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Abstract—The design and reorganization of Cyber-
Physical Systems (CPSs) faces challenges due to the grow-
ing number of interconnected devices. To effectively handle
disruptions and improve performance, rapid CPS design
and development is crucial. The Task Resources Estimator
and Allocation Optimizer (TREAO) addresses these chal-
lenges, by simulating and optimizing the tasks assignment
to the CPS machines, recommending suitable software
layouts for the CPS characteristics. It employs Zero-Shot
Learning (ZSL) to predict task requirements in heteroge-
neous devices, enabling the characterization of software
pipeline execution in distributed systems. The Genetic Al-
gorithm (GA) component then optimizes the task assign-
ment across available machines. Through experiments, the
tool is evaluated for task characterization, CPS modeling
and optimization performance. TREAO, when compared
with similar tools, allows the simulation of more resource
usage metrics (CPU, RAM, processing time and network
delay) and increases flexibility in heterogeneous CPSs by
predicting the task execution behavior and optimizing the
task assignment.

Index Terms—Task Allocation, Zero-Shot Learning, Ge-
netic Algorithms, Machine Learning

I. INTRODUCTION

THE design of distributed systems, mainly Cyber-Physical
Systems (CPS), has become crucial to obtain reliable,

flexible, and robust digital environments [1]. The increasing
number of interconnected devices in sectors like industry,
agriculture, or transportation, raised the efforts associated with
designing those systems. The design and specification of those
systems requires several human resources and consumes large
amounts of time, which in sectors such as the industry delays
the stock production or the introduction of new products. The
scenarios that can cause the system redesign or reconfiguration
are almost infinite. Some might be due to 1) the components’
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failure and the introduction of new devices that require existing
system reorganization to continue the process smoothly; or 2)
the redefinition of the current process due to new system re-
quirements. The operators and developers have limited time to
mitigate those disruptions, so they use support tools to simulate
the system behavior and obtain design recommendations.

Some tools help simulating large systems’ behavior, finding
the optimal assignment of software tasks, dimensioning the
devices’ capabilities, or searching for a faster network layout.
Regarding those objectives, they must have two components:
1) the system simulator and 2) the optimization routine. The
CPSs design, using simulation and optimization techniques,
helps validating the CPSs before their deployment, identify-
ing restrictions (network bottlenecks, machines in overload)
and mitigating those situations, by suggesting new layouts
or machine specifications. The system simulator enables the
experimentation of different system setups producing output
metrics that characterize the current experiment. However,
most simulators only support the combinatorial testing of dif-
ferent configurations using entities (devices, tasks) with homo-
geneous characteristics [2]. The reason behind that limitation
is the behavior modeling of each entity, which is a complex
process that requires understanding the entity characteristics
implemented using mathematical rules or object-oriented pro-
gramming. The optimization routine explores an ample space
of solutions and using the evaluation of the solution from
the simulator, selects the optimal ones. Most tools do not
implement the optimization component, contemplating only
the system simulation, and those which do implement only use
as input time behavior metrics discarding the resource usage.

The simulation and optimization of CPSs fits the task
assignment problem, where a task pipeline representing the
distributed software has each task associated with one ma-
chine. The task assignment simulation and optimization leads
the designed CPSs to have more suitable hardware resources.
Regarding the problem context, the Task Resources Esti-
mator and Allocation Optimizer (TREAO) implements three
components, 1) the task requirements estimator, 2) the task
pipeline simulator, and 3) the optimization routine. The task
requirements estimator predicts, using ZSL techniques, the
task execution behavior in a machine without requiring task
profiling or the manual behavior modeling. With the task
requirements, the simulator converts the tasks pipeline into
a graph representing the task sequence to extract some met-
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rics that characterize the system behavior. The optimization
component, using Genetic Algorithms (GAs), encodes into a
chromosome the task-machine associations to explore different
system layouts, producing the optimal solution. As result,
TREAO main contributions are:

• Facilitation of the CPSs simulation, by not requiring
the characterization of the task consumed resources (for
executing in a particular machine) since the task require-
ments estimator predicts them.

• Optimization of the computational resources, avoiding
over dimensioning hardware and reusing existent devices.

The reminder of this paper is organized as follows. Section
II, presents the literature review. Section III provides the prob-
lem formulation. Section IV, focuses on the implementation of
the task requirements estimator, task graph representation, and
optimization algorithm. Section V presents the experiments
and main results. Finally, Section VI presents the conclusions
and future work.

II. LITERATURE REVIEW

The traditional solutions to design CPS base their sugges-
tions on tools that emulate the system resources. Depending
on the simulated variables (e.g., the processing and network
delay or the memory utilization), the tools have the most
distinguished applications. Some address the simulation of
Cloud Systems, like the iFogSim [3] and the EdgeCloudSim
[4], others enable the emulation of Fog Environments, like
the FogTorchII [5], the EmuFog [6], the FogNetSim++ [7]
and the YAFS [8], and others are directed for the simulation
of CPS, like the SEED [9]. The suggestions are generally pro-
vided from optimization algorithms, based on metaheuristics
methods, like Ant Colony Optimization, Simulated Annealing,
or Genetic Algorithms (GAs) [10]–[12]. Those algorithms
explore the space of configurations and designs, obtaining the
evaluation metrics of each solution from the simulator.

The iFogSim [3] and EdgeCloudSim [4] simulators are
extensions of the CloudSim simulator. The iFogSim [3] simu-
lator provides quantitative measures for energy consumption,
latency, and network delay. The tool allows the integration
with external applications, with particular relevance for the
usage of GAs [11] where the chromosome structure encodes
the pair composed by the fog node and the associated service,
corresponding each position in the chromosome to one service.
The EdgeCloudSim [4] returns as output metrics the time
behavior measures which fed the edge orchestrator module,
deciding the node’s workload and the link’s placement in the
network. The FogTorchII [5] supports most resource utilization
metrics (disk, processor and memory usage). In this case, the
user can define the infrastructure specifications and the appli-
cation requirements (e.g., operating system, installed software)
and then visualize the system performance throw memory
utilization, disk usage, and quality of service assured. During
the simulation process, the Monte Carlo simulation is used
to validate different software application placements in the
node’s infrastructure. The main limitation is the hardness intro-
duced when the user defines the application requirements. The
FogNetSim++ [7] evolves from the OMNET++ [13] project;

it supports various protocols (e.g., MQTT) and estimates time
behavior metrics (processing and network delay). The simu-
lator adopts a publisher-subscriber architecture, representing
a more hierarchical architecture supporting heterogeneous fog
nodes and a variable number of concurrent applications. The
EmuFog [6] implements 1) the emulation of real applications
and workloads and 2) the scalability of large topologies.
Like other simulators, the EmuFog output estimates the time
behavior metrics, actually the latency between nodes.

The Yet Another Fog Simulator (YAFS) [8] has as main
features: 1) the simulated user mobility across the topology, al-
lowing the fluctuation of the latency between nodes, according
to the user distance to the gateway, 2) the dynamic failures of
nodes in the network, and 3) the dynamic allocation of nodes.
Worth highlighting is the capability to simulate the dynamic
nodes’ failure providing reliable topologies as output from the
simulator. The assignment optimization’s [14] primary goal is
to increase the system availability and the quality of service.
The Simulation EnvironmEnt Distributor (SEED) [9] uses a
distributed architecture to decrease the simulation time, which
partitions the CPS and associates each part with one machine.

Focusing on task assignment optimization to improve the
system performance, several solutions adopt approaches based
on metaheuristics algorithms. The Improved Genetic Algo-
rithm [10] optimizes the energy consumption to particular
quality of service requirements (time behavior metrics), using
the fog node capabilities (processing, memory and network
interfaces) and tasks computational requirements. The Dis-
persive Stable Task Scheduling (DATS) [15] optimizes the
quality of experience using a computing resources competition
algorithm. The node abstraction considers the heterogeneous
types, and the metrics evaluated are the latency and the
computation capacity. To optimize the resources, the system
uses matching theory, namely many-to-one matching, which
uses the node preferences to place the tasks according to that.

The described solutions are reliable in their outputs, help-
ing designing systems. However, most simulators focus on
time behavior metrics (e.g., processing or network delay),
discarding resource utilization metrics and fault tolerance [16].
The typical architecture uses homogeneous nodes to set up
the system simulation, limiting the system’s flexibility in
experimenting with different heterogeneous machines. The
estimation of models that simulates the entities’ behavior,
like devices or tasks, is a complementary feature of the
proposed tool that would enable the speed-up of the simulation
setup due to avoiding the mathematical modeling of each
entity. Regarding system design optimization, a few solutions
implement that mechanism, used to obtain system layouts
that optimize the quality of service or experience, or the task
assignment.

III. PROBLEM FORMULATION

The task assignment problem fits perfectly as a representa-
tion for the design and optimization of distributed CPSs. The
problem has as its goal the optimization of the task assignment
in the available machines of the CPS. So, the proposed solution
must automatically find the optimal association between tasks
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(ti) and machines (mi). Each task represents a software func-
tion to execute in a machine that is a CPS device with some
computational power. The problem formulation and the solu-
tion definition use the notation described in Table I, describing
each variable. The data structure used to organize the tasks is
a directional graph (G(T,E)), where each vertex represents
a task (ti), and each edge (eti,tj ) represents a dependency
between tasks (ti → tj). The graph’s data structure represents
the task sequence (e.g., t0 → t1 → t2), mapping the existing
pipeline workflow between tasks into a data structure. Each
task (graph vertex) executes in an associated machine (mi).
The communication between machines (mi,mj) has delays
(dmi,mj

), which affects the task pipeline performance if two
consecutive tasks (t0 → t1) perform in two different machines
(t0 in m0 and t1 in m1); otherwise, the network delay between
tasks in the same machine is zero.

TABLE I: Variables Description

Variable Description Domain
mi Machine i Identifier (ID)
ti Task i Identifier (ID)

eti,tj Dependency edge from ti to tj Identifier (ID)

cputi,mi

CPU consumption distribution N (µ, σ2)of ti in mi

ramti,mi

RAM consumption distribution N (µ, σ2)of ti in mi

timeti,mi

TIME consumption distribution N (µ, σ2)of ti in mi

dmi,mj Delay between mi and mj Non-negative Float

G(T,E)
Graph representing the GraphWorkflow Pipeline

The decision of which machine executes each task depends
on several factors, particularly the task computational costs,
represented as requirements. The estimation of the task com-
putational costs of its execution in a certain machine follows
a normal distribution (N (µ, σ2)), characterized by its mean
(µ) and standard deviation (σ2). So, for each task executing
in a specific machine, there is a normal distribution that
allows the estimation of the consumption of RAM (ramti,mi

),
CPU (cputi,mi

), and processing time (timetimi
). The RAM

is measured in megabytes (MB); the CPU is measured in
percentage usage; and the total execution time of one task is
measured in seconds. Using a probabilistic distribution adds
the stochastic factor to the modeling of the environment,
enabling a trustful representation of real CPSs. Those variables
are the basis to model the functions to quantify the pipeline
consumed resources and actual execution status, detailed in
Section IV-B. Then the goal is to minimize Z = f(C), where
C = {(t0,m0), ..., (tk,mk)}. The summation of the pipeline
characterization functions results in the fitness function to
minimize (reducing the consumed resources), detailed in Sec-
tion IV-C. The fitness function considers the entire pipeline
costs which increases the complexity of the task assignment
problem, leading to the usage of metaheuristics optimization
techniques. The optimization algorithm considers that all tasks
can be assigned to every machine, without existing hardware
dependencies.

IV. METHODOLOGIES

The process of task assignment estimation in a distributed
heterogeneous CPS passes through a set of steps (presented in
Figure 1) to obtain, as output, the optimal assignment of all
tasks. The Task Resources Estimator and Allocation Optimizer
(TREAO)1 contains two main components: 1) the simulator
capable of predicting the CPS resources’ consumption given
one possible assignment of tasks (Figure 1a, 1b and 1c),
and 2) the optimizer responsible for evaluating different task
assignments to minimize the simulator estimated consumption
costs (Figure 1d).

The simulator to predict the consumed resources by the
tasks pipeline uses two main components, 1) the Hyper-Model
(HM), which estimates the task requirements distribution
(N (µ, σ2)) in a particular machine using as input the task
static metrics (profiling/machine independent) and the machine
specifications and 2) the graph model representation that trans-
forms the task pipeline into a graph data structure enabling the
extraction of resource usage metrics. The optimization strategy
uses Genetic Algorithms (GAs), an evolutionary computation
method capable of obtaining optimal solutions in a large
environment.

A. Hyper-Model Task Requirements Estimation

The task requirements (ramtimi , cputimi , timetimi ) esti-
mation typically demands the task execution in each machine
type to model each probability distribution. The execution of
each task in every machine implies several costs, particularly
human efforts to access each machine, execute every task and
collect the profiling results. Additionally, each task should
be executed several times and left executing for a significant
amount of time. Thus, estimating task requirements without
involving the profiling process efforts is advantageous and
accelerates the data-driven simulation setup. The Hyper-Model
(HM) [17] is a Zero-Shot Learning algorithm considered in
the literature as a model of models, where the main goal is
to predict the parameters of new models based on existing
ones. For the TREAO, the main goal of the HM is to predict
the distribution parameters (mean and standard deviation) that
characterize the task consumption requirements for new tasks
and machines. The analysis of each task uses a machine-
independent profiling technique, which provides code analytic
metrics, like the cyclomatic complexity or the Halstead met-
rics. The static code analysis provides quantitative indicators
of how complex and resource-consuming one task is without
requiring task execution.

The cyclomatic complexity corresponds to the total number
of decision blocks in the task source code. It’s computation
uses abstract syntax trees to represent the task source code
using a tree data structure. They represent the existent decision
blocks as nodes (e.g., if-conditions, for loops, etc.), then
the cyclomatic complexity computation algorithm counts the
number of instructions accounted by it to calculate the metric
itself. The Halstead metrics provide an alternative source of
information about the state of the task source code. Those

1https://github.com/DIGI2-FEUP/TREAO
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Fig. 1: TREAO Data Architecture.

metrics contemplate the operators (logical, rational, or arith-
metic) and their operands (raw values); both entities provide
information about the distinct types of operators (n1) and
operands (n2) and the total instances of operators (N1) and
operands (N2). The sum of the distinct types of operators
and operands provides the variability of the task source code,
i.e., the program vocabulary (n = n1 + n2). In parallel,
the sum of the total number of instances of operators and
operands results in the program length (N = N1 + N2).
Both the program vocabulary and length are arguments of
the Halstead volume providing as output the program volume
reflecting the trade-off between the vocabulary and the length
of the program (volume = N log2 n). Besides the static
code analysis metrics, the function calls provide information
about the total number of external methods executed, including
built-in functions. The function calls describe the runtime
behavior of the task independently of the hosting machine,
which complements the static metrics.

The HM algorithm uses as input the described metrics to
predict as output the values of mean and standard deviation
that model the task consumption requirements probability
distribution. Regression methods fit perfectly as a prediction
model due to the continuous values of the output targets.
The used tasks for the use case scenario are six sorting al-
gorithms (bubble, quick, heap, selection, insertion, and merge
sort) executed in two different machines, which generate 12
probability distributions to use as target variables (mean and
standard deviation). The input features were the offline task
characterization metrics (13 variables: cyclomatic complexity,
maintainability index, logical lines of code, source lines of
code, difficulty (n1

2 · N2

n2
), effort (product between difficulty

and volume), program length, program vocabulary, volume,
number of delivered bugs, calculated program length, number
of function calls, and time required to program) and the
machine specification (3 variables: total RAM, CPU frequency,
and CPU delay). Combined, the task characterization and the
machine specification metrics generate a dataset of 16 input
features, which is of high complexity regarding the available
data points (12 data samples). As a way to perform feature
selection, the analysis of variance (ANOVA) comparing the
feature distributions and the examination of the Linear Regres-
sion coefficients selecting the ones with higher value enable

the extraction of the five most relevant and distinct features
reducing the feature space. The five resulting features were:
1) the cyclomatic complexity, 2) the effort and 3) the number
of function calls as task characterization metrics and 4) the
RAM, and 5) CPU rate considering the machine specifications.
Training and evaluating the regression model (HM) requires
partitioning the dataset, using the strategy leave-one-out cross-
validation. Since six different tasks execute in two machines,
the total number of samples to train and test is 12.

The regression model correlates the input features with the
target variables, enabling the prediction of the consumption
requirements of new tasks. Each task consumption metric
(RAM, CPU, and processing time) uses a different instance of
the regression model. In summary, each consumption metric
has a regression model associated, which uses as input the
selected features to predict the mean and standard deviation
of its distribution. A large pool of regression methods (e.g.
Elastic-Net, Linear, Lasso, or Ridge Regression) was tested,
using as performance metrics the coefficient of determination
(R-squared) and the mean square error (MSE). Based on the
results presented in Section V, the selected technique was
the Ridge Regression which has more accurate predictions
and higher performance on the evaluation metrics. The Ridge
Regression hyperparameters (alpha) were tuned, obtaining the
best results with 0.1 as alpha.

B. Graph Cost Functions
The proposed graph approach models the pipeline defined

by the user and enables the extraction of cost functions,
quantifying the efforts to execute each task pipeline. The
primary cost function is the longest path between the start
and last tasks of the pipeline. The longest path is an excellent
metric because it indicates the worst execution time of the
entire pipeline. Usually, each pipeline has many parallel routes
between the start vertex to the end one, and the path with the
higher total of edge weights marks the execution time of the
pipeline. According to graph theory, the longest path between
two vertices is the path that has the highest network cost (total
of edge weights). However, for the task assignment problem,
it is essential to consider also the processing time cost of each
vertex (task) to have a more accurate value of the pipeline
processing time. Regarding the longest path estimation, the
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algorithm searches for all possible paths (P ) between the start
vertex (t0) and the end vertex (tN ), for each path calculates
the pipeline processing time cost (pmax), which is composed
of the tasks processing time (timetimi

) and the delay between
machines (dmi,mi+1

). Then, from all the possible routes, the
algorithm selects the one with the maximum cost (pmax), as
follows the first part of Equation 1.

pmax = argmax
p∈P

(

|p|∑
i

timeti,mi
+

|p|−1∑
i

dmi,mi+1
)

dmc =

AM∑
j

AM∑
k ̸=j

|mcj −mck|

mcj =

∑T
i cputi,mj

m cpumj

+

∑T
i ramti,mj

m rammj

+

∑T
i timeti,mj

m timemj

1

Additionally, ensuring the appropriate assignment of tasks
across the machines is fundamental to securing device opera-
tion. For that, it is imperative to estimate each machine’s cost,
given by the second part of Equation 1, which depends on
the machine specifications and the tasks associated with each
machine. The user is responsible for defining the machine’s
capabilities in terms of RAM (m rammj

), CPU (m cpumj
),

and processing time (m timemj
). So, the machine costs (mcj)

are the quotient between the total cost of the tasks (executing
in that particular machine) and their machine capabilities.
Additionally, the machine cost balance (dmc) measures the
difference between all the available machines (AM ). This
way, if the pipeline has the tasks uniformly placed across the
devices, the result of the function should be close to zero.

The compression of several tasks in organized clusters of
machines avoids delays in the communications. A cluster
consists of a group of linked tasks mapped in the same
device. Regarding that, the ideal number of clusters is one
per machine, which means every machine has at least one
task associated and avoids separate clusters/groups of tasks
associated with the same device. The metric that measures
that behavior is the cluster difference (cd) that computes the
absolute value of the difference between one and the actual
number of clusters per machine.

Furthermore, other cost functions allow global comprehen-
sion of the CPS actual state. Between them are the mean
RAM usage (µram) and the mean CPU usage (µcpu) by each
machine, which enables the user to select from a solution
that consumes less RAM or CPU. Plus, the task assignment
problem is essential to guarantee minimal network traffic
and minimize the network infrastructure requirements. So,
the cost function evaluates the network state using the delay
between machines (dmi,mj

) if there is an edge (eti,tj ) in
the graph between different devices. The collection of the
network delays converges into a mean value (µd) that is
directly proportional to the network traffic. Figure 1c reflects
the network delay, represented as dashed lines between tasks
executing in different machines.

C. Optimization Algorithm
Optimization algorithms based on metaheuristics allow for

exploiting an ample space of solutions with minimal compu-
tation efforts. GAs are an excellent option for the problem of
different task assignments in the available machines due to
the combinatorial characteristics of the problem. The adop-
tion of simple GAs is due to them being straightforward to
integrate with the task assignment problem. However, since
TREAO implementation is modular, the GA can be easily
replaced by other optimization algorithm such as multi-island
genetic algorithms, as described in Section VI. As mentioned
before, the task allocation/assignment problem consists of
matching each software module in a machine. For TREAO,
a simulation is characterized by a particular pipeline as a
graph data structure, where each task is a vertex, and the
dependency between tasks is an edge. The GA interprets the
entire graph as a chromosome (Table II) where each gene
position (array index) corresponds to a task and its content
to the machine associated. So, the chromosome length will be
variable according to the number of tasks to be allocated. That
approach allows the combination of different pairs of tasks (ti)
and machines (mj) to obtain the optimal solution. Figure 1d
presents the optimization process, showing examples of tasks
(t0:12) associated to machines (m0:2), where each association
is an individual of the population with the respective fitness
value.

TABLE II: Chromosome Gene Structure

Task t0 t1 t2 t3 t4 ... tN
Machine m0 m2 m1 m0 m1 ... m0

The GA implements a sequence of five steps: 1) creation
of an initial population, 2) calculation of the fitness value
of each individual, 3) selection of the best individuals in the
population, 4) from the selected portion (parents), select a few
ones to crossover and generate a new part of the population
(children), and 5) pick another few parents to mutate and
append to the rest of the population. Remark that some steps
are performed in a loop due to the generations required
to converge to an optimal solution. So, in the setup stage,
the method creates the original population, calculates each
fitness, and selects the stronger ones to pass over to the next
generation. After that stage, the algorithm performs in a cycle,
where, from the previous generation, selects a few individuals
to crossover (children) and mutate. The strongest individuals
from that pool (parents, children, and mutations) jump to the
next generation.

The crossover step uses a uniform operation, randomly
picking half of the genes from each parent and joining them
into a new individual. That operation allows the inheritance
of the strongest individual genes for the new individuals of
the current generation. The mutation of the individuals uses
two different mutation operations, the swap mutation and
the random resetting. The random resetting mutation selects
randomly one gene to mutate and maps its content to another
machine; that operator increases the variability in the new
solutions. The swap mutation picks two different genes and
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swaps their content; that operation allows the modification of
the actual assignment of machines without unbalancing the
costs between devices, which reflects in the fitness value.

The fitness function (f ), in Equation 2, reflects the assign-
ment cost of a given task graph in particular machines due to
the algorithm’s goal to minimize the fitness function output.
The fitness function returns the addition of the cost functions:
1) the longest path (pmax), 2) the cost difference between
machines (dmc), 3) the mean RAM (µram) and CPU (µcpu)
usage, 4) the mean delay in the network connections (µd), and
5) the difference between the number of clusters (cd).

f = pmax + dmc+ cd+ µcpu + µram + µd 2

Each metric has its order of magnitude, which induce bias
into the fitness function, giving more relevance to the metric
with a higher order of magnitude. Due to different orders
of magnitude, each metric passes through a normalization
process to obtain an equilibrium between the metrics’ weights.
The normalization process divides each metric by its order
of magnitude, e.g., for µram = 19.8, the normalized value
is µram = 0.198. Also, the user must have preferences
for solutions, e.g., that consume more RAM or have more
balanced costs between machines. So, each metric multiplies
with a coefficient representing the user preferences. The GA
hyperparameters were tuned including the size of the initial
population, the size of a generation, the number of select
individuals (parents), and the number of mutations.

V. EXPERIMENTS & RESULTS

The system evaluation addresses several components: 1)
task requirements estimations, 2) task graph modeling, 3)
GA performance, and 4) a comparison with similar tools.
Both task distribution requirements and their predictions must
illustrate the actual resources consumption per task according
to the host machine’s specifications. The graph that models
the task pipeline must reflect the actual state of the system,
and the metrics comparison between different setups allow the
validation of their precision. The evaluation of the optimiza-
tion strategy verifies if the algorithm output corresponds to
the optimal solution. Additionally, the optimization algorithm
passes through a workload validation, evaluating how the
algorithm performance evolves with the increasing complexity
of the tasks graph. Those experiments used two machines, 1)
a laptop with 16GB of RAM and an i7 with 12 cores 2.60GHz
processor (UBUNTU PC), and 2) a raspberry pi 3 model B
(RASP PI).

A. Task Characterization Evaluation

Each task requirement distribution comes from previous
executions of the task (task profiling) or from HM estimations.
Regarding the different procedures to obtain the task require-
ments, Figure 2a compares the task profiling values using the
physical equipment (green bars) and the HM estimations (blue
bars) using three different metrics as columns and two machine
types as rows. Each bar corresponds to the mean value of the
distribution, and the standard deviation appears as the bar error.

Each task corresponds to a sorting algorithm, which facilitates
its theoretical characterization to validate the practical results.

The profiling values (green bars) must reflect the theoret-
ical computational cost of the task, in particular, the time
and memory complexity. Focusing on those indicators, tasks
characterized by complexity functions with higher gradients
theoretically perform worst than tasks with lower gradient
complexity functions. The profiling values show that relation,
e.g., by comparing the time complexity function of the heap
sort (n log n) with the bubble sort (n2); in theory, the compu-
tational cost should be higher for the bubble sort than the heap
sort. The profiling values correspond to that relation, where,
for the UBUNTU PC machine type, the bubble sort consumes
99.6% of CPU usage and 5.9 seconds of processing time, and
the heap sort retains 50% of CPU usage and 0.03 seconds of
processing time. Concerning the RAM usage, due to the same
values of memory complexity (constant) of the algorithms, the
experimental consumptions are pretty similar, approximately
14.5 MB and 19.6 MB for each machine type, respectively.

The HM learning process, as mentioned before, uses five
tasks for training and one task for testing, repeating for each
task to have one prediction for each one. The selection process
of the regression model to adopt as a HM, evaluates differ-
ent techniques (Linear Regression, Lasso Regression, Ridge
Regression, and Elastic-Net), choosing the one with better
results (R-squared and MSE). The selected algorithm was the
Ridge Regression, which has the more accurate predictions,
with lower values of MSE, i.e., 0.006, 178.42, and 3.52 for
the RAM, CPU, and processing time models, respectively. The
comparison between predictions and profiling/actual values in
Figure 2a demonstrates the accurate estimations for the RAM
and CPU consumption metrics, with slightly worst results for
the processing time. Due to the generalization nature of those
models, for some extreme values (e.g., quick sort algorithm
on the UBUNTU PC machine type) the predictions are not as
accurate as for the rest. Usually, there should be a relationship
between CPU usage and processing time; in some algorithms
(e.g., bubble sort), there is no relation between them due to
hidden factors in the implementation.

B. Graph Modeling Validation

The graph representation validation aims to prove that the
simulated metrics reflect the system’s state described in the
input parameters. Its validation uses different pipelines of
tasks to compare the outputs of the simulation component
with the expected results, using the profiling values and the
HM predictions as task requirements. Figure 2c reflects the
simulator response to three different setups of pipelines (G0,
G1, and G2), where the configuration G2 has two different
assignments validated (P2 and P3). Each bar reflects the output
of the cost functions (described in Equation 2) using as task
requirements the real profiling data. The error in each bar
indicates the difference between the usage of real profiling
data and consumption predictions. The table below Figure
2c characterizes each pipeline task, where 1) the number of
vertices indicates the number of tasks in the pipeline, 2) the
edges row registers the task connections between two different
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Fig. 2: Results obtained in the different components.

machines versus the total number of task connections, and 3)
the clusters row indicates the number of available machines in
contrast with the total number of clusters.

As for the analysis of component outputs, Figure 2c re-
flects a correlation between the characterization of the tasks
pipeline and the cost function output values. Regarding the
CPU and RAM usage, the comparison between pipeline P1,
with 13 tasks and two machines available, and P2, with the
same number of tasks but five machines available, indicate
a decrease in both costs of CPU and RAM usage, which is
expected due to the increasing number of devices to execute
the same number of tasks. The network traffic and cluster
differential cost functions are reliable indicators of the actual
task assignment and system communications. Concerning that,
the network traffic has a direct correlation with the number of
connections between different machines, e.g., the increasing
traffic costs between pipelines P2 and P3, where the number of
external connections goes from 8 to 10. The cluster differential
cost function reflects the number of groups of linked tasks
mapped to the same machine; the results indicate that for the
first three pipelines, the cost is zero due to the presence of one
cluster per machine. When the number of groups increases
from more than one per machine, the cost function follows
that trend increasing its output value.

C. Optimization Validation & Workload
The optimization algorithm evaluation validates the method

convergence and the time required to converge, i.e. how the
performance (e.g., number of generations) fluctuates according
to the total number of combinations, which depends on the
available machines and the number of graph’ vertices (tasks).
Figure 2b compares the fitness (light blue bars), with the
number of generations (dark blue line) required to obtain that
fitness value. The complexity of the initial setup (number of
available machines and the total number of tasks), on the x-
axis, in Figure 2b, increases along the axis; that trend reflects
on the required number of generations to obtain a target value
of fitness. For a constant value of fitness, the number of
generations required to converge increases according to the
growing number of available machines and tasks.

In terms of performance, TREAO presents a time complex-
ity of O(gpc), where g is the number of generations, p the

population size and c the size of the chromosome (number
of tasks). Since, the number of generation and the population
size can be fixed values, the time complexity presents a linear
behavior, that increases with the number of tasks to optimize.

D. Comparison with State of the Art
Comparing TREAO with similar tools indicates a reliable

alternative for the CPS design, enabling simulation and op-
timization of resources. The performed comparison, in Table
III, is qualitative, mainly due to the difference in the simulated
and optimized metrics and resources. Besides TREAO, the
simulator that fills the most similar gap is the YAFS; however,
it focus on simulating homogeneous devices and in optimizing
the CPS infrastructure, suggesting new specifications for the
existing machines. The simulation of heterogeneous types of
equipment is an advantage for TREAO, when compared to
other solutions. Additionally, the output metrics provide a
vision of resource utilization, which is complementary to the
given metrics from the other simulators. The tests indicate an
accurate simulation and optimization of the resources.

TABLE III: Tools Comparison

Tool Metrics Optimization
EdgeCloudSim [4] time, d Infrastructure

FogTorchII [5] ram, d Infrastructure
iFogSim [3] cpu, ram, time Infrastructure
EmuFog [6] d Infrastructure

FogNetSim++ [7] time, d -
YAFS [8], [14] time, d Infrastructure

SEED [9] time, d -
TREAO cpu, ram, time, d Task Assigment

VI. CONCLUSIONS & FUTURE WORK

TREAO consists of a valuable tool to support the CPS
design, particularly regarding the optimization of the task
assignment, without requiring manual modeling of the task
behavior due to the usage of the Zero-Shot Learning algorithm.
The TREAO architecture consists of three components, the
task requirements estimator, the task graph simulator, and
the optimization algorithm. The task requirements estimator
uses the task characterization metrics (code analysis) and the
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machine specifications to predict the execution consumption
requirements of a task in a particular machine. The task
graph simulator characterizes the task and machine resources
enabling the quantification (using metrics) of the input pipeline
with a particular machines’ assignment. Those metrics reflect
the state of the network communications, the resources con-
sumed in each device, the distribution of tasks between the
machines, and the system’s performance. The optimization
component uses GAs to explore different combinations of
assignments in such a way that finds the assignment with an
optimal cost value. The algorithm converges to the optimal
solution according to the outputs received from the simulation
system. The results validate both the simulation output metrics
and optimization solutions, proving the advantages of that tool.

Concerning future work, the main objective is to integrate
that tool with a platform for the development and management
of CPS. The tool integration will enable a performance opti-
mization option in the platform to obtain improved results with
the same hardware resources, using the simulation component
to explore the solution before deploying it. Additionally, an
essential point of improvement will pass through experiment
other optimization algorithms, such as the multi-island genetic
algorithm, in order to accelerate the convergence time.
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