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A B S T R A C T

Failure in fiber-reinforced composites is a complex phenomenon where different damage mechanisms interact
and evolve through various scales. Micro-mechanical analysis using the finite element method has become
an important alternative to study such failure phenomena and their interactions, by modeling explicitly the
fiber, matrix, and fiber–matrix interface. In this work, the predictive capabilities of the finite element method
together with the Phase-Field (PF) method for fracture has been assessed. The study compares different
PF formulations, energy splits and numerical parameters, using Representative Volume Elements (RVEs) of
different sizes, fiber distributions and with different Boundary Conditions (BCs). It is found that even though
good approximations can be obtained and meso-scale failure envelopes for transverse loading generated, these
are highly dependent on the modeling assumptions and PF parameters. The AT2 formulation combined with
Amor’s energy split provides the best predictions when compared with an analytical failure surface. The best
fit is found for transverse shear-dominated loading, while larger differences are found for compressive loading,
whose strength predictions are strongly affected by the PF formulations and energy splits. It is demonstrated
that meso-scale strength is conditioned by interface properties as interface damage is the dominant failure
initiation mechanism under tensile-dominated loading. On the other hand, PF parameters have a stronger
influence on compressive-dominated loading. Finally, it is shown that assuming a perfect fiber–matrix interface
has a strong effect on the expected meso-scale strength, as failure is markedly delayed. Accordingly, based on
the present results, especial care should be taken in properly assessing all the variables involved in the modeling
methodology to draw conclusions from computational micro-mechanical analyses based on the PF approach.
1. Introduction

The Phase-Field (PF) method for fracture results from the seminal
work of Francfort and Marigo (1998) as the redefinition of Griffith’s
differential energy balance into an energy balance expressed in a vari-
ational integral form. Such balance defines the total potential energy
as the sum of the external work, the strain energy due to elastic
deformation and the crack surface integral that represents the work
required to generate a crack surface. Bourdin et al. (Bourdin et al.,
2000; Francfort et al., 2008) used the variational formulation and,
through a damage-like variable, defined a regularized crack represen-
tation where the surface integral on the unknown crack path can be
replaced by a volume integral within a diffuse damaged zone whose
size is given according to a length scale parameter. The PF method has

∗ Corresponding author at: DEMec, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal.
E-mail addresses: macias@fe.up.pt (J. Macías), pcamanho@fe.up.pt (P.P. Camanho).

gained increased popularity in the field of computational fracture me-
chanics because of the several advantages when compared with other
methodologies, namely, (i) it offers the possibility of capturing fracture
initiation which is not possible for methods such as the Virtual Crack-
Closure Technique (VCCT); (ii) PF allows to model crack propagation
without the need to use predefined crack paths or re-meshing, which
are typical limitations of cohesive zone models and VCCT respectively;
(iii) PF can capture crack branching and merging in 3D as well as
2D models without the need of ad hoc propagation criteria which are
commonly used in XFEM and VCCT; in addition, (iv) PF can reduce
the strong mesh dependency of traditional Continuum Damage Models
(CDM) (Bourdin et al., 2000; Francfort et al., 2008). Thanks to these
capabilities, the PF method is currently used in an extensive range
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of applications, from fracture in ceramic, geological materials, metals
and polymers to functionally graded material and anisotropic materials
such as composite laminates (Wu et al., 2019). The introduction of PF
to model fracture in composite materials was initially performed at the
meso-scale (Quintanas-Corominas et al., 2019), namely at the lamina
level. The PF approach to fracture was later introduced within the
context of micro-mechanical analysis, from the work on a single fiber
embedded in a large square matrix (Guillén-Hernández et al., 2019),
to the analysis of the transverse failure of Representative Volume
Elements (RVEs) (Espadas-Escalante et al., 2019) and embedded cell
models (Tan and Martínez-Pañeda, 2022).

The use of PF on a single fiber embedded in a large square ma-
trix (Guillén-Hernández et al., 2019; Zhang et al., 2019, 2020; Song
et al., 2020) is limited to linear-elastic material formulations, infinitesi-
mal deformations and neglects residual stresses. Crack kinking is always
studied under the plane-strain assumption, and 3D effects such as crack
tunneling have only been addressed in the 3D model of Song et al.
(2020). Only the work of Guillén-Hernández et al. (2019) and Song
et al. (2020) consider realistic micro-scale dimensions. The work of
Zhang et al. (2019, 2020) is limited to fiber diameters of 0.5 mm,

hich are not representative of the micro-scale of technical composite
aterials. Experimental validation was done only in the study of Song

t al. (2020). Song et al. (2020) and Zhang et al. (2019, 2020) use a
eometric and a damage PF variable to define the interface and fracture
ithin both the bulk matrix and the diffuse interface, while Guillén-
ernández et al. (2019) use PF damage only in the matrix, while
ohesive damage is considered at the interface. The fiber is always
onsidered linear elastic. Although the work of Song et al. (2020)
nd Guillén-Hernández et al. (2019) use the formulation without dam-
ge threshold called AT2, which implies a non-linear behavior from
he beginning of the straining of the material, other authors such as
spadas- Espadas-Escalante et al. (2019) resort to formulations where
he elastic threshold is defined according to the length scale parameter;
his formulation is called AT1. There are also formulations such as
hat proposed by Zhang et al. (2019, 2020) where a modification
f the Phase-Field cohesive zone model (PF-CZM) developed by Wu
nd Nguyen (2018) is used to reduce the length scale to micro-scale
imensions while defining an elastic threshold based on energy criteria
nstead of the length scale parameter.1

The work on RVE analysis using PF fracture is very limited if com-
ared to the studies using continuum damage models. The first author
hat performed micro-mechanical analyses of fracture in composite
aterials using PF was Espadas-Escalante et al. (2019) in 2019. They
sed a 2D plane-strain model with an AT1 formulation and compared
he performance of Amor’s and Miehe’s energy splits2 in the predictive
apabilities of fracture under pure tension and pure compression. Fiber-
atrix interaction was assumed as perfectly bonded, and validation was
erformed by comparing tensile transversal strength, obtained from
reviously calibrated models, with the value obtained from the exper-
mental results in Hinton et al. (2004) and the transverse compressive
tress–strain curve also in Hinton et al. (2004). This model was followed
y the work of Yin and Zhang (2019), where a 3D model using an
T2 formulation was used to evaluate the influence of fiber orientation
n the transverse strength of a composite material. Also in this case,
iber–matrix interface damage was not considered. The results were
ot validated because the specimen and fiber dimensions were not
epresentative of micro-scale dimensions. The most recent work is that
f Li et al. (2020) and Zhang et al. (2020), which consider a diffuse
iber–matrix interface using a geometric PF variable. Li et al. (2020)
se a 2D Von Mises plasticity model coupled with an AT2 formulation,
ut neither the material properties nor the fiber dimensions are rep-
esentative of the micro-scale in a polymer-based composite. On the

1 A detailed explanation of the different formulations is given in Section 2.7.
2 A detailed explanation of the different energy splits is given in Section 2.8.
2

other hand, the analysis of Zhang et al. (2020) uses a 3D model with
different volume fractions and fiber distributions to study fracture in
transverse tension. The formulation in this work is a modification of
the PF cohesive zone model developed by Wu and Nguyen (2018),
again driven by the need to reduce the length scale to fractions of the
fiber diameter. So far, there have not been studies of the capabilities
of PF for the prediction of failure envelopes, nor the influence of the
Boundary Conditions (BCs) and RVE size on the accuracy of PF-based
formulations. Also, up to this moment, PF with elastic and Von Mises
plasticity formulations have been always used to account for fracture
in the matrix or within the diffuse interface, because in transverse
loading the fiber is not expected to damage. However, there are no
micro-mechanical analyses using pressure-dependent plasticity models,
which are considered of primal importance in the study of polymer
matrices (Melro et al., 2013).

The in-situ effect was analyzed using PF by Guillén-Hernández et al.
(2020), and the R-curve of pre-notched specimens was studied with a
different PF formulation by Tan and Martínez-Pañeda (2022, 2021).
The study of the in-situ effect of Guillén-Hernández et al. (2020) uses
a standard AT2 linear-elastic formulation for damage in the matrix
and cohesive elements in the fiber–matrix interface. This work was
based on and compared with the experimental results of Saito et al.
(2012). Tan and Martínez-Pañeda (2022, 2021) studied the R-curve
in pre-notched specimens under three-point bending using the AT1
linear-elastic formulation to capture matrix fracture and cohesive sur-
face interactions to model fiber–matrix decohesion. The studies are
validated by comparison with the experimental results of Canal et al.
(2012). In addition, the only study that considers 3D effects and fiber
fracture in micro-mechanical studies of composite materials is the
work of Tan and Martínez-Pañeda (2022), one of the first steps in
modeling more realistic composite geometries, which can potentially
be extended to the study of crack tunneling and other more complex
loading scenarios.

According to the literature, for the micro-mechanical analysis of
composite materials using PF fracture, there is no general trend on
the methodologies and assumptions that should be considered. These
tend to deviate from each other, but there is no qualitative comparison
of the accuracy of each methodology. Thus, there is still the need to
better understand the capabilities and limitations of the different PF
methodologies for the analysis of the micro-mechanical behavior of
composite materials with a more rigorous approach. For this reason,
this work starts with an introduction to PF fracture. Then, the analysis
of the accuracy of the different PF formulations and energy splits
under different micro-structures and loading conditions is presented.
This is done first with a study of the influence of the RVE size and
fiber distribution on the predicted strength and strain at maximum
stress. Later, using different fiber distributions, a quantitative analysis
compares the PF predictions with the failure envelopes generated with
the failure criteria proposed by Camanho et al. (2015). After that,
the influence of the formulation and length scale parameter is also
analyzed by comparing the evolution of fracture patterns and failure
envelopes as the length scale parameter increases in both AT1 and AT2
formulations. Finally, the influence of considering interface damage
has been discussed by comparing the increased meso-scale strength
when interface damage is suppressed. The document ends with the
conclusions and suggestions for future work.

2. Phase-Field method for fracture

In this section, the derivation of the PF constitutive equations is
presented in a general way and then the particularities of the most
common PF formulations (i.e. AT1, AT2, and PF-CZM) are detailed.
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Fig. 1. Schematic representation of a solid body with (a) an internal discrete
discontinuity, and (b) a Phase-Field approximation of the same discontinuity.

2.1. Griffith thermodynamic balance

The PF method for fracture is based on the thermodynamical anal-
ysis made by Griffith in Griffith (1921), where, according to the first
law of thermodynamics, crack growth can only occur if such a pro-
cess implies that the total energy of the system either decreases or
remains constant with an increase in the crack area. In this context,
a critical condition for crack propagation is defined (under equilib-
rium conditions) as the scenario where there is no change in total
energy (Navidtehrani et al., 2021a). Thus, the Griffith principle is a
local (differential) minimum for the total energy 𝛱 , based on the
variation of 𝛱 with respect to the increment of the crack area d𝐴 as
expressed in Eq. (1):

d𝛱
d𝐴

=
d𝛹0
d𝐴

+
d𝑊𝑐
d𝐴

−
d𝑊𝑒𝑥𝑡
d𝐴

(1)

where 𝛹0 is the internal strain energy, 𝑊𝑒𝑥𝑡 is the work done by the
external forces, and 𝑊𝑐 is the energy required to create new surfaces,
whose variation with respect to the incremental crack area is known as
the critical energy release rate 𝐺𝑐 = d𝑊𝑐∕d𝐴.

2.2. Variational form of the Griffith thermodynamic balance

The differential expression in Eq. (1) can be expressed in a varia-
tional form as explained by Bourdin et al. (2000) and Francfort et al.
(2008), according to Eq. (2):

𝛱(𝐮) = ∫𝛺
𝛹0(𝐮)d𝛺 + ∫𝛤

𝐺𝑐d𝑆 −𝑊𝑒𝑥𝑡(𝐮) (2)

This equation is given within the domain defined by the pre-cracked
body 𝛺 ⊂ R𝑛, 𝑛 ∈ [1, 2, 3], where the internal discontinuity contour is
defined by 𝛤 and the displacement field is defined by the vector 𝐮, see
Fig. 1(a).

Within the framework of the calculus of variations, the displace-
ment field should be found by minimizing the total energy described
in Eq. (2), but as the crack path is also an unknown, the solution
to the variational problem posed by Eq. (2) can become extremely
complex (Wu et al., 2019). To reduce the difficulty of tracking the
actual crack path, Bourdin et al. (2000) and Francfort et al. (2008)
proposed a regularized version of the crack surface using an auxiliary
damage-like variable 𝝓. Thus, the sharp crack topology is replaced by a
diffuse damaged zone of finite dimensions, controlled by a length scale
parameter 𝑙0. Then, according to Bourdin et al. (2000) and Francfort
et al. (2008), the total energy 𝛱(𝐮) in Eq. (2) can be approximated by
𝛱(𝐮,𝝓) defined in Eq. (3):

𝛱(𝐮) ≈ 𝛱(𝐮,𝝓) = ∫𝛺
𝛹 (𝐮,𝝓)d𝛺+

∫𝛺
𝐺𝑐𝛾(𝝓; ∇𝝓)d𝛺 −𝑊𝑒𝑥𝑡(𝐮)

(3)

where 𝛹 (𝐮,𝝓) is the degraded internal energy and 𝐺𝑐𝛾(𝝓; ∇𝝓) is the reg-
ularized fracture energy; these are explained in detail in the following
subsections.
3

2.3. Crack surface density function

The surface energy in Eq. (2), initially computed in the specific
crack path is now approximated in a damaged zone of finite width (see
Fig. 1(b)) according to Eq. (4):

∫𝛤
𝐺𝑐d𝑆 ≈ ∫𝛺

𝐺𝑐𝛾(𝝓; ∇𝝓)d𝛺

𝛾(𝝓; ∇𝝓) =
(

𝛼(𝝓)
𝑙0

+ 𝑙0|∇𝝓|2
) (4)

where 𝛾(𝝓; ∇𝝓) is known as the crack surface density functional given
in terms of the PF variable 𝝓, its gradient ∇𝝓 and the length scale
parameter 𝑙0. The integral term is also called the dissipated energy,
because in the balance Eq. (2), the external work 𝑊𝑒𝑥𝑡(𝐮) exerted on
the body can either be stored as accumulated strain energy ∫𝛺 𝛹0(𝐮)d𝛺
or dissipated in the form of surface energy due to fracture ∫𝛤 𝐺𝑐d𝑆.

2.4. Geometric crack function

The total dissipated (or fracture) energy described in Eq. (4) can
also be given in terms of regularized damage models as explained
in Marigo et al. (2016). Hence, the regularized term ∫𝛺 𝐺𝑐𝛾(𝝓; ∇𝝓)d𝛺 is
divided into local (depending on 𝝓) and non-local (depending on ∇𝝓)
contributions as shown in Eq. (5):

∫𝛺
𝐺𝑐𝛾(𝝓; ∇𝝓)d𝛺 =

𝐺𝑐
4𝐶𝑤 ∫𝛺

(

𝛼(𝝓)
𝑙0

+ 𝑙0|∇𝝓|2
)

d𝛺 (5)

where 𝛼(𝝓) is known as the geometric crack function, which defines the
spatial distribution of the damage variable 𝝓 = 𝝓(𝐱) in the domain 𝛺,
and 𝐶𝑤 is a normalization parameter that guaranties the same energy
dissipation regardless of the PF formulation (see Eq. (6)).

𝐶𝑤 = ∫

1

0

√

𝛼(𝜉)d𝜉 (6)

If the material has not been damaged 𝝓 = 0, there is no dissipated
energy 𝛼(0) = 0, and when damage reaches its maximum value 𝝓 = 1,
the local dissipation also reaches its maximum 𝛼(1) = 1. Additionally, it
is required that 𝜕𝛼(𝝓)

𝜕𝝓 must be non-negative in order to ensure an always
increasing fracture energy dissipation; 𝜕𝛼(𝝓)

𝜕𝝓 < 0 would imply healing
of the crack, which is thermodynamically inconsistent.

2.5. Energy degradation function

According to the formulation of Continuum Damage models, the
strain energy should be degraded with the evolution of the damage
variable. Hence, the strain energy term ∫𝛺 𝛹 (𝐮)d𝛺 must be modified
accordingly to yield Eq. (7):

∫𝛺
𝛹0(𝐮)d𝛺 ≈ ∫𝛺

𝛹 (𝐮,𝝓)d𝛺

∫𝛺
𝛹 (𝐮,𝝓)d𝛺 = ∫𝛺

[𝑔(𝝓)𝛹+(𝐮) + 𝛹−(𝐮)]d𝛺
(7)

where 𝑔(𝝓) is called the energetic degradation function, and 𝛹+(𝐮) and
𝛹−(𝐮) are the positive and negative contributions to the strain energy.
The energy split is performed in order to avoid fracture under dominant
compressive stresses.

For an undamaged material (𝝓 = 0) all the external work is stored
as strain energy; thus, 𝑔(0) = 1. On the other hand, when the material is
completely damaged (𝝓 = 1) it loses all its load-carrying capacity 𝑔(1) =
0; besides, this function should be a decreasing function, 𝜕𝑔(𝝓)

𝜕𝝓 ≤ 0, such
that the evolution of damage can only decrease the internal energy.
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2.6. Euler equations (strong form)

Considering that the work of external forces can be expressed as
the sum of surface tractions 𝐭∗ on the part of the boundary 𝜕𝛺𝑡, and
body forces 𝐛∗ over the volume of the body 𝛺, the external work can
be rewritten as:

𝑊𝑒𝑥𝑡(𝐮) = ∫𝜕𝛺𝑡

(𝐭∗ ⋅ 𝐮)d𝜕𝛺 + ∫𝛺
(𝐛∗ ⋅ 𝐮)d𝛺 (8)

Therefore, by using Eqs. (4), (5), (7), and (8), the total energy
unctional in Eq. (2) can be rewritten as:

𝛱(𝐮,𝝓) = ∫𝛺
𝛹 (𝐮,𝝓)d𝛺

+
𝐺𝑐
4𝐶𝑤 ∫𝛺

(

𝛼(𝝓)
𝑙0

+ 𝑙0|∇𝝓|2
)

d𝛺

∫𝜕𝛺𝑡

(𝐭∗ ⋅ 𝐮)d𝜕𝛺 − ∫𝛺
(𝐛∗ ⋅ 𝐮)d𝛺

(9)

According to the calculus of variations, the actual displacement
= 𝐮(𝐱) and PF variable 𝝓 = 𝝓(𝐱) fields are the stationary functions

f the total energy functional in Eq. (9), which can be found by setting
he variation of 𝛱(𝐮,𝝓) with respect to 𝐮 and 𝝓 equal to zero and then

applying the divergence theorem to obtain Eq. (10):

𝛿𝛱(𝐮,𝝓) = −∫𝛺

[

∇ ⋅
(

𝜕𝛹 (𝐮,𝝓)
𝜕𝝐(𝐮)

)

+ 𝐛∗
]

⋅𝛿𝐮d𝛺

+∫𝜕𝛺𝑡

(𝝈 ⋅ 𝐧 − 𝐭∗) ⋅ 𝛿𝐮d𝜕𝛺

+∫𝛺

[

𝜕𝛹 (𝐮,𝝓)
𝜕𝝓

+ 𝐺𝑐

(

𝜕𝛾
𝜕𝝓

− ∇ ⋅
(

𝜕𝛾
𝜕∇𝝓

))]

⋅ 𝛿𝝓d𝛺

+∫𝜕𝛺
𝐺𝑐

(

𝜕𝛾
𝜕∇𝝓

⋅ 𝐧
)

𝛿𝝓d𝜕𝛺

(10)

where 𝐧 is the outward normal vector.
From Eq. (10), the Euler equations or strong form can be extracted

s a coupled system of differential equations:

∇ ⋅
(

𝜕𝛹 (𝐮,𝝓)
𝜕𝝐(𝐮)

)

+ 𝐛∗ = 𝟎 in 𝛺

𝜕𝛹 (𝐮,𝝓)
𝜕𝝓

+ 𝐺𝑐

(

𝜕𝛾
𝜕𝝓

− ∇ ⋅
(

𝜕𝛾
𝜕∇𝝓

))

= 0 in 𝛺
(11)

with the boundary conditions:

𝝈 ⋅ 𝐧 = 𝐭∗ on 𝜕𝛺𝑡

∇𝝓 ⋅ 𝐧 = 𝟎 on 𝜕𝛺
(12)

The term 𝜕𝛹 (𝐮,𝝓)
𝜕𝝓 is called the energetic crack driving force, and it

an be expressed as:
𝜕𝛹 (𝐮,𝝓)

𝜕𝝓
=

𝜕𝛹 (𝐮,𝝓)
𝜕𝑔(𝝓)

𝜕𝑔(𝝓)
𝜕𝝓

= 𝛹+(𝐮) 𝜕𝑔(𝝓)
𝜕𝝓

(13)

Also, the terms 𝜕𝛾
𝜕∇𝝓 and 𝜕𝛾

𝜕𝝓 can be simplified as shown in Eq. (14):

𝜕𝛾
𝜕∇𝝓

=
𝑙0

2𝐶𝑤
|∇𝝓|

𝜕𝛾
𝜕𝝓

= 1
4𝐶𝑤𝑙0

𝜕𝛼(𝝓)
𝜕𝝓

(14)

2.7. Phase-Field formulations

The particular forms of the normalization parameter 𝐶𝑤, degrada-
tion function 𝑔(𝝓) and geometric functions 𝛼(𝝓) define the specific PF
formulations. The most popular are: (i) the AT1 model which uses a
quadratic degradation function and a linear geometric function, (ii)
the AT2 model which uses quadratic functions for both geometric
and degradation functions (the main difference between these two
models resides in the geometric crack function) and (iii) the Phase-
4

Field Cohesive zone model (PF-CZM) which uses a quadratic geometric
Table 1
Geometric and degradation functions for AT1, AT2 and PF-CZM models (Wu et al.,
2019).

Model 𝛼(𝝓) 𝑔(𝝓) 𝐶𝑤 𝑙0

AT1 𝝓 (1 − 𝝓)2 2∕3 8𝐺𝑐𝐸
3𝜎2

𝑐

AT2 𝝓2 (1 − 𝝓)2 1∕2 27𝐺𝑐𝐸
256𝜎2

𝑐

PF-CZM 2𝝓 − 𝝓2 (1 − 𝝓)𝑝
(1 − 𝝓)𝑝 +𝑄(𝝓.) 𝜋∕4 [−]

Fig. 2. Stress–strain behavior for AT1 and AT2 models in a single finite element under
tension (Kristensen et al., 2021), where 𝜎𝑐 is the strength and 𝜖𝑐 is the strain when
the stress reaches 𝜎𝑐 .

function and a rational degradation function (Wu et al., 2019, chap.
3), see Table 1. AT1 and PF-CZM present linear-elastic behavior up to
the maximum stress while AT2 has the particularity 𝜕𝛼

𝜕𝝓 (𝝓 = 0) = 0
hich enforces non-linear behavior prior to the predefined strength

s reached, see Fig. 2. In the AT1 and AT2 models, the PF length
cale parameter is used to control the material strength (𝜎𝑐) and can

be related to the material properties according to the 1D analytical
solution of the PF differential equations (weak form) described in
Eqs. (11). Conversely, in the PF-CZM model the strength is explicitly
defined and it does not depend on the length scale parameter.

Throughout the progressive loading, the PF variable approaches
one, and the degradation function tends to zero. This imposes a zero
stiffness in the material that can create numerical instabilities and
an ill-posed tangent matrix. This is why some authors (Navidtehrani
et al., 2021a; Martínez-Pañeda et al., 2018; Navidtehrani et al., 2021b)
recommend using a modified version of the degradation function for
AT1 and AT2 models, see Eq. (15), where 𝜅 is a very small positive
number.

𝑔(𝝓) = (1 − 𝝓)2 + 𝜅 (15)

2.8. Strain energy split

As mentioned before, fracture under dominated compressive stresses
is precluded by means of a decomposition of the strain energy into
active 𝛹+(𝐮) and inactive 𝛹−(𝐮) contributions (see Eq. (7)). The most
ommon decomposition methods for infinitesimal elasticity formula-
ions are: the volumetric-deviatoric split of Amor et al. (2009) (see
q. (16)) and the spectral decomposition of Miehe et al. (2010) (see
q. (17)). These decompositions apply only to the AT1 and AT2
ormulations. The default decomposition used in PF-CZM is the one
hown in Eq. (18).

𝛹−(𝝐(𝐮)) = 𝐾
2

tr−(𝝐(𝐮))

𝛹+(𝝐(𝐮)) = 𝐾 tr+(𝝐(𝐮)) + 𝜇𝝐 (𝐮) ∶ 𝝐 (𝐮)
(16)
2 𝐷 𝐷
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𝛹±(𝝐(𝐮)) = 𝐾
2
⟨𝝐1(𝐮) + 𝝐2(𝐮) + 𝝐3(𝐮)⟩2±+

𝜇(⟨𝝐1(𝐮)⟩2± + ⟨𝝐2(𝐮)⟩2± + ⟨𝝐3(𝐮)⟩2±)
(17)

𝛹+(𝝈(𝐮)) =
⟨𝝈1(𝐮)⟩2+

2𝐸

𝛹−(𝝈(𝐮)) = 1
2𝐸

[

𝝈1(𝐮)⟨𝝈1(𝐮)⟩−+

𝝈2(𝐮)2 + 𝝈3(𝐮)2−
2𝜈

(

𝝈2(𝐮)𝝈3(𝐮) + 𝝈1(𝐮)𝝈3(𝐮) + 𝝈1(𝐮)𝝈2(𝐮)
)]

(18)

Here, 𝐾 and 𝜇 are the elastic Lamé parameters, 𝐸 is the Young’s
modulus, 𝜈 is the Poisson’s ratio, 𝝐(𝐮) is the infinitesimal strain tensor,
𝝐𝐷 is the deviatoric part of the infinitesimal strain tensor, 𝝈(𝐮) is the
Cauchy stress, 𝝈𝑖(𝐮) are the principal stresses and ⟨⟩ is the Macaulay
operator.

Any particular form of the energy split applied in the balance of
linear momentum as well as the PF balance (Eqs. (11)) leads to the so-
called ‘‘anisotropic’’ PF formulation, because when damage progresses,
the material response under compression and tension is different, and
the material is no longer isotropic. The use of the energy split in the
PF balance only renders the so-called ‘‘hybrid’’ formulation.

2.9. Damage irreversibility

The damage irreversibility condition (𝝓̇ ≥ 0) is ensured by using a
local history variable 𝐻 that satisfies the fracture Karush–Kuhn–Tucker
conditions in Eq. (19). 𝐻 is defined in Eq. (20).

𝛹+ −𝐻 ≤ 0,𝐻̇ ≥ 0,𝐻̇(𝛹+ −𝐻) = 0 (19)

𝐻 = 𝐦𝐚𝐱𝜏∈[0,𝑡]𝛹+(𝜏) (20)

2.10. Phase-Field balance equations

The strong form in Eq. (11) is rewritten using the definition of
the energetic crack driving force in Eq. (13) and the history variable
defined in Eq. (20), to define the balance equations of the PF method
in Eq. (21), under the same boundary conditions defined in Eq. (12).

∇ ⋅
(

𝜕𝛹 (𝐮,𝝓)
𝜕𝝐(𝐮)

)

+ 𝐛∗ = 𝟎 in 𝛺

𝜕𝑔(𝝓)
𝜕𝝓

+
𝐺𝑐
2𝑐𝑤

(

1
2𝑙0

𝜕𝛼(𝝓)
𝜕𝝓

− 𝑙0∇ ⋅ |∇𝝓|
)

= 0 in 𝛺
(21)

2.11. Solution scheme

In the coupled system of Eqs. (21) the displacements and PF variable
are both unknown. When this system is discretized and linearized using
the Newton–Raphson method, it can be solved using two different
approaches. If the displacements and PF variable are solved simulta-
neously, the solution method is called ‘‘monolithic’’, a method that does
not depend on the size of the time step increment, but the solution is
non-convex, which may lead to convergence issues (Wu and Huang,
2020). In the ‘‘monolithic’’ scheme, convergence can be improved by
sing quasi-Newton methods, as was shown by Wu and Huang (2020)
sing the PF-CZM formulation and by Kristensen and Martínez-Pañeda
2020) using AT1 and AT2 formulations. On the other hand, the system
f Eqs. (21) can be solved by iteratively freezing displacements and
olving for the PF variable, then freezing the PF variable and solving
or displacements, this solution method is called staggered, in this case,

the solution depends on the size of the time increment, therefore it
requires convergence studies on the time step. When the system of
Eqs. (21) is decoupled, both PF and displacement problems become
convex with respect to each variable; this is why convergence in the
staggered scheme is often ensured (Wu and Huang, 2020).
5

Table 2
Material properties of the fibers, matrix and fiber–matrix interface used in
linear-elastic AT1 and AT2 formulations for micro-mechanical numerical analysis.
Fiber and matrix properties are obtained from Camanho et al. (2015), interface
properties are taken from Arteiro et al. (2014) and the value of 𝐺𝑐 for the epoxy
matrix is obtained from Guillén-Hernández et al. (2020).

Matrix

𝐸 [MPa] 𝜈 [–] 𝑙0 [mm] 𝐺𝑐 [N/mm]

3760 0.39 0.001 0.02

Fibers

𝐸 [MPa] 𝜈 [–]
74000 0.2

Interface

𝐾𝐼 [N/mm3] 𝐾𝐼𝐼 [N/mm3] 𝜎0𝐼 [MPa] 𝜎0𝐼𝐼 [MPa]
108 108 50.0 75.0

𝐺𝐼𝑐 [N/mm] 𝐺𝐼𝐼𝑐 [N/mm] BK law [–]
0.002 0.006 1.45

3. Materials and interaction models

In this work, the models use micro-scale dimensions where the fibers
are 5 μm in diameter (typical of carbon and E-Glass fibers in thin-ply
composites). The fiber distributions within the RVE and embedded cell
models are generated using the random sequential absorption method
already included in the software Digimat (Anon, 2022). The material
and interface properties in all scenarios are those shown in Table 2,
extracted from the micro-mechanical simulations used to cross-validate
the failure criteria by Camanho et al. (2015), and from Arteiro et al.
(2014) and Guillén-Hernández et al. (2020).

This work seeks to explore the accuracy of the AT1 and AT2
formulations combined with the different energy splits in comparison
with meso-scale failure criteria. Therefore, in these formulations, the
material strength is controlled by the length scale parameter 𝑙0, which
is set to 0.001 mm for the linear-elastic AT1 and AT2 formulations.
This yields a higher matrix strength than that given in Camanho
et al. (2015). Camanho et al. (2015) used a matrix tensile strength
of 93 MPa. This would imply a length scale of 0.0038 mm for AT1
and 0.00108 mm for AT2. But there is a geometrical limitation given
by the fiber dimensions, related to the fact that there is a minimum
length scale required to simulate crack localization, which can also
be promoted, or prevented, by the boundary conditions and even the
energy split. The length scale can be gradually reduced to achieve a
more crack-like fracture pattern, but it would come at the cost of a
potential overestimation of the material strength. This shows that for
standard PF formulations there is a geometrical bias imposed by the
micro-scale dimensions on the length scale parameter that can influence
the material strength.

In all cases, the UEL Abaqus implementation described in Martínez-
Pañeda et al. (2018) is used for 2D plane strain elements under in-
finitesimal deformation assumptions. To overcome convergence issues,
the staggered solution scheme is used, following a sensitivity study of
the minimum required time step to obtain time-step independent results
previously to all analyses. Besides, the studies of the different energy
splits were done using a ‘‘hybrid’’ implementation. The geometries
and loading are such that the analysis is performed in the direction
transverse to the fiber, so only transverse normal loading and shear are
applied (22, 33 and 23 directions). Cohesive surface interaction is used
to model fiber–matrix interface damage with a bilinear behavior and
the Benzeggagh–Kenane (BK) fracture criteria. The surface interaction
also accounts for normal contact after complete decohesion but without
considering friction.

4. RVE analysis

For the RVE analysis, a study on the RVE size is initially performed

to estimate the dimensions required to obtain representative strengths
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and maximum strain values. The study is performed with RVEs with
60% fiber volume fraction and the properties shown in Table 2. Once
the minimum size is defined, a comparative study using the results of
the analytical model of Camanho et al. (2015) is used to verify the pre-
dictive capabilities of the different energy splits and PF formulations.
The influence of the length scale parameter and interface cohesive
interaction is also analyzed in order to verify the accuracy of all the
assumptions within this methodology.

4.1. RVE size study

To estimate the minimum size that can be used and to obtain
meaningful strength and maximum strain measurements, transverse
tensile loads are applied on square RVEs of side length from 0.02 mm
(RVE size equivalent to the one used by Espadas-Escalante et al., 2019)
to 0.08 mm, or from a ratio 𝐿∕𝑟fiber = 8 to 𝐿∕𝑟fiber = 32, where 𝐿 is the
length of the sides of the RVE and 𝑟fiber is the fiber radius, see Fig. 3.
In this example, only the AT1 formulation with Miehe’s energy split is
used. For each value of 𝐿∕𝑟fiber, six different random distributions are
generated and simulated. From that, average, minimum and maximum
values of strength and strain at peak stress are plotted in Fig. 4 and
Fig. 5 respectively. The values of strength and strain at peak stress for
the largest RVEs where no evident variation is obtained by increasing
the size of the RVE are called ‘‘asymptotic values’’, which are considered
to be the most accurate approximation obtained.

The strength predictions do not match the strength predicted by
Camanho et al. (2015) using computational micro-mechanics. An over-
estimation of 8.28% is observed even for the largest RVEs. Nevertheless,
it can be seen from Figs. 4 and 5 that the scatter of the strain and
strength distributions narrows down as the size of the RVE increases.
In addition, the average value has an asymptotic behavior with the
increase of the RVE size. This behavior is expected as it follows the
trend observed in the results of van der Meer (2016). The results
presented in van der Meer (2016) showed that the variation of the
average strain from a small RVE to the asymptotic value can reach 7%

hich is still lower than the variation obtained by RVEs of medium size.
n the present results, this is also the case for the predicted strength,
here a 3.6% variation of the average value with increasing RVE size

s obtained. But the asymptotic value of strain at maximum stress has
20% difference with respect to the smallest RVE size. Besides, the

symptotic value is outside the variability obtained in the smallest
VEs. This is expected as the stiffness of smaller RVEs after failure

nitiation is highly polluted by spurious gradual softening due to the
eriodic BC after damage onset. In general, these results agree with the
onclusions of Trias et al. (2006), showing that different metrics require
ifferent ratios 𝐿∕𝑟fiber; even though a square RVE of 0.02 mm side

length can be enough for the prediction of maximum stress (average
value is less than 5% different from the asymptotic value), the RVE
size necessary to predict the strain to failure can be up to three times
higher.

The representative stress–strain curves for each RVE size are shown
in Fig. 6, which provides an overall representation of the difference in
the post-peak behavior as the RVE size increases. In all stress–strain
curves, the strength reported by Camanho et al. (2015) is also shown.
As explained previously, smaller RVEs produce a more gradual failure,
because the periodic BCs produce spurious interactions, especially if
it is close to the edges of the RVE; it means that periodic BCs make
a crack tip on one side to interact and even gets arrested by the tip
of the same crack on the other side, see Fig. 7. This is why for small
RVEs the last part of the curves in Fig. 6 have a tendency to flatten.
This effect clearly diminishes with the increase of the RVE size, but the
behavior is dominantly brittle only for the RVEs with 𝐿 = 0.08 mm.
These results clearly show the inadequacy of periodic BCs to model
fracture in RVEs, supporting the claim of Coenen et al. (2012b) of the
need for special kinematics that allow strain localization, especially
6

within smaller RVEs.
Fig. 3. RVE sizes tested in tension.

Fig. 4. Maximum, minimum, average and standard deviation (vertical bars) of the peak
stress values for different RVE sizes, Phase-Field AT1 formulation and Miehe’s energy
split. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 5. Maximum, minimum, average and standard deviation (vertical bars) of the
strains at peak stress for different RVE sizes, PF AT1 formulation and Miehe’s energy
split.

Such unrealistic post-peak behavior due to the periodic BCs renders
the analysis of a single RVE of small dimensions, e.g., 𝐿∕𝑟fiber =
8 (Espadas-Escalante et al., 2019), not necessarily representative of
the meso-scale composite behavior. In fact, as is shown in the results
of Fig. 6, if periodic BCs are used, the post-peak behavior is highly
affected by the size of the RVE, as well as the PF formulation and energy
split; see Fig. 12. In addition, if the fiber distribution is randomly
generated, a large variability in post-peak behavior can be observed,
especially if values of 𝐿∕𝑟fiber are small, as shown in Fig. 8, where the
meso-scale stress–strain curves of six RVEs with different random fiber
distributions are plotted for 𝐿∕𝑟fiber = 8 using the AT1 formulation
and Miehe’s split (Miehe et al., 2010). In this graph, it is shown that
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Fig. 6. Stress–strain curves for different RVE sizes, PF AT1 formulation and Miehe’s
energy split. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 7. Effect of periodic boundary (PB) interaction on crack propagation.

some fiber patterns yield an ‘‘apparent’’ tougher material response,
while others could be seen as more brittle. Another important aspect
is the fact that cohesive interface damage in such small RVEs can
also promote gradual failure, while assuming a perfect fiber–matrix
interaction (Espadas-Escalante et al., 2019) can promote a more brittle
behavior, yielding sharper stress–strain curves. Finally, it should be
noted that, despite the recent efforts to define appropriate boundary
conditions in the presence of localization (Coenen et al., 2012b,a;
Svenning et al., 2017), the complex, interacting failure mechanisms
observed in composite laminates still pose challenges to the definition
of accurate boundary conditions for RVEs after localization takes place.
This is a particularly relevant problem for multiscale analysis where
information is transferred between different scales.

4.2. Phase-Field RVE study

According to the discussion presented in the previous section, for
stress analysis, since the average strength of a square RVE of dimen-
sions 𝐿 = 0.02 mm is less than 5% higher than the asymptotic value,
then these dimensions can be considered to give the required accuracy
for the following studies. Then, the results presented Sections 4.2–4.4
correspond to the average results obtained from six different RVEs
with different fiber distributions, where all RVEs have a side length
of 0.02 mm. For this and the remaining analyses, the failure envelope
obtained using the criteria proposed by Camanho et al. (2015) is
considered the reference result, obtained solving:

𝛼1𝐼1 + 𝛼2𝐼2 + 𝛼3𝐼3 + 𝛼32𝐼
2
3 − 1 = 0 (22)

where:
𝐼1 =

1
4𝜎

2
22 −

1
2𝜎22𝜎33 +

1
4𝜎

2
33 + 𝜎223

𝐼2 = 𝜎212 + 𝜎213
𝐼 = 𝜎 + 𝜎
7

3 22 33
Fig. 8. Stress–strain curves for tension loading of RVEs of 0.02 mm size with perfect
nterface bonding (PF) and with cohesive interface damage (PF+Coh), AT1 formulation
nd Miehe’s energy split. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

𝛼1 =
1
𝑆2
𝑇

𝛼2 =
1
𝑆2
𝐿

𝛼3 = 𝛼𝑡3 =
1

2𝑌𝐵𝑇
− 2𝛼𝑡32𝑌𝐵𝑇 if 𝐼3 > 0

𝛼3 = 𝛼𝑐3 = 1
2𝑌𝐵𝐶

− 2𝛼𝑐32𝑌𝐵𝐶 if 𝐼3 ≤ 0

𝛼32 = 𝛼𝑡32 =
1− 𝑌𝑇

2𝑌𝐵𝑇
−𝛼1

𝑌 2𝑇
4

𝑌 2
𝑇 −2𝑌𝐵𝑇 𝑌𝑇

if 𝐼3 > 0

𝛼32 = 𝛼𝑐32 =
1− 𝑌𝐶

2𝑌𝐵𝐶
−𝛼1

𝑌 2𝐶
4

𝑌 2
𝐶−2𝑌𝐵𝐶𝑌𝐶

if 𝐼3 ≤ 0 and 𝑆𝑇 and 𝑆𝐿 are respectively
the transverse and in-plane shear strengths, 𝑌𝑇 and 𝑌𝐶 are respectively
the transverse tensile and compressive strengths, and 𝑌𝐵𝑇 and 𝑌𝐵𝐶 are
respectively the biaxial transverse tensile and compressive strengths,
obtained from computational micro-mechanics (Camanho et al., 2015).
This analytical model, which predicts the strength of homogenized
transversely isotropic fiber-reinforced composites for multiaxial stress
states, has been validated through direct comparison with experimental
data from the literature for several polymer–matrix composite mate-
rials. For that reason, it is used to benchmark the predictions of the
micro-mechanical simulations that employ the phase-field method to
model fracture of the polymer matrix. A similar approach is proposed
by Camanho et al. (2015) to perform cross-validation of the analytical
model and computational micro-mechanics. Hence, in the present work,
the failure criteria proposed by Camanho et al. (2015) is compared
with the PF analyses using the AT1 and AT2 formulations without
energy split, with Amor’s split (Amor et al., 2009) and with Miehe’s
split (Miehe et al., 2010). In addition, a case ‘‘Cohesive Only ’’ is added
to delimit the area where the load drop used to estimate the com-
posite strength is dominated by fiber–matrix decohesion. This curve
is computed using RVEs where the matrix is considered linear elastic
and no matrix damage is accounted for, with the load drop exclusively
due to the sudden accumulation of decohesions. The purpose is to
show that, if the strength of the matrix is very high due to the value
of the length scale parameter, due to the formulation, or due to the
energy split, the matrix behavior loses relevance because the whole
phenomenon is dominated by the fiber–matrix interface strength and
fracture toughness.

As explained before, a 2D plane strain model representing a trans-
verse random fiber distribution with periodic BCs is employed, and
a 𝜎22–𝜎23 loading is applied in an RVE according to Fig. 9. Similar
to the previous analysis, the results presented here are the mean
values from six different distributions on RVEs of the same size. The
complete 𝜎22–𝜎23 failure envelopes are plotted in Fig. 10; in addition,
the crack patterns and close-up observation of the intersections with the
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coordinate axes are shown for pure tension in Fig. 11, pure compression
in Fig. 12, and pure transverse shear in Fig. 13.

In general, the most accurate stress prediction for pure normal
loading is the AT2 formulation combined with Amor’s split. It gives the
lower overestimation under tensile (10.1% difference) and compressive
(4.4% difference) load, but the highest difference in the transverse
shear strength (−4.0% difference, while all other models lead to around
±1.0% difference). All the curves are very close to each other, with dif-
ferences lower than 12.0%, for tensile-dominated loading, but large de-
viations are observed on compressive-dominated loading, with Miehe’s
split always giving the highest difference; in fact, the compressive
strength with Miehe’s split is dominantly triggered by fiber–matrix
decohesion.

If an energy split is used, the AT1 formulation overpredicts the
failure envelopes of Camanho et al. (2015), especially when Miehe’s
split is used. On the other hand, the AT2 formulations cross the ref-
erence envelope of Camanho et al. (2015) on the shear-dominated
loading, because the AT2 formulation struggles to localize fracture
under shear, which generates spurious softening all over the RVE,
reducing the maximum stress that can be reached; this can be observed
in the crack patterns of Fig. 13. In addition, the AT2 formulation under
shear loading is more prone to plastic-like fracture patterns where the
crack tends to run perpendicular to the shear orientation, similar to the
crack patterns in the RVE analyses of Totry et al. (2008a,b). However,
if the split of Miehe et al. (2010) is used, brittle-like crack patterns
can still be obtained with the AT2 formulation. On the other hand,
the AT1 formulation predicts fracture along the plane of maximum
principal stress, similar to what is expected from RVE analyses using
pressure-dependent plasticity-damage models (Melro et al., 2013; Danzi
et al., 2017; Tan et al., 2018; Sun et al., 2018) and the crack band
model of Pineda et al. (2013). Under tensile-dominated loading, initial
fiber–matrix decohesion promotes fracture localization; then, spurious
softening is less severe and all formulations and splits give very close
results in terms of stress distribution and crack patterns. They also
match the fracture patterns of RVE analyses following a ‘‘weak inter-
faces’’ assumption (Vaughan and McCarthy, 2011), where the interface
fracture toughness is significantly lower than that of the matrix (see
Table 2). For tensile-dominated loading, from pure tension to pure
transverse shear, failure is dominated by fiber–matrix decohesion, and
all the curves are close to the ‘‘Cohesive Only’’ limit, which is domi-
nated by the ‘‘weak interfaces’’. Due to the linear behavior of the AT1
formulation, the PF predictions match the ‘‘Cohesive Only’’, as matrix
fracture is triggered after the cohesive damage instability occurred. On
the other hand, due to the softening of the AT2 formulation, the stresses
inside the RVE are slightly diminished before the cohesive instability is
triggered.

In general, for compressive-dominated loading, the difference in
the matrix strength due to the formulation and energy split plays a
more important role. In this case, not accounting for an energy split
implies an underestimation of the strength. If an energy split is used,
the effect is the opposite, the composite strength is overpredicted,
and such overestimation is increased by using Miehe’s split or the
AT1 formulation. The AT1 formulation combined with Amor’s split,
and both AT1 and AT2 formulations with no energy split yield crack
patterns perpendicular to the loading direction that are considered
unrealistic, in the sense that disagree with both experimental as well
as previous numerical observations. Miehe’s split, regardless of the
formulation, and Amor’s split with the AT2 formulation yield fracture
angles (with respect to the normal to the load direction) clearly larger
than 45◦, as observed in previous numerical results (Tan et al., 2018)
and in the experimental results of Puck and Schürmann (2002). If no
energy split is used, the maximum compressive strength is lower than
the failure envelope of Camanho et al. (2015).

From the preliminary study of fracture on the RVEs using different
sizes and loading conditions, it can be concluded that the current
8

models, alongside the assumed mechanical properties, overestimates
Fig. 9. RVE loading orientation.

Fig. 10. Failure envelopes of: (i) linear-elastic AT1 formulation without energy split,
(ii) linear-elastic AT1 formulation with Miehe’s energy split, (iii) linear-elastic AT1
formulation with Amor’s energy split, (iv) linear-elastic AT2 formulation without energy
split, (v) linear-elastic AT2 formulation with Miehe’s energy split, (vi) linear-elastic AT2
formulation with Amor’s energy split, (vii) Camanho et al. (2015) and (viii) linear-
elastic matrix and cohesive interface damage (Cohesive Only). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

the meso-scale strength in tension and compression if an energy split is
used, with the predictions of compressive strength yielding the highest
differences. As explained in the next section, one of the most evident
reasons for the overestimation is the fact that a higher strength is
assumed on the resin in order to reduce the length scale parameter so
that the damage pattern can actually resemble a fracture-like shape.
For simulations where the length scale is further reduced, the failure
surfaces are expected to enlarge proportionally up to the ‘‘Cohesive

nly’’ surface limit; but, if the length scale is increased, even though
better fit could be obtained on the strength prediction, damage

ocalization cannot be achieved, and failure could not be visualized in
he form of crack formation, but rather diffuse damage. This indicates
hat if the length scale parameter could be interpreted as a material
roperty associated to the material strength and fracture toughness,
hich is the case of the AT1 and AT2 formulations, the usability of such
arameter for the specific geometric arrangement and dimensions that
eed to be studied in the context of computational micro-mechanics
an become an important limitation on both the spatial scales that can
e modeled as well as the accuracy of the results that can be obtained.

.3. Influence of the length scale on the failure envelope

To study the effect of the length scale parameter on the transverse
ailure predictions, new envelopes are calculated using values of length
cale equal to 1 μm, 2 μm and 3 μm; see Fig. 14. Again, the results are
ompared with the case ‘‘Cohesive Only’’ to assess if failure is triggered
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Fig. 11. (a) Failure envelopes and (b) crack patterns for pure tensile load of: (i) linear-
elastic AT1 formulation without energy split, (ii) linear-elastic AT1 formulation with
Miehe’s energy split, (iii) linear-elastic AT1 formulation with Amor’s energy split, (iv)
linear-elastic AT2 formulation without energy split, (v) linear-elastic AT2 formulation
with Miehe’s energy split, (vi) linear-elastic AT2 formulation with Amor’s energy split,
(vii) Camanho et al. (2015) and (viii) linear-elastic matrix and cohesive interface
damage (Cohesive Only). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 12. (a) Failure envelopes and (b) crack patterns for pure compressive load of: (i)
linear-elastic AT1 formulation without energy split, (ii) linear-elastic AT1 formulation
with Miehe’s energy split, (iii) linear-elastic AT1 formulation with Amor’s energy
split, (iv) linear-elastic AT2 formulation without energy split, (v) linear-elastic AT2
formulation with Miehe’s energy split, (vi) linear-elastic AT2 formulation with Amor’s
energy split, (vii) Camanho et al. (2015) and (viii) linear-elastic matrix and cohesive
interface damage (Cohesive Only). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
9

Fig. 13. (a) Failure envelopes and (b) crack patterns for pure transverse shear load
of: (i) linear-elastic AT1 formulation without energy split, (ii) linear-elastic AT1
formulation with Miehe’s energy split, (iii) linear-elastic AT1 formulation with Amor’s
energy split, (iv) linear-elastic AT2 formulation without energy split, (v) linear-elastic
AT2 formulation with Miehe’s energy split, (vi) linear-elastic AT2 formulation with
Amor’s energy split, (vii) Camanho et al. (2015) and (viii) linear-elastic matrix and
cohesive interface damage (Cohesive Only). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

by decohesion or matrix damage. If the curves computed using a PF
formulation are very close to the case ‘‘Cohesive Only’’, then PF damage
does not significantly affect the behavior of the RVE. As the length
scale is further reduced, the curves approximate the ‘‘Cohesive Only’’
solution, showing that when the matrix strength is much higher than
the interface strength, the maximum meso-scale stress is conditioned
by the instability created by decohesion. The matrix fracture strength
dictated by the length scale parameter and fracture toughness becomes
relevant mainly for the post-peak behavior and is highly dependent
on the loading scenario. Increasing the length scale brings the curves
closer to the solution of Camanho et al. (2015) but the fracture-like
pattern that represents a brittle fracture is gradually lost and replaced
by a diffuse damage area whose physical interpretation can become
ambiguous.

In the case of tensile loading, representative stress–strain curves for
different lengths scales are shown in Fig. 15, and the crack patterns in
Fig. 16. Maximum stress under this type of loading is fully dominated
by the interface properties, as the peak is the same for all values of
length scale and coincides with the peak stress of the ‘‘Cohesive Only’’
curve. The length scale mainly affects the post-peak behavior. In this
case, a lower value of 𝑙0 implies a higher strength, thus a material
that fails gradually, while increasing 𝑙0 promotes a brittle-like curve,
similarly to increasing the size of a periodic RVE, proving that the study
of material parameters can be highly dependent on the RVE size and
BCs. In addition, increasing the length scale can change the damage
pattern and prevent damage localization in an RVE micro-structure,
thus, the damage pattern created by the PF variable does not resemble
a crack like-pattern when the length scale is larger than 1 μm. This is
observed even in the case of tensile loading, which is more prone to
crack localization.

For transverse shear loading, representative stress–strain curves for
different length scales are shown in Fig. 17, and the crack patterns
in Fig. 18. The maximum stress under this type of loading is also
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Fig. 14. Failure envelopes computed using: AT1 formulation with length scale (𝑙0)
equal to (i) 1 μm, (ii) 2 μm, (iii) 3 μm, AT2 formulation with length scale equal to (iv)
1 μm, (v) 2 μm, (vi) 3 μm, (vii) Camanho et al. (2015) and (viii) linear-elastic matrix
and cohesive interface damage (Cohesive Only) (for interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article).

Fig. 15. Stress–strain curves for tensile loading using AT1 and AT2 formulations with
length scale (𝑙0) equal to: (i) 1 μm, (ii) 2 μm and (iii) 3 μm and AT1 formulation,
(iv) 1 μm, (v) 2 μm and (vi) 3 μm and AT2 formulation, (vii) linear-elastic matrix and
cohesive interface damage (Cohesive Only) and (viii) strength according to Camanho
et al. (2015). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 16. Crack patterns for tensile loading using AT1 and AT2 formulations with length
scale (𝑙0) equal to: (i) 1 μm, (ii) 2 μm and (iii) 3 μm. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

mainly dominated by fiber–matrix decohesion for the AT1 formulation,
but matrix behavior is dominant in the AT2 formulation, because this
formulation struggles to localize fracture under shear, as explained in
Section 4.2. In this case, higher values of 𝑙 can modify the damage
10
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Fig. 17. Stress–strain curves for transverse shear loading using AT1 and AT2 formu-
lations with length scale (𝑙0) equal to: (i) 1 μm, (ii) 2 μm and (iii) 3 μm and AT1
formulation, (iv) 1 μm, (v) 2 μm and (vi) 3 μm and AT2 formulation, (vii) linear-elastic
matrix and cohesive interface damage (Cohesive Only) and (viii) strength according
to Camanho et al. (2015). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 18. Crack patterns for transverse shear loading using AT1 and AT2 formulations
with length scale (𝑙0) equal to: (i) 1 μm, (ii) 2 μm, (iii) 3 μm. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

topology. For 𝑙0 larger than 1 μm, the crack patterns coincident with the
plane of maximum principal stresses can change to plastic-like damage
patterns where damage follows the shear direction.

In the case of compressive loading, representative stress–strain
curves for different lengths scales are shown in Fig. 19, and the crack
patterns in Fig. 20. The maximum stress under this type of loading is
dominated by the matrix behavior, but there is still matrix decohesion
that can take place if the length scale is sufficiently small. The amount
of decohesion decreases as the length scale increases, and the damage
patterns for small values of 𝑙0 go from crack-like patterns where
decohesions are joined by small areas of matrix damage, to diagonal
patches of matrix damage, with reduced damage at the interfaces for
larger values of 𝑙0.

4.4. Influence of the fiber–matrix interface on the failure envelope

The last verification involves removing the cohesive interface inter-
action and replacing it with a perfect bonding to study failure initiation
triggered purely by PF damage. This is an assumption followed in
previous micro-mechanical studies of composites using PF for pure
transverse tension and pure transverse compression (Espadas-Escalante
et al., 2019). In the case of tensile loading (Espadas-Escalante et al.,
2019), it was found that the behavior was dominantly brittle even
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Fig. 19. Stress–strain curves for compressive loading using AT1 and AT2 formulations
with length scale (𝑙0) equal to: (i) 1 μm, (ii) 2 μm and (iii) 3 μm and AT1 formulation,
(iv) 1 μm, (v) 2 μm and (vi) 3 μm and AT2 formulation, (vii) linear-elastic matrix and
cohesive interface damage (Cohesive Only) and (viii) strength according to Camanho
et al. (2015). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 20. Crack patterns for compressive loading using AT1 and AT2 formulations with
length scale (𝑙0) equal to: (i) 1 μm, (ii) 2 μm and (iii) 3 μm. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

for small RVEs, a behavior that can be attributed mainly to the very
low matrix fracture toughness that was obtained from calibration in
combination with the perfect interface bonding assumption. Fig. 8
compares the tensile stress–strain curves from RVEs with and without
cohesive interface damage. All pairs of RVEs possess the same size and
fiber distribution. It can be seen that, since cohesive damage is the first
failure mechanism, removing the cohesive interaction implies a larger
meso-scale strength. This trend can be perceived in transverse shear as
well as compressive dominated loading, see Fig. 21. Failure envelopes
computed using the matrix properties in Table 2 and ignoring interface
damage lead to large overpredictions when compared with the failure
criteria of Camanho et al. (2015), or the case of ‘‘Cohesive Only’’.

5. Conclusions

The feasibility of the strength prediction of classical PF formula-
tions and energy splits was assessed using RVE analyses for different
fiber distributions, RVE sizes, loading conditions, PF parameters and
interaction models. Using the PF method, reasonable predictions can be
obtained but the accuracy is highly dependent on the energy split, PF
formulation, length scale, and loading condition. Besides, the validity
of the results can be limited by the difference between the length scale
parameter and the geometric dimensions of the problem, especially if
11
Fig. 21. Failure envelopes computed using: (i) AT1 formulation and Miehe’s split
accounting for perfect interface bonding, (ii) AT1 formulation and Miehe’s split
accounting for interface cohesive damage, (iii) AT2 formulation and Miehe’s split
accounting for perfect interface bonding, (iv) AT2 formulation and Miehe’s split
accounting for interface cohesive damage, (v) Camanho et al. (2015), and (vi) linear-
elastic matrix and cohesive interface damage (Cohesive Only). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

the length scale is considered a strength-related property, which is the
case of the formulations covered in this study.3

It was concluded that a square RVE of 0.08 mm side is necessary
to obtain meaningful failure strain predictions, while accurate strength
analyses can be performed with much smaller RVEs. It was also found
that the AT2 formulation combined with Amor’s energy split gives
the closest prediction when compared to an analytical failure surface,
while the AT1 formulation combined with Miehe’s split yields the
highest overprediction. Also, it is concluded that the accuracy of PF
is highly affected by the loading scenario. The best fit was found
for transverse shear-dominated loading, while larger differences were
found for compressive loading, whose strength predictions are strongly
affected by the PF formulations and energy splits. It was demonstrated
that meso-scale strength is conditioned by interface properties since
interface damage is the dominant failure initiation mechanism under
tensile-dominated loading. In this case, matrix failure due to the PF
formulation, length scale parameter and energy split are only rele-
vant in terms of post-peak behavior (meso-scale toughness). On the
other hand, PF parameters have a stronger influence on compressive-
dominated loading. In this case, the AT2 formulation generally leads
to failure envelopes closer to the analytical reference solutions. More-
over, accounting for fiber–matrix interface damage defines a threshold
curve from which PF parameters stop exerting influence on meso-scale
strength. Finally, it was shown that assuming a perfect fiber–matrix
interface has a strong effect on the expected meso-scale strength, as
failure is delayed but the apparent behavior becomes more brittle.

This work thus provides useful guidance to the selection of classical
PF formulations and energy splits for computational micro-mechanical
analyses for general stress states considering 2D plane strain assump-
tions and matrix linear-elastic behavior. Further analyses, using 3D
models to assess the effects of crack tunneling, and a nonlinear, plas-
tic matrix behavior, are required to complement these conclusions.

3 The use of the PF-CZM formulation developed by Wu and Nguyen (2018)
would allow reducing the length scale to micro-scale dimensions while defin-
ing an elastic threshold based on energy criteria instead of the length scale
parameter, in other words, explicitly defining the strength independently of
the length scale parameter. For this reason, the PF-CZM formulation is not
assessed in this study, with the focus turned to the classical AT1 and AT2
formulations.
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In addition, more detailed analyses, incl. larger RVEs, can be ex-
plored to obtain longer crack patterns and predict in more detail the
fracture angles, in particular for comparison with other ply failure
criteria (Puck and Schürmann, 2002). Finally, particularizing the phase-
field formulation to specific failure surfaces, incl. pressure-dependent
behavior (Azinpour et al., 2021; Navidtehrani et al., 2022), could result
in interesting avenues to minimize or overcome the dependency of the
solutions on the model parameters and loading condition.
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