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Abstract

Deep learning (DL) models show considerable promise in detecting driver drowsiness, a
major contributor to road traffic crashes. This systematic review evaluates the performance,
contexts of application, and implementation challenges of DL-based drowsiness detection
systems. Conducted in accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) 2020 guidelines, the review includes peer-reviewed
empirical studies published between 2015 and 2025 that develop and validate DL models
using data collected in real or simulated driving environments. Studies were identified
through systematic searches in PubMed, Scopus, Web of Science, ScienceDirect, and IEEE
Xplore, last updated in March 2025. Due to methodological heterogeneity, findings are
synthesized narratively. Eighty-one studies meet the inclusion criteria. Most employ Con-
volutional Neural Networks, Recurrent Neural Networks, or hybrid architectures and use
behavioral, physiological, or multimodal inputs. Reported median values for accuracy and
F1-score exceed 0.95 under both simulated and real-world conditions. However, studies
frequently lack demographic diversity, standardized performance reporting, and robust
validation protocols. Key limitations include limited dataset transparency, inconsistent
evaluation metrics, and insufficient attention to ethical and privacy considerations. While
DL models exhibit strong predictive performance, their real-world deployment remains
limited by practical and methodological constraints. Future research should place empha-
sis on the development of inclusive datasets, the conduct of multi-context evaluations,
the advancement of real-world deployment strategies, and the rigorous adherence to
ethical standards.

Keywords: monitoring system; driver assistance; road safety; fatigue; artificial intelligence;
machine learning

1. Introduction
Driver drowsiness is a major contributor to road traffic incidents and is widely rec-

ognized as a critical public safety issue. Fatigue impairs attentional control, reaction time,
and decision-making ability, thereby increasing the risk of crashes and injury severity [1,2].
In the United States alone, drowsy driving was estimated to be a factor in 17.6% of all
fatal motor vehicle crashes between 2017 and 2021, resulting in nearly 30,000 deaths [3].
Internationally, the E-Survey of Road Users’ Attitudes (ESRA) reported that 18–20% of
drivers in Europe, North America, and Asia-Oceania experienced difficulty staying awake
while driving in the past month, underscoring the global scale of the problem [4].
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To address this risk, researchers have increasingly explored driver monitoring sys-
tems designed to detect early signs of drowsiness. Traditional approaches, including
self-reported sleepiness, vehicle-based indicators, and isolated physiological signals, often
lack the sensitivity, scalability, and adaptability needed for real-world applications [5]. In
contrast, deep learning (DL) has emerged as a promising alternative, capable of extracting
complex features from diverse input sources such as facial expressions, eye movements,
and biosignals [6].

Despite growing interest and progress, the literature remains fragmented. A vari-
ety of DL architectures have been proposed for drowsiness detection, but few studies
offer comparative evaluations, and no consensus has emerged on optimal model design.
Reporting practices also vary widely, with inconsistencies in performance metrics and
evaluation protocols limiting comparability. In addition, the datasets used for model
development differ in size, signal type, contextual realism, and demographic diversity,
raising concerns about generalizability. Practical challenges such as high computational
demands, limited integration with vehicle systems, and unresolved privacy issues also
hinder real-world deployment.

In light of these challenges, this systematic review synthesizes research on the use
of deep learning for driver drowsiness detection. The review is structured around the
following research questions (RQ):

RQ1: Which deep learning models are used to detect drowsiness in drivers?
RQ2: How precise and reliable are these deep learning models in detecting drowsiness?
RQ3: What types of datasets are used for training and validating deep learning models?
RQ4: What are the main challenges and limitations in developing deep learning-based

drowsiness detection systems?
By addressing these questions, the review aims to provide a comprehensive overview

of the field, highlight persistent challenges, and support the development of scalable
solutions to enhance driver safety in real-world transportation systems.

This article is structured to provide a clear and systematic presentation of the review
process and findings. Section 2 details the methodology, including eligibility criteria,
search strategy, screening procedures, and data extraction methods. Section 3 presents
the main findings, organized into subsections addressing the characteristics of included
studies, evaluation contexts, datasets used, model architectures, performance metrics, and
real-world feasibility. Section 4 offers an in-depth discussion of these findings, considers
their implications, and identifies gaps and limitations in the existing literature. Section 5
concludes the review by summarizing its key contributions and outlining future research
directions to improve the design, evaluation, and implementation of deep learning-based
drowsiness detection systems.

2. Methods
This systematic review was conducted in accordance with the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines [7]. The
PRISMA framework ensures methodological rigor by promoting transparency, repro-
ducibility, and structured reporting. Additional details are available in the PRISMA 2020
checklist (see Supplementary Materials, Document S1). The procedures applied in this
review are outlined below.

2.1. Protocol

Prior to initiating the review, a structured protocol was developed to define the objec-
tives, research questions, eligibility criteria, and methodological approach. The protocol
was prospectively registered in the International Prospective Register of Systematic Re-
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views (PROSPERO) under the reference CRD420251078841 [8], establishing a transparent
foundation to guide the review process and minimize bias.

The review was conducted in four phases: identification of relevant studies through
database searches; screening of titles and abstracts; full-text evaluation to assess eligibility;
and inclusion of studies meeting all predefined criteria. Inclusion and exclusion criteria
were applied consistently throughout, with decisions documented to ensure methodological
transparency and alignment with the review objectives.

2.2. Eligibility Criteria

This review focused on studies investigating deep learning-based systems for detecting
drowsiness in drivers. To be eligible, studies were required to meet the following conditions.

First, the study had to target drivers—commercial, private, or professional—as the
population of interest. Studies focusing on non-driving populations such as students,
healthcare workers, or pilots were excluded due to differing contextual demands.

Second, the study needed to develop, apply, or evaluate deep learning models specifi-
cally designed for drowsiness detection. Accepted model types included Convolutional
Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory
(LSTM) networks, and Transformer-based architectures. Studies based solely on conven-
tional machine learning methods, such as Support Vector Machines or Decision Trees,
were excluded.

Third, eligible studies were required to report performance metrics relevant to drowsi-
ness detection, including accuracy, precision, recall, F1-score, or area under the receiver
operating characteristic curve (AUC-ROC), enabling meaningful comparisons across studies.

Fourth, model validation had to be conducted using data obtained under real or
simulated driving conditions to ensure applicability to the target context.

Fifth, only original empirical research articles published in peer-reviewed journals
were considered. Studies had to be written in English and published between January 2015
and February 2025 to ensure the inclusion of contemporary, high-quality evidence.

Studies were excluded if they lacked deep learning components, omitted key perfor-
mance metrics, failed to validate models using driving-related data, or focused solely on
hardware without evaluating model performance. In addition, review articles, theoretical
papers, editorials, opinion pieces, conference abstracts, non-peer-reviewed publications,
and studies not published in English were excluded.

These criteria were established to ensure the inclusion of scientifically validated and
contextually relevant studies, allowing for a robust synthesis of evidence on the perfor-
mance and real-world applicability of deep learning models for driver drowsiness detection.

2.3. Search Strategy

A systematic literature search was conducted in March 2025 across five major electronic
databases: PubMed, Scopus, Web of Science, ScienceDirect, and IEEE Xplore. These
databases were selected for their broad and complementary coverage of health, engineering,
and transportation research domains. The search strategy employed Boolean operators and
the following combination of keywords: “driver” AND (“drowsiness” OR “sleepiness”)
AND “detection” AND “deep learning”.

No supplementary search techniques, such as citation tracking or snowballing, were
used. This focused approach ensured a transparent, replicable, and methodologically
sound identification of relevant studies while reducing the risk of bias associated with
non-systematic retrieval methods.
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2.4. Data Collection and Extraction

Data collection and extraction were conducted by a single reviewer following a stan-
dardized protocol to ensure methodological consistency and reduce potential bias. After
completing the database searches, all retrieved records were imported into the Rayyan
platform for systematic reviews (Rayyan Systems Inc., Cambridge, MA, USA, 2025), which
enabled automatic duplicate removal. Title and abstract screening was performed in
Rayyan based on predefined inclusion and exclusion criteria to assess each record’s rele-
vance. Studies that met these initial criteria underwent full-text review to determine final
inclusion. This systematic and transparent procedure ensured that only studies directly
addressing the review’s research questions were retained for synthesis.

For data extraction, a structured spreadsheet was developed using Microsoft Excel
(Microsoft Corporation, Redmond, WA, USA, Version 16.77.1, 2025) to collect key informa-
tion from each included study. The extraction process was supported by ChatGPT (OpenAI,
San Francisco, CA, USA, GPT-4, 2025), which assisted in identifying and organizing study
details such as driving context, deep learning models, performance metrics, and dataset
characteristics. All extracted data were manually reviewed and cross-verified against the
original study reports to ensure accuracy and consistency.

2.5. Data Synthesis

Data synthesis is conducted using a structured narrative approach to address the four
research questions that guide this review. In light of the marked heterogeneity across the
included studies—particularly in terms of modeling objectives, input modalities, evaluation
settings, and outcome measures—a quantitative meta-analysis is not feasible. Instead,
findings are organized thematically to capture recurring patterns, methodological trends,
and relevant contrasts in the implementation and performance of deep learning-based
drowsiness detection systems.

The synthesis is presented across dedicated subsections in the results, encompassing
study characteristics, model architectures, reported performance metrics, dataset properties,
and implementation challenges. This organization facilitates direct alignment between the
extracted evidence and each research question, while allowing for comparative interpreta-
tion across studies.

To support transparency and reproducibility, three supplementary tables are provided.
Table A1 outlines core study attributes, including authorship, country of origin, driving
context (simulated or real-world), type of deep learning architecture employed, and the
model’s operational objective (real-time or offline). Table A2 consolidates the main per-
formance metrics reported by the included studies—accuracy, precision, recall, F1-score,
and AUC-ROC—enabling descriptive comparisons across modeling approaches. Table A3
summarizes dataset sources, data types (behavioral, physiological, vehicle-based, or multi-
modal), reported technical challenges, and recommendations proposed to improve model
robustness and applicability.

Where applicable, summary statistics (e.g., median and interquartile range) are cal-
culated to provide an aggregated view of model performance under different testing
conditions. These descriptive insights are integrated into the narrative to contextualize
the reported results and to identify common benchmarks across simulation-based and
real-world evaluations.

This synthesis strategy enables a comprehensive overview of the current state of the
literature, emphasizing methodological diversity, implementation barriers, and critical gaps.
It also provides an evidence-informed basis for interpreting the reliability, scalability, and
translational potential of deep learning models for drowsiness detection in driving contexts.
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3. Results
This section presents the main findings of the systematic review, structured to address

the four research questions that guided the study. It explores how deep learning models
have been used to detect drowsiness in drivers, focusing on their architectures, performance,
data sources, and implementation challenges.

Section 3.1 describes the study selection process based on PRISMA 2020 guidelines,
outlining how records were identified, screened, and assessed for eligibility. Section 3.2
offers an overview of the included studies, covering publication trends, geographic distri-
bution, journal quartiles, and evaluation contexts.

Section 3.3 analyzes the deep learning models employed in drowsiness detec-
tion, examining architectural types, operational objectives, and computational feasibility.
Section 3.4 evaluates model accuracy and reliability, discussing performance metrics across
different testing conditions, error handling approaches, and adaptability to demographic
and environmental variability.

Section 3.5 focuses on the datasets used for model training and validation, addressing
their sources, data modalities, diversity, and ground truth annotation methods. Section 3.6
highlights the main technical, practical, and ethical challenges identified across the studies
and discusses strategies proposed to enhance model robustness and deployment readiness.

3.1. Study Selection

The selection process for this systematic review followed the PRISMA 2020 guidelines
and involved multiple phases: identification, screening, eligibility assessment, and inclu-
sion. A total of 1606 records were identified through comprehensive searches across five
major electronic databases: PubMed, Scopus, Web of Science, IEEE Xplore, and ScienceDi-
rect. No additional records were obtained through other sources or registers.

In the identification phase, 899 records were excluded based on predefined exclusion
criteria. These exclusions included 3 records published outside the selected date range, 544
that did not meet the document type requirements, 349 excluded due to non-journal source
types, and 3 articles that were not published in English. Additionally, 172 duplicate records
were removed, resulting in 535 unique records eligible for the screening phase.

During the screening phase, titles and abstracts of the 535 remaining records were
evaluated to determine their alignment with the inclusion criteria. A total of 374 records
were excluded at this stage for reasons such as lack of focus on drivers, absence of deep
learning models for drowsiness detection trained on real or simulated driving conditions,
or failure to report model performance metrics such as accuracy, precision, recall, F1-score,
or AUC-ROC. This process yielded 161 records deemed relevant for full-text assessment.

Out of the 161 records selected for full-text review, 158 full-text articles were success-
fully retrieved. Despite exhaustive attempts using institutional databases and interlibrary
services, 3 records could not be accessed and were therefore excluded. Each of the 158
full-text articles was then subjected to an eligibility assessment. Of these, 77 articles were
excluded: 1 for not focusing on drivers, 62 for not presenting deep learning models trained
on real or simulated driving data, and 14 for not reporting relevant performance metrics.

Following this screening and eligibility assessment process, a total of 81 studies met all
inclusion criteria and were included in the final qualitative synthesis. These studies reflect
a broad spectrum of methodological approaches, geographic regions, and deep learning
architectures applied to the task of drowsiness detection in driving contexts. The PRISMA
flow diagram (see Figure 1) visually summarizes each stage of the selection process and
the number of records included and excluded at each step.
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Figure 1. The identification, screening, and inclusion process of eligible studies using PRISMA 2020.

3.2. Overview of Included Studies

This section introduces the main features of the 81 studies selected for this systematic
review. The studies reflect a wide range of geographic origins, evaluation contexts, and
dataset types. Collectively, they form the empirical foundation for assessing how deep
learning has been applied to driver drowsiness detection.

The following subsections detail three major aspects of the included studies.
Section 3.2.1 presents trends in publication output, country distribution, journal quartiles,
and general methodological traits. Section 3.2.2 discusses where and how models were
tested, distinguishing between simulated and real-world driving contexts. Section 3.2.3 re-
views the characteristics of the datasets employed, including their sources, modalities, and
demographic representation. These components provide essential context for interpreting
the results in subsequent sections.

3.2.1. Characteristics of Studies

The temporal distribution of studies indicates a sharp and sustained increase in
scholarly output over the last six years (see Figure 2). From a modest base of 3 cumulative
studies by 2019, the number rose to 7 by 2020, then more than doubled by 2021 with
16 publications. The trend accelerated further, reaching 30 by 2022 and 49 by 2023. By the
end of 2024, the cumulative total of studies had surged to 75, and by early 2025, the full set
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of 81 studies was identified. This pattern reflects not only the maturation of deep learning
technologies but also a heightened global emphasis on improving road safety through
intelligent monitoring systems. Advances in computing power, algorithmic development,
and the availability of annotated datasets likely contributed to this expansion.

Figure 2. Cumulative number of published studies on deep learning-based models for drowsiness
detection.

In terms of geographical distribution, the studies were carried out across multiple
countries, with a significant concentration in Asia (see Figure 3). China was the most
prolific contributor, responsible for 29 studies (36%), followed by India with 12 (15%), and
Saudi Arabia with 6 (7%). South Korea and Pakistan each contributed 3 studies (4% each),
while the remaining 28 studies (34%) were conducted across diverse regions including
Europe, America, Oceania, and Africa. Although this distribution underscores the global
relevance of drowsiness detection research, it also reveals a potential regional imbalance
in dataset characteristics and driving conditions, which could affect the generalizability
of findings.

Figure 3. Country wise distribution of selected studies.

The scientific impact of the included studies is reflected in their publication venues
(see Table 1). A majority of 48 out of 81 studies (59%) appeared in Q1 journals, indicating
strong peer review standards and recognition in high impact outlets.

Table 1. Number of selected studies per quartile.

Quartile Ranking Number of Studies

Q1 48
Q2 20
Q3 11
Q4 2
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An additional 20 studies (25%) were published in Q2 journals, with 11 (14%) and 2
(2%) published in Q3 and Q4 journals, respectively. This suggests that the topic is well
integrated into mainstream scientific discourse, particularly within fields such as artificial
intelligence, neuroscience, and transportation safety.

From a methodological standpoint, the studies exhibit substantial heterogeneity. Most
were empirical investigations centered on the design, training, and validation of deep
learning models using either real-world or simulated driving data. Simulated driving was
commonly employed to induce drowsiness under controlled conditions, while real-world
setups often involved naturalistic driving scenarios with in vehicle sensor data. Behavioral
data such as eye images and facial expressions were the most frequently used inputs,
followed by physiological signals like electroencephalogram (EEG) and electrocardiogram
(ECG). A growing number of studies adopted multimodal approaches that integrate vehicle-
based, physiological, and behavioral cues to improve prediction performance.

Supervised learning frameworks dominated the modeling strategies, with binary
classification between drowsy and alert states as the most common output. Ground truth
labeling was typically derived from physiological thresholds, expert annotations, or driver
task performance. While many studies focused on achieving real-time detection suitable
for Advanced Driver Assistance Systems (ADASs), a subset prioritized offline analysis for
performance benchmarking. Validation methods ranged from internal cross validation to
external testing using publicly available datasets, with varying degrees of transparency
and reproducibility.

In sum, the included studies reflect a dynamic and methodologically diverse research
landscape. The upward trajectory in publication volume, concentration of studies in high
impact journals, and increasing reliance on multimodal and real time systems signal a grow-
ing maturity in the field. These characteristics form a critical foundation for the subsequent
analyses of deep learning models, performance metrics, datasets, and implementation
challenges presented in the following sections.

3.2.2. Contexts of Model Evaluation

Understanding the context in which deep learning models are evaluated is essential to
assess their applicability to real-world driving scenarios. Among the studies included in this
review, a clear distinction emerged between those conducted in simulated environments
and those implemented in real world settings. This division is critical because it influences
not only the quality and type of data collected but also the ecological validity of the
model evaluation.

Simulated driving environments were widely adopted as experimental testbeds due
to their ability to replicate drowsiness-inducing conditions in a safe and controlled manner.
These setups allowed researchers to standardize scenarios, manipulate fatigue levels, and
collect high-resolution multimodal data with minimal ethical concerns. Studies using
driving simulators often induced drowsiness through prolonged tasks, monotonous roads,
or night-time scenarios. Driver responses were measured using combined datasets that
included physiological signals, behavioral data, and vehicle-based metrics. Simulations
also facilitated consistent labeling of ground truth data based on controlled experimental
events or physiological thresholds.

In contrast, real world evaluations involved testing models during actual driving,
either in private vehicles or fleet operations. These studies provided data that more accu-
rately reflected the complexity of real-life driving, including variations in road conditions,
lighting, driver behavior, and vehicle dynamics. Real-world contexts introduced signifi-
cant challenges, such as uncontrolled environmental factors and limitations in participant
monitoring, but also yielded findings with greater external validity. Many studies in this



Appl. Sci. 2025, 15, 9018 9 of 43

category used unobtrusive sensors or embedded systems that collected data during regular
driving sessions, enabling the models to be assessed under realistic operational constraints.

A smaller subset of studies combined both contexts, training models on simulated data
and then testing them in real driving conditions to evaluate generalization performance.
This approach highlighted the importance of model adaptability and robustness across
environments, especially for applications aimed at integration into commercial ADAS.

Overall, while simulated environments continue to play a crucial role in initial model
development and benchmarking, real-world testing is indispensable for verifying opera-
tional feasibility and practical effectiveness. The coexistence of both evaluation contexts in
the literature underscores the complementary nature of these approaches and the ongoing
need to balance experimental control with ecological validity in drowsiness detection research.

3.2.3. Summary of Datasets Used

The characteristics and sources of datasets used for training and validating deep learn-
ing models represent an important foundation for understanding model performance, gen-
eralizability, and limitations. Across the reviewed studies, there was substantial variation
in dataset size, composition, modality, and accessibility, reflecting both the opportunities
and challenges inherent in collecting data relevant to drowsiness detection.

A significant number of studies relied on publicly available datasets, including com-
monly used benchmark collections such as the NTHU-DDD [9], YawDD [10], SEED-
VIG [11], and the SADT [12] dataset. These resources provided behavioral and physi-
ological data, including eye state images, head poses, and EEG signals, and were widely
used for algorithm benchmarking and comparative analysis. Public datasets facilitated
reproducibility and model validation across studies, but they also exhibited notable limita-
tions such as narrow demographic representation, limited driving conditions, or lack of
multimodal input.

In contrast, some studies developed proprietary datasets tailored to specific research
goals. These datasets were often collected through controlled laboratory experiments
or on-road vehicle trials and tended to include richer and more diverse data streams.
Multimodal datasets combining eye tracking, facial expression, heart rate, EEG signals,
and vehicle telemetry were increasingly employed to improve model robustness. However,
such datasets were frequently restricted in size and rarely shared openly, which limited
transparency and hindered replication efforts.

Dataset diversity was a key concern identified in this review. A large proportion of
datasets focused on specific age groups, geographic regions, or experimental conditions,
resulting in potential biases. The limited representation of gender, ethnicity, and environ-
mental variability in many datasets raised concerns about the fairness and generalizability
of the resulting models. Furthermore, several studies did not report sufficient details
regarding sample size, annotation protocols, or data balancing strategies, complicating the
evaluation of model training quality.

Despite these limitations, some recent efforts have aimed to create larger and more
inclusive datasets by aggregating data from multiple sources or conducting multi-phase
data collection campaigns. A few studies also incorporated longitudinal data, enabling
temporal modeling of driver fatigue over extended periods.

Overall, the review revealed an increasing reliance on multimodal data sources for
drowsiness detection, although concerns remain regarding standardization and accessi-
bility. The heterogeneity of datasets used across studies underscores the importance of
clear documentation and open sharing practices, particularly for advancing cross-study
comparisons and collaborative model development.
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3.3. Deep Learning Models for Drowsiness Detection (RQ1)

This section addresses the first research question of the review: which deep learning
models are used to detect drowsiness in drivers? The included studies demonstrate a
variety of architectures, design goals, and implementation strategies aimed at identifying
driver fatigue based on behavioral, physiological, or multimodal inputs. Understanding
the specific types of models used, their intended deployment scenarios, and their technical
demands is essential for evaluating their suitability in real-world applications.

The following subsections provide a structured analysis of the deep learning models
applied in the reviewed literature. Section 3.3.1 identifies and quantifies the main types of
architectures employed, such as CNNs, RNNs, and hybrid configurations. Section 3.3.2
classifies the models according to their objective, whether designed for real-time operation
or offline analysis. Section 3.3.3 explores computational requirements and the practical
feasibility of deploying these models in vehicle environments. Together, these analyses form
a comprehensive overview of how deep learning architectures are applied in drowsiness
detection and provide the basis for further evaluation in subsequent sections.

3.3.1. Types and Frequencies of Architectures

The studies reviewed in this systematic analysis utilized a diverse set of deep learning
architectures to detect driver drowsiness. The most frequently adopted model type was the
Convolutional Neural Network, which appeared in 35 studies. CNNs were primarily used
for processing behavioral data, including eye images, facial expressions, and head pose,
due to their strong performance in image recognition and spatial pattern extraction.

Recurrent Neural Networks, including LSTM variants, were used in 16 studies. These
architectures were applied when temporal dynamics were central to detection, particularly
with time-series physiological data such as EEG and ECG signals. LSTMs were favored in
cases where the models needed to retain memory of prior inputs across sequences, making
them suitable for capturing evolving patterns of fatigue.

Hybrid models that combined different architectural components appeared in
12 studies. These configurations integrated CNN layers for spatial feature extraction with
RNN components to process sequential data, or combined multiple deep learning streams
for multimodal input fusion. This design aimed to leverage the strengths of different
architectures for enhanced performance.

Transformer-based architectures were used in 6 studies. These models were primarily
applied in experimental settings and targeted sequence modeling or multimodal attention
mechanisms. While their application remains limited, they reflect an emerging interest in
applying attention-based frameworks to the problem of drowsiness detection.

Other architectures, including autoencoders and fully connected deep neural networks,
were reported in 12 studies and were generally used as baseline models or in combination
with other techniques. Overall, the architecture choices reflect a trade-off between model
complexity, input modality, and the specific temporal or spatial characteristics of the data
being analyzed.

3.3.2. Model Objective: Real-Time vs. Offline Detection

Another key aspect of model design concerns the intended use case—whether the
system is developed for real-time detection during active driving or for offline analysis
based on previously collected data. Among the reviewed studies, 35 explicitly stated
that their models were designed for real-time detection. These models typically aimed
to provide immediate feedback or trigger alerts in ADAS. Real-time models prioritized
fast inference times, minimal latency, and low computational overhead, and were often
deployed on embedded platforms, mobile devices, or in-vehicle systems.
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In contrast, 46 studies implemented models intended for offline analysis. These
models were primarily used for post hoc evaluation, performance benchmarking, or retro-
spective monitoring of drowsiness-related behavior. Offline models benefited from fewer
constraints in terms of execution time and hardware requirements, allowing for more
complex architectures and detailed processing pipelines. They were commonly applied in
research environments or simulation-based experiments where real-time performance was
not a priority.

The distribution between real-time and offline objectives reveals distinct trade-offs in
model design. Real-time models are more constrained by computational efficiency and
robustness, while offline models tend to focus on accuracy and interpretability. Understanding
these distinctions is essential for evaluating the practical implications of each study’s findings
and for informing future system development aimed at real-world implementation.

3.3.3. Computational Requirements and Feasibility of Deployment

The computational demands and deployment feasibility of deep learning models
are critical considerations for their adoption in real-world driving scenarios. Among the
reviewed studies, only 34 explicitly discussed the computational requirements of their
models, and even fewer provided concrete details regarding hardware specifications or
inference performance.

Studies that targeted real-time implementation typically reported lightweight archi-
tectures optimized for embedded platforms, such as Raspberry Pi, NVIDIA Jetson, or
Android-based systems. These models were characterized by low latency and modest
memory requirements, often achieved through model pruning, quantization, or the use of
shallow network structures. Deployment feasibility in such cases was closely linked to the
ability to run inference locally without relying on cloud infrastructure.

In contrast, offline models frequently involved more complex or deeper architectures
that required greater computational power, typically evaluated using desktop GPUs or
cloud-based environments. These models prioritized accuracy and robustness over real-
time efficiency and were commonly used in simulation studies or retrospective data analyses.
Some studies applied transfer learning from large-scale pre-trained networks, which further
increased resource demands during training but not necessarily during inference.

Only a limited number of studies assessed energy consumption, model scalability,
or compatibility with automotive-grade processors. Similarly, few studies evaluated the
resilience of models to varying hardware conditions or the impact of real-time data stream
interruptions. These omissions highlight a gap in practical deployment research, particu-
larly in operational settings such as commercial fleets or consumer vehicles.

3.4. Model Accuracy and Reliability (RQ2)

This section addresses the second research question of the review: how precise and
reliable are deep learning models in detecting drowsiness in drivers? The studies included
in this review reported various performance metrics under different conditions and con-
straints. In addition to accuracy, precision, recall, F1-score, and AUC-ROC, some studies
explored how these metrics varied across testing environments and population subgroups,
and how errors such as false positives and false negatives were managed.

The following subsections provide a structured synthesis of these findings. Section 3.4.1
summarizes the reported values of standard performance metrics. Section 3.4.2 examines
model performance in different evaluation settings, comparing simulated and real-world
testing. Section 3.4.3 discusses strategies used to address misclassification, including the
handling of false positives and false negatives. Section 3.4.4 explores model adaptability to
variations in demographic characteristics and driving scenarios. Together, these analyses
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help characterize the robustness, limitations, and practical readiness of the reviewed models
for deployment in diverse real-world conditions.

3.4.1. Accuracy, Precision, Recall, F1-Score, AUC-ROC Benchmarks

This section presents a summary of the main performance metrics used to evaluate
deep learning models for drowsiness detection. These metrics include accuracy, precision,
recall (sensitivity), F1-score, and AUC-ROC. Table 2 reports the median, standard deviation,
and interquartile range (Q1–Q3) for each metric based on the values extracted from the
included studies.

Table 2. Summary statistics of model performance metrics across included studies.

Metric Median Std. Dev. Q1 (25%) Q3 (75%)

Accuracy 0.952 0.072 0.904 0.979
Precision 0.956 0.077 0.912 0.980

Recall 0.953 0.077 0.918 0.980
F1-score 0.953 0.083 0.903 0.976

AUC-ROC 0.975 0.101 0.957 0.990

Among the 81 included studies, accuracy was the most frequently reported metric,
appearing in 77 studies. The median accuracy was 0.952. Over 75% of models achieved ac-
curacy scores above 0.904, particularly those employing multimodal inputs or CNNs based
on behavioral analysis. These results indicate that the majority of models demonstrated
strong classification performance under the conditions tested.

Precision was reported in 42 studies. The median precision was 0.956, indicating a
generally high rate of correctly predicted drowsiness cases among all positive predictions.
High precision was often associated with models trained using curated and balanced
datasets or those leveraging sensor fusion techniques.

Recall, also known as sensitivity, was reported in 51 studies and yielded a median of
0.953. High recall values suggest that the models were effective at detecting true positive
cases of drowsiness. This was especially evident in studies using physiological signals,
such as EEG or ECG, processed through LSTM or hybrid sequential architectures capable
of capturing temporal dynamics of fatigue onset.

F1-score, available in 52 studies, provided a harmonic mean between precision and
recall. It showed a slightly broader variability, with a median of 0.953 and a standard
deviation of 0.083. This metric proved useful in evaluating models under class imbalance,
where accuracy alone could be misleading. In some studies, notably those conducted under
real-world or noisy conditions, F1-score values dropped relative to accuracy, highlighting
increased rates of false positives or false negatives.

Only 12 studies reported the AUC-ROC, a metric that reflects a model’s ability to
discriminate between classes independent of the decision threshold. Despite the smaller
sample, AUC-ROC values were notably high, with a median of 0.975 and interquartile
values between 0.957 and 0.990. Models incorporating EEG data or attention-based layers
consistently achieved higher AUCs, confirming their strong discriminatory power across
varying detection thresholds.

Collectively, the benchmark values presented above underscore that deep learning
models for drowsiness detection have achieved high levels of predictive performance.
Nonetheless, inconsistencies in reporting were observed. Several studies failed to report
standard deviation or confidence intervals, and many omitted important contextual in-
formation, such as dataset composition or evaluation protocol. These omissions hindered
direct comparisons between models and limited the assessment of their generalizability.
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Furthermore, the exclusive reporting of accuracy in some studies—without comple-
mentary metrics such as recall or F1-score—may mask limitations in model robustness,
especially under imbalanced or real-world data.

3.4.2. Performance in Different Testing

Testing conditions varied considerably across the reviewed studies, with 63 models
evaluated exclusively in simulated environments, 15 assessed using real-world data, and 3
tested in both settings. Simulated testing was typically conducted in controlled environ-
ments using driving simulators or pre-recorded datasets, allowing for precise control of
drowsiness-inducing variables and standardized data collection.

Among the studies that reported both accuracy and F1-score, performance outcomes
differed between simulation and real-world contexts (see Table 3). Simulation-based models
showed a median accuracy of 0.958 and a median F1-score of 0.948. In comparison, real-
world models achieved higher median values—0.977 for accuracy and 0.972 for F1-score.
These results suggest that while both settings yield strong model performance, real-world
validation is associated with more robust outcomes.

Table 3. Performance comparison between simulated and real-world testing.

Metric Simulated Real-World

Accuracy (median) 0.958 0.977
F1-score (median) 0.948 0.972

Several factors may contribute to this difference. Real-world studies often employ
multimodal inputs and are tuned for greater adaptability to operational conditions. Ad-
ditionally, data collected in real driving scenarios may promote better generalization and
model refinement. However, publication bias cannot be ruled out, as real-world studies
with lower performance may be underreported.

Only a few studies directly compared simulated and real-world testing using the same
models. In these cases, performance typically declined in real-world settings, indicating that
simulation-trained models may require adaptation to maintain accuracy under authentic
conditions. This observation highlights the importance of incorporating real-world testing
to ensure practical applicability.

Real-world studies also tended to discuss practical deployment constraints more thor-
oughly, such as latency, sensor performance, and usability challenges. In contrast, simulated
studies emphasized reproducibility and benchmarking under controlled conditions, which
remain valuable for early-stage development and algorithm validation.

In summary, both testing environments offer unique advantages. Simulated evalua-
tions support standardized experimentation and rapid iteration, while real-world testing
is essential to validate system performance under realistic conditions. The consistent ad-
vantage observed in real-world median performance underscores the importance of field
validation when assessing readiness for deployment.

3.4.3. Handling of False Positives and Negatives

Effective management of misclassification, particularly false positives and false nega-
tives, is essential for the reliability and acceptance of drowsiness detection systems.

False positives—cases where an alert is incorrectly triggered in a non-drowsy driver—
were a central concern for studies focused on real-time deployment. Frequent or unjustified
alerts were seen as a source of driver annoyance and could contribute to warning fatigue, ul-
timately undermining user trust. To mitigate this, several studies employed post-processing
techniques such as temporal smoothing, threshold calibration, or majority-voting mecha-
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nisms over sequential predictions to reduce spurious alerts. Models trained with balanced
datasets or using weighted loss functions were also reported to exhibit improved resistance
to false positive inflation.

False negatives—instances where a drowsy state goes undetected—were regarded as
a more critical safety risk. Several studies prioritized minimizing false negatives by tuning
model sensitivity, even at the expense of slightly lower precision. In particular, studies
based on physiological signals (e.g., EEG, ECG) showed a stronger focus on minimizing
false negatives through signal segmentation, dynamic windowing, or high-resolution
feature extraction.

Few studies quantitatively reported false positive and false negative rates, typically
presenting them through confusion matrices or derived metrics such as specificity and
sensitivity. In the limited cases where both error types were directly compared, a trade-off
was evident: models that aggressively minimized false positives often exhibited higher
false negative rates, and vice versa.

Hybrid models and those using multimodal data sources (e.g., combining behavioral
and physiological features) demonstrated more balanced error profiles. These approaches
allowed for complementary error compensation across modalities, resulting in greater
stability in classification under real-world conditions. Attention-based mechanisms and
adaptive thresholding were also used to modulate predictions based on contextual cues,
further reducing error volatility.

In summary, handling of misclassification remains a critical and nuanced challenge.
While technical strategies such as data balancing, adaptive thresholds, and ensemble
learning show promise, explicit and transparent reporting of error trade-offs is still limited.
Greater attention to the practical implications of false alerts versus missed detections is
necessary to improve both the safety and usability of deployed systems.

3.4.4. Model Adaptability to Demographics and Driving Scenarios

Adaptability to different demographic groups and driving scenarios is critical for ensur-
ing fairness, inclusiveness, and consistent model performance across real-world applications.
Some studies in this review considered variations in demographics, such as age, gender, or
ethnicity, while others explored model robustness under different driving conditions.

Approaches to demographic adaptability included performance testing across user
subgroups and incorporating demographic features during training. Although explicit
reporting of demographic-specific results was limited, some studies noted potential per-
formance differences linked to age or gender imbalances in the training data. In response,
a few models applied techniques such as data augmentation or the inclusion of auxiliary
demographic variables to improve generalization.

Regarding driving scenarios, studies explored model behavior across varying road
conditions, lighting environments, and traffic patterns. Multimodal models—particularly
those incorporating physiological and behavioral signals in addition to vehicle-based
features—were more frequently associated with consistent performance across these condi-
tions. Context-aware designs and architectures employing adaptive mechanisms or transfer
learning further contributed to environmental robustness.

Despite these advances, long-term adaptability remains underexplored. Most studies
were limited to single-session evaluations, often under constrained conditions, without
longitudinal or multi-context validation. Additionally, few studies addressed the dynamic
interplay between driver characteristics and contextual factors, such as how age or stress
levels might interact with night driving or congested environments.

In summary, while selected models demonstrated strategies to enhance adaptability,
the evidence base remains fragmented and inconsistently reported. Available data suggest
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that leveraging multimodal inputs and designing models with contextual sensitivity may
support greater robustness across populations and operational scenarios. However, the lack
of standardized evaluation protocols and limited subgroup reporting continue to challenge
broad conclusions about model generalizability in real-world use cases.

3.5. Datasets and Data Characteristics (RQ3)

This section addresses the third research question of the review: what types of datasets
are used to train and validate deep learning models for drowsiness detection in drivers?
Understanding dataset characteristics is fundamental to evaluating model performance,
generalizability, and fairness.

The following subsections provide a structured overview of the datasets employed
in the reviewed studies. Section 3.5.1 distinguishes between open-source and proprietary
datasets, highlighting trends in accessibility and usage. Section 3.5.2 examines the types of
data modalities used for model input, including vehicle-based, physiological, behavioral,
and multimodal sources. Section 3.5.3 explores dataset size and diversity, with a focus on
demographic coverage and environmental variability. Section 3.5.4 summarizes the meth-
ods used to annotate data and establish ground truth labels for model training. Together,
these aspects offer a comprehensive perspective on the empirical foundations underlying
deep learning-based drowsiness detection systems.

3.5.1. Dataset Sources

Dataset accessibility significantly influences the reproducibility, comparability, and
scalability of deep learning models. Among the reviewed studies, two primary categories
of datasets were observed: open-source datasets that are publicly accessible and proprietary
datasets developed for specific research purposes.

Open-source datasets were frequently adopted due to their availability, standardized
formats, and established benchmarks. These datasets enabled researchers to validate
models against previously reported results, contributing to comparability across studies.
Prominent examples include the NTHU-DDD, YawDD, SEED-VIG, and SADT datasets.
These collections typically offered annotated facial images, eye states, head poses, or
physiological signals such as EEG, and were collected under either controlled or semi-
naturalistic conditions. The availability of such datasets supports benchmarking and
facilitates incremental advancements in algorithm development.

However, these public datasets are not without limitations. They often exhibit con-
straints in demographic diversity, recording environments, and sensor variety, which can
reduce their applicability to broader real-world contexts. Additionally, the reuse of the
same datasets across multiple studies may introduce risks of overfitting or overestimation
of model performance when not carefully managed.

In contrast, proprietary datasets were developed to address specific experimental
needs and often featured richer multimodal content, higher temporal resolution, or tailored
task scenarios. These datasets allowed for more nuanced exploration of behavioral and
physiological signals and enabled the inclusion of emerging sensor technologies not yet
captured in public datasets. Nonetheless, the restricted accessibility of proprietary data
hinders replication and reduces the transparency of validation procedures. In many cases,
critical information regarding participant demographics, experimental protocols, or labeling
strategies was only partially reported, limiting the interpretability and generalizability
of findings.

Some studies adopted hybrid approaches by pretraining models on large-scale public
datasets and fine-tuning them using smaller proprietary collections. This strategy aimed to
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balance the strengths of open datasets with the context-specific richness of private ones,
especially when adapting models to new populations or deployment scenarios.

In summary, while open-source datasets remain essential for promoting transparency
and fostering collaboration, proprietary datasets contribute to innovation through tailored
design and sensor integration. Future progress will depend on more systematic reporting,
broader demographic coverage, and increased efforts to share high-quality data under
standardized ethical and technical frameworks.

3.5.2. Data Modalities

The type of input data used in deep learning models significantly influences their
capacity to detect drowsiness with accuracy and reliability. The reviewed studies employed
a range of data modalities, either individually or in combination, to capture relevant
indicators of driver alertness. These modalities were broadly classified into behavioral,
physiological, vehicle-based, and multimodal categories.

Behavioral data was the most commonly employed modality. Studies utilizing behav-
ioral input typically relied on facial imagery, particularly eye region monitoring, blink rates,
gaze direction, and head pose estimation. These features were extracted from in-cabin video
streams and analyzed to infer states of drowsiness. The non-invasive nature of behavioral
monitoring and its compatibility with real-time deployment contributed to its widespread
adoption. However, behavioral methods can be sensitive to lighting conditions, occlusions,
and camera positioning, which may impact their robustness in uncontrolled environments.

Physiological data constituted the second most frequent modality. This category
included biosignals such as EEG, ECG, and electrooculography (EOG). These signals are
known to provide direct insight into the neurological and cardiac states associated with
fatigue. Studies employing physiological inputs often reported high accuracy levels due to
the objective nature of these measures. Nonetheless, the need for contact-based sensors
and the potential discomfort for drivers pose significant barriers to widespread adoption in
operational settings.

Vehicle-based data, although less commonly used in isolation, encompassed indicators
such as steering patterns, lane deviation, and pedal activity. These features are typically
derived from vehicle telemetry and are valuable for long-term monitoring in real-world
contexts. Vehicle-based cues may reflect both driver-specific traits and context-dependent
variations in alertness, but they can also be influenced by factors unrelated to fatigue, such
as road geometry or traffic density.

A growing number of studies employed multimodal approaches that integrate two or
more of the aforementioned modalities. These hybrid systems aimed to enhance detection
robustness by compensating for the limitations of individual data streams. For example,
combining facial analysis with EEG signals allowed for both external and internal indicators
of drowsiness to be captured. Multimodal systems were particularly prevalent in simulator-
based experiments where sensor placement and data synchronization could be tightly
controlled. Although these setups demonstrated superior performance metrics, they also
introduced higher complexity in terms of hardware, data processing, and model integration.

In summary, the reviewed studies reveal a diverse and evolving landscape of data
modalities, each offering unique advantages and challenges. While behavioral data re-
mains the most practical for real-time deployment, physiological and vehicle-based signals
contribute valuable depth when feasible. Multimodal strategies are gaining traction as
the preferred approach for improving detection accuracy and reliability, particularly in
research contexts aiming for comprehensive modeling of driver state.
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3.5.3. Dataset Size and Diversity

The size and diversity of datasets are critical in shaping the generalizability and ro-
bustness of deep learning models. In this review, reported dataset sizes varied considerably,
ranging from a few hundred to several thousand samples. However, precise information
regarding the number of subjects and data points was frequently missing. Many studies
failed to provide a clear breakdown of how data were distributed across individuals or
conditions, making it difficult to assess data representativeness.

Section 3.4.4 previously discussed how model adaptability is influenced by demo-
graphic and environmental factors. While that subsection focused on model-level strategies
and observed performance across contexts, the present subsection turns to the composition
of the datasets themselves. It examines the foundational data that enable—or limit—
model generalizability.

Regarding demographic coverage, most datasets were developed from relatively
uniform populations, with limited variation in participant characteristics. Age, gender,
and ethnicity were often underreported or not mentioned at all. Where mentioned, datasets
typically reflected young, local populations, often comprising university students. As a result,
there is little empirical basis for evaluating model fairness or bias across demographic groups,
which limits conclusions about their potential deployment in real-world applications.

Environmental diversity in data collection was also inconsistently documented. Some
datasets captured driving in varied road types, lighting conditions, and traffic scenarios,
while others were strictly confined to controlled environments. However, the extent and
nature of these conditions were often vaguely described, with minimal detail about how
environmental variability was captured or quantified. This lack of clarity makes it difficult
to determine whether models trained on such data would perform reliably in more dynamic
or unpredictable driving environments.

A small number of studies indicated that data collection occurred over multiple
days or tasks, which may contribute to temporal variability in the dataset. Nonetheless,
longitudinal data were rare, and few datasets explicitly stated whether the same subjects
were recorded under different conditions. The absence of such temporal dimension reduces
the opportunity to train models capable of adapting to changes in driver state or behavior
over time.

While some datasets may inherently contain diverse scenarios or participant char-
acteristics, the general lack of standardized reporting undermines the ability to compare
datasets or assess the suitability of specific data sources for model training. Without de-
tailed metadata or structured documentation, it remains unclear to what extent dataset
composition supports generalizable and inclusive drowsiness detection systems.

In summary, although the reviewed studies employed datasets of varying scales and
contexts, inconsistencies in reporting demographic and environmental characteristics limit
the interpretability and transferability of their findings. This subsection complements the
discussion in Section 3.4.4 by emphasizing how dataset-level limitations—not just model-
level design—contribute to gaps in model robustness. More transparent and systematic
dataset documentation is needed to support the development of equitable deep learning
models in this domain.

3.5.4. Annotation and Ground Truth Methods

The reliability of deep learning models for drowsiness detection is closely tied to how
training data are annotated and how ground truth labels are established. The reviewed
studies employed a range of strategies reflecting both the type of input data and the context
of data collection.
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Physiological thresholds were a common approach in studies using EEG, EOG, or
ECG data. Labels were typically assigned based on defined metrics, such as increases in
theta or alpha power for EEG or variability in heart rate signals for ECG. These methods
offer objective criteria grounded in neurophysiology but are sensitive to inter-individual
variability and signal quality. Additionally, different thresholding criteria were applied
across studies, complicating direct comparisons.

Studies using behavioral data—such as video of facial expressions and eye states—
often relied on manual annotation by human raters. Labeling involved identifying observ-
able signs of drowsiness, including prolonged eye closure, yawning, gaze deviation, or
head movements. While these annotations were typically guided by pre-established rules
or clinical indicators, few studies reported inter-rater agreement or validation procedures
to ensure consistency and reliability. This lack of methodological transparency hinders the
reproducibility and comparability of results.

Subjective self-assessments using validated instruments like the Karolinska Sleepiness
Scale (KSS) were also used, particularly in simulator-based studies. Some studies combined
subjective reports with objective physiological or behavioral indicators to refine label
quality. However, differences in administration timing, scale thresholds, and respondent
interpretation introduced variability. Only a limited number of studies described calibration
efforts to align subjective and objective drowsiness markers.

Experimental task design also played a role in ground truth definition. Studies fre-
quently segmented driving sessions into predefined time blocks under the assumption that
drowsiness increased with prolonged task duration or exposure to monotonous stimuli. In
these cases, labels were often assigned based on elapsed time, with drowsiness assumed
in later stages of the experiment. While this method provided structured data labeling, it
risked overgeneralizing individual fatigue responses.

Some studies employed hybrid approaches, integrating multiple data sources—
physiological signals, expert observations, and self-reports—to triangulate driver state and
establish a more robust ground truth. These studies generally offered better alignment be-
tween physiological and behavioral manifestations of drowsiness but often lacked detailed
protocols describing how conflicts between sources were resolved.

Automation in annotation was occasionally implemented through rule-based algo-
rithms or real-time signal monitoring. However, few studies detailed the validation of
automated labeling procedures or provided benchmarks comparing them to manual an-
notation or ground truth standards. In some cases, labeling may have occurred post hoc,
without ensuring blinding to model predictions, potentially introducing confirmation bias.

Across the reviewed literature, there was a consistent lack of standardized documen-
tation regarding annotation workflows. Key elements such as annotation toolkits, rater
training, validation checks, and labeling consistency were rarely reported. This absence of
methodological rigor limits the interpretability of performance metrics derived from the
annotated data.

In summary, annotation and labeling practices in deep learning-based drowsiness de-
tection research vary widely in terms of rigor, transparency, and methodological alignment.
While some studies demonstrated innovative multi-source labeling strategies, inconsistent
documentation and limited validation reporting remain pervasive. Addressing these gaps
is critical for enabling reproducibility, enhancing model comparability, and strengthening
the empirical basis of drowsiness detection systems.

3.6. Challenges and Limitations (RQ4)

While deep learning has shown promise in enhancing drowsiness detection systems,
several challenges and limitations continue to affect the development, validation, and
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deployment of such models. The studies reviewed in this systematic analysis reveal a
wide range of technical, operational, ethical, and methodological constraints that must
be addressed to ensure the safe and effective implementation of these systems in real-
world contexts.

This section responds to the fourth research question: what are the main challenges and
limitations in developing deep learning-based drowsiness detection systems? It provides
a detailed synthesis of the major obstacles encountered in the research and development
of such systems. Section 3.6.1 focuses on technical issues related to model training and
generalization, including overfitting, limited dataset size, and challenges in achieving
robustness across diverse users and driving conditions. Section 3.6.2 examines practical
barriers to real-world deployment, such as hardware constraints, cost, and environmental
variability. Section 3.6.3 explores ethical and privacy concerns associated with the use of
personal and biometric data in driver monitoring technologies. Finally, Section 3.6.4 reviews
strategies proposed or adopted by researchers to enhance the robustness and applicability
of deep learning models, including architectural innovations, data augmentation, and
domain adaptation techniques.

By organizing these findings into distinct yet interconnected categories, this section
aims to clarify the multifaceted limitations that hinder progress in the field and to contex-
tualize the performance results discussed earlier. These insights are essential for guiding
future research directions and informing the design of more reliable and inclusive drowsi-
ness detection technologies.

3.6.1. Technical Challenges

Technical limitations were among the most frequently cited challenges across the
reviewed studies. Overfitting was a recurrent issue, particularly in models trained on
datasets with limited size or diversity. These models often demonstrated high accuracy
on training data but failed to generalize to new subjects or driving contexts, indicating
poor robustness. Overfitting was exacerbated in studies that lacked cross-validation or did
not apply regularization techniques, leading to models that captured noise or spurious
correlations specific to the training set.

Closely linked to overfitting was the broader challenge of generalization. A number
of studies reported diminished model performance when exposed to variations in driver
demographics, vehicle environments, or data acquisition conditions. For instance, changes
in lighting, background, camera angles, or driver posture introduced inconsistencies that
degraded the predictive accuracy of models not trained with sufficient variability. These
findings underscore the limitations of models developed and validated within narrowly
controlled experimental setups.

Data scarcity also emerged as a central obstacle. Although public benchmark datasets
such as NTHU-DDD and YawDD were frequently used, they typically featured constrained
scenarios and homogeneous populations, limiting their applicability to broader use cases.
Studies that collected proprietary data often produced richer multimodal inputs, but these
datasets were rarely made publicly available, thereby impeding replicability and cross-
study validation. Furthermore, many studies failed to report detailed information on
dataset balance, subject diversity, or data preprocessing pipelines, which further compli-
cates the assessment of generalizability.

A compounding issue was the inconsistency in sample sizes and annotation quality.
Several studies did not provide sufficient detail about the number of subjects, the volume
of data collected per individual, or the annotation strategy, leading to uncertainty about
the statistical reliability of the reported results. The absence of standardized evaluation
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protocols made it difficult to benchmark performance across studies or to compare outcomes
between models trained on different datasets.

In sum, the technical challenges identified in this review reveal systemic gaps in
dataset diversity, methodological rigor, and evaluation transparency. Addressing these
gaps will require coordinated efforts to develop and share inclusive datasets, adopt more
rigorous validation frameworks, and ensure that models are trained under conditions that
reflect the variability inherent in real-world driving.

3.6.2. Real-World Implementation Barriers

In addition to technical concerns, a set of practical and operational challenges con-
tinue to hinder the successful implementation of deep learning-based drowsiness detection
systems in real-world driving environments. These barriers often arise from constraints in
computational capacity, hardware integration, environmental variability, and user acceptance.

A primary challenge lies in the computational and financial cost of deployment.
High-performing models, particularly those employing deep convolutional or multimodal
architectures, often require processing capabilities that exceed what is available in typical
vehicle onboard units. While GPUs or AI-accelerated edge devices can handle such models,
their cost, size, and energy requirements limit feasibility in production-scale deployment.
These constraints are especially critical in the commercial transport sector, where economic
considerations dominate technology adoption decisions.

Hardware limitations compound this issue. Several reviewed studies relied on
laboratory-grade sensors such as multi-channel EEG systems or infrared cameras, which
are impractical for continuous in-vehicle use. When researchers substituted these for more
accessible alternatives—such as monocular cameras or wearables—the resulting drop in
data resolution and signal reliability often impacted model performance. Moreover, dis-
crepancies in sensor calibration, alignment, and synchronization between training and
deployment environments posed additional challenges for replicability and robustness.

Environmental conditions further introduce unpredictability into model behavior.
Studies showed that variations in ambient lighting, road surface, cabin configuration, or
external weather could significantly distort behavioral or physiological signals. For instance,
changes in natural light can mask facial landmarks, while vehicle motion artifacts affect
sensor stability. These variations are difficult to simulate fully in experimental setups and
remain a primary reason for performance degradation when transitioning from controlled
to real-world contexts.

System integration also emerged as a recurring barrier. For a model to be embedded
in a vehicle system, it must operate within real-time processing constraints, comply with
automotive safety regulations, and interface seamlessly with existing infotainment or
telematics platforms. Only a limited number of studies engaged with these engineering
requirements, indicating a disconnect between algorithm development and deployment
readiness. The absence of modular design standards or compatibility with automotive-
grade hardware further inhibits broader adoption.

Usability and driver acceptance are equally critical. Systems perceived as intrusive—
such as those requiring facial monitoring at close range or prolonged wearable use—may
lead to discomfort or resistance. Moreover, false positives and false alarms can reduce
driver trust, particularly if corrective alerts occur too frequently or under benign conditions.
Surprisingly, few studies systematically evaluated user feedback, ergonomic design, or
post-deployment maintenance, all of which are vital for sustainable adoption.

Together, these real-world barriers illustrate the complexity of moving from lab-
validated models to practical, in-vehicle solutions. They highlight the importance of
cross-disciplinary collaboration involving data scientists, automotive engineers, human
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factors specialists, and regulatory bodies to co-design systems that are not only technically
sound but also feasible, acceptable, and scalable in diverse transportation contexts.

3.6.3. Ethical and Privacy Considerations

Ethical and privacy concerns are increasingly relevant in the deployment of deep
learning-based drowsiness detection systems, particularly due to the sensitive nature
of the data collected and processed. Many of the reviewed studies involved the use
of physiological signals or behavioral metrics, all of which may reveal deeply personal
information about the driver. Despite this, few studies explicitly addressed the ethical
implications or compliance measures related to data handling.

One of the primary ethical concerns lies in the collection of biometric data such
as facial images, EEG signals, or heart rate information. These data types, especially
when continuously collected, raise important questions regarding informed consent, data
ownership, and the potential misuse of personal information. In some cases, studies did
not provide detailed information about consent protocols or the safeguarding of participant
anonymity, which limits transparency and raises concerns about ethical oversight.

Privacy protection is also challenged by the real-time transmission and processing
of driver data, particularly in systems integrated into cloud-based infrastructures or fleet
management platforms. Without clear encryption standards or access controls, there is
a risk of unauthorized data access or leakage. Furthermore, systems that store historical
driver behavior could be susceptible to profiling or surveillance, especially in commercial
driving settings where monitoring is often tied to performance evaluation.

A related concern is the lack of standardization in data governance practices across
studies. The absence of consistent ethical review processes, data retention policies, or
impact assessments makes it difficult to evaluate the broader societal implications of
these technologies. Only a small number of studies referred to institutional review board
approval or compliance with frameworks such as the General Data Protection Regulation
(GDPR), despite the legal and ethical importance of these protocols.

Moreover, algorithmic bias remains a largely unaddressed issue. Models trained on
demographically skewed datasets may inadvertently encode and amplify inequalities,
resulting in differential performance across subgroups. Without deliberate bias mitigation
strategies or subgroup analysis, these systems risk reinforcing systemic disparities rather
than promoting equitable safety outcomes.

In sum, while the technical promise of deep learning in drowsiness detection is signifi-
cant, its ethical deployment requires stronger commitments to privacy, transparency, and
fairness. More consistent reporting on consent procedures, data anonymization methods,
and ethical compliance is needed to align research practices with societal expectations.
Addressing these considerations is essential for fostering trust and ensuring the responsible
integration of such technologies into everyday driving contexts.

3.6.4. Strategies to Enhance Model Robustness and Real-World Applicability

In response to the diverse challenges identified throughout this review, numerous
studies proposed or adopted strategies to improve the robustness and applicability of
deep learning-based drowsiness detection systems. These strategies aimed to address
limitations related to data variability, model generalization, hardware compatibility, and
operational stability, reflecting a growing effort to transition from experimental models to
real-world applications.

One widely adopted approach involved the use of multimodal data inputs. By inte-
grating behavioral, physiological, and vehicle-based signals, researchers sought to enhance
the model’s ability to detect drowsiness under a broader range of conditions. Multimodal
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systems were generally more resilient to noise and more capable of capturing nuanced indi-
cators of fatigue that may be missed by single-source approaches. This design also allowed
models to compensate for missing or degraded data from one modality by leveraging
signals from another.

Architectural innovations also played an important role. Several studies experimented
with hybrid architectures, combining CNNs with recurrent layers such as LSTM or Gated
Recurrent Unit (GRU) to capture both spatial and temporal patterns. These hybrid de-
signs helped improve model sensitivity to dynamic driver behaviors over time. Others
introduced attention mechanisms or lightweight transformer models, aiming to balance
accuracy with computational efficiency.

To address overfitting and generalization, a number of studies employed data aug-
mentation techniques. Synthetic variations in training samples—such as flipped images,
altered brightness, or time-series perturbations—were used to increase training diversity
and reduce sensitivity to noise. Some studies also incorporated transfer learning, leveraging
pre-trained models on related tasks and fine-tuning them on driver-specific data to improve
learning efficiency and performance with smaller datasets.

Domain adaptation methods were another strategy used to bridge the gap between
training and testing conditions. These techniques included adversarial training, feature
alignment, and normalization strategies to reduce discrepancies between source and target
domains. While still relatively novel in this field, such approaches show potential for im-
proving model portability across different vehicles, environments, or demographic groups.

On the deployment front, efforts were made to reduce model size and complexity
for edge-device compatibility. Techniques such as model pruning, quantization, and
distillation enabled researchers to compress deep learning models without substantial loss
in performance. This adaptation is especially relevant for integration into real-time vehicle
systems where memory and processing power are constrained.

In addition, a few studies emphasized user-centered strategies to promote system ac-
ceptability and practical use. These included calibration routines that personalize detection
thresholds, as well as explainable AI techniques that enhance transparency in model deci-
sions. However, such approaches remain underexplored and warrant further investigation.

In summary, while challenges in real-world deployment persist, the reviewed literature
highlights a wide array of strategies to enhance model robustness and applicability. These
efforts represent a step toward building more adaptive, reliable, and scalable systems that
can be safely and effectively implemented in diverse driving environments.

4. Discussion
This section provides an integrative analysis of the main findings presented in the

results and offers a broader perspective on their implications. While the previous sections
systematically addressed each research question through descriptive and comparative
summaries, this discussion aims to interpret these results in light of existing knowledge,
methodological strengths and gaps, and the broader context of intelligent transportation
and public health.

The discussion is organized into four subsections. Section 4.1 synthesizes the key
insights obtained from the review, addressing each research question and highlighting
consistent patterns, divergences, and open issues. Section 4.2 outlines the strengths and
limitations of the systematic review itself, including methodological decisions, data avail-
ability, and scope constraints. Section 4.3 explores the potential implications of the findings
for road safety policy and regulation, particularly in relation to professional driving and
fatigue management strategies. Lastly, Section 4.4 identifies priorities for future research,
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drawing attention to knowledge gaps, underexplored themes, and promising directions for
technological and methodological development.

Together, these components provide a critical bridge between the review’s empirical
findings and its broader contributions to the field of drowsiness detection and driver safety
using deep learning models.

4.1. Key Findings

This review presents a comprehensive analysis of how deep learning models have
been applied to detect driver drowsiness, revealing a combination of technical advance-
ment, methodological diversity, and ongoing limitations. Convolutional Neural Networks
emerged as the predominant architecture, adopted in 35 studies, owing to their proficiency
in extracting spatial features from facial imagery and behavioral data. Recurrent Neural
Networks, especially LSTM models, were used in 16 studies to process time-series physio-
logical signals. Hybrid architectures combining CNN and RNN components were featured
in 12 studies, offering advantages in modeling both spatial and temporal dependencies.
Transformer-based models, though less common, appeared in six studies, pointing to a
growing interest in more flexible sequence modeling frameworks. These model choices
reflected the type of data used and the need to classify drowsy versus alert states in a
supervised learning context. While many studies targeted real-time deployment scenarios,
others focused on offline analysis for benchmarking purposes.

Performance outcomes varied across the studies, with reported accuracies ranging
from 0.732 to 0.997. Among those that disclosed both accuracy and F1-score, studies
conducted in real-world driving environments demonstrated stronger average results—
0.972 for accuracy and 0.950 for F1-score. Simulated driving environments, although
more controllable, yielded lower average metrics of 0.927 and 0.912, respectively. This
discrepancy underlines the relevance of testing under real operational conditions, despite
inherent variability. However, performance metrics were not consistently reported, with
many studies omitting precision, recall, or AUC-ROC values. Furthermore, only a small
subset addressed false positive and false negative outcomes in sufficient detail, which are
critical considerations for system reliability and driver trust.

The review also highlighted considerable variation in dataset characteristics, which
significantly influenced model development and evaluation. Publicly available datasets
such as NTHU-DDD, YawDD, SEED-VIG, and SADT were widely utilized for benchmark-
ing purposes. While they enabled cross-study comparisons, they often lacked demographic
and contextual diversity. Proprietary datasets, typically used in controlled experiments or
vehicle trials, provided more complex multimodal data—such as behavioral, physiological,
and vehicle-based inputs—but were seldom made available for replication. Behavioral data,
particularly facial and eye-related features, constituted the most common input modal-
ity, followed by EEG and ECG signals. Some studies combined modalities to increase
robustness, though the variability in dataset composition and annotation limited direct
comparison of model outcomes.

Generalization challenges emerged as a recurrent issue, especially among models
trained on narrow datasets. Overfitting was common in studies with limited sample di-
versity. Several papers cited the need to optimize algorithms for embedded, low-power
devices in order to support real-time deployment. Environmental variability—including
changes in lighting, road conditions, and driver behavior—posed additional challenges for
robust implementation. Ethical and privacy-related concerns received minimal attention,
with only a few studies addressing data protection, informed consent, or regulatory com-
pliance such as GDPR. This highlights a pressing need to strengthen ethical frameworks
for biometric monitoring.
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Despite these challenges, a number of studies proposed strategies to improve model
robustness and applicability. Approaches included the development of lightweight archi-
tectures, use of transfer learning, data augmentation techniques, and early explorations
of personalized modeling. While explainable AI and user-centered design were men-
tioned sporadically, these areas remain underdeveloped. Most efforts focused on technical
optimization rather than systemic integration or user experience.

In summary, the review captures an evolving research landscape marked by technical
progress and methodological variation, but also constrained by gaps in reporting stan-
dards, dataset representativeness, and ethical transparency. The successful deployment of
deep learning-based drowsiness detection systems will depend on balancing performance
optimization with fairness, usability, and adaptability to real-world conditions.

4.2. Strengths and Limitations of the Review

The systematic approach adopted in this review presents several strengths that en-
hance the reliability and relevance of its findings. The study adhered to PRISMA guidelines,
incorporated a broad and well-defined search strategy, and used explicit inclusion and
exclusion criteria to ensure transparency and reproducibility. Only peer-reviewed journal
articles were considered, and a structured data extraction process was applied across all
included studies. The analysis of 81 studies over a ten-year period (2015–2025) enabled the
identification of key developments and emerging trends in the field of deep learning-based
drowsiness detection.

A further strength lies in the comprehensive categorization of model architectures,
dataset characteristics, evaluation settings, and performance metrics. The comparative
analysis between simulated and real-world testing contexts provided insights into the
operational feasibility of the models under different conditions. The review also integrated
findings on annotation practices, computational constraints, and real-world deployment
issues, contributing to a more holistic understanding of the research landscape.

However, the review has important limitations that should be acknowledged. First, by
excluding studies not published in English, relevant regional literature—particularly from
countries with active local research initiatives—may have been omitted. This linguistic
restriction could skew the geographical representativeness of the evidence base.

Second, the exclusion of conference papers, technical reports, and gray literature
may have limited the scope of technological innovations captured, especially given that
many advances in machine learning are initially reported outside traditional journals. This
decision, while ensuring peer review quality, may also have contributed to a publication
bias that favors mature or successful models.

Third, the reliance on explicitly reported information significantly constrained the
depth of synthesis. Many studies did not provide key methodological details such as sample
size, demographic breakdown, annotation procedures, or computational specifications. In
several cases, essential information on model architectures, hyperparameter configurations,
and data preprocessing steps was also missing, which hinders reproducibility and makes
it difficult to compare approaches on equal terms. Inconsistent reporting of evaluation
metrics—including the omission of precision, recall, and AUC-ROC—further hampered
efforts to conduct quantitative comparisons or establish benchmarks across architectures.

Furthermore, several critical topics were underexplored in the primary literature,
including ethical safeguards, data protection protocols, and regulatory compliance. This
limited the ability of the review to draw strong conclusions about privacy risks, user
consent frameworks, or the social acceptability of drowsiness monitoring systems. Real-
world implementation factors such as long-term reliability, maintenance, and user feedback
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were also insufficiently addressed across studies, narrowing the practical applicability of
the findings.

Finally, while the review aimed to assess model adaptability across demographic
groups and driving scenarios, the lack of standardized reporting and subgroup analyses in
the original studies made it difficult to evaluate fairness or inclusiveness in a systematic
way. As a result, several findings remain interpretative rather than conclusive.

Taken together, these limitations highlight the need for improved methodological
transparency, broader inclusion criteria, and standardized evaluation protocols in future
research. Despite these constraints, the review offers a structured and comprehensive
synthesis of the current landscape, establishing a valuable foundation for guiding future
technological development, policy design, and scholarly inquiry in the field of AI-based
driver drowsiness detection.

4.3. Policy Implications

The findings of this review hold several important implications for public policy and
regulatory frameworks aimed at enhancing road safety through the integration of intelligent
driver monitoring systems. Drowsiness remains a critical and underreported factor in road
traffic incidents, particularly among long-haul and commercial drivers. The application of
deep learning models for timely and automated detection represents a promising tool for
reducing these risks.

One major implication concerns the role of regulatory bodies in facilitating the adop-
tion of fatigue detection technologies. Given the real-time detection capabilities demon-
strated in many studies, public policies could play a central role by encouraging or man-
dating the implementation of certified AI-based fatigue monitoring systems in commercial
transport fleets. Regulatory incentives, such as tax credits or insurance discounts for com-
panies that adopt approved systems, may accelerate uptake. These measures could be
integrated with broader occupational health regulations, including mandatory rest periods,
shift duration limits, and wellness programs.

Another key policy consideration is the need for standardized certification frame-
works for drowsiness detection technologies. The substantial heterogeneity observed in
model validation practices, input modalities, and performance metrics poses a challenge to
interoperability, comparability, and public trust. Establishing harmonized benchmarks for
model evaluation—aligned with industry safety standards and regulatory norms—would
provide clarity to manufacturers, fleet operators, and enforcement agencies. These stan-
dards should encompass not only performance thresholds but also data integrity, fail-safety
requirements, and user interface criteria.

The review also highlights important equity concerns that must inform policy devel-
opment. The predominance of datasets with narrow demographic or geographic scope
raises the risk of algorithmic bias and unequal safety benefits. Policymakers must advo-
cate for inclusivity in both data collection and system evaluation, ensuring that fatigue
detection models are representative of the diversity in age, gender, ethnicity, and driving
environments. Public investment in open, diverse, and ethically collected datasets could
play a pivotal role in improving fairness and performance across populations.

Ethical oversight and data governance also require greater policy attention. The use of
biometric and behavioral data for driver monitoring poses risks related to privacy, consent,
and surveillance. Policies should require explicit, informed consent for data collection and
define strict limitations on data use, retention, and sharing. Guidelines should mandate
transparency regarding how models operate, what data they collect, and how outcomes
are used in employment or legal contexts. These protections are particularly critical for
professional drivers whose livelihoods may be affected by system outputs.
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Lastly, effective policy implementation will depend on fostering collaboration between
governments, academia, technology developers, and transportation stakeholders. Pilot
programs supported by public agencies could facilitate the validation of emerging models
in real-world environments and generate evidence for regulatory refinement. Moreover,
public education campaigns and driver training initiatives can help increase awareness and
acceptance of monitoring technologies, ensuring they are perceived as tools for support
rather than control.

In sum, the review supports a multi-faceted policy response that balances innovation
with fairness, accountability, and transparency. Aligning technological development with
regulatory foresight will be essential to unlocking the full potential of deep learning systems
in promoting safer roads and healthier work conditions for professional drivers.

4.4. Future Research Directions

The findings of this review highlight several opportunities for advancing deep
learning–based drowsiness detection research. While notable technical progress has been
achieved, persistent gaps remain in generalizability, transparency, and real-world applicability.

Dataset diversity and representativeness remain critical priorities. Many high-
performing models have been trained on datasets with limited demographic or environ-
mental coverage, such as the EEG-based systems of Gao et al. [13] and Jiao et al. [14], which
relied on small, homogeneous participant groups. Broader demographic representation—
encompassing age, gender, ethnicity, and driving contexts—is essential to mitigate algorith-
mic bias. Recent multimodal datasets, such as those collected by C. He et al. [15], show the
potential for more inclusive data by combining physiological, behavioral, and vehicle-based
signals in operational settings. Public investment in large-scale, diverse, ethically sourced,
and open-access datasets could accelerate progress in this area.

Longitudinal and context-rich evaluations are also underexplored. Most studies in
this review, including the real-world system by Chew et al. [16], assessed performance over
short sessions. Extending evaluations over days or weeks would enable the development
of adaptive thresholds tailored to individual drivers, potentially reducing false positives
and enhancing trust. Moreover, Hu et al. [17] demonstrated that incorporating varied
lighting and road conditions into testing can support multi-context validation, a practice
that should be expanded.

Real-world deployment and edge optimization need further attention. Lightweight
implementations, such as those by Nguyen et al. [18] and Soman et al. [19], show that
real-time inference on embedded devices is achievable. However, large-scale validation in
operational fleets remains rare. Field trials, like those conducted by Yu et al. [20], provide
partial insight into performance under operational constraints but highlight the need for
systematic evaluation of model stability under hardware variability, network interruptions,
and environmental noise.

Finally, ethical safeguards and privacy-preserving approaches must be embedded
from the outset. Few studies, including Florez et al. [21] and Hu et al. [17], explicitly
described consent protocols or secure data handling despite collecting sensitive biometric
information. Advances in privacy-preserving machine learning, such as federated learning,
could be adapted for drowsiness detection to minimize raw data transmission without
compromising model performance.

In summary, future research should prioritize (i) inclusive and diverse datasets, (ii) lon-
gitudinal, multi-context evaluations, (iii) real-world deployment strategies, and (iv) built-in
ethical safeguards. Achieving these goals will require anchoring technical innovation in
human-centered design to ensure that experimental models evolve into scalable, trustwor-
thy systems capable of improving road safety worldwide.
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5. Conclusions
This systematic review provides a comprehensive synthesis of peer-reviewed studies

investigating the use of deep learning models for driver drowsiness detection in both
simulated and real-world contexts. Drawing on 81 eligible studies published between
2015 and 2025, the review analyzes key aspects of model development, evaluation, and
applicability, offering critical insights into the current state of research and practice in
this field.

The findings indicate that a wide range of DL architectures—most notably CNNs,
RNNs, LSTM networks, and hybrid models—have been employed to detect drowsiness
based on behavioral, physiological, and multimodal inputs. While many models report
high accuracy and F1-score values, especially in controlled environments, real-world perfor-
mance remains dependent on data diversity, input robustness, and contextual adaptability.

Datasets used to train and validate these models vary considerably in size, modality,
and demographic representation. Public datasets support comparability but often lack
environmental realism and diversity. Proprietary datasets offer richer data streams but are
seldom shared, limiting reproducibility. Moreover, inconsistencies in ground truth labeling,
limited reporting on annotation procedures, and insufficient subgroup analysis constrain
the generalizability and fairness of many models.

Technical and operational challenges persist, including overfitting, limited model
interpretability, computational constraints, and ethical concerns related to privacy and
user consent. Although several studies propose solutions such as multimodal fusion,
lightweight architectures, transfer learning, and attention mechanisms, deployment in real-
world driving remains limited. Ethical safeguards, user-centered design, and standardized
evaluation protocols are still underdeveloped.

In conclusion, while deep learning holds considerable promise for enhancing driver
safety through automated drowsiness detection, further progress depends on addressing
key methodological, practical, and ethical barriers. Future research should prioritize the
development of diverse and inclusive datasets, longitudinal and real-world validations,
explainable AI strategies, and privacy-preserving frameworks. Advancing in these areas is
essential to translate experimental models into effective, trustworthy, and scalable systems
for use in intelligent transportation and occupational safety.
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ADAS Advanced driver assistance system
AI Artificial intelligence
AUC-ROC Area under the receiver operating characteristic curve
CNN Convolutional neural network
DL Deep learning
ECG Electrocardiogram
EEG Electroencephalogram
EOG Electrooculography
ESRA E-survey of road users’ attitudes
GDPR General data protection regulation
GPU Graphics processing unit
GRU Gated recurrent unit
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LSTM Long short-term memory
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RNN Recurrent neural network
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Appendix A
The Appendix A includes three supplementary tables that provide additional detail on

the reviewed studies. Table A1 summarizes each study’s authorship, country of origin, driv-
ing context, deep learning model type, and inference mode (real-time or offline). Table A2
compiles reported performance metrics, including accuracy, precision, recall, F1-score, and
AUC-ROC, enabling comparisons across studies. Table A3 details the datasets used, the
type of data collected (e.g., behavioral, physiological), technical challenges encountered,
and recommendations proposed to improve model robustness and real-world applicability.

Table A1. Summary of study contexts and model attributes.

Study Country Driving Context DL Model Tye(s) Inference Mode

Adhithyaa et al.
(2023) [22] India Simulated Multistage Adaptive 3D-CNN Real-time

Ahmed et al.
(2022) [23] India Simulated Ensemble CNN with two

InceptionV3 modules Real-time

Akrout & Fakhfakh
(2023) [24] Saudi Arabia Simulated MobileNetV3 + Deep LSTM Real-time

Alameen &
Alhothali
(2023) [25]

Saudi Arabia Simulated 3D-CNN + LSTM Real-time

Alghanim et al.
(2024) [26] Jordan Simulated Inception-ResNetV2 (hybrid

CNN with dilated convolutions) Offline

Alguindigue et al.
(2024) [27] Canada Simulated SNN, 1D-CNN, CRNN Real-time

Almazroi et al.
(2023) [28] Saudi Arabia Simulated MobileNetV3 + SSD + CNN Real-time
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Table A1. Cont.

Study Country Driving Context DL Model Tye(s) Inference Mode

Anber et al.
(2022) [29] Saudi Arabia Simulated AlexNet (fine-tuned and feature

extractor) + SVM + NMF Offline

Ansari et al.
(2022) [30] Australia Simulated reLU-BiLSTM Offline

Arefnezhad et al.
(2020) [31] Austria Simulated CNN, CNN-LSTM, CNN-GRU Offline

Bearly & Chitra
(2024) [32] India Simulated

3DDGAN-TLALSTM (3D
Dependent GAN + Three-Level

Attention LSTM)
Offline

Bekhouche et al.
(2022) [33] France Simulated ResNet-50 + FCFS + SVM Offline

Benmohamed &
Zarzour (2024) [34] Algeria Simulated

AlexNet (global features) +
LSTM + handcrafted structural

features
Offline

J. Chen, Wang,
Wang et al.
(2022) [35]

China Simulated CNN with transfer learning
(AlexNet, ResNet18) Offline

J. Chen et al.
(2021) [36] China Real-world 12-layer ConvNet (end-to-end

CNN) Offline

J. Chen, Wang, He
et al. (2022) [37] China Real-world

CNN (6 architectures tested)
using PLI-based functional brain

network images
Offline

C. Chen et al.
(2023) [38] China Simulated

SACC-CapsNet (Capsule
Network with temporal-channel

and channel-connectivity
attention)

Offline

Chew et al.
(2024) [16] Malaysia Real-world CNN (ResNet + DenseNet) +

rPPG (HR monitoring) Real-time

Civik & Yuzgec
(2023) [39] Turkey Real-world CNN (eye model + mouth

model) Real-time

Cui et al.
(2022) [40] Singapore Simulated CNN (custom, compact) Offline

Ding et al.
(2024) [41] United States Simulated Few-shot attention-based neural

network Offline

Dua et al.
(2021) [42] India Simulated AlexNet, VGG-FaceNet,

FlowImageNet, ResNet Offline

Ebrahimian et al.
(2022) [43] Finland Simulated CNN, CNN-LSTM Offline

Fa et al. (2023) [44] China Simulated
MS-STAGCN (Multiscale

Spatio-Temporal Attention
Graph Convolutional Network)

Real-time

X. Feng, Guo et al.
(2024) [45] China Simulated ID3RSNet (interpretable residual

shrinkage network) Real-time

X. Feng, Dai et al.
(2025) [46] China Simulated

PASAN-CA
(Pseudo-label-assisted

subdomain adaptation network
with coordinate attention)

Real-time

W. Feng et al.
(2025) [47] China Simulated

Separable CNN +
Gumbel-Softmax channel

selection
Real-time

Florez et al.
(2023) [21] Peru Real-world InceptionV3, VGG16,

ResNet50V2 (Transfer Learning) Real-time

Gao et al.
(2019) [13] China Simulated Recurrence Network + CNN

(RN-CNN) Offline
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Guo & Markoni
(2019) [48] Taiwan Simulated Hybrid CNN + LSTM Offline

C. He et al.
(2024) [15] China Real-world Attention-BiLSTM Real-time

H. He et al.
(2020) [49] China Real-world

Two-Stage CNN
(YOLOv3-inspired detection +

State Recognition Network)
Real-time

L. He et al.
(2024) [50] China Simulated

ARMFCN-LSTM,
GARMFCN-LSTM (CNN +

LSTM + attention + WGAN-GP)
Offline

Nguyen et al.
(2023) [18] South Korea Simulated MLP, CNN Real-time

Hu et al. (2024) [17] China Real-world
STFN-BRPS (CNN-BiLSTM +

GCN + Channel Attention
Fusion)

Offline and
pseudo-online

Huang et al.
(2022) [51] China Simulated

RF-DCM (CNN with Feature
Recalibration and Fusion +

LSTM)
Real-time

Hultman et al.
(2021) [52] Sweden Real-world and

simulated CNN-LSTM Offline

Iwamoto et al.
(2021) [53] Japan Simulated LSTM-Autoencoder Offline

Jamshidi et al.
(2021) [54] Iran Simulated

Hierarchical Deep Neural
Network (ResNet + VGG16 +

LSTM)
Real-time

Jarndal et al.
(2025) [55]

United Arab
Emirates Real-world Vision Transformers (ViT) Real-time

Jia et al. (2022) [56] China Simulated M1-FDNet + M2-PENet +
M3-SJNet + MF-Algorithm Real-time

Jiao & Jiang
(2022) [57] China Simulated Bimodal-LSTM Offline

Jiao et al.
(2020) [14] China Simulated LSTM + CWGAN Offline

Jiao et al.
(2023) [58] China Simulated MS-1D-CNN (Multi-scale 1D

CNN) Offline

Kielty et al.
(2023) [59] Ireland Simulated CNN + Self-Attention + BiLSTM Real-time

Kır Savaş &
Becerikli (2022) [60] Turkey Real-world and

simulated Deep Belief Network (DBN) Offline

Kumar et al.
(2023) [61] India Simulated Modified InceptionV3 + LSTM Offline

Lamaazi et al.
(2023) [62]

United Arab
Emirates Real-world

VGG16-based CNN
(face/eye/mouth) + two-layer

LSTM (driving behavior)
Real-time

Latreche et al.
(2025) [63] Algeria Simulated

CNN (optimized) + Hybrid ML
classifiers (CNN-SVM, CNN-RF,

etc.)
Offline

Q. Li et al.
(2024) [64] United States Simulated FD-LiteNet (NAS-derived CNN) Offline

T. Li & Li
(2024) [65] China Simulated

PFLD + ViT + LSTM
(multi-granularity temporal

model)
Offline

Lin et al. (2025) [66] China Simulated CNN Offline
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Majeed et al.
(2023) [67] Pakistan Simulated CNN, CNN-RNN Offline

Mate et al.
(2024) [68] India Simulated

VGG19, ResNet50V2,
MobileNetV2, Xception,

InceptionV3, DenseNet169,
InceptionResNetV2

Offline

Min et al.
(2023) [69] China Simulated SVM (linear, RBF), BiLSTM Real-time

Mukherjee & Roy
(2024) [70] India Simulated Stacked Autoencoder + TLSTM +

Attention mechanism Offline

Nandyal &
Sharanabasappa

(2024) [71]
India Simulated CNN-EFF-ResNet 18 Offline

Obaidan et al.
(2024) [72] Saudi Arabia Simulated Deep Multi-Scale CNN Real-time

Paulo et al.
(2021) [73] Portugal Simulated CNN (custom, shallow, single

conv. layer) Offline

Peng et al.
(2024) [74] China Simulated 3D-CNN (video) + 1D-CNN

(signals) + Fusion network Real-time

Priyanka et al.
(2024) [75] India Simulated CNN + LSTM Offline

Quddus et al.
(2021) [76] Canada Simulated R-LSTM and C-LSTM (Recurrent

and Convolutional LSTM) Offline

Ramzan et al.
(2024) [77] Pakistan Real-world

Custom 30-layer CNN (CDLM) +
PCA + HOG + ML classifiers

(XGBoost, SVM, RF)
Real-time

Sedik et al.
(2023) [78] Saudi Arabia Real-world 3D CNN, 2D CNN, SVM, RF, DT,

KNN, QDA, MLP, LR Offline

Shalash (2021) [79] Egypt Simulated CNN (custom, 18-layer
architecture) Offline

Sharanabasappa &
Nandyal (2022) [80] India Simulated

Ensemble Learning (DT, KNN,
ANN, SVM) with handcrafted
features and ReliefF, Infinite,
Correlation, Term Variance

Offline

Sohail et al.
(2024) [81] Pakistan Real-world Custom CNN architecture Real-time

Soman et al.
(2024) [19] India Simulated CNN-LSTM hybrid Real-time

Sun et al.
(2023) [82] South Korea Simulated Facial Feature Fusion CNN

(FFF-CNN) Real-time

Tang et al.
(2024) [83] China Simulated

MSCNN + CAM
(Attention-Guided Multiscale

CNN)
Offline

Turki et al.
(2024) [84] Tunisia Real-world VGG16, VGG19, ResNet50

(Transfer Learning) Real-time

Vijaypriya & Uma
(2023) [85] India Real-world and

simulated

Multi-Scale CNN with Flamingo
Search Optimization (MCNN +

FSA)
Real-time

Wang et al.
(2025) [86] China Simulated CNN-LSTM with multi-feature

fusion (RWECN + DE + SQ) Offline

Wijnands et al.
(2020) [87] Australia Simulated Depthwise separable 3D CNN Real-time

H. Yang et al.
(2021) [88] China Simulated 3D Convolution + BiLSTM

(3D-LTS) Offline
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E. Yang & Yi
(2024) [89] South Korea Simulated ShuffleNet + ELM Real-time

K. Yang et al.
(2025) [90] China Simulated

Adaptive multi-branch CNN
(adMBCNN: CNN + handcrafted

features + functional network)
Offline

You et al.
(2019) [91] China Simulated

Deep Cascaded CNN (DCCNN)
+ SVM classifier (custom

EAR-based)
Real-time

Yu et al. (2024) [20] China Real-world LSTM Offline
Zeghlache et al.

(2022) [92] France Simulated Bayesian LSTM Autoencoder +
XGBoost Offline

Zhang et al.
(2023) [93] China Simulated Multi-granularity CNN + LSTM

(LMDF) Real-time

Table A2. Reported model performance metrics.

Study Accuracy Precision (PPV) Recall (Sensitivity) F1-Score AUC-ROC

Adhithyaa et al.
(2023) [22] 0.774 NR NR 0.781 0.8005

Ahmed et al.
(2022) [23] 0.971 NR NR NR NR

Akrout & Fakhfakh
(2023) [24] 0.984

0.929 (YawDD), 0.956
(DEAP), 0.984

(MiraclHB)

0.933 (YawDD), 0.962
(DEAP), 0.984

(MiraclHB)

0.931 (YawDD), 0.959
(DEAP), 0.984

(MiraclHB)
NR

Alameen &
Alhothali
(2023) [25]

0.96 (YawDD), 0.93
(Side-3MDAD), 0.90

(Front-3MDAD)

0.93 (YawDD), 0.90
(Side-3MDAD), 0.90

(Front-3MDAD)

1.00 (YawDD), 0.95
(Side-3MDAD), 0.90

(Front-3MDAD)

0.96 (YawDD), 0.93
(Side-3MDAD), 0.90

(Front-3MDAD)
NR

Alghanim et al.
(2024) [26]

0.9887 (Figshare),
0.8273 (SEED-VIG) NR NR NR NR

Alguindigue et al.
(2024) [27]

0.9828 (HRV), 0.9632
(EDA), 0.90 (Eye)

0.9828 (HRV), 0.9632
(EDA), 0.90 (Eye)

0.98 (HRV), 0.96 (EDA),
0.90 (Eye) 0.98 (HRV), 0.96 (EDA) NR

Almazroi et al.
(2023) [28] 0.97 0.992 0.994 0.997 NR

Anber et al.
(2022) [29]

0.957 (Transfer
Learning), 0.9965

(Hybrid)

0.957 (Transfer
Learning), 0.9965

(Hybrid)

0.958 (Transfer
Learning), 0.9965

(Hybrid)

0.958 (Transfer
Learning), 0.9965

(Hybrid)
NR

Ansari et al.
(2022) [30]

0.976 (Subject1), 0.979
(Subject2) 0.9738 0.9754 0.9746 NR

Arefnezhad et al.
(2020) [31] 0.9504 (CNN-LSTM) 0.95 (CNN-LSTM) 0.94 (CNN-LSTM) 0.94 (CNN-LSTM) NR

Bearly & Chitra
(2024) [32] 0.9182 NR 0.913 NR NR

Bekhouche et al.
(2022) [33] 0.8763 NR NR 0.8641 NR

Benmohamed &
Zarzour (2024) [34] 0.9012 NR NR NR NR

J. Chen, Wang,
Wang et al.
(2022) [35]

0.9844 (AlexNet
relu4), 0.9313
(ResNet18)

0.9680 (AlexNet
relu4), 0.9114
(ResNet18)

1.000 (AlexNet relu4),
0.9474 (ResNet18) NR NR

J. Chen et al.
(2021) [36] 0.9702 0.9674 0.9776 0.9719 NR

J. Chen, Wang, He
et al. (2022) [37] 0.954 (Model 4) 0.955 (Model 4) 0.939 (Model 4) 0.947 (Model 4) 0.9953 (Model 4)

C. Chen et al.
(2023) [38]

0.9417 (session 1),
0.9059 (session 2) NR 0.9591 (session 1),

0.9382 (session 2)
0.9594 (session 1),
0.9399 (session 2) NR

Chew et al.
(2024) [16] 0.9421 NR NR 0.97 NR

Civik & Yuzgec
(2023) [39] 0.96 0.8333 1.00 0.9091 NR

Cui et al.
(2022) [40] 0.7322 NR NR NR NR

Ding et al.
(2024) [41] 0.86 NR NR 0.86 NR
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Dua et al.
(2021) [42] 0.8500 0.8630 0.8200 0.8409 NR

Ebrahimian et al.
(2022) [43]

0.91 (3-level), 0.67
(5-level)

0.87 (3-level), 0.66
(5-level)

0.87 (3-level), 0.67
(5-level) NR NR

Fa et al. (2023) [44] 0.924 0.924 0.924 0.924 NR
X. Feng, Guo et al.

(2024) [45]
0.7472 (unbalanced),

0.7716 (balanced) NR NR 0.7127 (unbalanced),
0.7717 (balanced) NR

X. Feng, Dai et al.
(2025) [46]

0.8585 (SADT), 0.9465
(SEED-VIG) NR NR NR NR

W. Feng et al.
(2025) [47] 0.8084 0.8601 0.7448 0.7965 NR

Florez et al.
(2023) [21]

0.9927 (InceptionV3),
0.9939 (VGG16),

0.9971 (ResNet50V2)

0.9957 (InceptionV3),
0.9941 (VGG16),

0.9994 (ResNet50V2)

0.9908 (InceptionV3),
0.9937 (VGG16), 0.9947

(ResNet50V2)

0.9927 (InceptionV3),
0.9939 (VGG16), 0.9971

(ResNet50V2)
NR

Gao et al.
(2019) [13] 0.9295 NR NR NR NR

Guo & Markoni
(2019) [48] 0.8485 NR NR NR NR

C. He et al.
(2024) [15] 0.9921 0.8444 0.8201 0.8321 NR

H. He et al.
(2020) [49] 0.947 NR NR NR NR

L. He et al.
(2024) [50]

0.9584
(ARMFCN-LSTM),
0.8470 (GARMFCN-

LSTM)

0.98
(GARMFCN-LSTM),

0.93
(ARMFCN-LSTM)

0.97
(GARMFCN-LSTM),

0.81 (ARMFCN-LSTM)

0.97
(GARMFCN-LSTM),

0.85 (ARMFCN-LSTM)

1.00 (GARMFCN-
LSTM), 0.96

(ARMFCN-LSTM)

Nguyen et al.
(2023) [18]

0.9487 (MLP), 0.9624
(CNN) NR 0.9624 (MLP), 0.9718

(CNN)
0.9497 (MLP), 0.9626

(CNN) NR

Hu et al. (2024) [17] 0.9243 0.9152 0.9289 0.927 0.957
Huang et al.
(2022) [51] NR NR NR 0.8942 NR

Hultman et al.
(2021) [52] 0.82 NR NR NR NR

Iwamoto et al.
(2021) [53] NR NR 0.81 NR 0.88

Jamshidi et al.
(2021) [54] 0.8719 NR NR NR NR

Jarndal et al.
(2025) [55]

0.9889 (NTHU-DDD),
0.994 (UTA-RLDD) NR NR NR NR

Jia et al. (2022) [56] 0.978 NR NR NR NR
Jiao & Jiang
(2022) [57]

0.969 (HEOG +
HSUM)

0.634 (HEOG +
HSUM) 0.978 (HEOG + HSUM) 0.765 (HEOG + HSUM) NR

Jiao et al.
(2020) [14] 0.9814 NR NR 0.946 NR

Jiao et al.
(2023) [58] 0.993 0.989 0.995 0.991 NR

Kielty et al.
(2023) [59] NR 0.959 (internal test),

0.899 (YawDD)
0.947 (internal test),

0.910 (YawDD)
0.953 (internal test),

0.904 (YawDD) NR

Kır Savaş &
Becerikli (2022) [60] 0.86 NR NR NR NR

Kumar et al.
(2023) [61] 0.9136 0.74 0.92 0.82 NR

Lamaazi et al.
(2023) [62]

0.973 (CNN-eye),
0.982 (CNN-mouth),

0.93 (LSTM)
0.93 (LSTM) 0.89 (LSTM) 0.91 (LSTM) NR

Latreche et al.
(2025) [63] 0.99 (CNN-SVM) 0.98 (CNN-SVM) 0.99 (CNN-SVM) 0.99 (CNN-SVM) 0.99 (CNN-SVM)

Q. Li et al.
(2024) [64]

0.9705 (FD-LiteNet1),
0.9972 (FD-LiteNet2) NR NR NR NR

T. Li & Li
(2024) [65] 0.9315 NR NR NR NR

Lin et al. (2025) [66] 0.8756 0.9169 0.8995 0.9016 NR
Majeed et al.
(2023) [67]

0.9669 (CNN-2),
0.9564 (CNN-RNN)

0.9569 (CNN-2),
0.9541 (CNN-RNN)

0.9558 (CNN-2), 0.9186
(CNN-RNN)

0.9563 (CNN-2), 0.9360
(CNN-RNN) NR

Mate et al.
(2024) [68] 0.9651 (VGG19) 0.9814 (VGG19) 0.9536 (VGG19) 0.9673 (VGG19) NR

Min et al.
(2023) [69]

0.9941 (linear), 0.7449
(RBF), 0.7365

(BiLSTM)
NR 0.9897 (linear), 0.6170

(RBF), 0.7404 (BiLSTM)
0.9900 (linear), 0.5933

(RBF), 0.6630 (BiLSTM)
0.692 (RBF), 0.704

(BiLSTM)
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Mukherjee & Roy
(2024) [70] 0.9863 0.986 0.986 0.983 NR

Nandyal &
Sharanabasappa

(2024) [71]
0.9130 NR 0.9210 NR NR

Obaidan et al.
(2024) [72] 0.9703 0.9553 0.9554 0.9553 NR

Paulo et al.
(2021) [73] 0.7587 NR NR NR NR

Peng et al.
(2024) [74] 0.9315 NR 0.9171 NR NR

Priyanka et al.
(2024) [75] 0.9600 0.9500 0.9500 0.9500 NR

Quddus et al.
(2021) [76]

0.8797 (R-LSTM),
0.9787 (C-LSTM) NR 0.9531 (R-LSTM), 0.9941

(C-LSTM) NR NR

Ramzan et al.
(2024) [77]

0.997 (CNN), 0.982
(Hybrid), 0.984 (ML

with XGBoost)

0.998 (CNN), 0.726
(Hybrid), 0.985 (ML

with XGBoost)

0.999 (CNN), 0.861
(Hybrid), 0.985 (ML

with XGBoost)

0.992 (CNN), 0.787
(Hybrid), 0.985 (ML

with XGBoost)
NR

Sedik et al.
(2023) [78]

0.98 (3D CNN on
Combined Dataset)

0.98 (3D CNN on
Combined Dataset)

0.98 (3D CNN on
Combined Dataset)

0.98 (3D CNN on
Combined Dataset) NR

Shalash (2021) [79] 0.9436 (FP1), 0.9257
(T3), 0.9302 (Oz) NR NR NR 0.9798 (FP1), 0.97

(T3), 0.9746 (Oz)
Sharanabasappa &
Nandyal (2022) [80] 0.9419 NR 0.9858 0.9764 NR

Sohail et al.
(2024) [81] 0.950 NR 0.940 NR NR

Soman et al.
(2024) [19] 0.98 0.95 0.93 0.94 0.99

Sun et al.
(2023) [82]

0.9489 (DFD), 0.9835
(CEW) NR NR 0.9479 (DFD), 0.9832

(CEW)
0.9882 (DFD),
0.9979 (CEW)

Tang et al.
(2024) [83] 0.905 0.867 NR 0.824 NR

Turki et al.
(2024) [84]

0.9722 (VGG16),
0.9630 (VGG19),

0.9838 (ResNet50)

0.9724 (VGG16),
0.9658 (VGG19),

0.9842 (ResNet50)

0.9720 (VGG16), 0.9624
(VGG19), 0.9837

(ResNet50)

0.9722 (VGG16), 0.9641
(VGG19), 0.9839

(ResNet50)
NR

Vijaypriya & Uma
(2023) [85]

0.9838 (YAWDD),
0.9826 (NTHU-DDD)

0.9707 (YAWDD),
0.9945 (NTHU-DDD)

0.9785 (YAWDD),
0.9811 (NTHU-DDD)

0.9746 (YAWDD),
0.9878 (NTHU-DDD) NR

Wang et al.
(2025) [86]

0.9657 (SEED-VIG);
0.9923 (Mendeley) 0.9601 0.9512 0.9554 NR

Wijnands et al.
(2020) [87] 0.739 NR NR NR NR

H. Yang et al.
(2021) [88]

0.834 (YawDDR);
0.805 (MFAY) NR NR NR NR

E. Yang & Yi
(2024) [89] 0.9705 0.9587 0.9269 0.9553 0.9705

K. Yang et al.
(2025) [90]

0.9602 (SEED-VIG),
0.9184 (Cui)

0.9514 (SEED-VIG),
0.9250 (Cui)

0.9241 (SEED-VIG),
0.9117 (Cui)

0.9351 (SEED-VIG),
0.9179 (Cui) NR

You et al.
(2019) [91] 0.948 NR NR NR NR

Yu et al. (2024) [20] 0.9736 0.9781 0.9778 0.9780 0.99
Zeghlache et al.

(2022) [92] NR 0.84 0.75 0.76 NR

Zhang et al.
(2023) [93] 0.9005 NR NR NR NR

Note: NR represents not reported.

Table A3. Dataset characteristics and implementation challenges.

Study Dataset Source Data Type Technical Challenges Recommendations

Adhithyaa et al.
(2023) [22] Open-source + proprietary Behavioral (facial

landmarks)

Hardware constraints,
facial region variability,

lighting changes

Adaptive architecture
(fusion and sub-models)

reduces overfitting;
augmentation and

pyramid input improve
stability
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Table A3. Cont.

Study Dataset Source Data Type Technical Challenges Recommendations

Ahmed et al. (2022) [23] Open-source
Behavioral (facial

landmarks: eyes and
mouth regions)

Lighting variation, facial
occlusion, smiling

confused with eye closure

Facial subsampling and
weighted ensemble

improved robustness and
reduced false detections

Akrout & Fakhfakh
(2023) [24] Open-source + proprietary

Behavioral (facial
landmarks: iris, eyelids,

head pose)

Lighting variation, facial
occlusion, fatigue state

subjectivity

Iris normalization,
MediaPipe landmarks,
multi-source feature

fusion improved
robustness

Alameen & Alhothali
(2023) [25] Open-source Behavioral (RGB video)

Illumination variance;
distractions from

background

BN layer placement affects
generalization per dataset

Alghanim et al. (2024) [26] Open-source Physiological (EEG
spectrogram images)

Nonstationarity of EEG;
data augmentation not

fully effective; high
training time

Use of Inception and
dilated ResNet blocks;

30–50% overlap improves
robustness

Alguindigue et al.
(2024) [27] Proprietary Physiological (HRV, EDA),

Behavioral (Eye tracking)

Class imbalance
(especially in Eye model);

device calibration

Use ensemble methods;
improve minority class

detection

Almazroi et al. (2023) [28] Proprietary
Behavioral (facial

landmarks: eye, mouth;
objects; seatbelt use)

Occlusion, mouth covered
by hand, low-light

performance, alert timing
threshold sensitivity

Eye/mouth ratio and
MobileNet SSD

integration improves
accuracy and speed

Anber et al. (2022) [29] Open-source

Behavioral (head position,
mouth movement;

face-based behavioral
cues)

Lighting sensitivity; eye
occlusion; limited
generalizability

Combining AlexNet with
NMF and SVM improves
performance over transfer

learning alone

Ansari et al. (2022) [30] Proprietary Behavioral (head posture)

Limited dataset;
subjectivity in labeling;

variability in fatigue
behavior

Future use of smart seats
and clothing; address data

limitations with
unsupervised clustering

Arefnezhad et al.
(2020) [31] Proprietary

Vehicle-based (steering
wheel angle, velocity, yaw

rate, lateral deviation,
acceleration)

Noisy signals; high
intra-class variability;

difficult to differentiate
moderate vs. extreme

drowsiness

Use of CNN and RNN
improves temporal

modeling and detection
accuracy

Bearly & Chitra (2024) [32] Open-source
Behavioral (face: eyes,
mouth, head position;

RGB/NIR)

Noise in individual frame
decisions; resolved using

temporal smoothing

Combining GAN with
multilevel attention

improved robustness and
reduced false alarms

Bekhouche et al.
(2022) [33] Open-source Behavioral (video frames)

Class imbalance; scenario
dependency; facial
variation at night

Use of FCFS reduced
features from 4096 to ~253
with better performance

Benmohamed & Zarzour
(2024) [34] Open-source

Behavioral (facial
structural metrics and

CNN features)

Low quality of IR video at
night reduces feature
extraction reliability

Combining CNN and
structural fusion; frame
aggregation improved

detection

J. Chen, Wang, Wang et al.
(2022) [35] Proprietary Physiological (EEG phase

coherence images)
Small dataset, inter-subject
variability, data imbalance

Use of relu4 layer and
SVM improves results;
extract features from

shallow layers

J. Chen et al. (2021) [36] Proprietary
Physiological

(EEG—14-channel Emotiv
EPOC, 128 Hz)

Signal noise, inter-subject
variability, small sample

size

End-to-end learning on
raw EEG improved
generalization and

accuracy versus
handcrafted features

J. Chen, Wang, He et al.
(2022) [37] Proprietary

Physiological (EEG—14
channels, Emotiv EPOC,

128 Hz)

EEG drift, signal noise,
intra-subject variability,

small dataset

Use of PLI adjacency
matrices and

multi-frequency band
fusion improved CNN

performance

C. Chen et al. (2023) [38] Proprietary
Physiological

(EEG—24-channel
wireless dry EEG, 250 Hz)

EEG noise, inter-subject
variability, data correlation
due to continuous signals

Combining
temporal-channel

attention, covariance
matrix, and capsule
routing improved
generalization and

interpretability
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Table A3. Cont.

Study Dataset Source Data Type Technical Challenges Recommendations

Chew et al. (2024) [16] Open-source + proprietary
Multimodal (behavioral:

face images; physiological:
rPPG, HR)

Lighting sensitivity;
camera angle dependency;

noise in rPPG signal

Use of top-center camera
angle and 4K webcam;

optimize for embedded
deployment

Civik & Yuzgec (2023) [39] Open-source
Behavioral (facial

landmarks: eyes and
mouth)

Lighting variation, eye
occlusion, mouth

coverage, system delay
under low light

Separate CNNs for eye
and mouth improve
detection of complex

fatigue states

Cui et al. (2022) [40] Open-source
Physiological

(single-channel EEG from
Oz)

EEG variability, low SNR,
inter-subject drift

Use of GAP layer, CAM
visualization to enhance

interpretability

Ding et al. (2024) [41] Open-source Physiological (EEG)

Limited training data,
subject variability,
anomaly detection,
similarity measures

Use of attention-based
feature extraction and

anomaly detection block
improves robustness

Dua et al. (2021) [42] Open-source Behavioral (RGB video
frames and optical flow)

Class imbalance; occlusion
from sunglasses or hand

gestures

Use of ensemble to
balance strengths of each

model

Ebrahimian et al.
(2022) [43] Proprietary

Physiological (ECG,
respiration via thermal

imaging)

Signal variability,
mechanical latency in

physiological response,
labeling subjectivity

Multi-signal fusion (HRV,
PSD, RR); CNN-LSTM

superior to CNN in most
tasks

Fa et al. (2023) [44] Open-source Behavioral (facial
landmarks via OpenPose)

Occlusion, inter-subject
variation, facial landmark

misalignment

Multi-scale graph
aggregation and

coordinate attention
improved

spatial-temporal
robustness

X. Feng, Guo et al.
(2024) [45] Open-source Physiological (EEG—Oz

channel)

Signal noise, inter-subject
variability, cross-subject
generalization challenge

Adaptive thresholding,
GAP, and ECAM modules
enhanced robustness and

interpretability

X. Feng, Dai et al.
(2025) [46] Open-source

Physiological (EEG—30
channels for SADT, 17

channels for SEED-VIG)

EEG noise, EMG
interference, inter-subject

variability

Coordinate attention,
LMMD, and curriculum

pseudo labeling improved
generalization across

subjects

W. Feng et al. (2025) [47] Open-source Physiological (EEG—30
channels, 128 Hz)

Channel duplication,
subject variability, noisy

signals

Gumbel-Softmax
improves channel

selection; separable CNN
reduces complexity and

increases accuracy

Florez et al. (2023) [21] Open-source Behavioral (eye region
video frames)

Small dataset; limited
generalization; image

redundancy

ROI correction using
MediaPipe and CNN;

Grad-CAM for
interpretability

Gao et al. (2019) [13] Proprietary Physiological
(multichannel EEG)

EEG autocorrelation;
subject variability; feature

interpretability

Uses multiplex recurrence
network and mutual

information matrix for
CNN input

Guo & Markoni (2019) [48] Open-source Behavioral (RGB facial
landmarks)

Limited demographic
diversity; expression

similarity among classes

Use temporal context
(LSTM) improved stability
over single-frame CNNs

C. He et al. (2024) [15] Proprietary

Multimodal
(physiological: PPG, heart

rate, GSR, wrist
acceleration;

vehicle-based: velocity,
acceleration, direction,
slope, load; temporal:

time, rest/work duration)

Class imbalance,
subjectivity in video

labeling, small sample

Fusion of diverse features
improved robustness;
dropout and focal loss

used to stabilize training

H. He et al. (2020) [49] Open-source + proprietary Behavioral (facial regions:
eyes, mouth)

Illumination variation;
need for gamma

correction

Use of gamma correction,
lightweight CNN design,

real-time test

L. He et al. (2024) [50] Open-source Physiological (EEG, EOG) Class imbalance,
overfitting, small datasets

GAN-based data
augmentation

(WGAN-GP); adaptive
convolution; attention

mechanisms
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Nguyen et al. (2023) [18] Proprietary
Physiological (wireless

EEG: behind-the-ear,
single-channel, real-time)

Low resolution EEG;
motion artifacts; noise

filtering challenges

Dropout, quantization,
batch normalization
improve lightweight

model performance in
embedded setup

Hu et al. (2024) [17] Proprietary Physiological (EEG, 14
channels)

EEG artifacts, subjectivity
in annotation, class

imbalance

Functional brain region
partitioning, multi-branch

fusion, focal loss for
imbalance

Huang et al. (2022) [51] Open-source
Behavioral (facial

landmarks: global face,
eyes, mouth, glabella)

Pose variation, occlusion,
ambiguous yawning vs.

speaking

Combining
multi-granularity input,

FRN, and FFN improved
accuracy and robustness
in head pose variation

Hultman et al. (2021) [52] Proprietary Physiological (EEG, EOG,
ECG)

Sensor noise; inter-subject
variability; class imbalance

Combining EEG and ECG
features helps accuracy;
early fusion preferred

Iwamoto et al. (2021) [53] Proprietary Physiological (ECG—RRI
sequences)

Ambiguity in expert
scoring, inter-participant

variability, simulator
realism gap

LSTM-AE improved
anomaly detection over

PCA and HRV-based
models

Jamshidi et al. (2021) [54] Open-source Behavioral (facial
landmarks)

Occlusion, overfitting on
training data, temporal

labeling noise

Combination of spatial
and temporal phases
improved detection;

situation-specific training
helped generalization

Jarndal et al. (2025) [55] Open-source Behavioral (face video; full
facial image)

Hardware resource
constraints; lighting

variation; face obstruction

Uses entire face with ViT,
improving robustness in
occluded or dark scenes

Jia et al. (2022) [56] Proprietary
Behavioral (facial

landmarks: eyes, mouth,
head pose)

Facial occlusion (glasses,
masks), lighting

variability, real-time
inference delay

Multi-module design with
feature fusion increased
robustness to occlusion
and inconsistent signals

Jiao & Jiang (2022) [57] Proprietary Physiological (EOG, EEG
via O2 and HSUM)

Data imbalance; low SEM
frequency; limited

samples for DL

Combine with SMOTE or
GAN to improve sample

size and reduce FP

Jiao et al. (2020) [14] Proprietary Physiological (EEG, EOG)
Temporal imprecision in

labeling; signal variability;
class imbalance

CWGAN improved data
balance; sliding window
settings boosted stability

Jiao et al. (2023) [58] Open-source Physiological (EOG)
Data imbalance; noise in

physiological signals;
variability across subjects

Multi-scale convolution
improves feature

representation

Kielty et al. (2023) [59] Open-source + proprietary
Behavioral (event-based
facial sequences, seatbelt

motion)

Event sparsity in static
scenes; hand-over-mouth
occlusion; class imbalance

in seatbelt transitions

Event fusion, attention
maps, and recurrent layers
improve robustness under

occlusion and motion
variance

Kır Savaş & Becerikli
(2022) [60] Open-source + proprietary Behavioral (RGB face

images: eyes and mouth)

Reconstruction error and
model depth tuning;

sensitivity to lighting and
occlusion

DBN used for
unsupervised feature
learning; performance
improved with deeper

layers and
symptom-specific models

Kumar et al. (2023) [61] Open-source Behavioral (RGB facial
landmarks)

Overfitting risk; image
quality issues; lighting

variation

Dropout and global
average pooling layers

added for better
generalization

Lamaazi et al. (2023) [62] Open-source + proprietary

Multimodal (behavioral:
eyes, mouth;

vehicle-based:
acceleration x/y/z)

Class confusion between
yawning vs. mouth open,

head tilt, lighting
variation, accelerometer

sequence noise

Multistage detection
(vision and sensors)

reduced false positives
and improved detection

latency

Latreche et al. (2025) [63] Open-source Physiological (EEG
32-channel)

Small sample size; lack of
generalization; manual

label noise

Optimization with RS and
Optuna improved
precision, reduced

overfitting
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Q. Li et al. (2024) [64] Proprietary
Physiological (EEG from
32-channel cap, regions

A–D)

High search cost; model
performance sensitive to

EEG region used

NAS enables optimal
trade-off between
performance and

efficiency

T. Li & Li (2024) [65] Open-source
Behavioral (face video;
EAR, MAR, head pose,

ViT output)

Occlusion (glasses), pose
variation, detection

failures, dataset
limitations

ViT adds global semantics;
LSTM captures

drowsiness temporal
trends

Lin et al. (2025) [66] Open-source + proprietary Physiological (EEG)
EEG noise, individual

variability, fine-grained
imbalance

Combining attention,
fusion, and channel
selection improve

generalization; focal loss
addresses imbalance

Majeed et al. (2023) [67] Open-source Behavioral (video frames)
Potential overfitting; effect

of data augmentation;
occlusion challenges

Augmentation helps
generalization; CNN-RNN

for spatiotemporal
features

Mate et al. (2024) [68] Open-source Behavioral (images
extracted from videos)

Overfitting risk; limited
generalization; tuning

challenges

Use of multiple
architectures improves

comparability;
augmentation used

Min et al. (2023) [69] Open-source

Multimodal
(physiological: EEG;

behavioral: eye images via
video)

Facial and muscle artifacts;
low-channel EEG;

inter-subject
generalization

Fusion of EEG and
SIFT-based eye features

improves detection
robustness

Mukherjee & Roy
(2024) [70] Proprietary

Multimodal
(physiological: EEG, EMG,

pulse, respiration, GSR;
behavioral: head

movement)

Signal noise, subjectivity
in labeling; short windows

improve detection

Use of TLSTM and
attention for temporal

relevance; 250 ms window
practical

Nandyal &
Sharanabasappa

(2024) [71]
Open-source Behavioral (video/image)

Class imbalance;
vanishing gradient;

overfitting risks

Use of optimization
algorithm (FA) to avoid

local optima

Obaidan et al. (2024) [72] Open-source Physiological (EEG)

Limited training data,
inter-subject variability,

non-stationary EEG
signals

Multi-scale CNN
architecture, DE
preprocessing,

spatial-spectral learning
improves robustness

Paulo et al. (2021) [73] Open-source Physiological (EEG)
Inter-subject variability,
low SNR, generalization

challenges

Explore RNNs, reduce
channels, apply attention

mechanisms

Peng et al. (2024) [74] Proprietary

Multimodal (behavioral:
RGB face video;

physiological: HR, EDA,
BVP)

Signal noise, subjectivity
in self-labeling, imbalance

of fatigue levels

Combines facial and
physiological data;

short-window detection;
attention maps

Priyanka et al. (2024) [75] Proprietary
Multimodal (behavioral,

physiological,
vehicle-based)

Imbalanced dataset; need
for SMOTE

Personalized models;
real-world testing

suggested

Quddus et al. (2021) [76] Proprietary
Behavioral (eye image
patches 48×48 from 2

cameras)

Facial occlusion, lighting
variation, mismatch

between EEG and video
timestamps

C-LSTM outperforms
eye-tracking methods
with lower error and
better generalizability

Ramzan et al. (2024) [77] Open-source Behavioral (video: eye,
face, mouth regions)

Training time (CNN:
~603s/epoch, Hybrid:

~206s); overfitting
managed by dropout

Combining hybrid CNN,
PCA, and HOG boosts
accuracy and training

efficiency

Sedik et al. (2023) [78] Open-source
Behavioral (RGB facial

landmarks, eye and mouth
region, NIR for DROZY)

DROZY limitations
(lighting, occlusion);

overfitting risk mitigated
by augmentation

Combining image and
video datasets improves

robustness across
symptoms

Shalash (2021) [79] Open-source
Physiological

(single-channel EEG
converted to spectrogram)

Overfitting; small dataset;
high computational cost

Use of reassignment
spectrogram, dropout, and

L2 regularization

Sharanabasappa &
Nandyal (2022) [80] Open-source Behavioral (RGB images:

eye, face, mouth regions)

Manual annotation
burden; subjectivity in

labeling; variance in image
quality

Feature selection improves
accuracy over deep CNNs;

ensemble stabilizes
prediction
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Sohail et al. (2024) [81] Open-source
Behavioral (face images:

eyes open/closed,
yawn/no yawn)

Lighting conditions;
camera placement; lack of

occlusion handling

CNN and SMOTE used
for balance; MaxPooling
and Softmax activation

Soman et al. (2024) [19] Open-source + proprietary
Behavioral (facial

landmarks: EAR, MAR,
PUC, MOE from camera)

Pupil detection errors,
lighting variation, cultural

facial trait diversity

Facial ratio fusion (EAR,
MAR, PUC, MOE), Jetson

Nano optimization,
dropout and early
stopping improve

robustness

Sun et al. (2023) [82] Open-source + proprietary Behavioral (facial
landmarks)

Low-quality inputs,
occlusion, inconsistent eye

states, data balance

FAM and SIM improve
feature fusion on noisy

inputs

Tang et al. (2024) [83] Open-source
Physiological (21-channel
EEG: forehead, temporal,

posterior)

EEG noise, inter-subject
variability, impact of CAM

module placement

CAM placement after
MSCNN improves feature

quality and channel
weighting

Turki et al. (2024) [84] Open-source Behavioral (face video;
eye/mouth landmarks)

Image quality,
illumination, face rotation,
occlusion, false positives

Ensemble of CNNs and
Chebyshev distance

improves robustness and
reduces false alerts

Vijaypriya & Uma
(2023) [85] Open-source Behavioral (facial

landmarks)

Low data variety;
synthetic augmentation

mentioned but not
detailed

Use of Flamingo Search
Optimization and wavelet

feature fusion improves
accuracy

Wang et al. (2025) [86] Open-source Physiological (EEG)
EEG signal noise,

incomplete data, zero
padding effects

Fused RWECN, DE, SQ
features improved

accuracy; filling missing
values

Wijnands et al. (2020) [87] Open-source
Behavioral (facial

video—yawning, blinking,
nodding, head pose)

Small dataset size; weak
segment-level labels; slow

inference on mobile
devices

Temporal fusion and 3D
depthwise convolutions
improved robustness to
occlusion and blinking

patterns

H. Yang et al. (2021) [88] Open-source + proprietary Behavioral (RGB video
frames)

Low resolution; camera
vibration; similar facial

actions

Use additional features for
diverse lighting; improve

resolution/deblurring

E. Yang & Yi (2024) [89] Open-source Behavioral (facial
landmarks)

Small dataset size,
simplified binary labeling,
generalization challenges

Use of NGO for
hyperparameter tuning

and ShuffleNet for
efficient extraction

K. Yang et al. (2025) [90] Open-source
Physiological (EEG: DE,
PSD, FE, SCC functional

network)

EEG noise; differences in
feature impact by dataset

Feature-level fusion
improves classification
versus single-feature

GCNs

You et al. (2019) [91] Open-source + proprietary
Behavioral (RGB facial
video; EAR from eye

landmarks)

Illumination variation,
landmark errors, small eye

sizes

EAR individualized
classifier; uses PERCLOS

and head position fallback

Yu et al. (2024) [20] Proprietary

Multimodal
(physiological: PPG;

Behavioral: facial;
behavioral: head pose)

Signal noise, alignment of
video and PPG, fusion

across modalities

Fusion of PPG, facial, and
head pose improves
accuracy; ensemble

needed

Zeghlache et al. (2022) [92] Open-source Physiological (EEG, EOG)
Encoding loss tradeoff;
optimal zdim tuning;
noisy EEG channels

Dimensionality reduction
improves classification;

LSTM-VAE offers
balanced features

Zhang et al. (2023) [93] Open-source

Behavioral (facial
landmarks: local patches,

eyes, mouth, nose, full
face)

Head pose variation,
occlusion, ambiguous

blinking vs. closing eyes

Multi-granularity
representation and LSTM

fusion improve
spatial-temporal

robustness
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