2 + 0.5 ⋅ |𝑥𝑖 − 𝑦𝑖|
]

, (47)

where 𝑥𝑖 and 𝑦𝑖 represent the true and predicted values, respectively.
The gradient 𝜕𝐸𝜕𝑤𝑖

 is computed as:

𝜕𝐸
𝜕𝑤𝑖

= −1
𝑛

𝑛
∑

𝑖=1

[

2(𝑥𝑖 − 𝑦𝑖) + 0.5 ⋅ 𝑠𝑖𝑔𝑛(𝑥𝑖 − 𝑦𝑖)
] 𝜕𝑦𝑖
𝜕𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑖

𝜕𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑖
𝜕𝑤𝑖

, (48)

where 𝑠𝑖𝑔𝑛 represents the Signum function (Tatlıcıoğlu, 2024) and the
term 𝜕𝑦𝑖

𝜕𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑖
 depends on the activation function. The 𝑅𝑒𝐿𝑈 activa-

tion function is employed in the fully connected layers of the proposed
model. The derivative of 𝑅𝑒𝐿𝑈 for 𝑦𝑖 can be computed as (Lederer,
2021):

𝑑(𝑅𝑒𝐿𝑈)
𝑑𝑦𝑖

=

{

1 if 𝑦𝑖 > 0,
0 if 𝑦𝑖 ≤ 0.

(49)

If 𝜕𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑖
𝜕𝑤𝑖

= 𝑘𝑖, then the final gradient equation becomes:

𝜕𝐸
𝜕𝑤𝑖

= −1
𝑛

𝑛
∑

𝑖=1

[

2(𝑥𝑖 − 𝑦𝑖) + 0.5 ⋅ 𝑠𝑖𝑔𝑛(𝑥𝑖 − 𝑦𝑖)
]

⋅ 𝑅𝑒𝐿𝑈 ′(𝑦𝑖) ⋅ 𝑘𝑖. (50)

4. Experiments

The training of the proposed model requires less computational
power compared to other transformer-based models, and hence, the
training procedures can be completed on a local computer with an In-
tel Core i7-10750H CPU @ 2.60GHz × 12 processor and a memory of
16.0 GB. However, an NVIDIA Corporation TU117GLM [Quadro T1000
Mobile] Graphical Processing Unit (GPU) on a 64-bit Ubuntu 22.04.5
LTS operating system with a GNOME version of 42.9 was used to com-
plete training and is recommended. The open-source Tensorflow ma-
chine learning library facilitated the coding tasks.

4.1. Code implementation

The proposed model was implemented in several stages, with the
TensorFlow platform as the foundation. First, a scaled dot-product at-
tention mechanism was built using the tf.matmul and tf.nn.softmax func-
tions. The latter function computed the attention weights by scaling the
dot product of the query and key tensors, normalised by the square root
of the key’s depth. An optional masking operation was integrated to
handle padded sequences. Second, a multi-head attention module was
implemented using the tf.keras.layers.Dense layer to project query, key,
and value tensors. These tensors were split into multiple heads for paral-
lel computation. The attention mechanism aggregated information from
different subspaces and established residual connections for stability.
The outputs of the attention module were concatenated and processed
through a feedforward dense layer.

Third, a STPE layer was introduced to model spatial-temporal de-
pendencies. Spatial embeddings for sensors were initialised as learnable
parameters, and temporal encodings were generated with sinusoidal
functions. These encodings were paired with input features to boost the
model’s representational power, using tf.broadcast_to and tf.reduce_sum
for operations across batches. Fourth, the transformer encoder was de-
signed using pre-normalisation with tf.keras.layers.LayerNormalization,
multi-head attention, and a feedforward network with gating mecha-
nisms. Gated linear units were implemented to control feature selection
dynamically. Residual connections ensured stable gradient flow during

Neural Networks 192 (2025) 107897

6

S. Reza et al.

training. The encoder block was stacked multiple times, and temporal
convolutional blocks were added to refine temporal patterns using the
Conv1D and Add layers.

Finally, a DFE layer and a DLP layer were used to embed input
features into a higher-dimensional space. These embeddings were pro-
cessed through a dense layer with a learnable scaling factor and com-
bined with positional encodings. The entire architecture was trained us-
ing a composite loss function combining the MSE and MAE metrics. The
Nadam optimiser with a cosine decay learning rate schedule ensured
an efficient optimisation. Also, the Friedman Chi-Square function was
developed using the scipy.stats module to facilitate the statistical testing
mechanism.

4.2. Evaluation metrics

The state-of-the-art MAE and RMSE metrics were used to assess the
accuracy of the proposed model. Also, the Friedman Chi-Square test
(Pereira et al., 2015) was conducted to find the statistical significance
of the prediction distributions of the models under comparison. If 𝑥 and
𝑦 are the actual and predicted values, 𝑛 is the number of samples, and
𝑥𝑖 and 𝑦𝑖 are values of the 𝑖𝑡ℎ samples in 𝑥 and 𝑦, respectively, then their
formulations have the following forms.

The mean absolute error is simply an arithmetic average of the ab-
solute errors:

𝑀𝐴𝐸(𝑥, 𝑦) = 1
𝑛

𝑁
∑

𝑖=1

|

|

𝑥𝑖 − 𝑦𝑖||. (51)

The root mean squared error is the standard deviation of the residuals,
i.e., prediction errors, and, in terms of mathematics, has the form of:

𝑅𝑀𝑆𝐸(𝑥, 𝑦) =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑥𝑖 − 𝑦𝑖)2. (52)

Let’s suppose that there are 𝑀 models that are to be evaluated on
𝐷 datasets, then the test statistic can be formulated as (Rainio et al.,
2024):

𝐹𝑠 =
(𝐷 − 1)𝜒2

𝐹

𝐷(𝑀 − 1) − 𝜒2
𝐹

, (53)

where 𝜒2
𝐹 represents the Friedman Chi-Square function. 𝐹𝑠 follows the

𝐹 -distribution with (𝑀 − 1) and (𝑀 − 1)(𝐷 − 1) degrees of freedom un-
der the null hypothesis.

4.3. Datasets

The PEMS traffic flow dataset of the year 2012 was gathered. This
dataset contains the measurements of date-time, the location identifi-
cation (ID), and the number of vehicles passed by the sensors in a fre-
quency of 5 minutes. Another Caltrans-PeMS dataset with data about
the readers’ locations was combined with the traffic information using
SQL Server. The resultant dataset contained only two independent vari-
ables with missing values: Angle and City ID, which were not used in
this study. Only the data acquired from readers installed in the Dwight
D. Eisenhower Highway part of Interstate 80, between West Oakland
and North San Francisco, in the USA, was used for this study. It was
chosen based on high traffic flow peaks and the clear presence of sea-
sonality. It consists of traffic flow measurements recorded over 23 days,
19 hours, and 5 minutes, from January 1, 2012, 00:00:00, to January
24, 2012, 19:05:00. It includes 6854 data entries (rows) and 154 vari-
ables (columns). The first column, date_hour, contains the timestamps of
each data point in the format YYYY-MM-DD HH:MM:SS, with no missing
values observed. The remaining 153 columns correspond to individual
sensor IDs, i.e., 200, 201, and 300, representing traffic flow data. No-
tably, a few sensor columns contain minimal missing values, with the
maximum being 1 (one) missing value per column. The data observa-
tions were taken regularly, providing high temporal resolution for traffic
flow analysis.

Also, the PEMS-BAY dataset was used for the model’s experimenta-
tion and validation. It contains traffic speed information collected over
six months from January 1, 2017, to June 30, 2017, with 180 days
and 23 hours, 55 minutes. It comprises 52,116 samples (rows) and 326
features (columns). The first column (date_time) represents the times-
tamps of the recordings, formatted as YYYY-MM-DD HH:MM:SS, with
no missing values. The subsequent 325 columns represent sensor IDs,
i.e., 400,001 and 400017, each containing continuous traffic speed data
recorded. No missing values were identified across these columns, en-
suring data completeness for analysis.

These two datasets were chosen because of their wide adaptability
in traffic research, making them a community standard. Also, they are
from different geographical locations with varying characteristics, de-
mand profiles, and animalities, helping the model to test its robustness.
Lastly, they are large-scale and thus can test the model’s computational
efficiency.

4.3.1. Data analysis
The potential outliers were investigated using the Interquartile

range (IQR) method (Wan et al., 2014), testing both conservative,
i.e., 1.5𝐼𝑄𝑅, and non-conservative, i.e., 3𝐼𝑄𝑅, variation measures.
These variations were subtracted from the first quartile 𝑄1, i.e., 25%
of the data, and added to the third quartile 𝑄3, i.e., 75% of the
data, to define the lower inner fence (𝐿𝐼𝐹), upper inner fence (𝑈𝐼𝐹),
lower outer fence (𝐿𝑂𝐹), and upper outer fence (𝑈𝑂𝐹), respectively,
using:

𝐼𝑄𝑅 = 𝑄3 −𝑄1,

𝐿𝐼𝐹 = 𝑄1 − 1.5𝐼𝑄𝑅,

𝑈𝐼𝐹 = 𝑄3 + 1.5𝐼𝑄𝑅,

𝐿𝑂𝐹 = 𝑄1 − 3𝐼𝑄𝑅,

𝑈𝑂𝐹 = 𝑄3 + 3𝐼𝑄𝑅. (54)

A value may be classified as an outlier if it is not within these limits.
Fig. 2 helps visualise the dataset’s outliers using box plot analysis of
traffic flow values hourly. In this figure, the x-axis and y-axis represent
hours of the day and traffic flow (vehicles per 5 minutes), respectively.

Table 1 presents the obtained 𝑄1, 𝑄3, 𝐼𝑄𝑅, 𝐿𝐼𝐹 , 𝑈𝐼𝐹 , 𝐿𝑂𝐹 , and
𝑈𝑂𝐹 values of the traffic flow data samples of the whole dataset, re-
spectively.

The traffic flow, i.e., the number of vehicles per unit of time, values
for July 2012 possess a mean, median, and standard deviation of 65.62,
70.00, and 37.98, respectively. However, the mean, median, and standard
deviation of their amplitude for December 2012 were equal to 74.71,
79.00, and 44.43, respectively. Again, for July 2013, their mean was equal
to 56.28, and median and standard deviation were equal to 60.00 and
30.89, respectively. The traffic flow peak in December 2012 was 8.5%
higher than that for July 2012. Interestingly, the traffic flow peaks in
July 2013 were 19.2% lower than in July 2012.

Furthermore, the Isolation Forest algorithm (Liu et al., 2008) was
applied to the dataset to double-check the presence of outliers. Fig. 3
helps to visualise the found dataset’s outliers using this method.

In summary, the two analyses aforementioned reveal that the dataset
contains some outliers, and this study aimed to propose a model
that can efficiently deal with these outliers without sacrificing good
accuracy.

Table 1
Summary of the PEMS dataset analysis to determine the outliers
within the data samples based on the 𝐼𝑄𝑅 method.
 𝑄1 𝑄3 𝐼𝑄𝑅 𝐿𝐼𝐹 𝑈𝐼𝐹 𝐿𝑂𝐹 𝑈𝑂𝐹
 32.0 107.0 75.0 −80.5 219.5 −193 332

Neural Networks 192 (2025) 107897

7

S. Reza et al.

Fig. 2. Box plot analysis of hourly traffic of the PEMS traffic flow dataset (the whole dataset is grouped hourly to build these box plots, the × sign represents the
outliers).

Fig. 3. Visualisation of outliers of the PEMS dataset for sensor ID (a) 24,001 and (b) 24,200 built after fitting it to the Isolation Forest algorithm.

4.4. Preprocessing

The traffic flow PEMS dataset contains only 6854 samples; hence,
a data augmentation technique was used to generate two augmented
samples per original sample. A random noise with a noise level of 0.01
generated synthetic samples, which were added to the original dataset.
In this way, the data samples were increased to 20,454. However, the
PEMS-BAY dataset does not require any data augmentation process. The
missing values in the dataset were handled using two techniques. First,
any missing values were forward-filled using the Forward fill method
(Cenitta et al., 2021), propagating the last valid observation to fill sub-
sequent missing entries. Then, any remaining missing values were in-
terpolated using a linear method, which estimates missing values based
on the values of neighbouring data points. This combination ensures
that missing values are appropriately addressed before further process-
ing. However, the PEMS-BAY dataset does not have any missing values;
hence, these techniques do not apply to it. The PEMS-BAY and PEMS
datasets have 325 and 153 sensors, respectively, and this research used
all of them. The data was split into training, validation, and test datasets
with a percentage ratio of 70 ∶ 20 ∶ 10 and was scaled between values 0
(zero) to 1 (one) using MinMaxScaler (Patro & Sahu, 2015) to facilitate
efficient model training. It was fit on the training set only to avoid data
leakage. Applying the proposed model for prediction tasks requires cre-
ating appropriate data windows and correctly designating the inputs and
labels. This research divided the training, validation, and test sets into
input-output pairs for multi-step traffic state prediction. For example, it
can be configured into 24 consecutive timesteps of input data features to

predict the next 24 timesteps as the target, as shown in Fig. 4. Here, the
first data window started with 𝑡 = 0 timesteps and the next with 𝑡 = 1
timesteps. This process continued until the training set could not have a
sequence of 24 consecutive labels. Each input window overlaps with the
preceding one by all but one timestep, ensuring temporal continuity.

The forward fill and interpolation methods were used to tackle the
missing values. However, they can create artificial patterns, underes-
timate volatility, and fail in the case of prolonged missingness. Since
these two datasets have a very low/zero number of missing values, these
effects were avoided. Again, the MinMaxScaler may cause the amplifi-
cation of sparse outliers, distorting relationships between multi-variate
series. Lastly, the utilised data windowing technique eliminates trailing
data points that do not conform precisely to the specified input-output
windows, resulting in suboptimal utilisation of the dataset. Also, the
model would find it challenging to learn the data patterns for a tiny
pair of input-output windows.

4.5. Model training

The proposed model contains 2.64𝑀 and 816𝑘 trainable parameters
for the PEMS-BAY and PEMS traffic flow datasets. Different hyperparam-
eters can profoundly impact its outcomes. Hence, Keras Tuner provided
a proper set of hyperparameters using the Random Search (Bergstra &
Bengio, 2012) method, which ensured an efficient exploration of the
hyperparameter space, as shown in Table 2, to identify optimal config-
urations. 89 and 83 trials were required for the PEMS and PEMS-BAY
datasets to derive a final set of hyperparameters.

Neural Networks 192 (2025) 107897

8

S. Reza et al.

Fig. 4. Visualisation of different data windows in a batch.

Table 2
Hyperparameter search space explored in this study (values in bold
correspond to the optimal hyperparameters identified for the PEMS
dataset, while values marked with an asterisk (*) represent the op-
timal hyperparameters for the PEMS-BAY dataset).
 Hyperparameter Values
 Numb_heads (PEMS) 1, 3, 9, 17, 51
 Numb_heads (PEMS-BAY) 1, 3, 5, 13, 25*, 65
 Numb_layers 1*, 2, 3, …, 15
 Units 32, 64, 96, 128, 160, 192, 224, 256*
 Dropout rate 0.1*, 0.2, 0.3, 0.4, 0.5
 Learning rate 1𝑒−4 , 𝟓𝐞−𝟒∗ , 1𝑒−3

In Table 2, Numb_heads, Numb_layers, and Units represent the number
of attention heads, encoder layers, and neurons of the fully connected
layers, respectively. Two sets of optimal hyperparameters were derived
for the two datasets used in this study. Given that the model dimension
(𝐷) corresponds to the number of sensors (153 for the PEMS and 325
for the PEMS-BAY datasets), the Numb_heads were selected from two
distinct sets of values to ensure that the dimension per head is an integer.
The other sets of values were selected as a common practice. The model
was trained using the Nadam optimiser and a hybrid loss function, as
described in Section 3.9. The traffic state values were normalised to
the range [0, 1] using the MinMax scaling technique to ensure stable and
efficient training, thereby mitigating the risk of large gradients. Training
the proposed model (fully tuned) to reach convergence (around 105
epochs) required approximately 10 to 17 minutes on a GPU with the
mentioned configuration.

4.6. Results

The proposed model was trained based on the previously mentioned
experimental setup with a combination of optimal hyperparameters.
Its performance was evaluated using state-of-the-art metrics on two
datasets, as outlined in Section 4.2. The model’s performance was com-
pared with the results obtained by previously published state-of-the-art
methods designed to address medium to long-term prediction problems.
These methods were selected due to their recency and widespread recog-
nition within the research community. The used baselines were:

• LSTM-BiLSTM (Ma et al., 2021): The authors proposed a combination
of an LSTM, a bidirectional LSTM, and Dense layers to address multi-

step traffic flow prediction tasks. A similar model was developed,
trained, and tested on the two datasets used in this study.

• CNN-LSTM (Lee & Park, 2024): This approach used a CNN, an LSTM,
and fully connected layers to achieve accurate predictions. An iden-
tical model was implemented, trained, and tested on the two datasets
employed in this research.

• TrafFORMER (Tedjopurnomo et al., 2023): The authors introduced a
spatio-temporal multi-head attention-based transformer model with
a time-day embedding mechanism. A comparable model was imple-
mented and trained on the same datasets in this study.

• Autoformer (Wu et al., 2021): This method proposed a decomposi-
tion architecture with an auto-correlation mechanism for detecting
dependencies and aggregating representations at the sub-series level.
An identical model was implemented, trained, and tested on the two
datasets employed in this research.

• Pdformer (Jiang et al., 2023): The authors introduced a propagation
delay-aware dynamic long-range transformer model that employs a
spatial self-attention mechanism. A comparable model was imple-
mented and trained on the same datasets in this study.

• ST-Autoformer (Yu et al., 2024): This work presented a spatio-
temporal autoformer model based on spatial-temporal sequence au-
tocorrelation. A similar model was implemented and trained on the
same datasets in this study.

Table 3 summarises the obtained MAE(%) and RMSE(%) scores of the
proposed model and the baselines under study for different prediction
horizons (3–24 timesteps) on the traffic flow PEMS test dataset. For the
3-step prediction horizon, the Autoformer model performed best by ob-
taining a 6.25% lower MAE(%) score than the 2nd best model. Also, the
LSTM-BiLSTM outperformed the other models for 3- and 6-step predic-
tion lengths regarding MAE(%) and RMSE(%). However, the proposed
model comprehensively outperformed all the baselines for 18- and 24-
step prediction horizons regarding the MAE(%) and RMSE(%) scores.
For an 18-step prediction horizon, it demonstrated a 0.6% lower MAE
compared to the next best model, LSTM-BiLSTM (3.10), and a 34.4%
lower RMSE compared to CNN-LSTM (8.16). For the 24-step prediction
horizon, the proposed model’s MAE was 38.3% lower than the worst-
performing model (LSTM-BiLSTM, 5.19).

For shorter timesteps (3 and 6), the proposed model underperformed
compared to Autoformer, which had a 39.3% lower MAE (1.95 vs. 3.21)
and 17.2% lower RMSE (4.66 vs. 5.64) at step 3. Overall, the pro-
posed model and Autoformer outperformed the other models in their

Neural Networks 192 (2025) 107897

9

S. Reza et al.

Table 3
Performance of the proposed and baseline models for different prediction timesteps (3 - 24) on the PEMS test dataset
based on MAE and RMSE scores (best and second-best values are in bold and italic, respectively).
 Models MAE RMSE
 3 6 12 18 24 3 6 12 18 24
 LSTM-BiLSTM 2.08 2.28 2.77 3.10 5.19 4.45 5.57 7.06 8.16 11.38
 CNN-LSTM 2.26 2.76 3.27 4.30 4.42 4.91 6.07 7.41 9.15 9.82
 TrafFORMER 3.75 3.55 3.60 3.57 3.66 5.99 5.74 5.86 5.79 5.88
 Autoformer 1.95 2.33 3.02 3.83 4.51 4.66 5.83 7.24 9.21 10.24
 Pdformer 2.24 2.61 2.94 4.07 4.43 4.74 5.97 7.48 8.74 10.31
 ST-Autoformer 2.99 3.05 3.51 3.95 4.59 5.47 5.89 6.86 7.73 8.75
 Proposed 3.21 3.37 3.25 3.08 3.19 5.64 5.86 5.62 5.35 5.57

Table 4
Performance of the proposed and baseline models for different prediction timesteps (3 - 24) on the PEMS-BAY test
dataset based on MAE and RMSE scores (best and second-best values are in bold and italic, respectively).
 Models MAE RMSE
 3 6 12 18 24 3 6 12 18 24
 LSTM-BiLSTM 3.60 3.81 4.00 4.07 4.09 6.92 7.44 8.02 8.17 8.28
 CNN-LSTM 3.93 4.00 4.26 4.46 5.87 7.53 7.91 8.42 8.84 10.70
 TrafFORMER 2.65 3.33 3.02 3.06 3.57 4.33 5.39 5.19 5.34 6.18
 Autoformer 4.01 4.29 4.52 4.65 4.91 7.29 7.81 8.73 9.08 9.28
 Pdformer 3.93 4.23 4.35 4.48 4.50 7.32 8.19 8.38 8.65 8.84
 ST-Autoformer 3.29 3.51 4.02 4.16 4.26 5.92 6.42 7.29 7.69 8.13
 Proposed 2.64 2.65 2.55 2.62 2.86 5.15 5.22 5.06 5.17 5.47

respective ranges, while TrafFORMER consistently showed the least ef-
fective performance across most timesteps.

From Table 4, it is possible to verify that the presented model is more
capable of accurately predicting long-term future traffic speed compared
to the baselines under consideration in terms of the MAE and RMSE
scores on the PEMS-BAY dataset. As to the used statistic, it achieved
an MAE and RMSE improvement of 0.4 − 51.3% and 2.5 − 48.9% com-
pared to the studied baselines for a prediction time horizon of 3 − 24
steps, respectively. The proposed model consistently outperformed all
other models, achieving the lowest MAE and RMSE scores across all
timesteps in this case. For example, at step 12, it achieved an MAE of
2.55, which was 15.6% lower than the second-best model, TrafFORMER,
and an RMSE of 5.06, which was 2.5% lower than 5.19 of the Traf-
FORMER model. Overall, it demonstrated superior performance across
both short and long-term horizons for the PEMS-BAY dataset, highlight-
ing its robustness and accuracy compared to baselines.

It is a well-known fact that the prediction accuracy of the conven-
tional models tends to degrade rapidly with the increase in time horizon
(Jia et al., 2016) because of the accumulation of errors. Interestingly,
the presented model demonstrated that its prediction accuracy is inde-
pendent of that trend, as shown by both Tables 3 and 4.

This research applied the Friedman Chi-Square statistical test to eval-
uate whether there are significant differences in the prediction distri-
butions of the proposed model. Two hypotheses were considered: the
null hypothesis, indicating no significant differences, and the alterna-
tive hypothesis, suggesting the presence of differences. A significance
level of 5% was used. The null hypothesis holds if the p-value exceeds
the significance level. However, as shown in Table 5, none of the p-
values exceeded the significance level, indicating that the null hypoth-
esis is rejected and that the prediction distributions exhibit significant
differences.

Fig. 5 helps to visualise the good performance achieved by the pro-
posed model on the PEMS test dataset for a prediction horizon of 24-
steps. In this figure, the blue and red represent the ground truth and
predictions of the traffic states, respectively. The green band represents
the confidence intervals, i.e., ±1 Standard Deviation (SD) surrounding
the predicted values. The narrower the band, the more accurate the pre-
dictions.

Table 5
Friedman Chi-Square statistical test results of the proposed
model for different prediction lengths on the PEMS dataset.
 timesteps Statistics p-value
 3 71.12 3.5𝑒−16
 6 8.51 0.014
 12 31.28 1.6𝑒−7
 18 266.56 1.3𝑒−58
 24 5.54 0.062

Fig. 6 presents four scatter plots comparing the actual and predicted
traffic speeds for four sensors. Each plot includes a red dashed line
representing the ideal case of perfect predictions, where the predicted
values match the actual values. The blue dots represent the expected
traffic speeds for each sensor, with the x-axis displaying the actual
values and the y-axis displaying predicted values. The closeness of the
points to the red line indicates how accurate the model’s predictions
are, with tighter clusters suggesting greater performance. The varia-
tion observed in the plots reflects sensor-specific prediction challenges
and the proposed model’s overall generalizability across different sensor
locations.

5. Discussion

Capturing long-term spatial-temporal dependencies of traffic states
is vital for achieving accurate predictions over longer time horizons.
With a substantial amount of data, spanning many sensors, it is possible
to address this problem. Then, another problem arises: Which models
can effectively deal with the vast amount of data samples? DL-based
models like LSTMs and GRUs are best suited to deal with this prob-
lem. These models process each data sample sequentially, one at a time,
and, hence, tend to be less effective in parallel data processing. On
top of that, these models suffer from gradient vanishing and explod-
ing phenomena, resulting in ineffectiveness in capturing long-term de-
pendencies. In addition, they need to complete many training steps to
achieve reasonable accuracy. Attention mechanism-based models have

Neural Networks 192 (2025) 107897

10

S. Reza et al.

Fig. 5. Traffic speed prediction for a 24-step horizon on the PEMS test dataset achieved by the proposed model for four different sensors (denoted by (a), (b), (c),
and (d)). The green band represents ±1 Standard Deviation (SD) surrounding the predicted values.

the potential to address these problems. However, current transformer
models lack efficient means to capture spatial-temporal positional infor-
mation at each time step. These models are computationally demanding
and, on top of that, suffer from error accumulation problems for longer
prediction timesteps.

Additionally, traffic states are affected by various events like
rainy/snowy weather, summer/winter seasons, office peak/off-peak
hours, and accidents. Hence, some state-of-the-art models include
weather/accident information data with the raw dataset to increase the
prediction accuracy over extended timesteps (Liu et al., 2022). Also,
some methods rely on denoising mechanisms to remove outliers from
the input datasets before passing them into the models for good accuracy
(Chen et al., 2021). However, if the dataset contains substantial samples
over extended periods, those effects are likely already hidden within the
dataset. The proposed model addresses these problems by combining the
attention mechanism with an RTCN block. The DFE mechanism facili-
tated the meaningful transformation of raw feature representations. A
DLP block enhanced this representation using a non-linear transforma-
tion and a gating mechanism. The STPE layer augmented these trans-
formed features with spatial-temporal positional information at each
time step. Multiple encoder layers were used to deeply encode the data
representations, and an RTCN block extracted both short and long-term
temporal features. Finally, a Time Distributed Dense layer predicted the
future traffic states up to 24 output timesteps. Table 6 depicts the main
architectural differences between the proposed model and three other
recently proposed models. In this context, out-of-distribution (OOD)
denotes a generalisation method whereby a model is assessed on an

unknown dataset that was excluded from the training, validation, and
testing phases.

Two state-of-the-art PEMS traffic flow and speed datasets were used
for model training and testing. Five recent state-of-the-art baseline mod-
els were trained and tested using identical experimental setups for com-
prehensive performance comparisons. The proposed architecture out-
performed the studied baselines on the two used datasets regarding
the MAE and RMSE scores, particularly for higher prediction lengths.
Also, the Friedman Chi-Square statistical test revealed the worthiness
of the presented model by exhibiting a significant difference in predic-
tion distributions compared to the baselines under consideration. Other
statistical test methods are available in the literature, for example, the
Wilcoxon signed-rank test (Demšar, 2006) was also performed. How-
ever, the proposed model demonstrated less impressive outcomes in this
case.

Comprehensive ablation studies were performed to investigate the
effect of different proposed components on the model’s architecture.
Table 7 presents the results of the ablation study conducted on the PEMS
traffic flow dataset for 24 timesteps prediction length. In this table, w/o
denotes the absence of specific components. The configuration without
the DFE achieved a 3.75% increase in MAE. At the same time, the exclu-
sion of the DLP led to a 9.38% and 18.16% increase in MAE and RMSE,
respectively. However, the STPE demonstrated little influence on the
model’s outcomes. On the other hand, additional studies indicated that
the absence of the STPE marginally reduced the model’s generalizability.
The absence of the RTCN resulted in a 15.61% increase in MAE; without
data augmentation, the model showed a 5.61% increase in MAE.

Neural Networks 192 (2025) 107897

11

S. Reza et al.

Fig. 6. Scatter plots comparing the actual vs. predicted traffic speeds for a 24-step horizon on the PEMS-BAY test dataset, achieved by the proposed model: the plots
represent predictions for four different sensors (denoted by (a), (b), (c), and (d)) with the red dashed line indicating the ideal case of perfect predictions.

Table 6
Architectural innovations of the proposed model compared to recent state-of-the-art.
Tasks uTransformer

(Li et al., 2025)
RPConvformer
(Wen et al., 2023)

HDT
(Feng et al., 2025)

Proposed

Architecture Unified transformer Convolution and
transformer

Hierarchical discrete
transformer

Attention mechanism
and RTCN

Scalability in high
dimensions

Not addressed Not addressed Discrete token
representations

DFE and DLP

Spatial-temporal
dependencies

3D spatial-temporal
correlation map

Partially addressed Not Addressed STPE

Short- and long-term
dependencies

Self-attention Self-attention Hierarchical prediction
approach

Attention and RTCN

Error accumulation Not addressed Not addressed Indirectly using
hierarchy

Using non-autoregressive
decoding

Computational costs Less Not available high Moderate
Generalizability test Partial Partial No OOD generalization OOD generalization
Robustness test Partial Missing data robustness Not addressed Random noise, missing

data robustness

This study also investigated the effects of the number of encoder
layers and attention heads on the model’s performance. Table 8 sum-
marises these findings for the PEMS traffic flow dataset. Two encoder
layers with three attention heads led to the best overall outcomes in
this case. The increased number of encoder layers increased the com-
putational cost and did not lead to the best outcomes. On the contrary,
configurations with fewer encoder layers and attention heads generally

achieved better performance with lower computational costs. The inves-
tigation also found that a lower number of encoder layers and attention
heads resulted in late convergence, as can be observed in Fig. 7. These
plots were obtained by training the proposed model for different num-
bers of encoder layers and attention heads. The model was permitted
to train for a maximum of 150 epochs; however, training was halted
upon achieving convergence. These findings suggest the importance of

Neural Networks 192 (2025) 107897

12

S. Reza et al.

Fig. 7. Evolution of the MAE convergence for different encoder layers/attention heads combinations.

Table 7
Ablation study on the PEMS traffic flow dataset for 24 prediction
steps using the proposed model (w and w/o represent with and with-
out, best values in bold).
 Attribute Parameters MAE RMSE
 w/o DFE 676𝐾 3.31 5.72
 w/o DLP 581 3.49 6.60
 w/o STPE 792𝐾 3.19 5.52
 w/o RTCN 576𝐾 3.77 6.58
 w/o Data Augmentation 816𝐾 3.38 5.79
 Proposed 816𝐾 3.19 5.57

Table 8
Performance of the proposed model on the number of encoder
layers and attention heads on the PEMS test dataset for a 24-
step prediction horizon (the bold values correspond to the best
performance).
 Num_layers Num_heads Parameters MAE Train Time

(sec/epoch)

 15 51 3.01M 3.41 30.63
 10 51 2.17M 3.39 20.43
 4 17 1.15M 3.44 8.05
 9 9 1.99M 3.41 14.68
 8 3 1.83M 3.34 13.64
 7 1 1.66M 3.51 11.79
 5 17 1.32M 3.36 9.19
 2 3 816K 3.19 5.29

selecting an appropriate balance between the model’s complexity and
parameterisation.

While the proposed model took only 9.24 seconds per epoch
for the PEMS-BAY dataset to train with the previously mentioned
GPU configuration, the state-of-the-art models under consideration re-
quire higher computational resources, as is shown in Table 9. The
Diffusion Convolutional Recurrent Neural Networks (DCRNN), Graph
Multi-attention Network (GMAN), Multivariate Time-series Graph
Convolutional Networks (MTGCN), Spatio-temporal Graph Convolu-
tional Networks (STGCN), Lightweight Spatio-temporal Neural Network
(LSTNN), and Hybrid Spatial-temporal Gated Convolution (HSTGCNN)

Table 9
Computational efficiency comparisons between the different models
under study on the PEMS-BAY dataset (the values with bold corre-
spond to the best performances found). NA represents the unavail-
ability of corresponding values.
 Model Param Training Memory

(MB)

 Proposed 2.64M 9.24 2697
 DCRNN (Li et al., 2018b) 372K 246.06 9603
 GMAN (Zheng et al., 2020) 900K 87.67 7867
 MTGCN (Wu et al., 2020) 573K 53.12 2837
 STGCN (Yu et al., 2018) 320K 21.54 4765
 LSTNN (Wang et al., 2025) NA 114 NA
 HSTGCNN (Zhang et al., 2025) 503K 134.7 NA

models were used to compare the computational demands of the pre-
sented model. It requires less training time and GPU memory usage com-
pared to its counterparts. This feature would allow it to present excellent
results with a much lower training cost, which helps deployment into
edge devices, such as intelligent car systems or smartphones, for serv-
ing traffic prediction. Based on this comparison, it can be argued that
the presented model is computationally lighter than its counterparts.
It is to be noted that these models were not implemented/trained in
this research. Instead, the computational statistics were taken from their
respective works, and each required a different GPU configuration and
experimental setup.

The accuracy score for the conventional state-of-the-art models starts
reducing quickly with the increase in prediction length because of the
error accumulation problem. This research aimed to reduce this trend
by incorporating residual connections with the DLP and RTCN blocks.
It also used a direct strategy where it predicts all future timesteps si-
multaneously, instead of forecasting one step at a time and incorporat-
ing the output into subsequent predictions. Fig. 8 illustrates the evo-
lution of the MAE and RMSE scores with variations of the prediction
time length. The accuracy of the CNN-LSTM model was quickly re-
duced with increasing time length. However, the TrafFORMER model
provided the second-best performance compared to the others. Over-
all, the proposed model showed more capability in addressing this
problem.

Neural Networks 192 (2025) 107897

13

S. Reza et al.

Fig. 8. Prediction accuracy in terms of (a) MAE and (b) RMSE for the studied models concerning the output timesteps on the PEMS-BAY test dataset.

Table 10
Performance of the proposed model for
various noise levels based on the PEMS-
BAY test dataset for a 24-step prediction
horizon (the bold values correspond to the
best performance).
 Noise Level MAE RMSE
 0.00 (Original) 2.86 5.47
 0.10 9.13 11.84
 0.20 17.37 22.01
 0.30 25.41 33.99

Table 11
Results after performing a random sensor dropout test of the
proposed model based on the PEMS test dataset for a 24-step
prediction horizon (the bold values correspond to the best per-
formance).
 Sensor
Dropout (%)

 MAE RMSE

 Original 3.19 5.57
 10 3.75 8.36
 20 3.81 8.04
 30 5.12 10.18
 40 5.51 10.82
 50 6.87 13.32

This study also investigated the robustness of the proposed model
by simulating the arrival of non-recurrent events, such as accidents and
abrupt weather changes, using the PEMS-BAY test dataset, as illustrated
in Fig. 9. The original MAE and RMSE scores for a prediction time step of
24 were 2.86 and 5.47, respectively. However, the experimental results
reveal a minimal change in the MAE and RMSE scores due to the sudden
spikes, with values of 2.87 and 5.50, respectively. This investigation
demonstrated the model’s enhanced robustness capability.

On the other hand, with the addition of various levels of noise,
the proposed model failed to maintain original prediction accuracy, as
presented in Table 10. It presents the performance of the proposed
model under varying noise levels based on the PEMS-BAY test dataset,
specifically for a 24-step prediction horizon. As the noise level increases
from 0.00 to 0.30, the model’s performance deteriorates, with both MAE
and RMSE values rising significantly. These results demonstrate that the

Table 12
The adversarial perturbations test of the proposed model for various
perturbation levels based on the PEMS test dataset for a 24-step
prediction horizon.
 Perturbation
Magnitude
(𝜖)

MAE
Change (%)

RMSE
Change (%)

 0.05 0.46 3.19
 0.10 0.79 4.92
 0.20 1.38 7.46
 0.30 1.87 9.20

model’s predictive accuracy declines as noise levels rise, indicating its
sensitivity to noise in the data samples. So, it is one of the main draw-
backs of the proposed model. Also, it was not tested on another category
of time-series datasets; hence, applying only to traffic state datasets is
recommended.

Also, the random sensor dropout test was conducted to examine the
proposed model’s robustness further. It assessed the resilience of the
trained model in the event of random sensor failures, simulating a situa-
tion where a portion of sensors becomes inactive, resulting in the omis-
sion of their values, and quantified the consequent decline in model
performance using MAE and RMSE. Table 11 tabulates the results of
this experiment concerning different sensor dropout percentages rang-
ing from 10% to 50%. The MAE and RMSE scores increased with the
increased percentage of sensor dropout. However, the changes are in an
acceptable range, though, and room for further improvements persists.

In addition, the adversarial perturbations test was performed to
check the model’s robustness. For different perturbation magnitudes,
𝜖, the MAE and RMSE deviations were computed by taking the differ-
ence between the original and perturbed scores. Table 12 tabulates the
obtained MAE and RMSE deviation for different perturbation magni-
tudes. The proposed model demonstrated resilience in the lower and
higher magnitudes of adversarial attacks regarding MAE. However, re-
garding RMSE, the proposed model failed under strong attack, i.e., for 𝜖
of 0.30.

This research used another state-of-the-art dataset named METR-LA
(Li et al., 2018a) to examine the generalizability of the proposed model.
This dataset was split into train and test sets, and the test set was split
weekly. The saved proposed model, which had never seen this dataset,
was evaluated based on the weekly split test sets. Table 13 presents the

Neural Networks 192 (2025) 107897

14

S. Reza et al.

Fig. 9. Traffic speed with sudden increase and decrease on the PEMS-BAY test dataset to mimic the arrival of non-recurrent events.

Fig. 10. Residual distribution between the true and predicted values based on the PEMS test dataset.

Table 13
The generalizability test of the proposed model on the METR-LA test
dataset for a 24-step prediction horizon.
 Test Set MAE RMSE
 2012-03-07 to 2012-03-13 5.19 5.88
 2012-03-14 to 2012-03-20 5.61 6.12
 2012-03-21 to 2012-03-27 4.89 5.68
 2012-03-28 to 2012-04-03 5.66 7.18
 2012-04-04 to 2012-04-10 4.80 5.66
 2012-04-11 to 2012-04-17 5.65 6.15
 2012-04-18 to 2012-04-24 5.54 6.08
 2012-04-25 to 2012-05-01 5.22 5.93
 2012-05-02 to 2012-05-08 5.61 6.14
 2012-05-09 to 2012-05-15 5.61 6.13
 2012-05-16 to 2012-05-22 5.58 6.11
 2012-05-23 to 2012-05-29 5.75 6.25
 2012-05-30 to 2012-06-05 5.19 5.89
 2012-06-06 to 2012-06-12 5.18 5.86
 2012-06-13 to 2012-06-19 4.23 5.27

results of this experiment for different weekly test sets. It demonstrated
good generalizability of the proposed model, although the obtained MAE
and RMSE were higher than those of the PEMS-BAY and PEMS datasets.
Nevertheless, it needs to be further increased, which is a potential future
work.

On top of that, the investigation also covered the Wilcoxon sign-rank
(Rainio et al., 2024) and the Analysis of Variance (ANOVA) (Kennedy &
Wang, 2025) tests to find out if there are statistically significant differ-
ences in the model’s performance. In the case of the Wilcoxon test, first,
the residual was computed from the difference between the true and
predicted values and then the test was performed based on the residual
values. The test statistic was very high, and the p_value was zero, indi-
cating the presence of model bias. Although the residual contained tiny
entities, the null hypothesis was rejected because they were not centred
around the zero (median), as is shown in Fig. 10. In the case of ANOVA,
the test was performed on the MAE and RMSE values of the models. The
results indicated higher test statistics and p_value, indicating no signif-
icant differences between them. These tests indicated the drawbacks of
the proposed model.

This study additionally used confidence intervals between runs to
completely validate the performance disparities. In 10 runs, the average
MAE was 3.10 ± 0.20 while the mean RMSE was 5.37 ± 0.35. The ±
values denote 95% confidence intervals calculated from the standard
error of the mean across the runs. Over 10 trials, MAE changes by only
0.20% and RMSE by 0.35%. Since long-term prediction is necessary for
real-world applications, the proposed model bears great potential in this
regard. Its direct multi-step approach is ideal for cases requiring long-
term prediction accuracy and stability. It is capable of fast inference as

Neural Networks 192 (2025) 107897

15

S. Reza et al.

well. Nonetheless, additional research is required to assess its viability
as a backend service in urban traffic control centres or its incorporation
into navigation applications for rerouting based on predictions.

6. Conclusion

This study proposed a hybrid model combining attention mecha-
nisms and RTCN structures to address long-term traffic state predic-
tion tasks. State-of-the-art transformer-based methods often fall short
in effectively integrating spatial-temporal positional information into
data features and are computationally intensive, especially for multi-
step ahead prediction tasks prone to error accumulation. The proposed
model mitigates these issues by introducing innovative components tai-
lored for transportation applications.

The Dynamic Feature Embedding layer transforms raw traffic data
into meaningful feature representations. At the same time, the Deep
Linear Projection further enhances these representations using non-
linear transformations and a gating mechanism. The Spatial-Temporal
Positional Encoding layer enriches these features by embedding spatial-
temporal information for each sensor at every time step. These enriched
features are encoded through a masked multi-head attention mecha-
nism, followed by an RTCN block to capture both short- and long-term
temporal dependencies. Finally, a Time-Distributed Dense layer pro-
duces accurate long-term predictions.

Performance evaluations demonstrated the superiority of the pro-
posed model over six state-of-the-art baseline models using two bench-
mark traffic datasets. On the PEMS-BAY test dataset, the model
improved in MAE and RMSE, ranging from 0.4 to 51.3% and 2.5 to
48.9%, respectively, across 3 to 24-step prediction horizons. These re-
sults were achieved without incorporating additional contextual factors
like weather or accident data and after removing outliers, showcas-
ing the model’s robustness. Moreover, the computational cost analysis
highlighted a significant reduction in resource requirements compared
to recently published transformer-based models, making it a practical
solution for large-scale traffic state prediction tasks. The model also
demonstrated resilience under scenarios of sudden fluctuations in traf-
fic conditions, adversarial perturbation, and random sensor dropouts,
which are critical for real-world transportation systems.

However, the study acknowledges certain limitations. The model’s
performance is sensitive to external noise, highlighting the need for fu-
ture work on noise-resilient architectures. Furthermore, the requirement
for substantial data samples to learn long-term dependencies suggests
potential avenues for optimising data efficiency. Another critical con-
sideration is the model’s dependency on the inherent characteristics of
the training data, such as trends, seasonality, and extreme events. The
model performs well when applied to regions with traffic conditions
similar to the training data. Extending its applicability to heterogeneous
traffic networks with varying characteristics remains an important area
for future research.

By addressing these challenges, the proposed model is a promis-
ing solution for enhancing Intelligent Transportation Systems, enabling
transportation stakeholders to anticipate traffic dynamics more accu-
rately, optimise resource allocation, and enhance mobility across diverse
urban environments.

Source code

The source code can be found from: GitHub Repository

CRediT authorship contribution statement

Selim Reza: Validation, Investigation, Writing – original draft,
Methodology, Software; Marta Campos Ferreira: Writing – review &
editing, Supervision; J. J. M. Machado: Writing – review & editing, Su-
pervision, Validation; João Manuel R.S. Tavares: Supervision, Writing
– review & editing, Conceptualization, Funding acquisition.

Data availability

The used experimental datasets are publicly available at Caltrans
PeMS and PEMS-BAY.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

The authors would like to thank “Fundação para a Ciência e Tecnolo-
gia” (FCT) for the PhD grant (with reference 2022.12391.BD) awarded
to the first author, which this work is a part of. This article partially
results from the project “Sensitive Industry”, co-funded by the Euro-
pean Regional Development Fund (ERDF) through the Operational Pro-
gramme for Competitiveness and Internationalization (COMPETE 2020)
under the PORTUGAL 2020 Partnership Agreement.

References

Al-Thani, M. G., Sheng, Z., Cao, Y., & Yang, Y. (2024). Traffic transformer: Transformer-
based framework for temporal traffic accident prediction. AIMS Mathematics, 9(5),
12610–12629.

Ansari Esfeh, M., Kattan, L., Lam, W. H. K., Ansari Esfe, R., & Salari, M. (2020). Compound
generalized extreme value distribution for modeling the effects of monthly and sea-
sonal variation on the extreme travel delays for vulnerability analysis of road network.
Transportation Research Part C: Emerging Technologies, 120, 102808.

Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. https://arxiv.org/abs/
1607.06450.

Baldi, P., & Sadowski, P. J. (2013). Understanding dropout. Advances in Neural Information
Processing Systems, 26.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Jour-
nal of Machine Learning Research, 13(2).

Bjorck, N., Gomes, C. P., Selman, B., & Weinberger, K. Q. (2018). Understanding batch
normalization. Advances in Neural Information Processing Systems, 31.

Cao, Q., Yuan, J., Ren, G., Qi, Y., Li, D., Deng, Y., & Ma, W. (2024). Tracking the source
of congestion based on a probabilistic sensor flow assignment model. Transportation
Research Part C: Emerging Technologies, 165, 104736.

Cenitta, D., Arjunan, R. V., & Prema, K. V. (2021). Missing data imputation using machine
learning algorithm for supervised learning. In 2021 international conference on computer
communication and informatics (ICCCI) (pp. 1–5). IEEE.

Chauhan, N. S., Kumar, N., & Eskandarian, A. (2024). A novel confined attention mech-
anism driven bi-GRU model for traffic flow prediction. IEEE Transactions on Intelligent
Transportation Systems, 25(8), 9181–9191.

Chen, C. (2002). Freeway performance measurement system (PeMS). University of Cali-
fornia, Berkeley.

Chen, C., Liu, Y., Chen, L., & Zhang, C. (2022). Bidirectional spatial-temporal adaptive
transformer for urban traffic flow forecasting. IEEE Transactions on Neural Networks
and Learning Systems, 34(10), 6913–6925.

Chen, J., Zheng, L., Hu, Y., Wang, W., Zhang, H., & Hu, X. (2024). Traffic flow matrix-based
graph neural network with attention mechanism for traffic flow prediction. Information
Fusion, 104, 102146.

Chen, X., Chen, H., Yang, Y., Wu, H., Zhang, W., Zhao, J., & Xiong, Y. (2021). Traffic flow
prediction by an ensemble framework with data denoising and deep learning model.
Physica A: Statistical Mechanics and its Applications, 565, 125574.

Chen, X., Wu, S., Shi, C., Huang, Y., Yang, Y., Ke, R., & Zhao, J. (2020). Sensing data
supported traffic flow prediction via denoising schemes and ANN: A comparison. IEEE
Sensors Journal, 20(23), 14317–14328.

Cheng, Z., Lu, J., Zhou, H., Zhang, Y., & Zhang, L. (2022). Short-term traffic flow predic-
tion: An integrated method of econometrics and hybrid deep learning. IEEE Transac-
tions on Intelligent Transportation Systems, 23(6), 5231–5244.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal
of Machine learning research, 7, 1–30.

Du, S., Li, T., Gong, X., & Horng, S.-J. (2020). A hybrid method for traffic flow forecast-
ing using multimodal deep learning. International Journal of Computational Intelligence
Systems, 13(1), 85.

Essien, A., Petrounias, I., Sampaio, P., & Sampaio, S. (2021). A deep-learning model for
urban traffic flow prediction with traffic events mined from twitter. World Wide Web,
24(4), 1345–1368.

Feng, S., Zhao, P., Liu, L., Wu, P., & Shen, Z. (2025). Hdt: Hierarchical discrete transformer
for multivariate time series forecasting. arXiv preprint arXiv: 2502.08302.

Geng, Z., Xu, J., Wu, R., Zhao, C., Wang, J., Li, Y., & Zhang, C. (2024). Stgaformer: Spatial–
temporal gated attention transformer based graph neural network for traffic flow fore-
casting. Information Fusion, 105, 102228.

Grigsby, J., Wang, Z., Nguyen, N., & Qi, Y. (2023). Long-range transformers for dynamic
spatiotemporal forecasting. https://arxiv.org/abs/2109.12218.

Neural Networks 192 (2025) 107897

16

https://github.com/SelimFEUP/Robust-and-computationally-efficient-long-term-traffic-state-prediction.git
https://pems.dot.ca.gov/
https://pems.dot.ca.gov/
https://zenodo.org/records/4263971#.Yt5GCOxKj0o
http://dx.doi.org/10.13039/501100008530
http://dx.doi.org/10.13039/501100008530
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0001
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0001
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0001
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0002
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0002
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0002
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0002
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0003
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0003
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0004
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0004
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0005
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0005
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0006
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0006
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0006
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0007
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0007
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0007
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0008
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0008
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0008
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0009
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0009
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0010
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0010
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0010
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0011
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0011
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0011
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0012
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0012
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0012
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0013
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0013
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0013
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0014
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0014
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0014
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0015
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0015
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0016
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0016
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0016
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0017
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0017
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0017
https://arxiv.org/abs/2502.08302
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0018
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0018
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0018
https://arxiv.org/abs/2109.12218

S. Reza et al.

Guo, J., Huang, W., & Williams, B. M. (2015). Real time traffic flow outlier detection
using short-term traffic conditional variance prediction. Transportation Research Part
C: Emerging Technologies, 50, 160–172.

Hamad, R. A., Kimura, M., Yang, L., Woo, W. L., & Wei, B. (2021). Dilated causal con-
volution with multi-head self attention for sensor human activity recognition. Neural
Computing and Applications, 33, 13705–13722.

Jia, Y., Wu, J., & Du, Y. (2016). Traffic speed prediction using deep learning method.
In 2016 IEEE 19th international conference on intelligent transportation systems (ITSC)
(pp. 1217–1222). IEEE.

Jiang, J., Han, C., Zhao, W. X., & Wang, J. (2023). Pdformer: Propagation delay-aware
dynamic long-range transformer for traffic flow prediction. In Proceedings of the thirty-
seventh AAAI conference on artificial intelligence and thirty-fifth conference on innovative
applications of artificial intelligence and thirteenth symposium on educational advances in
artificial intelligence AAAI’23/IAAI’23/EAAI’23. AAAI Press.

Kennedy, A., & Wang, S. (2025). Analysis of variance. In Translational urology
(pp. 121–124). Elsevier.

Kwon, S. et al. (2021). Mlt-dnet: Speech emotion recognition using 1d dilated cnn based
on multi-learning trick approach. Expert Systems with Applications, 167, 114177.

Lederer, J. (2021). Activation functions in artificial neural networks: A systematic
overview. https://arxiv.org/abs/2101.09957.

Lee, H.-J., & Park, D.-J. (2024). Collision evasive action timing for MASS using CNN–
LSTM-based ship trajectory prediction in restricted area. Ocean Engineering, 294,
116766.

Li, C., Liu, W., & Yang, H. (2024a). Deep causal inference for understanding the impact
of meteorological variations on traffic. Transportation Research Part C: Emerging Tech-
nologies, 165, 104744.

Li, J., Dong, W., & Gui, X. (2025). Utransformer: Unified spatial-temporal transformer
with external factors for traffic flow forecasting. The Journal of Supercomputing, 81(1),
1–34.

Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y.-X., & Yan, X. (2019). Enhancing the
locality and breaking the memory bottleneck of transformer on time series forecast-
ing. In Proceedings of the 33rd International Conference on Neural Information Processing
Systems Curran Associates Inc.

Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2018a). Diffusion convolutional recurrent neural
network: Data-driven traffic forecasting. In International conference on learning repre-
sentations (ICLR ’18).

Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2018b). Diffusion convolutional recurrent neural
network: Data-driven traffic forecasting. https://arxiv.org/abs/1707.01926.

Li, Z., Xu, H., Gao, X., Wang, Z., & Xu, W. (2024b). Fusion attention mechanism bidirec-
tional LSTM for short-term traffic flow prediction. Journal of Intelligent Transportation
Systems, 28(4), 511–524.

Lim, B., Arık, S. Ö., Loeff, N., & Pfister, T. (2021). Temporal fusion transformers for in-
terpretable multi-horizon time series forecasting. International Journal of Forecasting,
37(4), 1748–1764.

Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation forest. In 2008 eighth IEEE interna-
tional conference on data mining (pp. 413–422). IEEE.

Liu, J., Wu, N., Qiao, Y., & Li, Z. (2022). Short-term traffic flow forecasting using ensemble
approach based on deep belief networks. IEEE Transactions on Intelligent Transportation
Systems, 23(1), 404–417.

Liu, Z., Ding, F., Dai, Y., Li, L., Chen, T., & Tan, H. (2024). Spatial-temporal graph con-
volution network model with traffic fundamental diagram information informed for
network traffic flow prediction. Expert Systems with Applications, 249, 123543.

Luo, Q., He, S., Han, X., Wang, Y., & Li, H. (2024). Lsttn: A long-short term transformer-
based spatiotemporal neural network for traffic flow forecasting. Knowledge-Based Sys-
tems, 293, 111637.

Lv, Z., Xu, J., Zheng, K., Yin, H., Zhao, P., & Zhou, X. (2018). Lc-rnn: A deep learning model
for traffic speed prediction. In Proceedings of the twenty-seventh international joint confer-
ence on artificial intelligence, IJCAI-18 (pp. 3470–3476). International Joint Conferences
on Artificial Intelligence Organization.

Ma, C., Dai, G., & Zhou, J. (2021). Short-term traffic flow prediction for urban road sec-
tions based on time series analysis and LSTM_BILSTM method. IEEE Transactions on
Intelligent Transportation Systems, 23(6), 5615–5624.

Ma, T., Antoniou, C., & Toledo, T. (2020). Hybrid machine learning algorithm and statis-
tical time series model for network-wide traffic forecast. Transportation Research Part
C: Emerging Technologies, 111, 352–372.

Miner, P., Smith, B. M., Jani, A., McNeill, G., & Gathorne-Hardy, A. (2024). Car harm:
A global review of automobility’s harm to people and the environment. Journal of
Transport Geography, 115, 103817.

Patro, S. G. K., & Sahu, K. K. (2015). Normalization: A preprocessing stage. https://arxiv.
org/abs/1503.06462.

Pereira, D. G., Afonso, A., & Medeiros, F. M. (2015). Overview of friedman’s test and
post-hoc analysis. Communications in Statistics-Simulation and Computation, 44(10),
2636–2653.

Polson, N. G., & Sokolov, V. O. (2017). Deep learning for short-term traffic flow prediction.
Transportation Research Part C: Emerging Technologies, 79, 1–17.

Rainio, O., Teuho, J., & Klén, R. (2024). Evaluation metrics and statistical tests for machine
learning. Scientific Reports, 14(1), 6086.

Reza, S., Ferreira, M. C., Machado, J., & Tavares, J. M. R. S. (2022). A multi-head attention-
based transformer model for traffic flow forecasting with a comparative analysis to
recurrent neural networks. Expert Systems with Applications, 202, 117275.

Ribeiro, A. H., Tiels, K., Aguirre, L. A., & Sch’́on, T. (2020). Beyond exploding and vanish-
ing gradients: Analysing RNN training using attractors and smoothness. In International
conference on artificial intelligence and statistics (pp. 2370–2380). PMLR.

Sharma, S., Nayak, R., & Bhaskar, A. (2024). Multi-view feature engineering for day-to-
day joint clustering of multiple traffic datasets. Transportation Research Part C: Emerging
Technologies, 162, 104607.

Tatlıcıoğlu, B. E. (2024). A simple chaotic system using signum function. Mathematics and
Computers in Simulation, 225, 1072–1088.

Tedjopurnomo, D. A., Choudhury, F. M., & Qin, A. K. (2023). Trafformer: A transformer
model for predicting long-term traffic. https://arxiv.org/abs/2302.12388.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,
& Polosukhin, I. (2017). Attention is all you need. In Advances in neural information
processing systems. Curran Associates, Inc. (vol. 30).

Vijayalakshmi, B., Ramar, K., Jhanjhi, N. Z., Verma, S., Kaliappan, M., Vijayalakshmi, K.,
Vimal, S., & Ghosh, U. (2021). An attention-based deep learning model for traffic flow
prediction using spatiotemporal features towards sustainable smart city. International
Journal of Communication Systems, 34(3), e4609.

Wan, X., Wang, W., Liu, J., & Tong, T. (2014). Estimating the sample mean and standard
deviation from the sample size, median, range and/or interquartile range. BMC Medical
Research Methodology, 14(1), 1–13.

Wang, D., Guo, G., Ouyang, T., Yu, D., Zhang, H., Li, B., Jiang, R., Xu, G., & Deng, S. (2025).
A lightweight spatio-temporal neural network with sampling-based time series decom-
position for traffic forecasting. IEEE Transactions on Intelligent Transportation Systems,
26(6), 8682–8693. https://doi.org/10.1109/TITS.2025.3552010.

Wen, Y., Xu, P., Li, Z., Xu, W., & Wang, X. (2023). Rpconvformer: A novel transformer-
based deep neural networks for traffic flow prediction. Expert Systems with Applications,
218, 119587.

Wu, H., Xu, J., Wang, J., & Long, M. (2021). Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. Advances in Neural Information
Processing Systems, 34, 22419–22430.

Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., & Zhang, C. (2020). Connecting the dots:
Multivariate time series forecasting with graph neural networks. In Proceedings of
the 26th ACM SIGKDD international conference on knowledge discovery & data mining
(pp. 753–763).

Xiao, Y., & Yin, Y. (2019). Hybrid LSTM neural network for short-term traffic flow predic-
tion. Information, 10(3), 105.

Xing, J., Wu, W., Cheng, Q., & Liu, R. (2022). Traffic state estimation of urban road net-
works by multi-source data fusion: Review and new insights. Physica A: Statistical Me-
chanics and its Applications, 595, 127079.

Xu, Q., Pang, Y., Zhou, X., & Liu, Y. (2024). Pigat: Physics-informed graph attention trans-
former for air traffic state prediction. IEEE Transactions on Intelligent Transportation
Systems, 25(9), 12561–12577.

Xu, X., Jin, X., Xiao, D., Ma, C., & Wong, S. C. (2021). A hybrid autoregressive fraction-
ally integrated moving average and nonlinear autoregressive neural network model
for short-term traffic flow prediction. Journal of Intelligent Transportation Systems,
(pp. 1–18).

Yang, B., Sun, S., Li, J., Lin, X., & Tian, Y. (2019). Traffic flow prediction using LSTM with
feature enhancement. Neurocomputing, 332, 320–327.

Yu, B., Yin, H., & Zhu, Z. (2018). Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. In Proceedings of the 27th international joint
conference on artificial intelligence (pp. 3634–3640).

Yu, S., Peng, J., Ge, Y., Yu, X., Ding, F., Li, S., & Ma, C. (2024). A traffic state prediction
method based on spatial–temporal data mining of floating car data by using autoformer
architecture. Computer-Aided Civil and Infrastructure Engineering, 39(18), 2774–2787.

Zhang, H., Zou, Y., Yang, X., & Yang, H. (2022). A temporal fusion transformer for short-
term freeway traffic speed multistep prediction. Neurocomputing, 500, 329–340.

Zhang, Y., Yang, S., Wang, H., Cheng, Y., Wang, J., Cao, L., & An, Z. (2025). A traffic flow
forecasting method based on hybrid spatial–temporal gated convolution. International
Journal of Machine Learning and Cybernetics, 16(3), 1805–1817.

Zheng, C., Fan, X., Wang, C., & Qi, J. (2020). Gman: A graph multi-attention network
for traffic prediction. In Proceedings of the AAAI conference on artificial intelligence
(pp. 1234–1241). (vol. 34).

Zou, D., Wang, S., Li, X., Peng, H., Wang, Y., Liu, C., Sheng, K., & Zhang, B. (2024).
Multispans: A multi-range spatial-temporal transformer network for traffic forecast via
structural entropy optimization. In Proceedings of the 17th ACM international conference
on web search and data mining (pp. 1032–1041).

Neural Networks 192 (2025) 107897

17

http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0019
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0019
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0019
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0020
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0020
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0020
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0021
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0021
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0021
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0022
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0022
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0022
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0022
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0022
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0023
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0023
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0024
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0024
https://arxiv.org/abs/2101.09957
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0025
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0025
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0025
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0026
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0026
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0026
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0027
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0027
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0027
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0028
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0028
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0028
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0028
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0029
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0029
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0029
https://arxiv.org/abs/1707.01926
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0030
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0030
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0030
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0031
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0031
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0031
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0032
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0032
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0033
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0033
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0033
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0034
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0034
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0034
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0035
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0035
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0035
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0036
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0036
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0036
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0036
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0037
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0037
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0037
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0038
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0038
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0038
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0039
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0039
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0039
https://arxiv.org/abs/1503.06462
https://arxiv.org/abs/1503.06462
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0040
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0040
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0040
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0041
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0041
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0042
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0042
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0043
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0043
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0043
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0044
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0044
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0044
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0045
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0045
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0045
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0046
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0046
https://arxiv.org/abs/2302.12388
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0047
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0047
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0047
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0048
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0048
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0048
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0048
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0049
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0049
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0049
https://doi.org/10.1109/TITS.2025.3552010
https://doi.org/10.1109/TITS.2025.3552010
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0051
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0051
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0051
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0052
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0052
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0052
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0053
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0053
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0053
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0053
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0054
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0054
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0055
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0055
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0055
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0056
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0056
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0056
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0057
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0057
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0057
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0057
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0058
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0058
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0059
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0059
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0059
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0060
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0060
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0060
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0061
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0061
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0062
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0062
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0062
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0063
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0063
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0063
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0064
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0064
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0064
http://refhub.elsevier.com/S0893-6080(25)00778-6/sbref0064

	Enhancing intelligent transportation systems with a more efficient model for long-term traffic predictions based on an attention mechanism and a residual temporal convolutional network
	1 Introduction
	2 Related works
	3 Methodology
	3.1 Attention mechanism
	3.2 Layer normalization
	3.3 Spatial-temporal positional encoding
	3.4 Dynamic feature embedding
	3.5 Deep linear projection
	3.6 Residual temporal convolutional network
	3.7 Encoder layer
	3.8 Proposed model
	3.9 Weighted MSE-MAE loss function

	4 Experiments
	4.1 Code implementation
	4.2 Evaluation metrics
	4.3 Datasets
	4.3.1 Data analysis

	4.4 Preprocessing
	4.5 Model training
	4.6 Results

	5 Discussion
	6 Conclusion

