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Abstract: Land cover classification (LCC) using satellite images is one of the rapidly
expanding fields in mapping, highlighting the need for updating existing computational
classification methods. Advances in technology and the increasing variety of applications
have introduced challenges, such as more complex classes and a demand for greater
detail. In recent years, deep learning and Convolutional Neural Networks (CNNs) have
significantly enhanced the segmentation of satellite images. Since the training of CNNs
requires sophisticated and expensive hardware and significant time, using pre-trained
networks has become widespread in the segmentation of satellite image. This study
proposes a hybrid synergistic semantic segmentation method based on the Deeplab v3+
network and a clustering-based post-processing scheme. The proposed method accurately
classifies various land cover (LC) types in multispectral satellite images, including Pastures,
Other Built-Up Areas, Water Bodies, Urban Areas, Grasslands, Forest, Farmland, and
Others. The post-processing scheme includes a spectral bag-of-words model and K-medoids
clustering to refine the Deeplab v3+ outputs and correct possible errors. The simulation
results indicate that combining the post-processing scheme with deep learning improves the
Matthews correlation coefficient (MCC) by approximately 5.7% compared to the baseline
method. Additionally, the proposed approach is robust to data imbalance cases and can
dynamically update its codewords over different seasons. Finally, the proposed synergistic
semantic segmentation method was compared with several state-of-the-art segmentation
methods in satellite images of Italy’s Lake Garda (Lago di Garda) region. The results
showed that the proposed method outperformed the best existing techniques by at least 6%
in terms of MCC.

Keywords: Deeplab v3+; ResNet-50; K-medoids clustering; satellite images; multispectral
processing

1. Introduction

Land cover classification (LCC) using remote sensing images aims to generate
schematic maps from satellite and drone imagery [1]. This process involves creating
a numerical representation based on available data for specific land cover (LC) types,
such as forests, grasslands, pastures, water bodies, buildings, polluted areas, and min-
ing zones [2,3]. By applying a computational classification method, the LC type in each
different region of an image can be accurately identified. With the expansion of imaging
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and remote sensing drones and satellites, along with the increased accuracy and range of
wavelengths acquired by sensors, LCC using remote sensing imagery has seen significant
growth [4,5]. LCC has widespread applications across various fields, such as ecology,
geography, climatology, and mapping [4,5]. Monitoring environmental changes using
satellite imagery allows for detecting anomalies and changes, such as the degradation of
natural resources [6]. This allows managers and planners to assess pollution and climate
change with exceptional speed and precision. With the rapid growth of artificial intel-
ligence, particularly in Computer Vision, supervised and semi-supervised methods for
satellite image segmentation and classification have significantly improved in versatility
and accuracy [7,8]. However, due to the complexity of specific patterns and the demand
for highly detailed classifications, existing methods still require further refinement and
enhancement [8].

Unlike traditional segmentation approaches, deep learning-based methods can iden-
tify more diverse areas and complex patterns. However, they require significantly more
input data and larger training samples, more advanced hardware, and longer training
times [5,9]. In the most recent studies, the combined use of expert knowledge in satel-
lite image interpretation and artificial intelligence capabilities has improved the accuracy
and generalizability of these methods [10,11]. Semantic segmentation, inspired by the
functioning of the human mind, is one of the most accurate and advanced methods for
segmenting satellite images. It leverages the capabilities of artificial intelligence to achieve
more precise classifications. In a semantic segmentation, the input image is divided into
multiple subsections, and each subsection is analyzed individually. The results are then
processed, and, using a part-to-whole approach, the final segmentation of the entire image
is achieved [4]. Semantic segmentation has shown highly satisfactory results across various
fields, particularly satellite imagery. Given that modern sensors acquire a broader range of
wavelengths compared to standard Red, Green, and Blue (RGB) images, using the entire
frequency bands of satellite and drone sensors can enhance the segmentation quality and
significantly improve the detection accuracy. In such scenarios, multispectral satellite
images enhance the quality and efficiency of segmentation, particularly under varying
weather conditions. For example, using near-infrared (NIR) bands helps distinguish vig-
orous vegetation, identify regions experiencing water stress, and monitor seasonal plant
changes [12].

Various semantic LCC methods based on supervised deep learning techniques or semi-
supervised approaches using transformers have been proposed [1,2,4,5]. However, based
on our knowledge, no method has yet been introduced that combines expert knowledge
with an intelligent approach for LCC synergistic semantic segmentation in a hybrid manner.
In such cases, traditional methods and expert knowledge can correct some errors in the
deep learning output, allowing the simultaneous benefit of both approaches. The present
study proposes a hybrid approach combining a pre-trained Deeplab v3+ [13] segmentation
network and a post-processing step using a dictionary containing spectral ensembles of
various LC types for synergistic semantic segmentation. The innovations of the proposed
method can be summarized as follows:

*  Simultaneous use of the Deeplab v3+ model with a dictionary-based method for
semantic segmentation;

¢ Building of a spectral dictionary for different LC types, which also covers seasonal changes;

¢ Hierarchical application of deep learning-based synergistic semantic segmentation,
followed by result refinement using the dictionary-based method;

¢ Integration of deep learning and dictionary-driven methods to improve the learning
speed and the output accuracy simultaneously.
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This article is organized into five additional sections. Section 2 reviews the existing
literature related to LCC. Section 3 explains the studied area and the used dataset in detail.
Section 4 outlines the methodology and theoretical aspects employed in the proposed
approach. Section 5 presents and discusses the obtained results. Finally, Section 6 concludes
this article and suggests potential future research directions.

2. Literature Review

In recent years, the rapid development of artificial intelligence systems and the increas-
ing availability of satellite imagery have significantly boosted progress in LCC. Some of the
latest studies and advancements in this field focus on using multispectral satellite images.
Levering et al. (2021) [14] proposed an approach combining LCC with landscape esthetic
assessment using Sentinel-2 imagery across the United Kingdom. Their ScenicNet architec-
ture employs a ResNet-50 [15] backbone for feature extraction, coupled with a semantic
bottleneck that enables interpretable multi-task learning through class-specific modes. The
semantic segmentation methodology leverages a multi-label classification approach rather
than pixel-wise segmentation using 10 m resolution bands from the Sentinel-2 satellite.
Baudoux et al. (2021) [16] introduced a framework for translating between different LC
maps through a context-aware semantic segmentation approach that simultaneously han-
dles spatial and nomenclature transitions. Their method employs an asymmetric U-Net
architecture enhanced with positional encoding to capture local and global geographical
context—a crucial consideration for large-scale LC mapping.

Walsh et al. (2021) [17] introduced a synergistic approach to land cover classification
by employing a Resnet-50 Convolutional Neural Network (CNN) architecture for feature
extraction and classification, adapted through transfer learning to serve as a segmentation
algorithm. The segmentation process uses a U-Net architecture, which excels in pixel-level
classification, which is essential for generating detailed land cover maps. The classifier
was retrained on Sentinel-2 satellite imagery. Dabija et al. (2021) [18] conducted a com-
parative study on LCC using support vector machines (SVMs) and random forest (RF)
algorithms, leveraging Sentinel-2 and Landsat 8 multispectral satellite images. The research
used multi-temporal feature extraction to analyze seasonal variations and implemented
pixel-based classification with iterative accuracy assessment for robust model evaluation.
Baudoux et al. (2021) [19] proposed a novel map translation framework that directly infers
CORINE land cover (CLC) maps from existing national-scale products, avoiding the need
for new satellite imagery. Their approach leverages a CNN with asymmetrical architecture
and positional encoding to harmonize spatial and semantic discrepancies between high-
resolution source maps, mainly OSO, and the coarser CLC target. Rousset et al. (2021) [20]
evaluated deep learning techniques for LCC using multispectral satellite imagery. The
study used a custom dataset of five regions in New Caledonia, incorporating five LC
classes with features derived from raw RGB and NIR bands. The study compared pixel-
wise and semantic segmentation methodologies, employing CNNs, mainly DenseNet and
DeepLabV3+, alongside a gradient-boosted decision tree classifier, XGBoost. DenseNet and
DeepLabV3+ achieved the highest accuracy.

Martini et al. (2021) [21] proposed a novel methodology integrating domain-
adversarial training with self-attention-based Transformer encoders to enhance LCC ac-
curacy across geographic regions and leveraging multispectral, multi-temporal Sentinel-2
imagery. The study extracted temporal correlations using 10 spectral bands and 45 temporal
steps. The model employs domain-adversarial neural networks (DANNSs) to bridge do-
main discrepancies, with classification achieved via a Transformer encoder and multi-layer
perceptron heads for LC prediction and domain alignment. Xie and Niculescu (2021) [22]
investigated LCC changes over 11 years using SPOT-5 and Sentinel-2 satellite images. They
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analyzed deep learning and machine learning classifiers, including SVM, RF, and CNN,
with the CNN achieving superior accuracy. Séepanovié et al. (2021) [23] explored semantic
segmentation for wide-area LC mapping using Sentinel-1 C-band synthetic aperture radar
(SAR) imagery, leveraging its resilience to cloud cover and low-light conditions. They used
CORINE LC maps as reference data, focusing on five aggregated classes, and employed
seven state-of-the-art segmentation architectures, including U-Net, DeepLabV3+, PSPNet,
and FC-DenseNet, pre-trained on ImageNet and fine-tuned for SAR.

Yuan et al. (2022) [24] proposed SITS-Former, a pre-trained spatial-spectral-temporal
representation model designed for LCC from Sentinel-2 satellite time series. The method-
ology employs a Transformer encoder backbone, pre-trained through a self-supervised
learning task of missing-data imputation to capture high-level spatial and temporal de-
pendencies. Sengan et al. (2022) [25] proposed a hybrid learning model, RAVNet, for
efficient LCC using multispectral satellite imagery. The model integrates residual attention
mechanisms with the VNet framework to blend low-level and high-level feature maps,
enhancing spatial and contextual information extraction. Paris et al. (2022) [26] developed
a scalable, high-performance, unsupervised system for producing high-resolution LC maps.
Their methodology employs a tile-based, parallelizable approach using Sentinel-2 imagery.
The feature extraction step incorporates robust spectral indices, while the classification step
relies on an ensemble of SVMs with Gaussian radial basis functions. The segmentation
step is achieved through K-means clustering to refine “weak” training sets extracted from
coarse LC map units.

Zaabar et al. (2022) [27] suggested an integrated framework combining CNNs and
object-based image analysis (OBIA) for LCC mapping in coastal areas. Using Sentinel-2
and Pléiades imagery, their methodology leverages CNNs to extract high-level spectral
features through convolutional, pooling, and hidden layers, subsequently applying OBIA
for segmentation and classification of LCC categories. The study also compared traditional
machine learning classifiers, including RF and SVM, highlighting the superior accuracy
of the OBIA-CNN integration. Efthimiou et al. (2022) [28] developed a high-resolution
LCC approach to address the spatial and temporal limitations of the CORINE dataset. By
integrating the land parcel identification system (LPIS) with multispectral Sentinel-2 im-
agery, the approach employs object-oriented segmentation and harmonization of datasets to
enhance agricultural classification. Giffard-Roisin et al. (2022) [29] presented an innovative
approach for LCC in the Alps using temporal coherence matrices derived from Sentinel-1
SAR data. The approach employs a one-year coherence matrix as input, capturing temporal
and spatial patterns essential for segmentation. The features are extracted by treating
the matrix as image-like data, enabling multi-scale texture analysis. The classification is
performed using an SVM and CNN across six classes. Soni et al. (2022) [30] presented
an urban LCC classification framework leveraging Sentinel-2 multispectral imagery to
address challenges posed by high-density urbanization in South-West Delhi. Employing
SVM, artificial neural networks (ANNSs), and maximum likelihood classification (MLC)
approaches, the study compared their performance using kappa coefficients and overall
accuracy (OA) metrics.

Matci and Avdan (2022) [31] proposed a methodology for the automatic labeling of LC
classes using Sentinel-2 multispectral imagery, focusing on regions in Turkey and Greece.
The classification spans five major categories, leveraging a pre-constructed spectral database
alongside Corine LC data to validate and refine labels. This study highlights the potential of
spectral-index-based models in addressing challenges in LCC, offering a scalable solution
with enhanced spatial detail critical for ecological monitoring and resource management in
remote sensing applications. Daniele la Cecilia et al. (2023) [32] introduced the open field
and protected agriculture classifier (OPAC), a pixel-based model leveraging Sentinel-2 L2A
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imagery for LCC, addressing the unique challenges of mapping heterogeneous agricultural
landscapes. Employing the RF algorithm, OPAC extracts features from a 13-dimensional
vector of spectral bands to classify nine LC types.

Matei and Kofsmann (2023) [33] introduced a robust Self-Supervised Learning (SSL)
framework for addressing the challenges of season-invariant LCC using remote sensing
data. The methodology leverages SeasoNet [34], comprising multispectral Sentinel-2 im-
agery with high-resolution segmentation labels, and employs MoCo-v2 for SSL pre-training
with ResNet-50 and DeepLabV3 architectures. Feature extraction involves contrastive
learning, incorporating novel seasonal augmentations and combinations with traditional
artificial augmentations. Duarte and Fonte (2023) [35] proposed a framework to classify
non-residential built-up areas by integrating national census data with Sentinel-2 satellite
imagery through a supervised CNN segmentation model. The study employed census
datasets combined with built-up data to automatically generate training masks, enabling
segmentation using a modified U-Net architecture with densely connected layers to address
class imbalances. Sentinel-2’s 10 m spatial resolution bands are used for feature extraction
to differentiate residential and non-residential land uses.

Kramarczyk and Hejmanowska (2023) [36] employed a U-Net neural network architec-
ture to classify Sentinel-2 multispectral satellite images for LCC in rural areas, addressing
challenges in distinguishing agricultural and quarry land. The model leverages multi-
temporal Sentinel-2 data to extract features across ten spectral bands, enabling detailed
monitoring of LC transitions and soil conditions. Demir and Musaoglu (2023) [37] proposed
a semantic segmentation framework leveraging deep learning for CORINE LCC using
Sentinel-2 imagery. The methodology involves dataset pre-processing, U-Net architecture
enhanced with ResNet50 and ResNet101 backbones, and transfer learning for robust feature
extraction. This approach employs multi-temporal Sentinel-2 data, including RGB and
NRG bands, facilitating seasonal variability assessments. Zamanoglu et al. (2023) [38]
suggested a hybrid semantic segmentation approach combining DeepLabV3 and ResNet34
architectures for LCC using the LandCover Al dataset. The model leverages ResNet34
for robust feature extraction and employs DeepLabV3 to handle multi-scale contextual
information. Cecili et al. (2023) [39] explored CNNs for LC mapping, leveraging Sentinel-2
multispectral imagery. The study evaluated DenseNet121, ResNet50, and VGG16 models
using single-date and multi-temporal datasets, ultimately identifying VGG16 as the most
effective classifier.

Tzepkenlis et al. (2023) [40] presented a novel approach to LCC using a modified
U-TAE model for Sentinel imagery composites processed via Google Earth Engine. Their
methodology simplifies the input data by employing temporal median composites of
Sentinel-1, Sentinel-2, and ALOS elevation data, reducing noise from atmospheric effects.
Feature extraction leverages a channel attention mechanism within the U-TAE model,
diverging from traditional temporal attention strategies. Cuypers et al. (2023) [41] proposed
an integrative approach for LCC mapping by leveraging very high-resolution (VHR)
optical imagery and multi-temporal Sentinel-2 satellite data within a geographic object-
based image analysis (GEOBIA) framework. The methodology incorporated RF classifiers,
augmented with simple non-iterative clustering (SNIC) for segmentation, and extracted
features such as gray-level co-occurrence matrix (GLCM) textures and temporal indices,
such as the phase and amplitude of spectral indices. Arrechea-Castillo et al. (2023) [42]
proposed a robust, computationally efficient approach for multi-class LCC classification
using Sentinel-2 imagery and a simplified CNN based on the LeNet architecture. Their
model used 27 features derived from pre-processed spectral bands, a digital elevation model
(DEM) and 16 radiometric indices. Fagua et al. (2023) [43] developed a high-resolution LCC
framework tailored to tropical regions using temporal metrics derived from Sentinel-1 SAR
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and Sentinel-2 multispectral data. The study integrated SAR backscatter coefficients and
multispectral indices with visual pixel classifications and field survey data. Five machine
learning classifiers were evaluated, with RF achieving the best performance.

Gharbia (2023) [44] introduced an automated framework for extracting water regions
using Faster R-CNN, a region-based CNN designed for object detection. This method
integrates CNN-based feature extraction with a region proposal network (RPN) to achieve
precise classification and localization of water features. The approach was evaluated
using Sentinel-2 and Landsat-8 (OLI) datasets, with Sentinel-2 leading to the highest
accuracy. Kavran et al. (2023) [45] introduced a spatiotemporal approach for LCC using
multispectral Sentinel-2 satellite images processed through a graph neural network (GNN).
The methodology integrated superpixel segmentation with graph-based representation,
where segmented land regions across sequential images were modeled as directed graphs.
Feature extraction was conducted using EfficientNetV2-S, while node classification relied
on the GraphSAGE algorithm with LSTM-based aggregation. Carneiro et al. (2023) [46]
proposed a transfer learning framework using small 3D CNNs for LCC. Their method
used semantic segmentation with a slide-window approach, using pre-trained models
fine-tuned on Sentinel-2 imagery, with bands at 10 m and 20 m resolutions. Feature
extraction incorporated spectral-spatial characteristics via small CNNs and ResNext50 as
the backbone for specific segmentation tasks.

Celik and Gazioglu (2024) [47] employed a modified VGG16 CNN using transfer
learning for the semantic segmentation of coastal LC using Sentinel-2A multispectral im-
agery. Their methodology used Google Earth Engine for large-scale data pre-processing
and incorporated spectral band combinations, notably emphasizing the NIR band, to
enhance classification accuracy across five coastal classes. Feature extraction relied on
the fine-tuned later layers of VGG16, while classification employed the CNN’s architec-
ture with adjustments for improved generalizability. PeSek et al. (2024) [48] proposed a
CNN-based framework for semantic segmentation of urban green areas using Sentinel-2
multispectral imagery. The study evaluated four CNN architectures, FCN, U-Net, SegNet,
and DeepLabv3+, and compared them to an RF baseline. This work underscores CNNs’
potential in addressing LCC challenges, particularly for urban environments with limited
high-resolution datasets. Perez-Guerra et al. (2024) [49] explored deep learning-based
semantic segmentation techniques for LCC using Sentinel-2 multispectral images. The
study employed U-Net, U-Net++, and PSPNet architectures, integrating feature extrac-
tion through ResNet and ResNeXt backbones, pre-trained on ImageNet. Vo Quang et al.
(2024) [50] used CNN:Ss to identify degraded forests using Sentinel-2 multispectral imagery.
The study used U-Net, SegNet, and ResNet-UNet models, with U-Net demonstrating
superior performance.

Kalaivani et al. (2024) [51] presented a comprehensive approach to LC segmenta-
tion using a blend of state-of-the-art deep learning architectures, including U-Net++,
DeepLabV3+, InceptionV4, MobileNetV2, and ResNet152. While the research un-
derscores the effectiveness of combining high-performing models for segmentation,
its reliance on existing datasets may limit adaptability to unexplored geographic re-
gions, reflecting broader challenges in scalable LCC from multispectral satellite imagery.
Marko Pavlovic et al. (2024) [52] proposed a two-stage deep learning pipeline for estimat-
ing soil organic carbon (SOC) using Sentinel-2 satellite imagery, emphasizing LCC as a
precursor to SOC prediction. The methodology employs the U-Net architecture for image
segmentation to extract spatial features from multispectral images, subsequently using
these as input for machine learning models such as Extremely Randomized Trees, which
achieved superior performance. Suraj Sawant and Ghosh (2024) [53] used a tailored seman-
tic segmentation approach to address the challenges of LCC using Sentinel-2 imagery. Their
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methodology involved training five state-of-the-art deep CNNs, including UNet, FPN, and
LinkNet architectures optimized for pixel-wise classification of seven LCC classes.

Sharma et al. (2024) [54] introduced Sen4Map, a benchmark dataset built for de-
tailed land cover mapping using Sentinel-2 satellite data. Feature extraction incorporates
Sentinel-2 bands at 10 m and 20 m resolutions, excluding bands primarily used for at-
mospheric corrections. Four classifiers, including RF and temporal vision transformers,
were benchmarked for broad land cover categorization and detailed crop classification,
emphasizing temporal harmonization. Lasko et al. (2024) [55] proposed a scalable LCC
methodology for Sentinel-2 imagery across seven diverse global sites. The framework
integrates binary masks derived from spectral, textural, and ancillary geospatial data layers
and optimizes thresholds regionally and globally to generate nine-class, six-class, and five-
class models. The segmentation approach combined adaptive thresholding with decision
functions, ensuring compatibility across heterogeneous landscapes. Some studies used
vision transformers [24,56] and self-supervised learning approaches [33,34] to improve
LCC methods. However, these methods did not use traditional post-processing techniques
to correct errors in segmentation output.

Based on the reviewed studies, while deep learning and some machine learning
methods have shown good performance in LCC, there are still various challenges. One
of the main challenges is the need to have a large amount of training data to improve
accuracy and generalizability. The aforementioned studies are all trained on local and
regional data, restricting the models” generalizability. Additionally, they must be trained
for various times of the year to operate independently of temporal factors in vegetation or
forest classification. In some applications, such as mining, spectral information databases
are available; however, spectral data for other types of coverage remain quite limited. This
study introduces a combined deep learning and multispectral analysis approach for LCC.

In the current study, a deep learning LCC model is used for segmentation, and then
a K-medoids post-processing step is used to improve the segmentation result. The post-
processing step uses an assumption of continuity in adjacent regions to fix errors. By
combining the strengths of both deep learning and K-medoids, the proposed approach
aims to achieve better performance. Leveraging transfer learning significantly reduces the
number of samples required for training the deep learning model. Additionally, dictionary-
based multispectral analysis is incorporated to enhance the accuracy of the synergistic
semantic segmentation, so the proposed method effectively addresses the limitations of
previous techniques to a notable extent.

3. Studied Area and Dataset
3.1. Studied Area: Lake Garda

Lake Garda (Lago di Garda) is the largest lake in Italy, situated in Northern Italy
between Brescia in the Lombardy region and Verona in the Veneto region. Figure 1 shows a
map of the studied area. The Lake Garda area includes diverse water bodies, farmlands,
various orchards, urban areas, pastures, and forests. Due to its geographical and climatic
diversity, this region is considered an ideal location for LC analysis. In addition to its
natural features, the area has a well-developed infrastructure, including transportation
networks and expanding urban areas. This diversity presents significant challenges for
accurately classifying LC types [4].

The current study uses Sentinel-2 satellite data obtained from Copernicus as the
Earth observation component of the European Union’s Space program. The images were
acquired during the four seasons of 2024 to minimize the impact of seasonal LC variations.
Figure 2A illustrates the RGB band image of the studied area taken by Sentinel-2. Figure 2B
shows the LC of the same area taken from the CORINE Land Cover 2018 dataset. The
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Sentinel-2 satellites are multispectral Earth observation satellites consisting of different

bands. Two Sentinel satellites were launched as part of the European Union’s Earth

Observation Program in 2015 and 2017. The primary objectives of these satellites include

monitoring the Earth’s surface, supporting environmental applications, and studying

climate change. The Sentinel-2A satellite, whose spectral bands are listed in Table 1, can

acquire images of a 290 km wide area of the Earth’s surface and revisit each location every

five days. Other notable features of this satellite include spatial resolutions of 10, 20, and
60 m.

(A)

Water Bodies
Farmland
Forest

Urban Area

Pastures

OE0EON

Grasslands

Water bodies (lakes)

Major roads and highways
Cities and towns

Center of the study area

Highway marker

Farmland
Forest
Grasslands
Urban Area
Water Bodies
Other Built-Up
Pastures
Others

OECEEENE]

Figure 2. True colour (A) and land classification (B) images of the studied area.

Table 1. Different bands of the Sentinel-2 satellite images.

Band Characteristic Wavelength (um) Spatial Resolution (m)
1 Coastal Aerosol (Special Blue) 0.443 60
2 Blue 0.490 10
3 Green 0.560 10
4 Red 0.665 10
5 Vegetation red edge 0.705 20
6 Vegetation red edge 0.740 20
7 Vegetation red edge 0.783 20
8 Near Infrared (NIR) 0.832 10
8A Narrow NIR 0.865 20

9 Shortwave Infrared (water vapor) 0.945 60
11 Shortwave Infrared 1.610 20
12 Shortwave Infrared 2.190 20
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The Sentinel-2 bands 1 to 9 and 11 and 12 were used for this study. The other band,
specifically designed for detecting cloud and atmospheric particles, was not considered
relevant for the segmentation process.

3.2. CORINE Land Cover 2018 Dataset

The CORINE Land Cover 2018 dataset was used for training and validating the
proposed model. This dataset provides LCC across Europe with 44 distinct classes and is
widely recognized as a reliable standard for training and evaluating the performance of
segmentation models [4,57-59]. The key features of this dataset include thematic accuracy
and spatial resolution, which are indicated in Table 2. The dimension of the CORINE LC
image of the studied area is 5490 x 5490.

Table 2. Key features of CORINE Land Cover 2018 [60].

Feature Value

Spatial Resolution 100 m
Thematic Accuracy >85%

Data Format Vector and Raster
Geographical Coverage Entire Europe
Minimum Mapping Unit 25 hectares
Publication Year 2018

Sensors Used Sentinel-1, Sentinel-2

The selected area was analyzed across eight LC classes: Pastures, Water Bodies,
Grasslands, Urban Areas, Farm Land, Forest, Other Built-Up, and Others. The samples
were selected using QGIS tools and the Semi-automatic Classification Plugin (SCP). Using
the graphical user interface, the Sentinel-2 data were manually downloaded from the
Copernicus website. The details of the selected geographic area include a longitude
range of [9.727, 11.814] E and a latitude range of [45.023, 46.178] N. The specifications of
atmospheric and geometric corrections applied to downloaded images are listed in Table 3.

Table 3. Specifications of the used Sentinel-2 images.

Time Range Cloud Coverage (%) Image Dimensions at 10 m Resolution Processed by
20 March to 20 June 3.2 10,980 x 10,980 ESA
21 June to 22 September 4.1 10,980 x 10,980 ESA
23 September to 21 December 2.8 10,980 x 10,980 ESA
22 December to 19 March 1.8 10,980 x 10,980 ESA

4. Proposed Method

The block diagram of the proposed method is presented in Figure 3, which con-
sists of four main stages: data input, data preparation, deep learning, and post-
processing/ classification. The first two stages, data input and preparation, ensure a suitable
input for the deep learning and post-processing steps, which require training. In the first
step, data related to the study area, including the various bands of the Sentinel-2 satellite
and the Corine Land Cover 2018 dataset, are read. In the data preparation step, Sentinel-2
satellite images and the Corine LC image are resized to match each other. A multispectral
12-layer image is created using Sentinel-2 resized, which includes all the spectral bands
listed in Table 1. During the training phase, 224 x 224 x 12 patches are generated from the
multispectral image created in the data preparation step to train and evaluate the method’s
performance. These patches are used in two blocks: training the deep neural network and
extracting the dictionary codewords blocks. For the dictionary and the deep learning model
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to perform well across all four seasons of the year, the samples for deep learning and the
dictionary must be selected from all seasons.
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Figure 3. Block diagram of the proposed method.
4.1. Deep Learning Model

The DeepLabv3+ architecture [61] is recognized as one of the most powerful models for
semantic image segmentation [13,62,63]. By leveraging advanced deep learning techniques,
it can extract complex semantic features from multispectral images. This architecture
combines several approaches, such as Atrous Convolutions and multi-scale attention
mechanisms, to achieve high performance in identifying and classifying Earth’s surface
features. The DeepLabv3+ architecture combines the feature extraction capabilities of
ResNet-50 with advanced mechanisms such as atrous spatial pyramid pooling (ASPP) and
a decoder [64]. Leveraging innovative techniques like shortcut connections and an adaptive
decoder effectively addresses key challenges in processing multispectral satellite imagery,
including the scale diversity of features, spectral complexities, and significant variations in
imaging conditions. As illustrated in Figure 4, the DeepLabv3+ architecture is composed of
three main components: ResNet-50, the ASPP module, and the decoder [61,65,66].

The DeepLabv3+ model takes Sentinel multispectral satellite images with dimensions
of 224 x 224 x 12 as input.

*  ResNet-50 Encoder
In the initial stage of ResNet-50 [15], a 7 X 7 convolutional layer with 64 filters, com-
bined with a 3 x 3 MaxPooling operation, reduces the spatial dimensions while
extracting low-level features such as edges, textures, and spectral patterns. After that,
ResNet-50 processes the reduced input through four sequential stages:

- Stage 1: Three residual blocks with a depth of 256 to extract basic features;
—  Stage 2: Four residual blocks with a depth of 512 to develop intermediate features;
- Stage 3: Six residual blocks with a depth of 1024 to extract complex features;



Sensors 2025, 25, 1988

11 of 29

-  Stage 4: Three residual blocks with a depth of 2048 to capture high-level seman-
tic features.

Figure 5 shows details of the ResNet-50 blocks in the DeepLabv3+ structure.

e  Skip Connection and Detail Preservation Mechanism
In the DeepLabv3+ architecture, the skip connection [61,65,66] is a key component in
addressing two significant challenges in deep neural networks.

e  First challenge:
The gradual loss of spatial information and image details as data move from the
early layers to the deeper ones. This loss occurs due to convolution and down-
sampling operations.

*  Second challenge:
Related to the fact that while deeper layers of the network, such as Stage 4, are effective
at extracting high-level semantic features, they reduce the spatial details of the data.

Input ResNet-50 ASPP Module
Image [P Encoder —)p Multi-scale —) UD::;djfn ) ( 52‘;;[;:;)
(224x224x12) Feature extraction Features P pung

I L )

e o - o - - e e o - -

Skip Connection
Figure 4. Block diagram of the DeepLabv3+ model.

To overcome these challenges, a direct connection is established between Stage 2 of
the encoder and the Feature Fusion section of the decoder. This connection, represented by
a dotted line in the flowchart (Figure 5), enables the direct transfer of high-resolution and
spatial information from the intermediate layers to the decoder. The advantages of the skip
connection are as follows:

¢ Preservation of edge details for detecting boundaries between LC classes.
* Improved spatial accuracy in detecting small areas.

¢ Intelligent combination of low-level and high-level features.

*  ASPP Module—This module consists of three parallel pathways:

- 1 x 1 convolution with an Atrous rate of 1 (one) for capturing local features.

—  Three 3 x 3 convolution layers with Atrous rates of 6, 12 and 18 to cover different
receptive fields.

—  Global Average Pooling branch for understanding the overall context of the image.

This multi-scale module allows the model to identify land cover features at various
scales effectively [56]. The decoder architecture consists of three main stages:

¢ Feature fusion to combine precise spatial information with semantic data.
¢ Two 3 x 3 convolution layers with 256 filters to refine the fused features.
¢ A 4x up-sampling step to restore the image to its original dimensions.

Finally, a Softmax layer classifies the output into eight LC classes: Pastures, Water
Bodies, Grasslands, Urban Areas, Farm Land, Forest, Other Built-Up, and Others. This
architecture achieves a balanced trade-off between spatial accuracy and semantic depth by
intelligently integrating various techniques. Its ability to process multi-scale data while
preserving spatial details makes the model highly effective for synergistic semantic LCC
using satellite imagery.
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Figure 5. Blocks of the DeepLabv3+ model in detail.

4.2. K-Medoids

Selecting a robust and efficient algorithm is essential in clustering large and complex
spectral information, such as the multispectral satellite images examined in this study. The
K-medoids algorithm is a clustering method similar in structure to K-means but that uses
actual data points as cluster representatives instead of the mean. K-medoids provides more
excellent resistance to noise and outliers than K-means. This characteristic is especially
important for inherently noisy data, such as multispectral remote sensing data.

Here, M spectral bands of pixels are considered as a set of M-dimensional points
{x1,x2,...,%,}. The goal of the K-medoids algorithm is to find a set of k medoids
{my, my, ..., my} such that the total distance between the data points and their nearest
medoid is minimized, or equivalently, the similarity between the selected medoids and the
data points is maximized. Mathematically, this can be expressed as:

nook
II}l\/iIn;I]]Tl:illfld(xi,Mj), (1)
where d(x;, m j) is a distance metric, such as the Euclidean or Manhattan distance, and m i
represents one of the actual data points, not a computed value. If a similarity metric instead
of a distance metric is used, the Min(minimums) in Equation (1) should be replaced with
the maximum. m; ensures the algorithm is more robust against outliers.
The K-medoids algorithm consists of three main steps:

e Initial Selection of Medoids:
Medoids are initially selected either randomly or based on statistical criteria such
as data density in the M-dimensional data space. The medoids are chosen directly
from the available data points. In the study by Park and Jun [67], selecting the
initial medoids based on the smallest computed distance ratio among data points is
suggested to accelerate convergence.

*  Assigning Data to Medoids:
Each data point is assigned to the nearest medoid based on a defined distance metric.
This step clusters the data points around their respective medoids.

¢  Updating Medoids:
For each cluster, the point with the smallest total distance to all other points in the
same cluster is chosen as the new medoid. This ensures that the new medoid best
represents the cluster members.

This process is repeated until the medoids either stop changing or the changes be-
come negligible. The extracted medoids can be used in images acquired by other satellite
sensors according with the Sentinel 2 spectral bands or from different geographic regions.
This possibility contributes significantly to the generalization of the proposed method.
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4.3. Relationship with Multispectral Satellite Images

Multispectral satellite images consist of numerous spectral bands, where each pixel
in an image has a reflectance value for every band. These data can be represented as
multidimensional vectors. The K-medoids algorithm can effectively cluster these vectors
and associate each cluster with a specific LC type. For example, one medoid of pixels
might represent forests, while another could correspond to agricultural areas. In this study,
medoids can also include seasonal information about natural features, as the spectral
characteristics of natural covers change during different times of the year.

4.4. Advantages of Using K-Medoids in Synergistic Semantic Segmentation

¢ Resistance to Noise:
Since medoids are real data points, the algorithm becomes more resistant to noise
and outliers.

e  Flexibility in Distance Metrics:
K-medoids allows for the use of various distance metrics, making them suitable for
multispectral data with different scales.

e Application in Hybrid Models:
This algorithm can be used as a refinement step after deep learning models in syner-
gistic semantic segmentation, resulting in more accurate segmentations.

¢ Improved Convergence Speed:
The K-medoids algorithm proposed by Park and Jun [67] demonstrates faster conver-
gence, particularly with large datasets, as in the present study, compared to similar
clustering algorithms.
The computational complexity of traditional K-medoids methods like PAM is
O(k(n — k)?), which is computationally expensive for large datasets. However, Park
and Jun [67] reduced this complexity to O(nk) by using a distance matrix and mini-
mizing calculations.

5. Results

In this section, the evaluation metrics for the proposed synergistic semantic segmenta-
tion method are defined, and the influence of different learning parameters on the model’s
output is analyzed. A series of simulations were performed on the study area to deter-
mine the unknown parameters of the deep learning and K-medoids approaches. Once the
optimal parameters were identified, the proposed method was evaluated and compared
with several of the latest deep learning-based semantic classification approaches. The
results highlight the proposed approach’s efficiency in addressing semantic segmentation
challenges and demonstrate its competitive performance against state-of-the-art methods.

5.1. Evaluation Metrics

This study conducted evaluations based on the confusion matrix generated from the
test data and various common metrics derived from it. The confusion matrix encompasses
all possible outcomes produced by the LCC model. From this matrix, four key values are
extracted for each class:

* True Positive (TP): pixels that are correctly classified as belonging to the respec-
tive class;

e  False Positive (FP): pixels that are incorrectly assigned to the respective class;

e  False Negative (FN): pixels that are incorrectly excluded from the respective class;

e True Negative (TN): pixels that are correctly classified as belonging to other classes.

In a multi-class classifier, the true negative value for each class is the sum of all
elements in the confusion matrix that are not located in that class’s corresponding row
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and column. The sum of these four values for any class always equals the total number of
samples in the matrix. These values provide the foundation for a detailed evaluation of the
proposed model’s performance across various classes and methods. Using these key values,
the following metrics were calculated and used for evaluation in this study: precision, recall,
F1-score, Overall accuracy, Matthews correlation coefficient, and the weighted average
of metrics.

5.1.1. Precision

Precision is an important metric for assessing the accuracy of predictions and repre-
sents the proportion of correctly predicted samples to the total predicted samples for a
specific class. The formula for precision is as follows:

TP

Precision = ——. 2
recision TP+ EP (2)

This metric, which depends on the number of FP, is particularly critical for classes where
FP errors can lead to significant consequences. For instance, misclassifying other classes
as water can result in a significant upward bias in estimating water-covered areas in the
segmentation of Water Bodies. This bias can cause substantial issues in agriculture planning
based on surface water resources and urban water management.

5.1.2. Recall

Recall is a metric that measures a model’s ability to identify true instances correctly
and emphasizes the importance of minimizing missed predictions in real data. It is defined
as follows:

TP
TP+ FN’

For example, in identifying Forests, a recall value close to one ensures that all forest regions

Recall = 3)

in the image are correctly identified. Missing Real Data (FN) can lead to inaccurate estimates
in forest cover analysis and environmental management, highlighting the importance of
this metric in applications where completeness is critical.

5.1.3. F1-Score

Fl1-score is a composite metric that measures the balance between precision and recall,
making it particularly useful in cases where there is a trade-off between these two metrics.
The formula for Fl-score is:

2x TP

Fl = . 4
(2x TP) + FP + FN @

This metric is especially valuable in classifications such as Pastures and Farmland, where
similar spectral and spatial features can lead to overlapping characteristics. By combining
precision and recall into a single value, F1-score provides a more accurate evaluation of the
model’s performance in such scenarios.

5.1.4. Overall Accuracy

Overall accuracy (OA) represents the percentage of pixels correctly classified by the
model. It is defined as:

TP+ TN
OA_TP+FP+TN+PN' ®)

While this metric provides a simple general overview of the model’s performance, it can be

misleading in imbalanced datasets. For instance, if the ‘other’ class constitutes only a small
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portion of the data, the model might achieve a high O A without performing well in this
specific class. This limitation underscores the importance of complementing OA with other
metrics, particularly in cases of class imbalance.

5.1.5. Matthews Correlation Coefficient

The Matthews correlation coefficient (MCC) is a robust metric that evaluates the
performance of a model, even in cases where class distributions are imbalanced, and is
defined as:

(TP x TN) — (FP x FN)

MCC = . ©6)
V(TP +FP) x (TP + FN) x (TN + FP) x (TN + EN)

This metric is particularly useful for classes like Others, which often contain sparse and
imbalanced data. By accounting for all elements of the confusion matrix, the MCC provides
a comprehensive evaluation of the model’s performance, making it ideal for scenarios with
unbalanced class distributions.

5.1.6. Weighted Average of Metrics: Emphasizing More Significant Classes

The weighted average of metrics highlights the importance of specific classes. This
approach calculates the average by incorporating the number of samples for each class,
ensuring that metrics for more significant or abundant classes are appropriately emphasized.
The formula is:

K
WeightedAverage = ) _ w; - Metric;, (7)
i=1
where w; represents the weight of class i, typically the ratio of the number of samples
in class i to the total samples, Metric; is the evaluation metric, such as recall, precision,
or F1, for class i, and K is the total number of classes. By applying this method, the
evaluation results better reflect the importance of each class, especially in datasets with
unbalanced distributions.

5.2. Model Parameter Evaluation

To train the synergistic semantic segmentation model, 49,439 patches of size 224 x 224 x 12
were extracted from the studied area to create training, testing, and validation sets. Out of
this total, 60% (29,663 patches) were allocated for training, 20% (9888 patches) for testing,
and 20% (9888 patches) for validation. The allocated patches for training, testing, and
validation were selected randomly once and were used across all stages, including train-
ing, model parameter selection, and comparison with other methods. The distribution of
training samples for each class in the CORINE LC image of the studied area is provided
in Table 4, offering insights into the class-specific representation within the dataset. The
deep learning model training was performed on an Nvidia DGX workstation with 128 GB
RAM (four 32 GB Nvidia Tesla V100 GPUs) and 20,480 CUDA cores. An HP Z1 Tower
G5 system was employed for initial pre-processing and patch generation, featuring 16 GB
of RAM, a 512 GB SSD, an Nvidia 2070 Gaming GPU, and an Intel i7-9700 CPU. Training
and validation data were used simultaneously to prevent overfitting during the DeepLab
v3+ deep learning network training. Key parameters, including initialLearningRate, maxE-
pochs, and minibatchSize, were analyzed to assess their influence on system performance.
These parameters were tested across ranges of initialLearningRate [0.0001-0.1], maxEpochs
[20-500] and minibatchSize [16-256]. The coordinate descent scheme was used as an op-
timization algorithm for finding hyperparameters. Coordinate descent is based on the
idea that minimizing a multivariable function can be achieved by minimizing it along one
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direction (variable) at a time. The cost function of the optimization algorithm was the maxi-
mization classification accuracy. Memory usage and training duration were also considered
as secondary optimization criteria. The final values selected for training DeepLab v3+ are
summarized in Table 5. The confusion matrix of the optimized DeepLab v3+ model on the
test data is presented in Table 6. The OA in this step was 83.62%.

Table 4. Number of samples per class in the CORINE LC image of the studied area.

Class Train Test Validation
Pastures 41,041,935 12,638,752 13,303,230
Other Built-Up 39,586,397 13,525,201 14,080,078
Water Bodies 58,919,862 19,351,122 19,162,358
Urban Area 81,682,470 27,708,495 27,931,651
Grasslands 235,554,650 77,013,924 80,001,841
Forest 457,877,719 152,133,049 152,919,495
Farmland 555,330,068 187,828,316 182,453,973
Others 18,377,587 5,941,429 6,287,662
Table 5. Selected parameters for training the DeepLab v3+ network.

Parameter Value
trainingOptions adam
InitialLearnRate 0.005
L2Regularization 0.001

MaxEpochs 200

MiniBatchSize 28
LearnRateSchedule piecewise
LearnRateDropPeriod 5
LearnRateDropFactor 0.1
Shuffle every-epoch
VerboseFrequency 20
ExecutionEnvironment GPU
ValidationData dsVal
ValidationFrequency 100
OutputNetwork best-validation-loss
ValidationPatience 100

Table 6. Confusion matrix of the DeepLab v3+ model’s output for the test data. (The labels are as
follows: (a) Others, (b) Pastures, (c) Other Built-Up, (d) Water Bodies, (e) Urban Area, (f) Grasslands,
(g) Forest, and (h) Farmland.)

(a) (b) (0) (d) (e) (f) (g (h)

(a) 3,881,463 69,063 102,155 405,707 477,672 20,014 435,430 549,925
(b) 685,615 8,805,628 368,464 232,538 844,553 776,759 299,535 625,660
(c) 229,845 59,983 9,322,370 1,226,124 694,681 848,189 717,356 426,653
(d) 1,268,925 370,458 1,211,953 14,235,666 805,874 788,102 318,736 351,408
(e) 409,363 851,682 1,437,711 1,087,237 20,249,132 1,033,593 1,459,924 1,179,853
H 3,623,855 227,987 1,027,186 3,771,706 2,951,855 60,991,412 1,817,100 2,602,823
(g 2,403,239 1,348,259 2,420,869 187,554 2,985,933 2,107,525 134,510,544 6,169,126
(h) 4,235,630 2,042,300 2,312,335 4,135,548 4,960,832 2,622,284 4,631,680 16,288,707

The K-medoids method involves three critical parameters: the distance or similarity
metric, the number of medoids (or centers), and the number of input vectors in a single
execution. All the three parameters influence the memory consumption and runtime of the
method, while the distance metric and the number of medoids directly impact the system’s
performance. The current study employs seven metrics to evaluate the similarity /distance
between spectral vectors belonging to a class. Each vector comprises 12 spectral values
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corresponding to 12 frequency bands (N = 12). The selected distance metrics include
the Squared Euclidean distance, Standardized Euclidean distance, City Block distance,
Chebyshev distance, Cosine similarity, and Correlation distance. These metrics, described
in Table 7, play a vital role in determining the clustering efficiency and the quality of the
extracted medoids.

Table 7. Distance metrics and their mathematical representations. (The labels are as follows:
(a) sqEuclidean, (b) seuclidean, (c) cityblock, (d) chebychev, (e) cosine, and (f) correlation.)

Label Description Formula

(a) Squared Euclidean distance Zf\il (xi —yi)?

(b) Standardized Euclidean distance YN (Zy — Zy,)?
() City block distance YN X = il

(d) Chebyshev distance max;err N (1% — yil)
(e) The cosine of two non-zero vectors SR

VEL 2 e v
T (xi—pia) (yi—py)

VI i) T (i iy 2

) The correlation between two non-zero vectors

In the formulas presented in Table 7, x; and y; represent the iy, spectral values in
two vectors from the same class; Zy, refers to the standardized variable, calculated using
Zy, = x’%l”’, where y; and 0; are the mean and standard deviation of the i, spectral band
in the corresponding cluster. For metrics such as City Block and Chebyshev, |x; — y;| de-
notes the absolute difference between the two values. In the Correlation metric, y, and py
represent the mean values of vectors x and y, respectively. The Squared Euclidean distance,
a fundamental metric, calculates the sum of squared differences between corresponding
elements of the two vectors. It is highly sensitive to large deviations and exhibits faster
convergence during clustering. Conversely, the Standardized Euclidean distance normal-
izes variables by accounting for their mean and standard deviation, making it more robust
to differing scales but slower in convergence. The City Block distance, or the Manhattan
distance, computes the sum of absolute differences between vector elements, offering a
straightforward and interpretable measure. On the other hand, the Chebyshev distance
considers only the maximum absolute difference, focusing on the most significant deviation
between corresponding elements of the vectors. Cosine similarity measures the cosine of
the angle between two vectors, emphasizing their directional similarity over magnitude.
Meanwhile, the Correlation distance evaluates the linear relationship between vectors by
centring them at their respective means and standard deviations, making it particularly
effective in identifying patterns across spectral values.

Optimization was crucial given the extensive samples (pixels) used in this study, which
comprised over 100 million data points in some classes. The input size was limited to
1 (one) million vectors per iteration to balance memory consumption and computational
efficiency. The number of medoids was changed from 5 to 100, and it was found that
accuracy improved until the number reached 50; beyond that, additional medoids did not
significantly increase accuracy (see Table 8). Based on these results, 50 as the number of
medoids was chosen as the optimal value. The medoids were refined using the K-medoids
algorithm to handle classes with more data, such as Forest and Farmland. For classes with
stable spectral characteristics across seasons, 50 final medoids were extracted. Conversely,
for classes like Pastures, Grasslands, Forest, and Farmland, where spectral values vary with
seasonal changes, 50 medoids were computed per season, resulting in 200 medoids per class.
Each medoid, or “code word”, is represented as a 12-element spectral vector. The results
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highlight that the Squared and Standardized Euclidean distances are more accurate than
others. Between these two metrics, Squared Euclidean demonstrated superior convergence
speed compared to the Standardized Euclidean distance, making it a preferable choice
for this application. Additionally, carefully adjusting input sizes and iterative refinement
of medoids ensured a balance between computational feasibility and clustering accuracy,
producing robust medoid representations for further analysis.

Table 8. The number of final medoids and corresponding OA values.

N of Final Medoids OA
5 73.24
10 77.61
20 82.12
30 85.47
40 87.26
50 88.396
60 88.412
70 88.657
80 88.432
90 88.247

100 88.172

5.3. Post-Classification Refinement Using the Designed Dictionary

In the proposed synergistic semantic segmentation method, the designed dictionary
is used after the deep learning-based classification step to refine the classification results.
The refinement process involves analyzing each pixel and its eight neighbouring pixels.
If a pixel and all its eight neighbours belong to the same class, the pixel is assumed
to be correctly classified and excluded from further processing. This approach avoids
unnecessary computations for pixels already deemed reliable. However, since changes to a
single pixel may affect the classification of its neighbouring pixels, which are candidates for
further processing, the refinement is conducted once across the entire image. If pixels with
at least one neighbouring pixel belonging to a different class, i.e., non-homogeneous eight-
neighborhood, are found, the refinement process is applied. Specifically, the class of the
medoid closest to the spectral characteristics of a non-homogeneous eight-neighborhood
pixel is assigned as the corrected class.

The final results of this scheme, which effectively refines deep learning predictions
using dictionary-based corrections, are summarized in Table 9. This hybrid method ensures
improved classification accuracy by leveraging the high-level abstraction capabilities of
deep learning and the robust representation of medoids in the dictionary. As an initial
evaluation, the OA of the DeepLab v3+ network was 83.62%. However, after applying
the dictionary-based post-processing, this value improved to 88.4%. The results improved
across all classes, meaning FP and FN decreased while TP and TN increased.

An error analysis highlights the proposed method’s advantages in specific land cover
classes that are frequently misclassified. In Table 10 top and bottom, the confusion matrix
of recall for both the baseline and the proposed method in the test set is presented. The
presented errors show a random pattern for the baseline method (Table 10 top). After
applying the K-medoids post-processing step (Table 10 bottom), a clear pattern emerges:
the highest error in each class is linked to a similar class. For example, the most frequent
misclassification for “Pastures” is with “Grasslands”, which are very similar cases. Another
trend can be perceived for the “Forest” and “Farmland” categories. This shows that the
proposed method greatly reduces the random errors, and the most remaining errors occur
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only between very similar classes. To reduce these remaining errors, a hyperspectral image
with more spectral bands can be used.

Table 9. Confusion matrix for the proposed method on test data. (The labels are as follows: (a) Others,
(b) Pastures, (c) Other Built-Up, (d) Water Bodies, (e) Urban Area, (f) Grasslands, (g) Forest, and
(h) Farmland.)

(a) (b) (V] (d) (e) ) (g (h)
(a) 3,980,491 62,556 93,585 363,115 453,917 12,564 430,819 544,382
(b) 656,595 9,264,039 360,689 112,913 555,553 770,784 296,673 621,506
(0) 217,841 49,449 9,807,729 890,426 658,779 815,687 702,871 382,419
(d) 727,096 195,466 935,460 16,394,655 442,152 315,996 200,856 139,441
(e) 297,316 835,442 1,303,606 480,613 22,731,568 678,017 684,922 697,011
() 2,744,056 227,018 726,711 1,331,286 1,562,709 66,132,073 1,741,200 2,548,871
(g 1,370,947 1,297,349 1,410,144 47,142 1,809,734 1,914,920 139,781,857 4,500,956
(h) 3,489,533 1,876,718 1,774,881 1,221,968 2,680,460 2,499,543 3,806,756 170,478,457

Table 10. Recall (%) for different classes using DeepLab v3+ (Top) and the proposed method (bottom).
(The labels are as follows: (a) Others, (b) Pastures, (c) Other Built-Up, (d) Water Bodies, (e) Urban
Area, (f) Grasslands, (g) Forest, and (h) Farmland.)

DeepLab v3+ classification errors

(@) (b) () (d) (e) ) (g (h)

(a) 65.33 1.16 1.72 6.83 8.04 0.34 7.33 9.26
(b) 542 69.67 292 1.84 6.68 6.15 2.37 4.95
(o) 1.7 0.44 68.93 9.07 5.14 6.27 53 3.15
(d) 6.56 1.91 6.26 73.57 4.16 4.07 1.65 1.82
(e) 1.48 3.07 5.19 3.92 73.08 3.73 5.27 4.26
(f) 471 0.3 1.33 49 3.83 79.2 2.36 3.38
(g) 1.58 0.89 1.59 0.12 1.96 1.39 88.42 4.06
(h) 2.26 1.09 1.23 22 2.64 14 2.47 86.72

Proposed method classification errors

() (b) () (d) (e) f) (g (h)

@) 67 1.05 1.58 6.11 7.64 0.21 7.25 9.16
(b) 52 73.3 2.85 0.89 4.4 6.1 2.35 4.92
(o) 1.61 0.37 72.51 6.58 4.87 6.03 52 2.83
(d) 3.76 1.01 4.83 84.72 2.28 1.63 1.04 0.72
(e) 1.07 3.02 4.7 1.73 82.04 2.45 247 2.52
(f) 3.56 0.29 0.94 1.73 2.03 85.87 2.26 3.31
(g) 0.9 0.85 0.93 0.03 1.19 1.26 91.88 2.96
(h) 1.86 1 0.94 0.65 1.43 1.33 2.03 90.76

5.4. Comparison with Other Methods

To evaluate the efficiency of the proposed method, the results obtained were com-
pared with those of some of the recent works used in LCC. The selected models were
based on [53]. Five hybrid networks were compared with the results from DeepLab v3+
and the final proposed approach. The chosen architectures include UNet [68], FPN [69],
and LinkNet [70], all of which have been effectively used in semantic segmentation and
have demonstrated promising performance. Additionally, backbone networks such as
ResNet [15], DenseNet [71], VGG [72], and MobileNetV2 [73] were used. These backbones,
pre-trained on the ILSVRC ImageNet 2012 dataset [74], were combined with the aforemen-
tioned architectures in Sawant and Ghosh [53]. Table 11 details the proposed method, the
compared architectures, and their respective backbones. The proposed method is based
on the DeepLab v3+ architecture and backbone. The networks were retrained based on
the study problem and selected classes. All implementation details and the data used for
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training, validation, and testing followed the same approach as that used with the DeepLab
v3+ network. The assumptions outlined in [53] were applied when additional parameters
were required in the network structures.

Figure 6 shows the segmentation results of the proposed method alongside the com-
parison methods, including the ground truth. As can be seen, the proposed method has
fewer errors than the others. The OA results of each LCC method are indicated in Table 11.

Based on the results presented in Table 11, the proposed approach demonstrates
superior OA compared to the other networks. As an essential parameter, deep learning
methods for satellite image segmentation always involve a trade-off between the computa-
tional complexity and the model’s accuracy and generalization. Lighter networks, such
as MobileNet-based UNets, require less data and can run on simpler hardware, but they
often deliver lower accuracy and generalization on a large scale. More complex networks
typically need powerful servers to train and fine-tune on specific regions using transfer
learning. Table 11 shows each network’s total and trainable parameters. Considering the
number of trainable parameters, the proposed method is not very complex and can be
trained on a desktop system, including a GeForce RTX 30- or 40-series graphics card. If
lower-end hardware is preferred, there are two options: reduce the geographic area and
the number of training samples, use a local server/cloud computing for training, and
then run the trained model on simpler hardware. For instance, the trained model can
run on a GeForce RTX 10-series graphics card. To provide a clearer understanding of
the performance of the proposed method and the improvements achieved after applying
post-processing, Table 12 presents the confusion matrices for the various architectures.
Additionally, Table 13 calculates and compares the evaluation metrics for each class based
on the results derived from the confusion matrices.

Table 11. Architectures used for comparison with the proposed model, including total parameters,
trainable parameters, and OA.

Architecture Backbone Total Parameters Trainable Non-Trainable OA
UNet ResNet50 32,562,129 32,514,571 47,558 0.8137
UNet ResNet152 67,296,209 67,150,347 145,862 0.8311
UNet DenseNet169 19,520,840 19,360,456 160,384 0.7473
FPN VGG16 17,580,616 17,578,312 2,304 0.7430
LinkNet MobileNetv2 4,145,592 4,107,144 38,448 0.5981
Deeplab v3+ ResNet50 44,070,592 44,013,792 56,800 0.8362
Proposed - 44,071,604 44,014,792 56,812 -

[ Farmland [l Forest I Water Bodies [] Other Built-Up

[0 Grasslands [l Urban Area [ Pastures [] Others

(A)

Figure 6. Cont.
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Figure 6. The LCC results of the proposed method alongside the comparison methods, including
the ground truth: (A) ground truth, (B) UNet-ResNet50 [53], (C) UNet-ResNet152 [53], (D) UNet-
DenseNet169 [53], (E) FPN-VGG16 [53], (F) LinkNet-MobileNetV2 [53], (G) Deeplab v3+ [13], and
(H) proposed method.

The results in Table 12 provide an explicit demonstration of the strengths of the pro-
posed method compared to existing approaches. All architectures performed relatively
poorly for classes with significantly fewer samples relative to the entire dataset. How-
ever, even in these cases, the proposed method obtained more robust results than the
other approaches. The closest performance to the proposed method was observed with
the UNet-ResNet152 network, though in most cases, there were significant differences
favouring the proposed approach, particularly after applying the post-processing step. For
instance, in the segmentation of Water Bodies, there is approximately a 5.46% difference
between the weighted OA of the proposed approach and the UNet-ResNet152 network.
The improvement of the proposed method compared to others is lowest in the “Others”
category. This is likely due to limited data and imbalanced training samples. It can be
believed that this imbalance has affected performance, but even in this case, the proposed
method still shows better accuracy than the other approaches.
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Table 12. Confusion matrices for the architectures under study: (a) Others, (b) Pastures, (c) Other
Built-Up, (d) Water Bodies, (e) Urban Area, (f) Grasslands, (g) Forest, and (h) Farmland, with test
data results from (A) UNet-ResNet50 [53], (B) UNet-ResNet152 [53], (C) UNet-DenseNet169 [53],
(D) FPN-VGG16 [53], and (E) LinkNet-MobileNetV2 [53].

(A) (a) (b) (V] (d) (e) f) (g) (h) Maximum Value
(a) 3734574 224,531 455,254 80,877 101,688 13,597 663,363 667,545 3,734,574

(b) 535,685 8,716,979 752,617 332,573 864,752 639,642 490,280 306,224 8,716,979

(9] 948,479 769,069 8,546,917 429,519 990,646 269,673 562,898 1,008,000 8,546,917

(d) 455,456 1,689,485 124,903 13,930,286 545,270 1,077,397 370,250 1,158,075 13,930,286

(e) 1,287,166 1,669,726 2,042,104 598,744 18,957,457 1,541,514 288,534 1,323,250 18,957,457

(f) 3,937,202 2,130,370 1,187,036 2,790,107 3,922,274 56,701,374 2,180,020 4,165,541 56,701,374

(g 905,855 2,422,629 3,229,733 3,428,015 2,537,677 5,652,936 133,207,697 748,507 133,207,697

(h) 4,732,228 4,913,642 1,692,317 9,520,022 4,532,582 2,488,455 10,558 159,938,512 159,938,512

(B) (a) (b) (0 (d) (e) f) (g) (h) Maximum Value
(a) 3,948,325 265,569 419,898 20,372 436,204 63,148 401,975 385,938 3,948,325

(b) 244,372 7,982,080 898,318 720,742 308,922 1,023,707 1,078,942 381,669 7,982,080

(c) 1,192,477 590,599 9,047,387 837,679 495,974 41,924 353,012 966,149 9,047,387

(d) 113,519 696,388 499,815 14,109,665 1,007,550 714,965 1,096,169 1,113,051 14,109,665

(e) 228,732 1,518,171 1,179,588 29,808 21,135,472 1,656,782 953,022 1,006,920 21,135,472

(f) 3,238,651 3,642,869 1,630,613 360,516 3,125,521 60,025,392 1,413,922 3,576,440 60,025,392

(g 4,511,402 961,521 705,512 4,792,846 240,105 3,740,658 133,184,043 3,996,962 133,184,043

(h) 3,154,163 8,135,025 3,313,221 3,655,289 1,302,125 2,707,372 2,607,953 162,953,168 162,953,168

©) (a) (b) (c) (d) (e) (f) (g (h) Maximum Value
(a) 3,367,970 229,274 288,354 379,489 657,135 133,316 808,711 77,180 3,367,970

(b) 37,805 7,928,827 937,004 870,874 266,860 845,822 693,289 1,058,271 7,928,827

(c) 1,216,751 566,050 8,370,527 483,218 659,784 345,366 1,253,716 629,789 8,370,527

(d) 739,805 1,205,271 690,243 13,291,655 311,968 1,468,998 1,002,265 640,917 13,291,655

(e) 506,882 1,208,755 1,003,197 1,715,817 19,575,904 163,062 1,961,232 1,573,646 19,575,904

(f) 475,771 1,107,585 3,366,194 3,009,838 899,688 59,565,605 4,275,971 4,165,541 59,565,605

(g 5,342,331 720,819 7,431,683 6,778,834 9,244,271 5,652,936 117,194,750 3,210,761 117,194,750

(h) 8,551,919 10,005,103 775,997 2,070,073 8,313,678 7,858,470 8,763,951 141,489,125 141,489,125

(D) (a) (b) (0 (d) (e) f) (g) (h) Maximum Value
(a) 3,497,084 254,314 365,328 511,483 400,926 312,944 178,598 420,752 3,497,084

(b) 546,905 7,866,973 855,360 812,093 865,897 904,630 785,586 1308 7,866,973

(0 156,806 467,406 8,857,601 40,871 760,258 611,428 970,486 1,660,345 8,857,601

(d) 630,500 1,602,860 634,964 12,963,903 257,583 947,003 1,597,594 716,715 12,963,903

(e) 1,844,027 1,322,699 1,390,920 2,789,095 17,981,969 245,215 821,801 1,312,769 17,981,969

(f) 4,479,153 2,394,133 2,232,438 3,808,280 2,388,059 54,937,563 2,670,602 5,930,120 54,937,563

(g 5,582,821 2,628,237 979,879 771,780 10,175,248 4,393,376 119,456,135 9,868,347 119,456,135

(h) 8,027,193 8,626,731 1,284,711 3,622,669 9,018,160 5,930,120 8,244,210 143,074,522 143,074,522

(E) () (b) (c) (d) (e) (f) (g) (h) Maximum Value
(a) 2,832,178 13,213 583,996 216,669 494,508 679,733 569,497 551,635 2,832,178

(b) 649,146 6,308,361 1,140,412 27,057 1,618,582 2,546,825 253,749 94,620 6,308,361

(9] 700,088 25,275 6,326,817 2,310,329 398,321 2,494,454 270,397 999,520 6,326,817

(d) 1,569,608 1,790,894 1,738,175 10,049,766 1,162,407 374,869 2,016,868 648,535 10,049,766

(e) 3,061,373 301,256 3,470,979 112,332 14,617,573 2,982,928 2,984,030 178,024 14,617,573

(f) 7,084,763 2,414,793 6,057,897 4,517,497 5,931,353 44,632,108 6,003,199 372,314 44,632,108

(g 8,645,276 6,478,172 12,870,898 9,902,570 7,512,575 3,955,315 99,379,893 3,388,350 99,379,893

(h) 8,300,278 15,158,702 1,826,825 15,968,780 513,268 16,703,746 16,718,218 112,638,499 112,638,499
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Table 13. Evaluation metrics (%) for the studied architectures and the proposed method.
Precision Recall OA  F1-Score MCC
UNet-ResNet50 [53] 22.58 62.86 96.97 33.23 36.51
UNet-ResNet152 [53] 23.74 66.45 97.04 34.98 38.60
% UNet-DenseNet169 [53] 13.73 56.69 95.22 22.11 26.28
g FPN-VGG16 [53] 14.12 58.86 95.22 22.78 27.23
= LinkNet-MobileNetv2 [53] 8.62 47.67 93.32 14.60 18.18
Deeplab V3+ [13] 23.19 65.33 96.99 34.23 37.78
Proposed 29.52 67.00 97.69 40.98 43.52
UNet-ResNet50 [53] 38.68 68.97 96.42 49.56 50.02
. UNet-ResNet152 [53] 33.55 63.16 95.87 43.82 44.16
g UNet-DenseNet169 [53] 34.52 62.73 96.02 4453 44.71
E FPN-VGG16 [53] 31.26 62.24 95.55 41.62 42.33
Iy LinkNet-MobileNetv2 [53] 19.42 49.91 93.35 27.96 28.34
Deeplab V3+ [13] 63.92 69.67 98.23 66.67 65.63
Proposed 67.09 73.30 98.40 70.06 69.31
UNet-ResNet50 [53] 47.40 63.19 97.09 54.17 53.28
5" UNet-ResNet152 [53] 51.13 66.89 97.35 57.96 57.16
?"; UNet-DenseNet169 [53] 36.61 61.89 96.04 46.01 45.74
?) FPN-VGG16 [53] 53.36 65.49 97.50 58.80 57.85
'FO-' LinkNet-MobileNetv2 [53] 18.60 46.78 92.97 26.62 26.45
C) Deeplab V3+ [13] 51.21 68.93 97.36 58.76 58.11
Proposed 59.76 72.51 97.92 65.52 64.78
UNet-ResNet50 [53] 44.78 71.99 95.44 55.21 54.61
8 UNet-ResNet152 [53] 57.53 7291 96.84 64.31 63.17
E UNet-DenseNet169 [53] 55.31 68.69 96.61 61.28 59.91
3 FPN-VGG16 [53] 51.20 66.99 96.22 58.04 56.66
g LinkNet-MobileNetv2 [53] 23.31 51.93 91.46 32.18 30.93
2 Deeplab V3+ [13] 56.31 73.57 96.74 63.79 62.72
Proposed 78.66 84.72 98.51 81.58 80.86
UNet-ResNet50 [53] 58.42 68.42 95.52 63.02 60.87
8 UNet-ResNet152 [53] 75.34 76.28 97.28 75.81 74.37
=
< UNet-DenseNet169 [53] 49.03 70.65 94.26 57.88 55.97
_';“ FPN-VGG16 [53] 42.97 64.90 93.23 51.70 4941
E LinkNet-MobileNetv2 [53] 45.33 52.75 93.81 48.76 45.63
= Deeplab V3+ [13] 59.61 73.08 95.73 65.66 63.78
Proposed 73.58 82.04 97.35 77.58 76.30
UNet-ResNet50 [53] 82.92 73.62 93.55 77.99 7441
2 UNet-ResNet152 [53] 85.78 77.94 94.57 81.67 78.62
_g UNet-DenseNet169 [53] 77.20 77.34 92.94 77.27 73.09
g FPN-VGG16 [53] 82.54 71.33 93.21 76.53 72.85
g LinkNet-MobileNetv2 [53] 60.01 57.95 87.48 58.97 51.59
- Deeplab V3+ [13] 88.15 79.20 95.12 83.43 80.74
Proposed 90.42 85.87 96.39 88.09 86.00
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Table 13. Cont.

Precision Recall OA F1-Score = MCC

UNet-ResNet50 [53] 96.69 87.56 95.27 91.90 88.78
UNet-ResNet152 [53] 94.40 87.54 94.59 90.84 87.13
dg’j UNet-DenseNet169 [53] 88.98 77.03 90.03 82.58 76.03
L§ FPN-VGG16 [53] 87.55 78.52 89.99 82.79 75.98
Cl LinkNet-MobileNetv2 [53] 77.52 65.32 83.56 70.90 59.99
Deeplab V3+ [13] 93.29 88.42 94.95 90.79 86.93
Proposed 94.67 91.88 95.93 93.26 90.36
UNet-ResNet50 [53] 94.46 85.15 92.49 89.57 84.00
- UNet-ResNet152 [53] 93.45 86.76 92.68 89.98 84.37
E; UNet-DenseNet169 [53] 92.50 75.33 88.35 83.04 75.21
g FPN-VGG16 [53] 89.74 76.17 87.68 82.40 73.60
; LinkNet-MobileNetv2 [53] 94.76 59.97 83.59 73.45 65.85
- Deeplab V3+ [13] 93.19 86.72 92.57 89.84 84.13
Proposed 94.76 90.76 94.60 92.72 88.48

Table 13 presents the weighted evaluation metrics for all architectures. Based on the
reported results, it is evident that the proposed approach, including the post-processing
step, consistently outperforms the other methods across all metrics. The improvement is
particularly notable regarding the MCC, which, given the class imbalance, highlights the
method’s effectiveness in enhancing performance under challenging conditions. As a final
summary, it appears that adding a post-processing step to a deep learning network, without
a significant increase in memory requirements or computational load, helps correct errors
in the output of the synergistic semantic classifier and improves the network’s performance
across all evaluation parameters.

5.5. Statistical Significance Test

To validate the experimental results, a statistical significance test using the Wilcoxon
signed-rank scheme was conducted on recall and precision across the different classes. The
results, shown in Table 14 top and bottom, indicate that all differences between the proposed
method and existing methods, including baseline, are statistically significant. This confirms
that the performance improvement achieved by the proposed method is meaningful.

Table 14. Statistical significance of differences in recall (top) and precision (bottom) between the
compared models: (a) UNet-ResNet50, (b) UNet-ResNet152, (c) UNet-DenseNet169, (d) FPN-VGG16,
(e) LinkNet-MobileNetv2, (f) Deeplab, and (g) DeeplabP (TRUE = significant difference).

Recall Comparisons

(a) (b) (V] (d) (e) (f) (g)

(a) TRUE FALSE FALSE TRUE TRUE TRUE TRUE
(b) FALSE FALSE TRUE TRUE TRUE FALSE TRUE
(c) FALSE TRUE FALSE FALSE TRUE TRUE TRUE
(d) TRUE TRUE FALSE FALSE TRUE TRUE TRUE
(e) TRUE TRUE TRUE TRUE FALSE TRUE TRUE
(f) TRUE FALSE TRUE TRUE TRUE FALSE TRUE

(g) TRUE TRUE TRUE TRUE TRUE TRUE FALSE
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Table 14. Cont.
Precision Comparisons
(a) (b) (V] (d) (e) (f) (g

(a) TRUE FALSE FALSE FALSE TRUE FALSE TRUE
(b) FALSE FALSE TRUE TRUE TRUE FALSE TRUE
(0 FALSE TRUE FALSE FALSE TRUE TRUE TRUE
(d) FALSE TRUE FALSE FALSE TRUE TRUE TRUE
(e) TRUE TRUE TRUE TRUE FALSE TRUE TRUE
(f) FALSE FALSE TRUE TRUE TRUE FALSE TRUE
(g) TRUE TRUE TRUE TRUE TRUE TRUE FALSE

6. Conclusions

This study introduced a synergistic semantic segmentation system integrating the
DeepLab v3+ deep neural network with a post-processing step. The chosen classes included
Pastures, Urban Areas, Other Built-Up Areas, Water Bodies, Grasslands, Forests, Farmland,
and Others. Transfer learning was used with DeepLab v3+ pre-trained segmentation
networks to optimize the training process and reduce computational demands. In the
post-processing step, a dictionary-based K-medoid clustering approach was used. In the K-
medoid clustering, spectral codewords were first derived for each class using training data.
These spectral codewords, which cover seasonal variations in classes such as Forests and
Pastures, were then used to refine the DeepLab v3+ output. The proposed post-processing
approach, which involves dictionary training and subsequent use of spectral codewords
for performance enhancement, achieved a 1.5% improvement in weighted OA and a 5.7%
increase in the weighted MCC compared to the DeepLab v3+ network. It also outperformed
selected state-of-the-art semantic segmentation networks, with over a 1.5% in weighted OA
and more than a 6% improvement in the weighted MCC.

The main advantages of the proposed method are the ability to analyze vegetation
classes based on the data acquisition timing and the addition of a post-processing approach
to reduce errors. The two main limitations of the proposed method are computational
complexity and inefficiency in cases where deep learning makes errors within a specific
region. The second limitation is because of the assumption that errors appear as isolated
points within a correct texture. If this assumption is incorrect, the post-processing approach
will not check them.

The proposed LCC method has many applications in environmental monitoring,
urban expansion tracking, agricultural land management, urban expansion tracking, and
water resource management. For example, by segmenting forest areas, the model can
track changes in natural landscapes over time and assess patterns of degradation and
land use changes caused by human activity. Future work could focus on generalizing
the derived codewords for different vegetation types across various regions and creating
a spectral dictionary of vegetation classes that can be standardly used in multispectral
satellites. Moreover, the post-processing approach could be refined using statistical analysis
to define more precise error probability patterns. Another interesting topic is the use of
domain adaptation techniques, e.g., feature normalization and fine-tuning, to improve the
transferability of the model to different sensors.
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