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Abstract: This paper investigates the influence of manufacturing tolerances on the cyclic behavior of steel 

members with European I and H-shaped profiles. It also explores the applicability of machine learning methods 

in predicting this behavior. Previous research has focused on nominal sections, overlooking the effects of 

dimensional tolerances specified in the EN10034 standard. Through advanced finite element modeling, the 

study evaluates the influence of geometrical variability on the behavior of steel members under cyclic flexural 

loading. Then, a total set of 2300 samples was generated using Latin Hypercube sampling for a range of 

profiles (IPE300 to IPE600) and (HEB300-HEB550) with different lengths to evaluate the effect of dimension 

tolerances on the behavior of beams and columns. The results showed that the variability in member behavior 

is significant and can cause variation in overstrength ratio, energy dissipation, and rotation capacity. Then, 

some models were developed using machine learning techniques to predict rotation and moment at key points 

of backbone curves. To this aim, various models were evaluated, including nonlinear and linear regression 

analysis, neural network, decision tree, and random forest.   

1 Introduction 

The latest international codes encourage the use of advanced numerical modeling and design checks for a 

thorough seismic assessment of structures. In particular, nonlinear structural analysis employing concentrated 

plasticity phenomenological models effectively simulates the flexural behavior of steel members that 

experience cyclic deterioration. However, these models' accuracy and acceptance criteria heavily rely on the 

rotation and bending strength parameters utilized, which need to be calibrated based on experimental results 

or advanced finite element models that accurately replicate the physical behavior of the structural component. 

Several studies have suggested various parameters for nonlinear modeling that could be utilized to calibrate 

concentrated plasticity models. For example, Lignos and Krawinkler [1] established empirical equations for 

estimating plastic rotations prior to and after capping, as well as the rate of cyclic deterioration in special 

moment connections. Additionally, they provided quantitative information for determining moment capacity at 

capping and residual moment after cyclic deterioration. Araujo et al. [2] proposed empirical equations for 

estimating plastic rotations in steel beam-columns with European profiles subjected to monotonic and cyclic 

loading. Mohabeddine et al. [3] derived empirical equations for estimating rotation capacity in steel beams with 

European profiles, which can be utilized as acceptance criteria for performance-based assessment of 

structures or for calibration purposes in push-over analysis. Lignos et al. [4] suggested modeling criteria for 

the first-cycle envelope and monotonic backbone curves of steel wide-flange columns, which can be employed 

in nonlinear static and dynamic frame analyses. Previous studies that have examined the cyclic behavior of 
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steel moment-resisting frame components have primarily been based on nominal geometric dimensions 

provided by manufacturers. However, actual cross-sections often deviate considerably from the nominal 

dimensions, as outlined by the tolerance limit deviations specified in the EN 10034:1993 standard [5]. 

Furthermore, while the standard provides acceptable intervals for section width, height, and thickness, the 

local slenderness of the plates within those intervals can vary significantly for a given profile. Since local 

slenderness is a critical factor in the flexural behavior of steel beams subjected to large deformation, 

understanding the extent of this effect is crucial. 

Several researchers have explored the impact of these types of geometrical imperfections on the design and 

load-carrying capacity of steel members subjected to monotonic loading, including Byfield and Nethercott [6], 

Melcher et al. [7], and Kala et al. [8]. However, to the authors' knowledge, studies have yet to examine the 

impact of cross-section dimension variability on the cyclic behavior of steel beams. While existing experimental 

tests may include these effects, large numbers of tests would be required to identify the impact of these 

imperfections, making such an approach infeasible therefore, the utilization of advanced finite element 

simulation can greatly assist in addressing this issue. 

The use of machine learning (ML) methods in civil engineering research is a rapidly growing field due to its 

potential to accurately predict the parameters and behavior of structures while saving time and reducing 

analysis costs. However, enough accurate data is essential for training ML models since it impacts their 

performance, generalization, and capabilities. The large data set available in this research can be employed 

to accurately train a model to predict the nonlinear behavior of steel members. For steel members, several 

researchers attempted to employ ML models: mainly ANNs [27-30]. Abdalla et al. [27] trained deep ANNs 

using 11 specimens to predict the moment-rotation response of single web angle and shear-tab connections. 

The model used only three features. De Lima et al. [28] trained an ANN using 26 specimens to predict the 

elastic stiffness and plastic strength of bolted extended endplate connections. Ghassemieh et al. [31] 

developed an ANN model to predict the trilinear response of 8-bolt extended endplate connections with plate 

rib stiffeners. The model was trained using a total of 25 data point generated by 3-dimensional finite element 

(FE) simulations; the FE model was validated against two test specimens. Faridmehr et al. [29] trained an ANN 

model using data from test specimens of connections with top, seat and web angles. The model performed 

better compared to Eurocode 3 component method with respect to elastic stiffness and plastic strength, where 

the observed errors were mostly high. Kueh [30] developed an ANN model for predicting the elastic stiffness 

and ultimate strength of endplate connections. The model was trained using a dataset of 52 physical and FE-

simulated specimens. Although these models were found to be of better performance compared to other 

empirical models, their performance remained limited. This is because a limited amount of data was used in 

the models’ development. This in turn affects the quality of model training and the model’s ability to capture 

the effect of all significant response predictors. This is particularly detrimental for sensitive response 

parameters such as ductility parameters. Ning et al. [8] explored the potential of using three deep learning (DL) 

models to predict the nonlinear time-history responses of civil engineering structures under seismic loading. 

Afshari et al. [9] reviewed DL-based methods in structural reliability analysis (SRA). They found that while ML-

based techniques can improve SRA accuracy, their performance is limited for high-dimensional and nonlinear 

problems. Mylvaganam et al. [10] conducted a systematic review of concrete strength prediction models. They 

concluded that while ML models can estimate the strength of novel concrete with superior accuracy, the black-

box nature of the process is a disadvantage. Luo et al. [26] presented a machine learning-based model (ML-

BCV) that rapidly predicts backbone curves for flexure- and shear-critical concrete columns, outperforming 

traditional modeling approaches by significantly reducing root-mean-square error and demonstrating 

increased robustness and accuracy. 

This study involved 1600 finite element simulations in ABAQUS of cantilever beams (IPE300-IPE600) and 600 

models of HEB300 to HEP450 with and without axial loads subjected to cyclic loading to investigate the effect 

of manufacturing tolerances on the rotation capacity of beams.  

The results of FE modeling were used to develop different types of ML models to predict variability in nonlinear 

modeling parameters of I and H-shaped profiles subjected to cyclic loading, considering manufacturing 

tolerances. By utilizing ML techniques, this research aims to improve the accuracy of predicting the behavior 

of structures and ultimately enhance their design and safety. 
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2 Methodology 

To accomplish the goals, a high-fidelity finite element model is created using ABAQUS software. To model the 

cyclic behavior, standardized SAC loading protocol is adopted [17]. The model is a cantilever beam, 

representing the beam's behavior from one end to the inflection point. This approach is commonly used in 

experimental and numerical studies. The study focuses on IPE300 to IPE600 profiles, which are widely used 

in practice [11,12], and considers a member with a length of 2, 2.5, 3, 3.5m and also HEB300 to HEB450 

profiles with lengths equal to 2m without and with 30% axial force. Figure 1 shows a 3D schematic view of the 

model with one edge fully restrained in all 6 degrees of freedom to ensure fixed boundary conditions. The 

cyclic loading is applied on the other edge, which is restrained in the X-X direction to prevent out-of-plane 

displacements at the top of the specimen.  

        

Figure 1 Model of beams in Abaqus and SAC protocol 

To prevent Lateral-Torsional Buckling (LTB), lateral restrictions were added to the flanges. According to 

ANSI/AISC 341-16 [13], the unbraced length (𝐿𝑏), which is the distance between the lateral restraints, was 

calculated using Eq. 1 

𝐿𝑏 = 0.095𝑖𝑧
𝐸

𝐹𝑦
                                                                   (1)                                                                                                                          

Where 𝑖𝑧 is the radius of gyration of the cross-section, E is the young modulus, 𝐹𝑦 is the yield stress obtained 

from coupon tests. 

The constitutive material model parameters for the Voce-Chaboche model, which combines kinematic and 

isotropic models, were obtained using the following equation. 

𝜎0 = 𝜎|0 + 𝑄∞(1 − 𝑒−𝑏𝑒𝑝𝑙
)                                          (2) 

In Equation (2), the term 𝜎0 represents the change in the yield surface size as a function of equivalent plastic 

strain e𝑝𝑙 . The yield stress at zero equivalent plastic strain is represented by σ|0 , while 𝑄∞  indicates the 

maximum change in the yield surface size. Parameter b describes the rate at which the yield surface size 

changes as plastic strain increases. The nonlinear kinematic hardening component involves the movement of 

the yield surface in the stress space through the vector backstress α, which is used to capture complex 

phenomena like the Bauschinger effect. Equation (3) represents the backstress evolution law, a mathematical 

expression of the vector function that shifts the center of the Mises yield surface. 

𝛼�̇� = 𝐶𝑘
1

𝑠0
(𝜎 − 𝛼)�̇̅�𝑝𝑙 −  𝛾𝑘𝛼𝑘 �̇̅�𝑝𝑙                                                          (3) 

where 𝐶𝑘  and 𝛾𝑘  are material parameters calibrated from stabilized cycle, σ is the stress matrix, 𝛼�̇�  is the 

evolution of the back stress, and ė̅𝑝𝑙  is the equivalent plastic strain rate. The subscript ′′𝑘′′  defines the 

backstress number. The constitutive parameters for this model were obtained through an optimization process 

using data from Chen et al.'s coupon test [14]. A comparison between the coupon test and the Voce-Chaboche 

model is illustrated in Figure 2, and Table 1 lists the parameters used to describe the constitutive model. The 
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finite element model was then validated against various experimental tests on different members, and the 

outcomes are depicted in Figure 2. 

Table 1 Nonlinear Isotropic and Kinematic hardening parameters. 

Material |0 (N/mm2) Q (N/mm2)  b C (N/mm2)                  γ 

Q355b/S355 285 69 2.86 14238 96.15 

 
 

  

 

 

Experimental Coupon from 
Chen et al. [14] 

Experimental Test on 
IPE300 D'Aniello et al. [15] 

Experimental Test 
on IPE300 

D'Aniello et al. [15] 

 

Abaqus Simulation 
of IPE300 

 
 

3 Dimension Characteristics Variability  

Table 2 presents the tolerances on the shape dimensions of I and H sections of structural steel, as specified 

by the European standard [5]. The descriptions of the profile dimensions are illustrated in Figure 3. 

Table 2-Dimensional tolerance for structural steel I and H sections (EN 10034:1993) (units in mm) 

Section Height (h) Flange Width (b) Web Thickness (tw) Flange Thickness (tf) 

h<=180 
+3 
-2 

b<=110 
+4 
-1 

tw<7 ±0.7 tf<6.5 
+1.5 
-0.5 

180<h<=400 
+4 
-2 

110<b<=21
0 

+4 
-2 

7=< tw <10 ±1 6.5=<tf<10 
+2 
-1 

400<h<=700 
+5 
-3 

210<b<=32
5 

+4 
-4 

10=< tw <20 ±1.5 10=<tf<20 
+2.5 
-1.5 

h>700 
+5 
-5 

b>325 
+6 
-5 

20=< tw <40 ±2 20=<tf<30 
+2.5 
-2 

                  40=< tw <60 ±2.5 30=< tf <40 
+2.5 
-2.5 

                  60< tw ±3 40=< tf <60 
+3 
-3 

                  60< tf 
+4 
-4 

 

Table 2 shows that the code allows for significant changes in thicknesses, which can greatly affect the 

slenderness ratios and overall performance of the profile. The coefficient of variation for geometric 

imperfections is based on research from the 1970s, but some studies have questioned whether these 

estimates are still valid due to advancements in manufacturing methods [6]. Melcher et al. [7,16] conducted 

experimental research on Czech steel hot-rolled IPE profiles, and statistically evaluated the geometrical 

characteristics of the cross-section dimensions, as presented in Table 3 and Table 4. This study used the 

results from those tables to define the next steps in the paper. 

 

 

 

Figure 2 Model Validation  
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As seen in Fig. 3, h is the height of the beam, b1, b2 are the top and bottom flange widths, t1 is the web 

thickness, and t21, t22 are the top and bottom flange thicknesses, The web imperfection in the shape of the 

profile, denoted as e, can be expressed as 0.004h, where h represents the height of the profile. The flange 

imperfection in shape, denoted as k + k', can be expressed as 0.02b, where b represents the width of the 

flange. 

Table 3 Relative statistical geometric characteristics [7] 

Quantity Mean 
Standard 

deviation 
Skewness Kurtosis 

Min 

Value 

Max 

value 

h 1.001 0.00443 -0.4063 3.0150 0.989 1.013 

b1 1.012 0.01026 -0.3939 4.239 0.975 1.049 

b2 1.015 0.00961 -0.5448 3.887 0.975 1.037 

t1 1.055 0.04182 1.0545 7.4730 0.949 1.3 

t21 0.988 0.04357 -0.2991 2.663 0.880 1.094 

t22 0.998 0.04803 0.3303 2.766 0.858 1.129 

 

Table 4 Correlation matrix of geometric characteristics [7] 

Quantity h b1 b2 t1 t21 t22 

h 1 -0.0068 0.0534 0.0399 -0.0686 -0.0989 

b1 -0.0068 1 0.6227 -0.2142 -0.2681 -0.1456 

b2 0.0534 0.6227 1 -0.2132 -0.1596 -0.0423 

t1 0.0399 -0.2142 -0.2132 1 0.2368 0.2451 

t21 0.0686 -0.2681 -0.1596 0.2368 1 0.7634 

t22 -0.0989 -0.1456 0.0423 0.2451 0.7634 1 

4 Stochastic Model 

Latin hypercube sampling (LHS) method was used to define the random geometries for finite element analysis. 

The LHS method is computationally efficient compared to standard Monte Carlo sampling since it reduces the 

number of samples significantly [19-20]. However, the results of LHS sections are dependent on whether the 

components of X (variables) are independent or dependent. In this paper, a procedure for producing Latin 

hypercube samples is used based on a correlation matrix of geometric characteristics, as presented in Table 

4, since section variables are dependent. An experimental distribution is defined (after analyzing the data, it 

was determined that they do not follow any specific distribution) to capture the true distribution of the variables. 

For each IPE profile considered in this study, 50 samples with varying dimensions are generated using the 

LHS method and this process repeated for 4 different lengths of each profile. Figure 4 displays four of the six 

input variables as dimensional tolerances that were generated using Latin hypercube sampling (LHS). 

b1, b2 -top and bottom 
flange widths 
t1 -the web thickness 
t21, t22 -top and bottom 
flange thicknesses. 
h -beam height 
e -web imperfection 
k, k’ -flange imperfection 

Figure 3 Cross section geometry and imperfections   
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After this stage, dimensions that do not match Tables 2 and 3 will be removed. Each profile has four series of 

these dimensions with lengths equal to 2, 2.5, 3, and 3.5 meters and 50 possible combinations of 6 random 

variables in cross-section dimensions. Lastly, ABAQUS ran 200 models for each of the eight profiles, and in 

total, 1600 models of all profiles. Along with the six random variables mentioned earlier, all models also 

included a constant imperfection in the flange and web based on EN 10034:1993. This imperfection equals 

0.02b ('b' represents the average width of the top and bottom flanges) in flanges, and 0.004h (h is the height 

of the beam) in the web. 50% of these imperfections were included in all models as constant because, during 

sensitivity analysis, it was found that they have a minimal impact on the results. Therefore, they are considered 

constant for each profile, based on its dimensions and not random variables. 

5 Sensitivity Analysis 

A sensitivity analysis was conducted to determine the separate impact of each random variable. In one 

analysis, b1,2 was considered a random variable while the other dimensions were nominal, namely h, t21,22, and 

t1, respectively. As Figure 4 illustrates, the effect of b and h is relatively minor. This is due to the low dimension 

tolerances specified in EN10034 for b and h, compared to their actual dimensions. For example, For IPE 300, 

the maximum tolerances for h and b are (-0.66%, +1.33%) and (-1.33%, +2.67%), respectively. In terms of t2 

(flange thickness) and t1(web thickness), the tolerances are (-14%, +23.36%) and (-14.08%, +14.08%), 

respectively. However, since changes in the thickness of the top and bottom flanges were considered together, 

one of them can affect the other and reduce the impact of t2 compared to t1. 

Figure 4 Sensitivity of 𝜃80% to each individual random variable (left), hysteresis moment-rotation curves (right) 

6 Results and Discussion 

Figure 5 displays the cyclic moment-rotation curve and the first cycle envelope which illustrating the behavior 

of one of the 50 models of IPE300 profile with length equal to 2m, which is determined by moment and rotation 

values at yielding, maximum moment (θmax, Mmax), and an 20% reduction in strength (θ80%, M80%). Figure 5 

shows the first cycle curves for IPE300 to IPE600, based on 1600 samples for the profiles with length equal to 

2, 2.5, 3, 3.5m. The results indicate that changes in the dimensions of the beams significantly affect their 

strength and rotation capacity. The average first cycle curve for each profile (green line) has higher rotation 

and strength than the nominal cross section curves. However, higher strength can increase the over-strength 

factor, which is not desirable for seismic design, and lower rotation capacity can decrease the seismic 

performance of the structure. These results could be useful for reliability analysis and risk assessment, 

considering the variability of input modeling parameters. 

The rotation at strength drops θ80% is widely accepted as the parameter that defines the rotation capacity of 

the beam when subjected to large deformation. 
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Figure 5 Variation in Backbone Curves of IPE300 to IPE600, L=2, 2.5, 3, 3.5m 

Figures 6 also illustrates variability of the (θmax, Mmax) and (θ80%, M80%) values for various profiles with a length 

of 2 meters. The manufacturing tolerances in the dimensions of the cross-section have a significant impact on 

the variability of the parameters. The range of variation differs across different profiles, as depicted in Figure 

6. The reason is that EN 10034:1993 defines a range for dimension tolerances for a series of profiles, and this 

can increase the slenderness of a profile in the beginning of the range more than the profile at the end of the 

range.  

 

 
 

 

 

a b c d 

 

Figure 6 (a) Variability of θ80%, L=2m and (b) variation in M80%, L=2m. (c) Variability of θ80%, L=3.5m and (d)` 

variation in M80%, L=3.5m. 

L=2m

m 

L=2.5m 

L=3.0m

m 
L=3.5m

mm 
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7 Predictive Models 

The following section involved creating several models using machine learning methods to predict the 

maximum moment and rotation capacity and evaluating the accuracy of these models. Moreover, a numerical 

equation was developed to predict the rotation capacity at maximum moment and when the maximum moment 

has decreased by 20%. Several models were evaluated, including nonlinear regression, linear regression 

analysis, neural network, decision tree, and random forest, with the aim of achieving the desired outcome. To 

evaluate the models, 80% of the data was used for training, while the remaining 20% was used for testing. 

Additionally, the training data was divided into two sets: a training set and a validation set, which were used to 

optimize the hyperparameters of the models under consideration. The models were created individually for 

both IPE and HEB profiles, with a particular emphasis on IPE profiles due to the larger amount of data 

generated during this research specifically for this type of profile. 

7.1 Nonlinear Regression Analysis 

Careful consideration of model assumptions is crucial in nonlinear regression analysis, including the 

distribution of errors, as the choice of model and parameters can significantly impact the results. To ensure 

the model's appropriateness and the reliability of results, it is important to evaluate the model's fit to the data 

using diagnostic plots or statistical tests. Current construction steels can undergo substantial deformation 

without loss of strength, and the rotation capacity of a steel member is heavily dependent on geometrical 

instabilities. Flange and web slenderness are the major influencing parameters of a given plated beam. Thus, 

an analytical equation, which employs nonlinear regression analysis to estimate rotations corresponding to a 

20% drop in the maximum moment for IPE profiles (range between IPE300-IPE600), and HEB profiles with 

30% axial force is presented in Equation 5. 

𝜃80%(𝑚𝑅𝑎𝑑) = 𝑎 (
𝐿

ℎ
)

𝑏

(
ℎ𝑤

𝑡𝑤
)

𝑐

(
𝑏𝑓

2𝑡𝑓
)

𝑑

                                                                                       (5) 

Where 
ℎ

𝑡𝑤
 represent the web slenderness and 

𝑏

2𝑡𝑓
 represent flange slenderness. The following are the 

regression coefficients: 

Table 5 Coefficient of equation (5) for IPE profiles 

Dataset a b c d 

IPE  273.35 0.16 -0.45 -0.38 

 
𝐿     Length of cantilever beam                                         ℎ     Beam depth 

𝑡𝑓    Average of flange thickness                                      𝑏𝑓    Average of flange widths  

𝑡𝑤   Web thickness                                                           ℎ𝑤    Web height 

 
To measure the accuracy of the models three metrics including mean absolute error (MAE), mean square error 

(MSE) and R2 were used. There is a strong correlation between measured and anticipated results, as illustrated 

in figure 7 and Table 6.  

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒|                                                                                                            (6) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑝𝑟𝑒𝑑  −  𝑦𝑡𝑟𝑢𝑒)2                                                                                           (7) 

                                                              
𝑛                 Number of samples in the dataset 

𝑦𝑝𝑟𝑒𝑑            Predicted value of the model 

𝑦𝑡𝑟𝑢𝑒          True value of the target variable 

 

Table 6 Accuracy of nonlinear regression analysis 

 

The proposed equation underwent extensive research before being suggested as indicated in table 5, The 

Dataset a b c d 

HEB 387 0.26 -0.61 -0.52 

Prediction 

HEB 
MSE MAE R2 

θ𝑚𝑎𝑥  9.19 2.46 0.54 

θ80% 1.2 0.94 0.73 

Prediction 

IPE 
MSE MAE R2 

θ𝑚𝑎𝑥 1.9 6.4 0.85 

θ80% 3.35 1.46 0.94 



WCEE2024  Eshaghi. C et al. 

 
 

9 

benefit of this approach is that we arrive at a final equation that researchers and engineers may utilize with 

ease. 

7.2 Linear Regression 

The linear regression method is widely used in civil engineering to model the relationship between various 

factors affecting the performance of structures, such as load-bearing capacity, deflection, and durability. In this 

part a liners regression model developed to predict θ80%, θmax, Mmax or M80%. The findings are presented in 

Table 7. 

 

Table 7 Accuracy of linear regression analysis  

 
7.3 Neural Networks 

Neural networks are a type of machine learning model that consists of layers of interconnected nodes, also 

known as neurons, which process and transmit information using mathematical functions (figure 7). 

 

                                                         Table 8 Input variables  

                                            

                                               
This study employed 9 input variables (Table 8) to train the models using 1280 samples (80% of the data from 

IPE profiles), with an additional 320 samples used to test the models' accuracy. Figure 7 displays the prediction 

of θ80% and M80%, while Table 9 presents the accuracy of the models. 

 

 

 

 

IPE profiles- NRA HEB profiles- NRA IPE profiles- ANNs HEB profiles- ANNs 

Figure 7 Correlation between measured and anticipated results 

 

 

Prediction 

HEB 
MSE MAE R2 

θ𝑚𝑎𝑥  5.68 1.89 0.44 

θ80% 0.83 0.72 0.738 

M80% 376 15.99 0.993 

Prediction IPE MSE MAE R2 

θ𝑚𝑎𝑥 7.3 2.1 0.81 

θ80% 4.85 1.78 0.91 

M80% 1698.13 33.64 0.9898 

Input Variables Description 

𝐿 Length of cantilever beam 

h Height of profiles 

b1 Top flange width 

b2 Bottom flange width 

t1 Web thickness 

t21 Top flange thickness 

t22 Bottom flange thickness 

Lb Unbraced length 

C Web height 



WCEE2024  Eshaghi. C et al. 

 
 

10 

Table 9 Accuracy of neural network model 

 

 
7.4 Decision Tree 

Decision trees are a versatile tool that can be used for both classification and regression problems. When 

applied to regression analysis, decision trees aim to predict continuous target variables by dividing the feature 

space into smaller subsets based on input feature values [22]. Table 10 presents the accuracy of the models. 

Table 10 Accuracy of Decision Tree model 

  

7.5 Random Forest 

One of the key advantages of using random forest for regression is its ability to handle high-dimensional data 

and outliers, as well as its capability to capture complex nonlinear relationships between the input features 

and the target variable [23]. Moreover, the significance of the input features can be readily interpreted by 

analyzing their contributions to the variance reduction in the individual decision trees. Table 11 shows the 

accuracy and table 12 shows the importance of features in the training set of the model. 

Table 11 Accuracy of Random Forest                              Table 12 Importance of Features Random Forest  

 

 

Conclusion 

The primary focus of this study was to examine how dimensional tolerances impact the flexural behaviour of 

steel beams and columns when subjected to cyclic loading. To accomplish this objective, the study involved 

1600 analyses on eight distinct steel IPE profiles, ranging from 300 to 600, and 600 analyses of 6 HEB steel 

profiles ranging from 300 to 450. After evaluating the results, the study found that this parameter has a 

significant effect and can potentially cause variation in overstrength ratio, rotation capacity, classification, and 

energy dissipation of steel beams in MRF and additionally for columns caused variation in axial shortening. 

Therefore, future design and analysis of steel structures should give greater consideration to this geometrical 

imperfection. In this study, various ML techniques such as linear and nonlinear regression analysis, neural 

network, decision tree, and random forest were employed to predict (θmax, Mmax), and a 20% reduction in 

strength (θ80%, M80%). The findings suggest that neural network models are more accurate in predicting both 

variables, making it a reliable approach for predicting moment and rotation. It is interesting to note that utilizing 

Prediction HEB MSE MAE R2 

θ𝑚𝑎𝑥  4.8 1.27 0.71 

θ80% 1.13 0.83 0.66 

M80% 197 10 0.996 

Prediction IPE MSE MAE R2 

θ𝑚𝑎𝑥 3.03 0.98 0.928 

θ80% 1.53 0.96 0.971 

M80% 38.2 3.8 0.9997 

Prediction (IPE) MSE MAE R2 

θ𝑚𝑎𝑥 4.01 0.648 0.907 

θ80% 2.48 0.87 0.956 

M80% 171.43 7.44 0.9989 

Prediction (HEB) MSE MAE R2 

θ𝑚𝑎𝑥 9.05 1.4 0.405 

θ80% 1.9 1.03 0.38 

M80% 531 17.87 0.990 

Prediction 

(IPE) 
MSE MAE R2 

θ𝑚𝑎𝑥 3.35 0.768 0.917 

θ80% 1.65 0.85 0.969 

M80% 128.68 7.4 0.992 

Prediction 

(HEB) 
MSE MAE R2 

θ𝑚𝑎𝑥  4.48 1.35 0.59 

θ80% 0.72 0.64 0.68 

M80% 736 20.16 0.986 

Features 𝛉𝒎𝒂𝒙 𝛉𝟖𝟎% M80% 

L 0.456 0.492 0.0026 

h 0.311 0.213 0.107 

b1 0.069 0.095 0.394 

b2 0.069 0.021 0.224 

t21 0.037 0.018 0.0015 

t22 0.007 0.018 0.006 

t1 0.012 0.013 0.013 

Lb 0.038 0.099 0.207 

r 0.0012 0.031 0.048 
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a neural network can be highly beneficial in this context since running a model with Abaqus can be both time-

consuming and expensive. 

A large amount of accurate data is essential for the success of machine learning techniques, and the lack of 

such data is a major challenge. However, by incorporating dimension tolerances across a range of profiles, 

this challenge can be overcome. Using only nominal sections can result in low-accuracy models while 

incorporating dimension tolerances allows for more realistic modeling. This, in turn, leads to more accurate 

results and better machine learning outcomes. 
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