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Abstract: Truck drivers are essential to global freight operations but face disproportionate
safety risks due to fatigue, distraction, and demanding working conditions, all of which
significantly elevate crash likelihood. This systematic review assesses how monitoring tech-
nologies have been used to improve safety among professional truck drivers, focusing on
the types of technologies deployed, the variables monitored, and reported safety outcomes.
Conducted in accordance with the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) 2020 guidelines, the review includes 40 peer-reviewed articles
published in English between 2009 and 2024, identified through systematic searches in
PubMed, Scopus, Web of Science, and IEEE Xplore. Due to methodological heterogeneity, a
formal risk of bias assessment was not conducted. Most studies examined wearable de-
vices, in-vehicle cameras, telematics systems, and AI-driven platforms. These technologies
monitored variables such as fatigue, stress, distraction, speed, and environmental condi-
tions. While the findings demonstrate considerable potential to enhance safety outcomes,
persistent challenges include implementation costs, privacy concerns, and variability in
effectiveness. The evidence is also geographically concentrated in high-income regions,
limiting broader applicability. This review highlights the urgent need for harmonized
evaluation frameworks, robust validation protocols, and context-sensitive strategies to
support the effective adoption of monitoring technologies in the trucking sector.

Keywords: monitoring system; driver assistance; road safety; driver behavior; truck

1. Introduction
Road traffic accidents remain a global concern, resulting in significant human and

economic impacts. Annually, over 1.19 million lives are lost, and millions more sustain
long-term injuries due to road crashes [1]. These incidents impose substantial financial
burdens, often exceeding 3% of a country’s gross domestic product, particularly in de-
veloping economies with limited resources to address these challenges [2]. Among the
most vulnerable are professional drivers, particularly truck drivers, who face heightened
risks due to the demanding nature of their occupation, behavioral factors, and challenging
environmental conditions. These unique vulnerabilities underscore the need for tailored
safety interventions to address this issue.

Truck drivers are integral to global logistics and freight systems, yet their work envi-
ronment exposes them to significant safety risks. Prolonged working hours, irregular sleep
schedules, and extensive highway driving contribute to fatigue, cognitive impairments, and
slower reaction times [3,4]. Delivery pressures and economic incentives further increase the
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prevalence of risky behaviors such as speeding, distracted driving, and stimulant use [5,6].
Research indicates that human behavior contributes to up to 90% of road accidents, un-
derscoring the importance of addressing these behavioral factors through effective safety
measures [7,8].

Traditional safety interventions, such as driver screening, training programs, and vehi-
cle maintenance, have had limited success in addressing the multifaceted risks associated
with truck driving. Safety monitoring systems offer a technology-driven alternative by
enabling continuous or event-triggered data collection of critical metrics, including speed,
acceleration, braking patterns, and contextual factors surrounding unsafe events [9,10].
These systems deliver real-time feedback to drivers and support post-event analysis, facili-
tating risk mitigation strategies and the development of evidence-based safety protocols.

In addition to their safety benefits, safety monitoring systems provide significant
operational advantages for commercial fleets. These systems document unsafe driving
behaviors, enable prompt corrective actions, and deliver frequent, objective feedback to
drivers. They establish benchmarks for fleet-wide safety norms, incentivize adherence to
safe driving practices, and reduce the need for in-person evaluations. Moreover, safety
monitoring systems enhance regulatory compliance, improve productivity, and support
liability management, positioning them as essential tools for modern fleet operations [11].

Despite their potential, safety monitoring systems face barriers to widespread adoption
in commercial trucking. High implementation costs, technical complexities, and concerns
regarding data privacy and security remain significant challenges [12,13]. Addressing these
obstacles is critical to achieving the full potential of safety monitoring systems in enhancing
road safety and operational efficiency.

This systematic review examines the effectiveness, benefits, and limitations of safety
monitoring systems for truck drivers. It consolidates existing evidence to evaluate their
role in addressing safety challenges, encouraging safer driving behaviors, and identifying
barriers to their widespread adoption. The review is structured around the following
research questions (RQ):

RQ1: Which monitoring technologies are currently employed to evaluate and improve
the driving behavior and safety performance of professional truck drivers?

RQ2: Which physiological, behavioral, and environmental variables are tracked by
these technologies in the context of professional truck driving?

RQ3: How do monitoring technologies affect safety outcomes among professional
truck drivers, including accident mitigation and behavior modification?

RQ4: What are the primary strengths and limitations of current monitoring technolo-
gies for professional truck drivers?

By addressing these questions, this review aims to provide actionable insights for
researchers, policymakers, and practitioners, guiding the development and implementation
of effective safety monitoring systems for truck drivers.

The remainder of this paper is organized as follows: Section 2 outlines the systematic
review methodology, detailing the criteria and processes used to select and evaluate relevant
studies. Section 3 presents the results, highlighting key findings and themes identified
in the reviewed literature. Section 4 provides a detailed discussion of the findings, their
implications, and limitations, while offering recommendations and proposing directions for
future research to advance truck driver safety. Finally, Section 5 concludes by summarizing
the main insights and contributions of this review.

2. Methods
This systematic review was conducted in accordance with the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines [14]. The
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PRISMA framework provides a rigorous and structured approach to systematic reviews,
enhancing their transparency, reproducibility, and reliability. Additional details are avail-
able in the PRISMA 2020 checklist (see Supplementary Materials, Document S1). The
methods employed in this review are detailed below.

2.1. Protocol

A structured protocol was developed prior to the review to define its objectives,
research questions, eligibility criteria, and methodological approach. It was prospectively
registered in the International Prospective Register of Systematic Reviews (PROSPERO)
under the reference CRD420250644355 [15], providing a transparent framework to guide
the review process, minimize potential bias, and ensure consistency across all stages.

The review process followed four main phases: identifying relevant studies through
database searches, screening titles and abstracts for relevance, evaluating full-text articles
to determine eligibility, and including studies that met all predefined criteria. Inclusion and
exclusion criteria were applied at each stage, and decisions were documented to ensure
transparency and reproducibility. This approach ensured alignment with the research
objectives and adherence to the outlined methodology.

2.2. Eligibility Criteria

The review focused on professional truck drivers as the population of interest. Eligible
studies evaluated monitoring technologies designed to monitor driving behavior, such as
wearable devices, in-vehicle cameras, telematics systems, and artificial intelligence (AI)-
based platforms. To qualify, studies had to report on safety-related outcomes, including
reductions in accident rates, mitigation of driving risks, or behavioral improvements linked
to the implementation of these technologies. Only original research articles published
in peer-reviewed journals, written in English, and published between January 2009 and
October 2024 were included to ensure the relevance and quality of the evidence.

Studies were excluded if they targeted populations other than professional truck
drivers, such as passenger vehicle or bus operators. Research addressing outcomes not di-
rectly tied to road safety, such as vehicle performance or driver comfort, was also excluded.
Furthermore, review articles, editorials, opinion pieces, conference abstracts, and grey
literature were rejected to maintain a focus on primary, scientifically validated evidence.

2.3. Search Strategy

A systematic search was conducted in November 2024 across four major electronic
databases: PubMed, Scopus, Web of Science, and IEEE Xplore. These databases were
selected for their coverage of research in occupational health, transportation, and road
safety. The search utilized Boolean operators with the following keyword combination:
“truck driver” or “professional driver” or “commercial driver” and monitor* or detect* or
track* or assess* and “technology” or “system” or “device” or “platform” and “safety” or
“accident” or “risk” or “behavior”.

No supplementary techniques, such as citation tracking or snowballing, were em-
ployed. This focused approach ensured a systematic and replicable identification of
eligible studies while minimizing potential biases associated with non-standardized
search methods.

2.4. Data Collection and Extraction

The data collection and extraction procedures were conducted by a single reviewer,
following a standardized protocol to ensure methodological consistency and minimize
potential bias. After completing the database searches, all retrieved records were imported
into the Rayyan platform for systematic reviews (Rayyan Systems Inc., 2025), which enabled
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the automatic identification and removal of duplicate entries. Title and abstract screening
was also performed in Rayyan, using predefined inclusion and exclusion criteria to assess
the relevance of each record. Studies meeting the initial eligibility criteria were then
subjected to full-text review to determine final inclusion. This systematic and transparent
process ensured that only studies directly addressing the review’s research questions were
retained for synthesis.

For data extraction, a structured spreadsheet was developed in Microsoft Excel (Mi-
crosoft Corporation, Version 16.77.1, 2025) to systematically collect key information from
each included study. The extraction process was supported by ChatGPT (OpenAI, GPT-4,
2025), which assisted in identifying and organizing study details such as objectives, data
collection methods, analytical techniques, principal findings, types of monitoring technolo-
gies, monitored variables, monitoring frequency, and temporal coverage. All extracted
information was manually reviewed and cross-verified against the original study reports
by the reviewer to ensure accuracy and consistency.

2.5. Data Synthesis

Data synthesis is presented as a narrative summary of the evidence on monitoring
technologies used to improve truck driver safety, organized by technology types. Due
to substantial heterogeneity across the included studies, particularly in methodologies,
variables assessed, and reported outcomes, a standardized risk of bias assessment was
not feasible.

To offer a comprehensive overview, Table A1 in Appendix ?? provides a detailed
summary of each selected study, including information on authorship, geographic context,
objectives, data collection methods, analytical techniques, and key findings. Additionally,
Table A2 outlines the monitoring technologies employed, the variables measured, the
frequency of monitoring, and the temporal context of data collection.

This synthesis underscores the diversity of monitoring technologies and method-
ological advancements in driver safety research. It highlights emerging trends, practical
applications, and identifies critical gaps, providing valuable insights for future studies on
technology-based interventions to enhance truck driver safety.

3. Results
This systematic review synthesizes findings from multiple studies on the use of

monitoring technologies to improve truck driver safety. The studies collectively highlight
the global application of various technologies, diverse methodological approaches, and
thematic focuses within the field of driver safety monitoring. Below, we discuss the
characteristics, trends, and key findings of the included studies, focusing on technology
types, monitored variables, safety outcomes, and identified challenges.

3.1. Study Selection

The study selection process, encompassing identification, screening, and inclusion
of eligible studies, is presented in the PRISMA flow diagram (Figure 1). A total of
725 records were identified through systematic searches conducted across four major
electronic databases: PubMed, Scopus, Web of Science, and IEEE Xplore. No additional
records were retrieved from other sources or registers.
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Figure 1. The identification, screening, and inclusion process of eligible studies using PRISMA 2020.

During the initial identification phase, 406 records were excluded based on predefined
criteria. These exclusions included 140 records published outside the specified date range,
212 excluded due to document type, 27 based on source type, and 27 for language reasons.
Additionally, 44 duplicate records were removed, resulting in 275 unique records eligible
for title and abstract screening.

In the screening phase, the titles and abstracts of the remaining records were thor-
oughly analyzed to determine their alignment with the inclusion criteria. A total of
210 records were excluded for failing to meet criteria related to the population, method-
ology, or outcomes. Specifically, these records either did not focus on professional truck
drivers, failed to evaluate monitoring technologies aimed at enhancing driving safety, or
reported outcomes unrelated to road safety. Following this screening, 65 records were
selected for full-text review.

Of the 65 records identified for full-text retrieval, 60 articles were successfully obtained.
Despite efforts to access them through institutional resources, five records could not be
retrieved. The 60 full-text articles underwent an eligibility assessment, resulting in the
exclusion of 20 studies. Eight studies did not focus on professional truck drivers, seven
failed to evaluate monitoring technologies, and five examined outcomes unrelated to
road safety.

Ultimately, 40 studies met all inclusion criteria and were included in the qualitative
synthesis, representing a diverse range of geographical contexts, methodologies, and study
designs. The majority of studies identified in the literature search were published in high-
impact journals, with 30 appearing in Q1 journals, followed by 8 in Q2, as detailed in
Table 1.
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Table 1. Number of selected studies per quartile.

Quartile Ranking Number of Studies

Q1 30

Q2 8

Q3 1

Q4 0

Not assigned 1

3.2. Characteristics of Studies

The temporal distribution of studies illustrates a consistent increase in research activity
over the 15-year period analyzed (see Figure 2). By 2009, two studies had been published,
increasing incrementally to three by 2012 and five by 2015. A notable acceleration occurred
from 2018 onward, with the cumulative number of studies reaching 8 by 2018, 25 by
2021, and 40 by 2024. This upward trend underscores a growing emphasis on leveraging
monitoring technologies to enhance truck driver safety.
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Figure 2. Cumulative number of published studies on monitoring technologies for truck driver
behavior assessment.

Geographically, the distribution of research remains uneven across the globe (see
Figure 3). The majority of studies were conducted in the United States (35%) and China
(20%), followed by Japan (8%) and Sweden (7%). Germany accounted for 5% of the studies,
while 25% originated from various other countries. This pattern highlights a concentration
of research in developed regions with advanced transportation systems. In contrast, regions
with high accident rates, such as Sub-Saharan Africa and parts of South America [1], are
underrepresented in the literature.
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The reviewed studies employed a variety of methodologies and technologies to ad-
dress critical aspects of truck driver monitoring and safety. A significant portion of the
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research focused on advanced systems such as Camera/Video Imaging Systems (C/VISs),
which were designed to mitigate blind spot risks and improve driver visibility. These
systems underwent real-world testing to evaluate their effectiveness in preventing safety-
critical events, such as during lane changes.

Fatigue monitoring emerged as another prominent theme, with several studies explor-
ing non-intrusive methods utilizing wearable devices, physiological data, and machine
learning algorithms. These approaches aimed to detect driver fatigue in real-time without
disrupting driving tasks. Multi-feature fusion techniques were frequently employed to
integrate various data types, enhancing the precision and reliability of fatigue detection.

Forward collision warning (FCW) systems were extensively studied, with considerable
efforts directed toward optimizing their algorithms to better align with driver response
behaviors. Machine learning models were commonly used to improve warning accuracy
and reduce false alarms, addressing key challenges associated with FCW system adoption
and reliability.

Additionally, many studies leveraged GPS and telemetric data to analyze driver be-
havior. These datasets allowed researchers to identify risky driving patterns, such as erratic
speed variations, and to establish risk profiles for truck drivers. Such analyses were often
applied in fleet management strategies to monitor and mitigate on-road risks effectively.

The methodologies utilized in these studies were diverse, encompassing real-world
field testing, simulation-based experiments, and the integration of wearable and in-vehicle
technologies. Advanced systems such as telematics, connected vehicle platforms, and
artificial intelligence were frequently employed to assess and enhance truck driver safety
across varied operational scenarios.

This body of research represents a broad and methodical investigation into monitoring
technologies within the trucking industry. The studies collectively highlight the range of
innovative approaches used to address safety challenges, emphasizing the importance of
advanced systems, data-driven methods, and interdisciplinary collaboration.

3.3. Monitoring Technologies

The integration of monitoring technologies into the trucking industry represents a
transformative advancement in addressing safety and operational challenges. These tech-
nologies, designed to systematically monitor and assess both driver behavior and vehicle
performance, have become indispensable in mitigating risks and enhancing road safety.
By leveraging data-driven insights, these tools not only enable real-time interventions
but also facilitate long-term strategies for accident prevention and behavioral improve-
ment. The following sections delve into the distinct categories of monitoring technologies
employed in trucking, including wearable devices, in-vehicle systems, vision-based moni-
toring, advanced driver assistance systems, data logging and event recording systems, and
connectivity platforms.

3.3.1. Wearable Monitoring Devices

Wearable monitoring devices have shown substantial potential in monitoring physio-
logical and behavioral parameters to enhance safety for professional truck drivers. Giorgi
et al. [16] explored a multimodal approach combining electroencephalographic (EEG),
electrooculographic (EOG), photoplethysmography (PPG), and electrodermal activity to
monitor fatigue in professional drivers during a simulated driving task. Their findings
highlighted brain activity as the most sensitive and immediate indicator of fatigue onset,
followed by ocular parameters, which exhibited delayed effects. This study demonstrates
the effectiveness of wearable devices in capturing critical physiological changes that sig-
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nal mental fatigue, thus providing essential inputs for real-time interventions among
truck drivers.

Similarly, Ito et al. [17] utilized wearable devices to analyze heart rate variability
(HRV) for predicting collision risks associated with driver fatigue. Their research employed
autonomic nerve function (ANF) indices derived from HRV data to develop a novel model
that predicts collision risks within a 30 min window. With an accuracy of 74.9%, the system
demonstrated the feasibility of leveraging physiological data from wearable devices to
anticipate fatigue-induced risks, allowing for timely and targeted safety interventions.
The study also highlighted the importance of integrating physiological data with external
variables, such as speed and road conditions, to improve prediction accuracy.

Minusa et al. [18] further extended this line of research by examining the relationship
between physiological conditions, such as stress-induced fatigue, and rear-end collision risk.
Their study used autonomic nerve function indices, monitored continuously during real-
world truck driving conditions, to reveal that acute stress increased rear-end collision risks
by exacerbating sympathetic nerve activity and inhibiting parasympathetic responses. The
findings underscore the critical role of wearable devices in capturing these physiological
states, enabling the development of systems that warn drivers or automatically adjust
vehicle behavior to mitigate risks.

Despite these promising findings, wearable monitoring devices face several limitations
that could hinder their effectiveness. Environmental factors, such as extreme temperatures,
vibrations, or poor lighting conditions, can affect the accuracy and reliability of physiologi-
cal data collection. For example, photoplethysmography sensors used for HRV monitoring
are sensitive to motion artifacts or improper placement, which may introduce noise into
the data. Privacy concerns are another significant barrier, as continuous monitoring of
physiological data may be perceived as intrusive by drivers, potentially leading to resis-
tance or non-compliance. Additionally, drivers may find wearable devices uncomfortable
or burdensome during long-haul trips, reducing consistent usage and undermining their
overall effectiveness. Finally, while wearable devices can detect physiological changes
indicative of fatigue or stress, their practical utility relies heavily on integration with exter-
nal systems and effective calibration to provide actionable insights tailored to individual
driver conditions.

3.3.2. In-Vehicle Monitoring Systems

In-vehicle monitoring systems (IVMSs) are recognized as effective tools for improving
road safety among professional truck drivers. These systems incorporate technologies such
as real-time feedback mechanisms, behavioral analytics, and data monitoring to address
unsafe driving behaviors and enhance operational safety. Research has shown that IVMSs,
combining in-cab warning lights and supervisory coaching using video footage, lead to
measurable reductions in unsafe behaviors. A study involving 315 vehicles reported a
significant reduction in risky behaviors when both mechanisms were employed, compared
to using warning lights alone. This approach facilitates immediate feedback and supports
behavioral adjustments, contributing to improved safety outcomes [19].

The integration of GPS technology with IVMSs has enabled the monitoring of driver
behavior under various operational conditions. A study analyzing data from 4357 trucks
identified distinct driving styles—aggressive, normal, and cautious—using clustering
methods. The findings revealed that aggressive driving behaviors under heavy-load
conditions were associated with elevated risks, highlighting the potential of IVMS to tailor
interventions based on driving styles and load conditions [20].

IVMSs also facilitate the tracking of safety-critical events (SCEs), such as hard braking
and near-collisions. A large-scale naturalistic study involving 496 drivers and 13 million
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miles of driving data applied point process models to analyze these events. The results
indicated that SCE frequency increased with driver fatigue and insufficient rest breaks.
This suggests that IVMSs can identify periods of heightened risk and support timely
interventions to mitigate potential incidents [21].

Vision-based monitoring systems extend the capabilities of IVMSs by enabling the
detection of distractions and other unsafe behaviors. These systems employ algorithms to
track hand and head movements, allowing for the identification of manual distractions,
such as improper steering wheel grip. Real-time detection of such behaviors enhances the
effectiveness of IVMSs in addressing contributing factors to accidents [22].

Incorporating psychological and physiological metrics into IVMSs further enhances
its functionality. Studies have demonstrated that driver anger and fatigue are significant
factors influencing driving safety. For instance, a longitudinal study using GPS data
found that increased levels of anger were associated with speeding behaviors. Similarly,
fatigue-related metrics, such as heart rate variability, were found to correlate with an
elevated risk of rear-end collisions. Integrating these metrics into IVMSs allows for tailored
recommendations, such as suggesting rest breaks or adjustments to driving behavior [23,24].

Data logging capabilities within IVMSs enable detailed post-event analyses of driving
patterns. Systems that record variables such as speed, acceleration, and lane changes
provide insights into recurring risky behaviors. These analyses allow fleet managers to
implement targeted training programs and revise safety policies to reduce the likelihood of
future incidents [25].

Evidence highlights the role of IVMSs in reducing unsafe driving behaviors, identi-
fying context-specific risks, and enabling proactive interventions. However, challenges
such as high implementation costs, privacy concerns, and resistance from drivers may limit
adoption. Addressing these challenges is critical to maximizing the potential of IVMSs for
improving road safety among professional truck drivers.

3.3.3. Vision-Based Monitoring Systems

Vision-based monitoring systems have emerged as a critical component in monitoring
truck driver behavior and enhancing road safety. These systems employ advanced imaging
technologies to observe driver activities and the surrounding environment, providing
real-time feedback to mitigate risk factors such as fatigue, distraction, and blind spot-
related crashes.

Camera/Video Imaging Systems (C/VISs) are among the most commonly used vision-
based tools in commercial vehicles. These systems provide live video feeds of a truck’s
surroundings, allowing drivers to monitor blind spots and make safer lane changes or
merging maneuvers. Studies have demonstrated that C/VISs can improve situational
awareness, particularly in challenging conditions such as nighttime driving and during
complex tasks like right lane changes [26]. However, despite their potential, field evalua-
tions have reported no significant reduction in safety-critical events (SCEs). Additionally,
user feedback highlights discomfort with glare from monitors, particularly at night, and
suggests that advanced features, while effective, are underutilized without sufficient driver
acceptance and training [26].

Another critical application of vision-based systems is fatigue detection. These systems
typically rely on facial metrics, such as eyelid closure and eye movement patterns, to
identify signs of drowsiness. While effective under controlled conditions, their performance
diminishes in real-world scenarios due to challenges such as low-light environments, sensor
limitations, and driver resistance to intrusive monitoring [27]. To address these issues,
alternative approaches leveraging non-visual features, such as physiological and vehicular
data, have shown promise. These systems utilize metrics like heart rate, skin conductance,
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and vehicle operation patterns, offering a privacy-preserving and robust solution for
continuous fatigue monitoring. Comparative studies suggest that non-visual methods
outperform traditional vision-based systems in terms of reliability and user acceptance,
particularly in environments where visual cues are compromised [28].

Driver monitoring systems (DMSs) extend the capabilities of vision-based systems by
issuing real-time alerts for distraction and drowsiness. These systems typically employ
auditory and visual alerts to prompt drivers to regain focus. Field studies have demon-
strated an increase in driver alertness following such interventions, but their long-term
effectiveness relies heavily on user engagement and trust [29,30]. High rates of false alarms,
coupled with poorly designed feedback mechanisms, can lead to driver frustration and
disengagement, undermining the system’s intended safety benefits [30,31].

Across the various vision-based technologies, several critical observations emerge.
These systems demonstrate significant potential in enhancing road safety by reducing blind-
spot-related crashes and improving situational awareness. However, their widespread
adoption is hindered by high costs, operational complexity, and privacy concerns. The
effectiveness of these systems is highly dependent on driver engagement. Systems that
generate excessive false alarms or provide unclear feedback are prone to being disregarded
by drivers. Finally, the integration of vision-based tools with non-visual monitoring tech-
nologies, such as physiological data sensors, offers an opportunity to enhance reliability
and address limitations in challenging conditions [27,28].

3.3.4. Advanced Driver Assistance Systems

Advanced driver assistance systems (ADASs) play a pivotal role in enhancing the
safety of commercial truck drivers by integrating technologies that assist in real-time
decision-making and mitigate potential risks. Studies demonstrate that these systems,
which include features like FCWs, lane departure warning (LDW), headway monitoring
and warning (HMWs), and speed limit indicators (SLIs), significantly influence driver
behavior and safety outcomes.

The FCW system, as analyzed by Bao and Wang [32], optimizes truck safety by issuing
alerts based on driver response behavior. Their study categorized driver responses into
three clusters: Response Before Warning, Response After Warning, and No Response.
By tailoring warning distances to these clusters using machine learning techniques, the
optimized FCW system demonstrated a 97.92% accuracy and reduced false alarm rates to
1.73%, improving overall safety outcomes by up to 5%.

In a naturalistic driving study by Wu et al. [33], ADASs, particularly FCW and LDW,
were evaluated for their impact on real-world truck driver behavior. The study found that
the activation of these systems led to a reduction in warnings issued for speeding and lane
departures, correlating with improved safety behaviors. For instance, LDWs effectively
decreased lane departure warnings by 28%, while HMWs reduced insufficient headway
warnings by 45%.

The haptic-based lane-keeping assistance (LKA), evaluated by Roozendaal et al. [34],
further highlights the efficacy of continuous and bandwidth-based steering aids. The
study found that continuous haptic assistance provided superior lane-keeping performance
compared to bandwidth assistance, particularly under conditions of driver distraction. This
underscores the importance of designing systems that adapt to varying levels of driver
attention and workload.

Elbaum et al. [35] explored how ADASs function under supervisory monitoring in a
military setting, specifically with drivers diagnosed with attention deficit hyperactivity dis-
order (ADHD). The results revealed that drivers with ADHD exhibited significantly higher
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rates of safety events despite the implementation of ADASs, highlighting the necessity for
tailored interventions and system adjustments for specific driver populations.

Similarly, Raddaoui and Ahmed [36] examined the distraction and workload implica-
tions of connected vehicle (CV) warnings in ADASs. They noted that while spot weather
warnings were well-received, work zone warnings caused prolonged off-road glances,
potentially compromising safety. These findings emphasize the need for refined human–
machine interface (HMI) designs to reduce distraction while maintaining effectiveness.

Mehdizadeh et al. [37] addressed the predictive capabilities of ADASs using machine
learning models to forecast safety-critical events (SCEs) up to 30 min in advance. By
leveraging extensive kinematic data, the study achieved a predictive accuracy of 76%,
offering a proactive approach to mitigate risks associated with unsafe driving behaviors.

ADAS’s capacity to address interactions with vulnerable road users was demonstrated
by Schindler and Bianchi Piccinini [38]. Their test-track experiment analyzed truck drivers’
kinematic and visual behavior when encountering cyclists and pedestrians. The findings
inform the design of ADASs for better detecting and responding to such scenarios, thereby
reducing collision risks.

Collectively, these studies underscore the transformative potential of ADASs in reduc-
ing risks and enhancing safety for truck drivers. However, challenges remain, including
addressing system limitations such as false alarms, driver over-reliance, and workload
imbalances. Continued advancements in ADAS design, coupled with tailored training
and deployment strategies, will be crucial in maximizing their effectiveness in diverse
operational contexts.

3.3.5. Data Logging and Event Recording Systems

Data logging and event recording systems, such as electronic logging devices (ELDs)
and event data recorders (EDRs), have been pivotal in monitoring professional truck
drivers, enhancing safety, and improving compliance with regulations. These systems
provide real-time data on driver behavior and vehicle performance, offering insights for
both immediate interventions and long-term safety improvements.

Crizzle et al. [39] explored the impact of ELDs on Canadian long-haul truck drivers,
finding that ELD use significantly reduced driver fatigue and stress by ensuring compli-
ance with hours-of-service (HOS) regulations. Drivers using ELDs reported improved
sleep quality and less difficulty unwinding after work, suggesting a positive influence on
their overall well-being. However, challenges such as limited parking infrastructure and
concerns about income reductions due to stricter adherence to HOS regulations were noted,
highlighting operational constraints.

Hickman et al. [40] demonstrated the safety benefits of ELDs in a U.S.-based study,
where trucks equipped with ELDs experienced an 11.7% reduction in total crash rates and
a 53% decrease in HOS violations compared to trucks without these devices. The study
attributed these improvements to the system’s ability to limit falsification of driving hours,
thereby reducing fatigue-related risks.

Furthermore, de Oliveira et al. [41] evaluated the integration of event data recorders
(EDRs) with training and feedback programs in Brazil, finding significant reductions in
unsafe driving behaviors, such as speeding, and improvements in fuel efficiency. The study
highlighted that EDRs are most effective when combined with tailored feedback and contin-
uous training, reinforcing safe driving practices. Over a 13-month period, the frequency of
speeding events decreased by 94.4%, underscoring the potential of EDR systems to reshape
driving habits when used in conjunction with active managerial oversight.

Scott et al. [42] examined unintended consequences of the ELD mandate in the United
States. While the mandate effectively reduced HOS violations, it also led to offense displace-
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ment, where drivers compensated for lost productivity by engaging in riskier behaviors,
such as speeding. This phenomenon was especially pronounced among small carriers,
suggesting that increased monitoring in one area may inadvertently shift unsafe practices
to other dimensions.

In conclusion, data logging and event recording systems provide a robust framework
for improving safety and compliance in the trucking industry. However, to maximize their
impact, it is essential to address systemic challenges, ensure equitable access, and integrate
these technologies with broader safety initiatives. Through a balanced approach, these
systems can significantly contribute to reducing crash rates and promoting safer driving
behaviors among professional truck drivers.

3.3.6. Connectivity and Communication Systems

Connectivity and communication systems, such as vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) technologies, have revolutionized the monitoring and man-
agement of truck drivers’ safety by enabling real-time data exchange and communication.
These systems enhance situational awareness, facilitate decision-making, and reduce the
likelihood of accidents.

Ahmed et al. [43] analyzed the implementation of connected vehicle (CV) technology
in Wyoming under the Wyoming Department of Transportation pilot program. The pro-
gram aimed to improve safety along the Interstate 80 corridor through vehicle-to-everything
(V2X) communication technologies, offering applications such as forward collision warn-
ings, traveler information messages, and distress notifications. Results highlighted the
effectiveness of CV training programs for professional truck drivers, with participants
demonstrating increased understanding and usage of CV warnings. The study also under-
scored the role of V2X technology in mitigating risks under adverse weather conditions,
such as low visibility and icy roads.

Fank et al. [44] explored the use of a human–machine interface (HMI) for cooperative
truck overtaking maneuvers enabled by V2X communication. The system facilitated the
negotiation of overtaking requests between drivers, improving coordination and reducing
traffic conflicts. However, the study noted limitations in the success rate of automated
cooperation requests, primarily due to suboptimal HMI design. Furthermore, system
failures, such as communication disruptions, were not perceived as safety-critical by drivers,
but effective information delivery was crucial to maintain trust and system acceptance.

Khoda, Bakhshi, and Ahmed [45] assessed the use of Basic Safety Messages (BSMs)
transmitted in connected vehicle environments to detect crash-prone conditions. By leverag-
ing trajectory-level data, the study demonstrated the potential for detecting and mitigating
rear-end and run-off-road crashes. The introduction of kinematic-based surrogate measures
of safety, such as steering and acceleration variability, allowed for the precise identifica-
tion of crash-prone scenarios. The findings highlighted how real-time data sharing in CV
environments can significantly enhance predictive safety measures.

Yang et al. [46] investigated the impact of a connected vehicle-based variable speed
limit (CV-VSL) application on truck driver behavior under adverse weather conditions. Uti-
lizing a high-fidelity driving simulator, the study found that CV-VSL systems significantly
reduced speed variability and improved compliance with speed limits. This reduction
in speed inconsistencies directly correlated with a decreased likelihood of crashes, espe-
cially in hazardous weather conditions. The study emphasized that such systems provide
proactive warnings to drivers, enabling better decision-making and safer driving.

Despite the numerous advantages, connectivity and communication systems face
challenges such as high implementation costs, infrastructure requirements, and varying
driver acceptance rates. Furthermore, system failures or partial adoption in mixed-traffic
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environments may undermine the full potential of these technologies. Addressing these
limitations through comprehensive training programs, infrastructure investments, and
system reliability improvements can ensure wider adoption and enhanced safety outcomes
for truck drivers.

3.4. Monitored Variables

Identifying the variables monitored by truck driver monitoring technologies is essen-
tial for evaluating their effectiveness in improving road safety and driver performance.
These technologies leverage specific physiological, behavioral, and environmental metrics,
each offering unique insights into safety outcomes and operational efficiency. This section
analyzes how the six primary monitoring technologies—wearable devices, in-vehicle moni-
toring systems, vision-based systems, ADASs, data logging and event recording systems,
and connectivity and communication systems—contribute to a comprehensive framework
for addressing the complex challenges of modern transportation systems.

Wearable monitoring devices specialize in capturing physiological variables such
as heart rate, heart rate variability, skin temperature, electrodermal activity, and blink
rates. These real-time metrics provide critical insights into fatigue, stress, and alertness
levels, which are particularly vital for long-haul operations. Additionally, wearable devices
monitor behavioral variables, including posture, micro-movements, and physical activity
patterns, to assess driver alertness and well-being. Complementing this, these devices
track environmental variables, such as ambient temperature and humidity, which directly
influence comfort and fatigue. Continuous monitoring across both daytime and nighttime
contexts ensures a comprehensive understanding of the driver’s physiological state under
varying conditions.

In-vehicle monitoring systems are designed to track behavioral variables such as hard
braking, speeding, swerving, and unbelted driving, which are critical indicators of unsafe
driving practices. These systems also monitor environmental variables, including road
conditions, traffic density, and operational factors like load type and trip length. By enabling
continuous monitoring over extended periods, often several months, these systems provide
fleet managers with actionable data to identify driving trends and high-risk behaviors,
facilitating targeted safety interventions and operational improvements.

Vision-based monitoring systems are highly effective in capturing physiological vari-
ables such as blink rate, eye movement, and facial expressions, which are key indicators of
fatigue and distraction. Additionally, these systems monitor behavioral variables like lane
position, steering smoothness, and gaze patterns, reflecting driver attention and precision.
Vision-based systems also track environmental variables, such as traffic density, road con-
ditions, and visibility, offering real-time and contextualized insights into driver behavior
across diverse scenarios, including both daytime and nighttime operations.

ADASs primarily monitor behavioral variables, including reaction time, braking
distance, deceleration patterns, and headway distance, to evaluate driver responsiveness
and safety. These systems also capture environmental variables such as vehicle speed,
proximity to other vehicles, and collision risks. By operating continuously in real-world
conditions, ADASs enhance situational awareness and enable proactive safety interventions.
Through the integration of driver behavior data with external environmental information,
ADAS technologies play a pivotal role in accident prevention and the overall improvement
of road safety.

Data logging and event recording systems focus on capturing detailed behavioral
variables such as speeding, harsh braking, and acceleration patterns, which are essential
for identifying unsafe practices. These systems also monitor environmental variables like
road conditions, weather, and operational settings. Continuous data logging facilitates
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comprehensive post-trip evaluations and long-term trend analyses, making these systems
indispensable for fleet management, regulatory compliance, and identifying areas for
safety enhancement.

Connectivity and communication systems emphasize monitoring behavioral vari-
ables such as driver compliance with connected vehicle warnings, responses to advisory
speed limits, and interactions with cooperative systems. They also track environmental
variables, including real-time weather updates, road closures, and traffic conditions. By
integrating real-world data with simulation-based training, these systems ensure adapt-
ability across diverse operational environments, delivering dynamic and context-sensitive
safety recommendations.

By systematically integrating physiological, behavioral, and environmental metrics,
these monitoring technologies provide a holistic approach to improving road safety and
driver performance. Each technology offers specialized capabilities, contributing valuable
data for targeted interventions. Together, they form a robust framework for enhancing the
safety, efficiency, and sustainability of modern transportation systems.

4. Discussion
This section presents an analysis of the findings from the systematic review on moni-

toring technologies for truck drivers, with a focus on key insights, methodological strengths
and limitations, policy implications, and directions for future research. By synthesizing
evidence across diverse studies, the discussion aims to deepen understanding of how these
technologies contribute to improving driver safety and reducing risky behaviors.

4.1. Key Findings

This review synthesizes findings from 40 peer-reviewed studies investigating the use of
monitoring technologies to improve truck driver safety. Across the literature, a wide range
of technologies was employed to monitor physiological, behavioral, and environmental
indicators associated with risky driving behaviors and safety outcomes.

Wearable devices, such as wristbands and physiological sensors, were frequently used
to detect fatigue and stress through measures including heart rate variability, electrodermal
activity, and blink rate (Section 3.3.1). These systems enabled early detection of driver im-
pairment and offered non-intrusive alternatives to visual monitoring, particularly valuable
in low-light or high-distraction environments.

In-vehicle monitoring systems and telematics platforms were widely applied to
track behavioral indicators such as speeding, abrupt braking, and unsafe lane changes
(Section 3.3.2). When combined with real-time feedback mechanisms, these systems were
associated with measurable reductions in risky behaviors. The integration of GPS and
telemetric data also enabled the classification of driving styles and the identification of
high-risk operational patterns.

Vision-based systems were used to monitor distraction and fatigue through facial
analysis, eye movement, and head position (Section 3.3.3). While these systems offered
detailed driver-state insights, their performance was often affected by environmental factors
such as poor lighting, glare, or sensor occlusion.

Advanced driver assistance systems, including forward collision warning and lane
departure warning functions, were also examined (Section 3.3.4). Some studies applied
machine learning to personalize alert thresholds, which helped reduce false alarms and
improve alignment with individual driver behavior. These results highlight the benefit of
adapting system outputs to context-specific risk factors.

Data logging and event recording systems, such as ELDs and EDRs, supported driver
safety by enabling compliance monitoring and post-trip behavior evaluation (Section 3.3.5).
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Studies reported reductions in hours-of-service violations, fatigue, and speeding events,
particularly when these technologies were combined with structured feedback and train-
ing. However, some unintended effects, such as the displacement of risky behaviors to
unmonitored driving contexts, were also observed.

Connectivity and communication systems, including V2V and V2I technologies, facili-
tated real-time safety communication (Section 3.3.6). These systems supported applications
such as hazard warnings, cooperative overtaking, and variable speed limit advisories.
While drivers generally responded positively to connected vehicle alerts, limitations in
system usability, interface design, and reliability under mixed-traffic conditions were noted.

The technologies reviewed monitored a broad array of variables (Section 3.4). Physio-
logical measures included heart rate, skin conductance, and eye behavior to assess fatigue
and stress. Behavioral variables, such as lane position, speed variation, braking intensity,
and off-road glances, were key indicators of driver risk. Environmental factors such as
road type, traffic conditions, and weather were also incorporated to improve the contextual
relevance and accuracy of safety assessments. Together, these dimensions enabled a more
holistic understanding of driver state and behavior.

Despite these promising outcomes, several challenges persist. As illustrated in Figure 3,
most studies were conducted in high-income countries, limiting the global applicability
of results. In addition, high implementation costs, data privacy concerns, limited system
adaptability, and insufficient sample diversity were consistently identified across studies.
These factors affect both the scalability and acceptability of monitoring technologies in
real-world operations.

4.2. Strengths and Limitations

This systematic review identified several strengths in the current body of research
on monitoring technologies. The integration of naturalistic driving data and real-time
monitoring allowed for detailed insights into driver behaviors under realistic conditions.
Multi-faceted approaches, combining physiological, behavioral, and environmental data,
proved particularly effective in capturing complex interactions contributing to safety risks.
Advances in machine learning and artificial intelligence further enhanced the adaptability
and precision of monitoring systems, allowing for personalized feedback tailored to specific
drivers and contexts.

However, this review also identified several limitations that constrain the generalizabil-
ity and applicability of the findings. First, many studies were geographically concentrated
in regions with advanced infrastructure and regulatory environments, limiting the transfer-
ability of findings to contexts with different road conditions, cultural attitudes, and policy
frameworks. The underrepresentation of low- and middle-income regions, where truck
driver safety is often a critical concern, highlights the need for broader geographic inclusion
in future research.

Second, small sample sizes and short study durations were common methodological
limitations. These factors reduce statistical power and limit the ability to draw reliable
conclusions about the long-term effectiveness of monitoring technologies. In addition,
shorter study periods often fail to capture sustained behavioral changes or account for
the possibility that drivers may become desensitized to monitoring systems over time. A
further concern is the limited diversity of study samples, particularly in terms of age, gen-
der, cultural background, geographic context, and driving experience, which restricts the
adaptability of monitoring technologies to different user groups. Systems developed and
validated on relatively homogeneous populations may not perform consistently across var-
ied real-world scenarios. Addressing this issue requires greater emphasis on heterogeneous
sampling strategies and cross-context validation.
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Third, high implementation costs remain a considerable obstacle, especially for small
and medium-sized fleet operators. The deployment of advanced monitoring systems
typically requires substantial upfront investment in hardware, software integration, and
ongoing maintenance. These financial constraints can limit the adoption of safety-enhancing
technologies, particularly in resource-constrained regions or among operators with limited
access to funding, subsidies, or incentive mechanisms. Addressing this barrier will require
targeted efforts to develop cost-efficient solutions, such as modular system design, open-
source platforms, and scalable deployment models.

Fourth, many monitoring systems, particularly those relying on vision-based sensors
or physiological signal detection, are sensitive to external environmental conditions. Factors
such as poor lighting, glare, precipitation, and road surface variability may distort data
accuracy and compromise system reliability in real-world applications. These challenges
highlight the need for more robust and adaptable system designs, as well as validation
studies conducted under varied environmental scenarios to ensure consistent performance.

Fifth, false alarms in systems such as FCW technologies emerged as a significant issue.
High rates of false alerts can lead to driver frustration, reduced trust in the technology, and
eventual disengagement. Improving algorithmic precision and ensuring that system re-
sponses align closely with actual driving conditions will be essential to enhancing usability
and acceptance.

Sixth, privacy concerns continue to present a substantial challenge, particularly in the
case of video-based monitoring systems. Many drivers express discomfort with continuous
surveillance, raising both ethical and legal issues surrounding data protection and consent.
While several studies proposed privacy-preserving alternatives, such as non-visual moni-
toring methods, these approaches require broader validation and implementation to ensure
wider acceptance and compliance.

Finally, the absence of standardized evaluation frameworks across studies limits the
comparability of results and the ability to assess the relative effectiveness of different tech-
nologies. Inconsistencies in methodologies, performance metrics, and outcome measures
hinder the formation of a cohesive evidence base and complicate the identification of
best practices. This lack of standardization poses ongoing challenges for policymakers
and industry stakeholders seeking to adopt and scale effective monitoring systems in a
consistent and evidence-driven manner.

4.3. Policy Implications

The findings of this review have significant implications for policymakers and industry
stakeholders. Addressing barriers such as privacy concerns and usability challenges is
critical to enhancing the adoption and effectiveness of monitoring technologies. Regula-
tory frameworks should prioritize the development of adaptive systems that align with
individual driver behaviors and preferences, as these are essential for fostering trust and
compliance among drivers.

Policies promoting data anonymization and the adoption of non-invasive monitoring
solutions are crucial for mitigating privacy concerns and driver resistance. Additionally, the
establishment of standardized evaluation frameworks would enable consistent and robust
assessments of monitoring technologies, facilitating evidence-based decision-making. Poli-
cymakers should also consider financial incentives to encourage the adoption of advanced
monitoring systems, particularly in high-risk sectors, where safety improvements can have
significant societal and economic benefits. Collaboration between technology developers,
fleet operators, and regulatory agencies will be essential to ensure that innovations address
practical needs and industry goals.
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4.4. Future Research

Future research should address the gaps and limitations identified in this review
to strengthen the evidence base for monitoring technologies. Longitudinal studies with
larger and more diverse populations are needed to evaluate the long-term impacts of
these systems on driver behavior and safety outcomes. Additionally, innovative, non-
invasive monitoring methods, such as non-visual fatigue detection systems and wearable
devices equipped with physiological sensors (e.g., heart rate variability, skin conductance,
or eye-tracking capabilities), should be further explored to offer privacy-preserving and
user-friendly solutions.

Developing standardized metrics and methodologies for evaluating monitoring tech-
nologies is essential to enable robust comparisons and identify best practices. Comparative
studies assessing cost-effectiveness, scalability, and long-term feasibility will provide valu-
able insights for stakeholders. In particular, future investigations should explore affordable
and scalable solutions, including the use of commercially available devices (e.g., smart-
phones or smartwatches), open-source platforms, and cloud-based data processing, all of
which can reduce hardware demands and total cost of ownership.

Moreover, research into policy frameworks and financial mechanisms, such as public-
private partnerships, government subsidies, tax incentives, or insurance discounts linked
to safety technology adoption, could inform strategies to overcome financial barriers, es-
pecially for small and medium-sized enterprises. Collaborative models, including shared
service platforms and subscription-based implementations, may also offer practical alterna-
tives in cost-sensitive settings.

In addition, future work should explore the integration of multiple and diverse data
sources, such as facial fatigue indicators, cockpit audio, physiological signals, and vehicle
telemetry, to support more comprehensive and context-aware assessments of driving be-
havior. Combining these complementary inputs can provide a richer understanding of both
driver state and environmental context, which is essential for accurately identifying risk
patterns. Adaptive algorithms, particularly those based on deep learning techniques, offer
strong potential for processing such complex data and dynamically detecting risky behav-
iors. These approaches can enhance system responsiveness, improve behavioral sensitivity,
and support the development of individualized, data-driven safety interventions.

Beyond technical and economic considerations, future studies should also examine the
broader human and organizational implications of monitoring technologies. This includes
evaluating their impact on driver well-being, stress levels, and job satisfaction, which
are essential for long-term adoption and behavioral change. Addressing these research
priorities will contribute to optimizing the design and implementation of monitoring
systems and promoting their effective integration into the trucking industry, ultimately
supporting safer roads and improved outcomes for all stakeholders.

5. Conclusions
This systematic review examines the role of monitoring technologies in improving

truck driver safety, highlighting the diverse technologies, variables measured, and out-
comes observed across the studies. The findings demonstrate that technologies such as
wearable devices, in-vehicle cameras, telematics systems, and AI-driven analytics show
promise in enhancing driver safety by monitoring fatigue, stress, distraction, and other
critical driving behaviors. However, the effectiveness of these technologies varies, and
challenges such as high implementation costs, privacy concerns, and driver acceptance
remain significant barriers to widespread adoption.

Despite these challenges, the reviewed studies underscore the potential of these
technologies to reduce risky driving behaviors and improve overall safety outcomes. The
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evidence presented offers valuable insights into current trends in truck driver safety and
provides a foundation for future research focused on addressing the identified gaps and
optimizing the deployment of monitoring technologies. Further investigation is needed
to refine these technologies, ensure their practical applicability in real-world settings,
and enhance their integration into comprehensive safety management systems for the
trucking industry.
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Appendix A
The Appendix includes two tables that provide additional detail on the reviewed

studies. Table A1 summarizes each study’s authorship, location, goals, methods, and main
findings. Table A2 lists the monitoring technologies used, measured variables, monitoring
frequency, and time frame of data collection.

Table A1. Summary of included studies.

Study Institution,
Country Objective Data

Collection Data Analysis Main Findings

Ahlström
and Anund
(2024) [47]

Linköping
University,

Sweden

To investigate the
development of

sleepiness in truck
drivers and test the
feasibility of DDAW

system validation

ND ANCOVA,
and ANOVA

Sleepiness was higher at night,
increasing with distance. Nighttime

tests effectively induced required
drowsiness levels for DDAW

validation, while daytime tests
faced challenges.

Ahmed et al.
(2019) [43]

University of
Wyoming,

United States

To develop and evaluate
a connected vehicle (CV)
training program with

e-learning and
hands-on simulator

training modules

DSE Descriptive statistics

A connected vehicle training program
combining e-learning and driving
simulation improved truck drivers’
understanding and response to CV

systems. Drivers reported enhanced
safety awareness and adaptability to

CV warnings.

Bao and
Wang

(2024) [32]

Tongji
University,

China

To optimize FCW
algorithms based on

truck driver
behavior data

ND

K-means clustering,
Linear Support
Vector Machine,

and Long
Short-Term Memory

An optimized truck FCW algorithm
improved safety by up to 5.1%,

achieving 97.92% accuracy and a 1.73%
false alarm rate by modeling driver

response behaviors with
machine learning.

Bell et al.
(2017) [19]

National
Institute for

Occupational
Safety and

Health,
United States

To evaluate IVMS
feedback mechanisms

on reducing risky
driving behaviors

VD
Logistic regression
and Generalized

Estimating Equation

Supervisory coaching combined with
in-cab warning lights significantly

reduced risky driving behaviors among
commercial drivers, achieving a 39%

greater reduction compared to
lights-only feedback. Instant feedback

alone showed no significant
improvement over the control group.

Coaching was most effective in
fostering safer driving habits.
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Table A1. Cont.

Study Institution,
Country Objective Data

Collection Data Analysis Main Findings

C. Zhang
et al.

(2024) [20]

Southeast
University,

China

To assess driving style
variations and risky
behaviors in truck
drivers based on
load condition

ND

K-means clustering,
Principal

Component
Analysis, MANOVA,

and ANOVA

Truck drivers exhibited distinct driving
styles under no-load and heavy-load
conditions, with aggressive driving
more prevalent in no-load scenarios.

Aggressive drivers under both
conditions posed the highest safety

risks, showing increased driving
volatility and distraction. Most drivers

demonstrated safe driving,
highlighting the potential for targeted

interventions to address
high-risk behaviors.

Cai et al.
(2022) [21]

Sun Yat-sen
University,

China

To model the effect of
fatigue and rest breaks

on safety-critical
events (SCEs)

ND

Bayesian
hierarchical models,
Non-homogeneous

Poisson process, and
Jump Power
Law Process

Hard braking was more likely early in
driving shifts, while collision

mitigation system activations increased
later. Rest breaks reduced the intensity
of severe safety-critical events but had
limited impact on less critical events.
Driver heterogeneity accounted for

significant variability in safety-critical
event occurrence, supporting
personalized interventions.

Castritius
et al.

(2021) [48]

Johannes
Gutenberg-
Universität

Mainz,
Germany

To evaluate driver
situation awareness and
perceived sleepiness in
semi-automated truck

platooning using
eye-tracking data

Interview,
QS, and VD

Friedman ANOVA,
Paired sample

t-tests, and
Descriptive statistics

Drivers in semi-automated platoon
systems maintained similar situation
awareness as manual driving, with
leading truck drivers spending less

time on the road ahead and more on
the HMI. Decoupling scenarios in the

following vehicle demanded the
highest visual attention. Sleepiness

ratings were low across all conditions,
showing no significant differences

between manual and platoon driving.

Crizzle et al.
(2022) [39]

University of
Saskatchewan,

Canada

To compare fatigue,
work environment, and

perceptions of ELD
users vs. non-users

Interview
and QS

Descriptive statistics,
Independent t-tests,
Chi-square tests, and

Thematic analysis

Electronic logging devices (ELDs)
reduced fatigue, improved sleep

quality, and decreased night driving
among long-haul truck drivers

(LHTDs). While ELDs reduced stress
and prevented HOS violations, parking
shortages and concerns over reduced
income were significant drawbacks.
Adjustments to HOS flexibility and

payment models are recommended to
address these challenges.

de Oliveira
et al.

(2020) [41]

Federal
Institute of
Education,

Science and
Technology

of
Southeastern
Minas Gerais,

Brazil

To assess the influence
of event data recorders

(EDR), training, and
feedback procedures on

improving safety,
operational, and

economic outcomes

ND

Data Envelopment
Analysis, Statistical
variance analysis,
and Composite

efficiency indices

Integrating event data recorder (EDR)
systems with training and feedback
reduced speeding events by 46.35%
and speeding time by 81.17%, while

improving fuel efficiency and
operational performance. Combined

interventions outperformed EDR alone,
ensuring safety and cost-effectiveness.

E. Sun et al.
(2010) [49]

University of
Science and
Technology

Beijing,
China

To develop a 3D-assisted
driving system

(3D-ADS) for enhanced
safety and route

guidance in surface
mining operations

ND System
architecture analysis

The 3D Assisted Driving System
(3D-ADS) integrates GPS, wireless

networks, and Google Earth for
real-time truck navigation in surface

mines, enhancing safety in low-visibility
conditions. The system reduces

decision-making uncertainty, provides
dynamic 3D mapping, and allows

real-time route updates to optimize
operational safety and efficiency
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Elbaum et al.
(2024) [35]

Ariel
University,

Israel

To assess whether
ADHD-related risky

driving behaviors
generalize to

professional drivers
monitored

by supervisors

ND

Generalized Linear
Model, Poisson
regression, and

Relative
Risk analysis

Professional drivers with ADHD
exhibited a 113% higher rate of

speeding violations and significantly
more safety events (e.g., hard braking,

swerving) compared to non-ADHD
peers, despite supervisory monitoring.

Fank et al.
(2021) [44]

Technical
University of

Munich,
Germany

To analyze the usability
and effectiveness of an

HMI in facilitating
cooperative truck

overtaking maneuvers
and assess driving
behavior during
system failures

DSE
Wilcoxon test;

Descriptive statistics;
NASA-TLX

An improved human–machine
interface (HMI) for cooperative truck

overtaking maneuvers enhanced
usability but did not significantly

increase cooperation rates. Automated
cooperation requests reduced driver
workload but maintained high trust
and acceptance. Simulated system

failures were not perceived as
safety-critical, with drivers either
aborting or adapting overtaking

maneuvers depending on
failure timing.

Ferreira et al.
(2019) [29]

University of
Porto,

Portugal

To investigate the effect
of journey

characteristics on
distraction and

drowsiness alerts

ND
Generalized Linear

Model and Negative
Binomial regression

Continuous driving time increased
distraction and drowsiness alerts, with
a 10% increase in driving time leading
to a 10% rise in distraction and 15% in

drowsiness alerts. Journey duration
reduced drowsiness alerts when

frequent breaks were taken.
Drowsiness risks were higher in

companies with irregular schedules.

Fitch et al.
(2011) [26]

Virginia Tech
Transporta-

tion Institute,
United States

To evaluate C/VIS in
real-world trucking

operations for
safety-critical event

(SCE) reduction

ND
Mixed Factors
ANOVA and

Descriptive Statistics

Camera/Video Imaging Systems
(C/VIS) improved drivers’ situational

awareness but did not reduce
Safety-Critical Events (SCEs). Drivers
used C/VIS more at night and during
right lane changes, with the advanced
C/VIS rated higher due to features like
infrared and rear-view cameras. Glare
from commercial C/VIS monitors was

reported as a drawback.

Giorgi et al.
(2023) [16]

Sapienza
University of
Rome, Italy

To evaluate
neurophysiological
parameters for early

mental fatigue detection

DSE and
ND

Repeated measures
ANOVA, Friedman

test, and
Post-hoc tests

Neurophysiological measures,
particularly EEG, proved most effective

for early detection of driver fatigue,
showing timely sensitivity compared to
ocular parameters, which responded

later. Behavioral performance diverged,
with some drivers exhibiting fatigue
earlier than others. Findings support

using multimodal monitoring systems
to enhance user-centered AI in

autonomous vehicles.

He et al.
(2024) [28]

Tsinghua
University,

China

To develop a non-visual,
privacy-preserving

fatigue
detection method

ND
Bidirectional LSTM

with
Attention mechanism

A non-visual fatigue detection system
for truck drivers, integrating

physiological, vehicular, and temporal
features, achieved 99.21% accuracy and

83.21% F1-score. Key contributors to
fatigue included reduced

photoplethysmogram (PPG) signals,
high vehicle loads (>70 t), nighttime
driving, and extended driving times

(>4 h). The method offers a
privacy-preserving, robust alternative

to visual-based detection.
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Hickman
et al.

(2017) [40]

Virginia Tech
Transporta-

tion Institute,
United States

To assess the safety
benefits of electronic

logging devices (ELDs)
in reducing crashes and

HOS violations

CD Poisson
regression model

Electronic logging devices (ELDs)
reduced total crash rates by 11.7% and
preventable crashes by 5.1%, while also

lowering driving-related and
non-driving-related HOS violations by

53% and 49%, respectively.
ELD-equipped trucks demonstrated

clear safety benefits, enhancing
compliance with hours-of-service

regulations and reducing
fatigue-related risks.

Hickman
et al.

(2018) [50]

Virginia Tech
Transporta-

tion Institute,
United States

To compare the Large
Truck Crash Causation

Study (LTCCS) and
Naturalistic Driving

(ND) data for evaluating
crash causation and

exposure to risky
behaviors, focusing on

the associated factor
“Following Too Closely.”

ND and CD Synthetic odds
ratio analysis

Truck drivers following too closely
were 1.34 times more likely to crash,

based on combined LTCCS and
naturalistic driving data. FCW systems
are recommended to mitigate this risk.

Horberry
et al.

(2022) [31]

Monash
University
Accident
Research
Centre,

Australia

To design and evaluate a
human-centered HMI to

address fatigue and
distraction in
truck drivers

Interview

Thematic analysis
and human-centered

design
iterative evaluation

A human-centered design process
created a two-level fatigue and

escalating distraction warning system
with multimodal alerts. Drivers

preferred tactile seat alerts, finding the
system effective and user-friendly.

On-road testing is advised to confirm
safety benefits.

Ito et al.
(2023) [17]

Hitachi Ltd.,
Japan

To predict collision risks
using physiological and

simple external data

ND and
biometric
measure-

ment

Deep learning,
Binary classification,

Recall, and AUC
evaluation

Using autonomic nerve function and
external data, the model predicted

truck collision risks 30 min ahead with
74.9% recall and 0.79 AUC. Integrating

biometrics with driving state and
environmental factors proved effective

for real-time accident prevention.

Khoda
Bakhshi and

Ahmed
(2022) [45]

University of
Wyoming,

United States

To investigate the use of
kinematic-based

surrogate measures of
safety (K-SMoS) in

detecting crash-prone
conditions in a

connected vehicle
(CV) environment

DSE

Bayesian Extreme
Value Analysis, and
Generalized Extreme

Value
distribution fitting

Bayesian analysis detected crash-prone
conditions with 81% accuracy,

identifying steering derivatives as
superior indicators. This highlights the
potential of connected vehicle data for

early crash detection.

Krum et al.
(2019) [51]

Virginia Tech
Transporta-

tion Institute,
United States

To evaluate the
effectiveness of
emerging safety
technologies for

commercial trucks

Interview
and ND

Descriptive statistics,
Paired t-tests, and

System performance
metrics analysis

The blind spot system reduced lane
change conflicts by 46%, while onboard

monitoring lowered speeding and
seatbelt violations by 37% and 56%,
respectively. Findings emphasized

benefits and refinement for
real-world use.

Li et al.
(2019) [25]

Chang’an
University,

China

To assess truck driver
risk based on speed

variation metrics using
GPS data

ND
Descriptive

statistics and
K-means clustering

Speed variation analysis of 100 trucks
revealed risky driving patterns, with
frequent speed fluctuations linked to
higher crash risks. GPS-based metrics

show promise for fleet
safety monitoring.
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Liu et al.
(2019) [52]

Virginia Tech
Transporta-

tion Institute,
United States

To assess the impact of
pre-shift sleep duration

on truck driver
performance during

long shifts

ND and
biometric
measure-

ment

Mixed Poisson
process recurrent

event model,
Penalized B-splines,

and Expectation-
Maximization

algorithm

Drivers with insufficient sleep (<7 h)
experienced increased unintentional
lane deviations (ULDs) after 8 h of
driving, peaking in the 10th hour.

Normal sleep (7–9 h) maintained the
lowest ULD rates, while abundant
sleep (>9 h) showed unexpected

performance declines, possibly linked
to insufficient breaks.

M. Sun et al.
(2023) [30]

Research
Institute of

the Highway
Ministry of
Transport,

China

To explore risk factors
contributing to

HAZMAT truck driver
fatigue and distraction

using driver monitoring
systems (DMS) data and
association rule mining

ND

Fisher’s exact test,
Association rule

mining, and
Apriori algorithm

Fatigue in HAZMAT truck drivers was
strongly associated with speeds of

40–49 km/h, travel times of 3–6 h, clear
weather, off-peak hours, and tangent

road sections. Distracted driving
correlated with speeds of 70–80 km/h,

visibility >1000 m, nighttime hours
(18:00–23:59), and freeway driving.

Martín de
Diego et al.
(2013) [22]

Universidad
Rey Juan

Carlos, Spain

To develop a
methodology to

measure driving risk
based on hand activities

and other
driving variables

DSE

Genetic Algorithm
optimization,

Euclidean distance
metric, and Risk
model validation

The HARBI model detected risky hand
activities with high accuracy, aligning

with expert evaluations, demonstrating
potential for mitigating manual

driving distractions.

Matović et al.
(2020) [23]

University of
Novi Sad,

Serbia

To evaluate how driving
anger influences

speeding behavior using
GPS data

ND

Hierarchical
multiple linear
regression and

Pearson’s
correlation analysis

Driving anger, particularly from hostile
gestures and traffic obstructions,
significantly increased speeding

behavior among Serbian truck drivers.
Younger drivers and tight schedules

amplified speeding tendencies.

Mehdizadeh
et al.

(2021) [37]

Auburn
University,

United States

To predict safety-critical
events (SCEs) using

machine learning
models based on

kinematic, weather, and
driver data

ND

Machine learning
models, Logistic

regression, and Area
Under the Curve

Machine learning predicted truck
Safety Critical Events with 76.5%

accuracy 30 min ahead, highlighting
SCELag7 and speed metrics as key

predictors for real-time
safety interventions.

Minusa et al.
(2021) [18]

Hitachi Ltd.,
Japan

To analyze the impact of
acute stress-induced
fatigue on rear-end

collision risks

ND and
biometric
measure-

ment

Logistic quantile
regression and

Gradient Boosting
Decision Tree

Acute stress-induced fatigue increased
rear-end collision risk by elevating

sympathetic and suppressing
parasympathetic nerve activity during
truck driving. Continuous monitoring
of drivers’ autonomic nerve function
(ANF) can aid in stress detection and

fatigue management, reducing
collision risks.

Mizuno et al.
(2020) [24]

RIKEN
Center for
Biosystems
Dynamics
Research,

Japan

To analyze the
correlation between
fatigue and rear-end

collision risk using ANF

ND and
biometric
measure-

ment

Decision Tree
Analysis, Pearson’s

correlation
coefficient, and
Welch’s t-test

Fatigue-related sympathetic nerve
overactivity in truck drivers’ post-shift

condition significantly increased
rear-end collision risk during the

following day’s shift.

Mortazavi
et al.

(2009) [53]

University of
California,

United States

To evaluate the impact
of drowsiness on

driving performance
variables and propose a

detection system

DSE
ANOVA, Tukey’s
post-hoc test, and

Regression analysis

Drowsiness significantly impacted
commercial drivers’ steering and

lane-keeping, with increased variability
in lateral position and steering

corrections. Two degradation phases
were identified: impaired control
(zigzag driving) and dozing off

(constant steering leading to lane
departure). Steering metrics showed

strong potential for drowsiness
detection systems.
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Raddaoui
and Ahmed
(2020) [36]

University of
Wyoming,

United States

To assess the visual and
cognitive demands of
CV-based weather and
work zone warnings

DSE and
VD

Paired t-tests,
Descriptive statistics,
and Chi-squared test

Weather notifications in connected
vehicle (CV) systems had minimal

effects on truck drivers’ visual
workload, while work zone warnings

(WZWs) significantly increased
off-road glances and fragmentation of

visual attention. WZW-induced
prolonged glances raised distraction

risks, prompting design modifications
to simplify messages and reduce

cognitive demands.

Roozendaal
et al.

(2020) [34]

Delft
University of
Technology,
Netherlands

To compare the
effectiveness and

acceptance of three
haptic lane-keeping
assistance designs

Test track

Repeated-measures
ANOVA, Tukey

post-hoc tests, and
Descriptive statistics

Continuous haptic lane-keeping
assistance for trucks improved

lane-centering and was preferred by
drivers over bandwidth-based systems.

All assistance types reduced lane
departures during distraction, but

continuous assistance showed higher
usability and satisfaction.

Schindler
and Bianchi

Piccinini
(2021) [38]

Chalmers
University of
Technology,

Sweden

To evaluate driver
behavior when

encountering vulnerable
road users (VRUs)

at intersections

Test track

Paired-samples
t-test, Descriptive

statistics, Gaze
analysis, and Time-
to-Collision metrics

Truck drivers reduced speed and
adjusted glances toward cyclists and

pedestrians at intersections,
emphasizing ADAS’s potential to

enhance VRU detection and warnings.

Scott et al.
(2021) [42]

Michigan
State

University,
United States

To evaluate the
unintended

consequences of the
ELD mandate on unsafe

driving behaviors
and crashes

CD

Difference-in-
Differences,
Regression

analysis, and
Descriptive statistics

The electronic logging device (ELD)
mandate reduced hours-of-service
violations among small carriers by
43–47%. However, unsafe driving

violations increased by 16.7–26%, with
no significant crash reduction,

suggesting displacement of risk to
unmonitored behaviors.

Talebi et al.
(2022) [27]

University of
Utah,

United States

To identify key factors
driving fatigue and

build a predictive model
using operational data

ND

Machine learning
model, SHAP
analysis, and

Confusion
matrix evaluation

A machine learning model predicted
truck driver fatigue with 99% accuracy,
identifying employee ID, overtime, and

truck state as key factors. Results
support tailored fatigue
management strategies.

Wege et al.
(2013) [54]

Volvo Group
Trucks

Technology,
Sweden

To assess visual
attention allocation and

brake reactions to
B-FCW events

ND

ANOVA, Descriptive
statistics, and

Time-based glance
behavior analysis

Brake-capacity forward collision
warnings (B-FCW) systems prompted
immediate braking and road focus but
caused post-threat glances toward the
warning source, suggesting redesigns

to reduce distractions.

Wu et al.
(2023) [33]

Research
Institute of

the Highway
Ministry of
Transport,

China

To investigate the
impacts of ADAS

warnings on driving
behavior and
performance

ND

One-way ANOVA;
Descriptive statistics;
Median and average

trend analysis

ADAS systems positively impacted
truck driver behaviors, reducing lane

departures by 28%, headway violations
by 45%, and speeding alerts by 15%.

While effective at high speeds, ADAS
had minimal impact on low-speed

rear-end collision prevention,
underscoring its limitations in urban

driving conditions.

X. Zhang
et al.

(2022) [13]

Tongji
University,

China

To analyze how travel
characteristics, driving

behaviors, and
in-vehicle monitoring

data influence
crash risks

ND

Zero-inflated
Poisson regression,

Standardized
Regression

Coefficients, and
Interaction

term analysis

Yawning increased crash risk due to
drowsiness, while smoking slightly

reduced it by mitigating fatigue. Night
driving and freeway speeds lowered
risk, whereas urban roads and sunny

conditions increased it.
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Yang et al.
(2019) [46]

University of
Wyoming,

United States

To evaluate the effect of
CV-based VSL warnings

on speed compliance
and variance

DSE

Two-sample t-test,
Descriptive statistics,

and Speed
compliance analysis

Variable Speed Limits (VSLs) in
connected vehicles reduced truck speed
and variance under adverse weather,

improving safety and preventing
skidding, especially with limits below

55 mph.

Note: QS represents questionnaire survey; CD represents crash data; DSE represents driving simulator experiment;
ND represents naturalistic data; VD represents videographic data.

Table A2. Technologies and monitoring variables.

Study Monitoring
Technology

Physiological
Variables

Behavioral
Variables

Environmental
Variables

Monitoring
Frequency Temporal Context

Ahlström
and Anund
(2024) [47]

Vision-based
monitoring

systems

Heart rate, heart
rate

variability, and
blink duration

Lane position and
Karolinska

sleepiness scale

Time of
day, traffic

density, and
road conditions

Continuous
monitoring
during real-

world driving

Monitored during
daytime (normal

sleep) and nighttime
(sleep deprivation)

Ahmed et al.
(2019) [43]

Connectivity and
communication

systems
NR

Response to
connected

vehicle warnings

Weather
conditions, road

closures, and
advisory

speed limits

Continuous
monitoring

during
training scenarios

Training included
real-world and

simulated adverse
conditions (e.g., fog,

icy roads)

Bao and
Wang

(2024) [32]

Advanced driver
assistance
systems

NR
Reaction time,

braking distance,
and deceleration

Speed, distance
to the lead

vehicle, and
collision risk

Continuous
monitoring

during driving

Real-world
operations, data

collected over a year

Bell et al.
(2017) [19]

In-vehicle
monitoring

systems
NR

Hard braking,
speeding,

swerving, and
unbelted driving

Road
conditions and

operational sites

Continuous
monitoring

during
operations

Pre-feedback
baseline,

intervention,
post-feedback

baseline

C. Zhang
et al.

(2024) [20]

In-vehicle
monitoring

systems
NR

Speed, volatility,
acceleration, and
braking patterns

Road conditions,
traffic density,

and load (heavy
vs. no-load)

Continuous
monitoring over

three months

Trip-level data for
heavy-load and

no-load conditions

Cai et al.
(2022) [21]

In-vehicle
monitoring

systems
NR

Hard braking,
short headway, and
collision mitigation

Precipitation,
wind speed, and

time of day

Continuous data
collection

(1–15 min interval)

Shifts and trips
recorded over a year

Castritius
et al.

(2021) [48]

Vision-based
monitoring

systems
Blink duration

and gaze fixation

Fixation shares on
road,

human–machine
interface,

and mirrors

Time of day,
driving mode,

and
transition type

Continuous
monitoring

during driving

Daytime and
nighttime platoon

drives lasting
two hours

Crizzle et al.
(2022) [39]

Data logging and
event recording

systems
NR

Sleep quality and
hours of service

(HOS) compliance

Driving hours,
night driving,
and parking
availability

Continuous
logging of HOS
and rest periods

Data collected over
three months

de Oliveira
et al.

(2020) [41]

Data logging and
event recording

systems
NR

Speeding events,
idle time, and

engine economy
zone performance

Road conditions
and fleet

characteristics

Continuous
monitoring over

13 months

Data collected across
baseline and three
monitoring phases

(hidden and
conscious

monitoring)

E. Sun et al.
(2010) [49]

In-vehicle
monitoring

systems
NR

Route selection,
collision avoidance,
and task efficiency

Visibility, road
geometry, and pit

conditions

Continuous
real-time

monitoring
during operations

Data collected during
dynamic

operational tasks

Elbaum
et al.

(2024) [35]

Advanced driver
assistance
systems

NR

Hard braking,
abrupt turns,

swerving,
and speeding

Road type, time
of day, and
exposure

(km driven)

Continuous
monitoring

during military
transport tasks

Safety events
measured over
2–60 months
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Fank et al.
(2021) [44]

Connectivity and
communication

systems
NR

Lane change,
cooperation rates,

and reaction
to failures

Road conditions
(lane availability,

surrounding
traffic behavior)

Continuous
monitoring
during driv-

ing simulation

Data collected during
overtaking scenarios

and system
failure events

Ferreira
et al.

(2019) [29]

Vision-based
monitoring

systems
Eye state, facial

movements

Distraction (e.g.,
texting,

looking outside)

Time of day and
journey duration

Continuous data
collection

per journey
Data collected over

nine months

Fitch et al.
(2011) [26]

Vision-based
monitoring

systems
NR

Lane-change
behavior and

forward glances

Day/night
driving

conditions, and
traffic density

Continuous
monitoring over

four months

Baseline (no
Camera/Video

Imaging Systems) vs.
Test (Camera/Video

Imaging Systems-
enabled) periods

Giorgi et al.
(2023) [16]

Wearable
monitoring

devices

Heart rate, heart
rate variability,
blink duration,

and
electrodermal

activity

Reaction times
Time of day and

traffic-
free simulation

Continuous
monitoring

during
simulation tasks

High-demanding
(15 min) +

Monotonous (45 min)
driving scenarios

He et al.
(2024) [28]

Wearable
monitoring
devices and

In-vehicle moni-
toring systems

Heart rate,
galvanic skin
response, and

photoplethysmo-
gram

Steering behavior,
acceleration,
and braking

Road slope,
vehicle load,

forward angle,
and time of day

Continuous
monitoring
during trips

(1-min intervals)

Natural driving
dataset over
one month

Hickman
et al.

(2017) [40]

Data logging and
event record-
ing systems

NR

Driving-related
violations (e.g.,

exceeding hours),
crash

preventability, and
HOS compliance

NR Continuous data
collection

Data collected before
and after the

Electronic Logging
Device installation

Hickman
et al.

(2018) [50]

Vision-based
monitoring

systems

Sleep quantity
and quality

Following too
closely (tailgating),
evasive maneuvers,
and lane deviations

NR Continuous
data collection

Data collected before,
during, and after

driving events

Horberry
et al.

(2022) [31]

Vision-based
monitoring

systems
NR

Driver attention
and response
to warnings

Day/night
driving, and

cabin complexity

Continuous
feedback during

simulated
driving scenarios

Iterative design
evaluations across

multiple stages

Ito et al.
(2023) [17]

Wearable
monitoring

devices

Heart rate
variability

Reaction time and
cumulative

driving duration
Weather, time of
day, and speed

Continuous;
2-min intervals,
combined into

30-min datasets

Driving shifts over
three months

Khoda
Bakhshi

and Ahmed
(2022) [45]

Connectivity and
communication

systems
NR

Instantaneous
acceleration and

the derivative
of steering

Roadway
geometry and

adverse weather
conditions

Continuous
monitoring

during
simulations

Data collected under
crash-prone and

non-crash conditions

Krum et al.
(2019) [51]

Vision-based
monitoring

systems
NR

Lane changes,
speed violations,

seatbelt use,
and collisions

Weather, road
conditions, and
traffic density

Continuous
monitoring

during baseline
and interven-
tion periods

Baseline (2 months)
vs. intervention

(4 months)

Li et al.
(2019) [25]

In-vehicle
monitoring

systems
NR

Speed variation,
frequency,

and amplitude

Road
conditions on

dedicated routes

Continuous
monitoring over

30 days

Trips repeated
over identical

dedicated routes

Liu et al.
(2019) [52]

In-vehicle
monitoring

systems

Total sleep
duration and
sleep patterns
before shifts

Unintentional lane
deviations

Time of day,
driving hours,

and
environmental

conditions

Continuous
monitoring
throughout

driving shifts

Driving performance
measured

throughout
11-h shifts
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Table A2. Cont.

Study Monitoring
Technology

Physiological
Variables

Behavioral
Variables

Environmental
Variables

Monitoring
Frequency Temporal Context

M. Sun et al.
(2023) [30]

Vision-based
monitoring

systems
NR

Fatigue and
distraction
warnings,

acceleration, speed,
and horizontal

alignment

Visibility,
weather, road
type, and time

of day

Continuous data
collection from
in-cab monitor-

ing system

Data captured
during active

driving sessions

Martín de
Diego et al.
(2013) [22]

In-vehicle
monitoring

systems
NR

Hand position, lane
invasion, speed,

and steering
wheel angle

Traffic and road
variables,

including lane
conditions and

road slope

Continuous data
during

simulations

Data recorded during
driving sessions

Matović
et al.

(2020) [23]

In-vehicle
monitoring

systems
NR Speed violations

and speeding index
Urban, rural, and
motorway zones

Continuous,
second-by-

second data

6-month
monitoring period

Mehdizadeh
et al.

(2021) [37]

Advanced driver
assistance
systems

Reaction times
and cumulative

driving time

Speed, hard
braking, and

headway distance

Weather
conditions and
traffic density

Continuous
monitoring
during trips

30 min trip segments
over a year

Minusa et al.
(2021) [18]

Wearable
monitoring

devices

Sympathetic and
parasympathetic
nerve activities

Speed, acceleration,
and inter-

vehicle distance

Weather, time of
day, and

road conditions

Continuous; data
sampled every

20 s

Driving shifts of up
to three months

Mizuno
et al.

(2020) [24]

In-vehicle
monitoring

systems

Sympathetic and
parasympathetic
nerve activities,

and heart
rate variability

Rear-end collision
Weather,

traffic, and
road conditions

Continuous data
collection across

eight months

Daily pre-/post-shift
conditions, 8 months

of driving

Mortazavi
et al.

(2009) [53]

In-vehicle
monitoring

systems

Eye closure and
subjective

drowsiness rating

Steering angle,
lateral position,

and lane keeping

Simulated
highway driv-
ing conditions

Continuous
monitoring

during simu-
lated scenarios

Morning (alert) and
night (drowsy)

driving sessions

Raddaoui
and Ahmed
(2020) [36]

Advanced driver
assistance
systems

Eye glance
duration, fixation,

and dwell time

Glance distribution
and off-road

glance duration

Adverse weather
(fog) and

work zones
(lane closures)

Continuous
monitoring dur-
ing simulation

Weather warnings
(clear visibility) vs.

work zone warnings
(low visibility)

Roozendaal
et al.

(2020) [34]

Advanced driver
assistance
systems

NR

Lateral position,
lane departure
frequency, and
control activity

Lane
geometry and
traffic density

Continuous
monitoring

across three laps
per trial

Distracted vs.
non-distracted
driving with

different
assistance designs

Schindler
and Bianchi

Piccinini
(2021) [38]

Advanced driver
assistance
systems

NR Speed profiles and
stopping behavior

Simulated
intersection
conditions

Continuous data
collection during

test laps
6 test laps per driver

Scott et al.
(2021) [42]

Data logging and
event recording

systems
NR

Speeding, lane
changes, and

aggressive driving

Traffic density
and weather
conditions

Continuous;
monitored during
all driving hours

Pre- and
post-mandate

implementation
periods

Talebi et al.
(2022) [27]

Vision-based
monitoring

systems

Eye closure
and sleep-

related metrics

Operational events
and cycle rates

Time of shift,
work schedules,

operational
delays

Continuous
monitoring

during shifts over
four years

Events classified
as “low” or

“critical” fatigue

Wege et al.
(2013) [54]

Advanced driver
assistance
systems

NR
Glance direction,

brake
pedal position

Roadway and
lead

vehicle dynamics

Continuous
monitoring
before and
after colli-

sion warnings

30 s before and 15 s
after collision events

Wu et al.
(2023) [33]

Advanced driver
assistance
systems

NR

Lane departure,
headway,

speeding, and
collision avoidance

Weather, road
geometry, and
traffic density

Continuous
monitoring over

12 weeks

Blind Test (4 weeks),
Training (1 week),

Practical Test
(8 weeks)
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Table A2. Cont.

Study Monitoring
Technology

Physiological
Variables

Behavioral
Variables

Environmental
Variables

Monitoring
Frequency Temporal Context

X. Zhang
et al.

(2022) [13]

Advanced driver
assistance
systems

Yawning,
smoking,

and fatigue

Speed, insufficient
headway, and

phone use

Weather, and
time of day

Continuous,
recorded every

30 s

One-year
real-world operations

Yang et al.
(2019) [46]

Connectivity and
communication

systems
NR

Speed compliance
and reaction to

speed limits

Weather
conditions (snow,

icy surfaces)

Continuous
during

simulation

Baseline (no Variable
Speed Limit) vs.

Connected Vehicle
system with Variable

Speed Limit
test scenario

Note: NR represents not reported.
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