Two-way analysis of variance for a concentrated von Mises-Fisher distribution

Figueiredo, Adelaide

Faculdade de Economia da Universidade do Porto and LIACC

Rua Dr. Roberto Frias 4200-464 Porto, Portugal E-mail: adelaide@fep.up.pt

Abstract The von Mises-Fisher distribution is one of the most used distributions for vectorial data and it has many applications for spherical data. The one-way analysis of variance and a nested multiway layout technique for a concentrated von Mises-Fisher distribution have already been presented in the literature. In this paper, we extend the previous techniques to the two-way analysis of variance.

Introduction

The one-way analysis of variance technique for a concentrated von Mises-Fisher distribution was introduced by Watson (1956) and Watson and Williams (1956) and a nested multiway layout technique was proposed by Stephens (1982) (see also Stephens, 1992). In this paper we propose the two-way analysis of variance for a concentrated von Mises-Fisher distribution.

The von Mises-Fisher distribution defined on the unit sphere in R^p , S_{p-1} is usually denoted by $M_p(\mu, \xi)$ and it has probability density function given by

(1)
$$f(\mathbf{x}|\mu,\xi) = c_p(\xi) \exp\{\xi \mu' \mathbf{x}\} \quad \mathbf{x} \in S_{p-1}, \quad \mu \in S_{p-1}, \quad \xi \ge 0,$$

where $c_p(\xi)$ is the normalising constant given by

$$c_{p}\left(\xi\right) = \frac{\xi^{\frac{p-1}{2}}}{\left(2\pi\right)^{\frac{p}{2}}I_{\frac{p-1}{2}}\left(\xi\right)}$$

and I_{ν} denotes the modified Bessel function of the first kind and order ν defined by

$$I_{\nu}(k) = \frac{1}{2\pi} \int_{0}^{2\pi} \cos \nu \theta e^{k \cos \theta} d\theta.$$

The parameter μ is the mean direction and ξ is the concentration parameter around μ . This distribution verifies the properties:

- It is rotationally symmetric about μ .
- If **x** comes from $M_p(\mu, \xi)$ and U is an orthogonal matrix, then U**x** comes from $M_p(U\mu, \xi)$.
- For $\mathbf{x} \in S_{p-1}$ from $M_p(\mu, \xi)$ then for large ξ

(2)
$$2\xi (1 - x'\mu) \sim \chi_{p-1}^2$$
.

Let $[\mathbf{x}_1|\mathbf{x}_2|...|\mathbf{x}_n]$ be a random sample of size n from the von Mises-Fisher distribution $M_p(\mu,\xi)$. Let \overline{R} be the resultant length mean of the sample defined by $\overline{R} = ||\overline{\mathbf{x}}|| = (\overline{\mathbf{x}}'\overline{\mathbf{x}})^{\frac{1}{2}}$, where $\overline{\mathbf{x}}$ is the sample vector mean of $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n$ defined by $\overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i$. Let R be the resultant length of the sample of size n, defined by $R = n\overline{R}$. • The maximum likelihood estimator of μ is the sample mean direction, that is

$$\widehat{\mu} = \overline{\mathbf{x}}_0 = \frac{\overline{\mathbf{x}}}{\|\overline{\mathbf{x}}\|}.$$

• The maximum likelihood estimator of ξ is the solution of the following equation

$$A_p(\xi) = \|\overline{\mathbf{x}}\|,$$

where the function $A_p(\xi)$ is defined by

$$A_{p}(\xi) = \frac{c'_{p}(\xi)}{c_{p}(\xi)} = \frac{I_{\frac{p}{2}}(\xi)}{I_{\frac{p}{2}-1}(\xi)}.$$

(For more details about this distribution, see for instance, Fisher, Lewis and Embleton, 1987, Watson, 1983, Mardia and Jupp, 2000).

Two-way analysis of variance

We suppose that we have n observations classified according to a factor A with r treatments and a factor B with s treatments. When an observation is classified into treatment i of factor A and treatment j of factor B, this observation falls in cell (i,j) in row i and column j of a two-way table. We suppose that there is t observations in each cell of the table and let n = rst be the total number of observations.

Let \mathbf{x}_{ijk} be kth observation in cell (i,j), $i=1,\ldots,r,\ j=1,\ldots,s,\ k=1,\ldots,t$. The observations in cell (i,j) are supposed to come from the subpopulation $M_p(\mu_{ij},\xi_{ij})$, $i=1,\ldots,r,\ j=1,\ldots,s$. We suppose that the rs subpopulations are independent and we assume that $\xi_{11}=\xi_{12}=\ldots=\xi_{rs}=\xi$, where the common concentration ξ is unknown.

We want to test the null hypothesis: $H_0: \mu_{11} = \mu_{12} = \dots = \mu_{rs} = \mu$, against the alternative that at least one of the equalities is not satisfied.

Let

- R be the resultant length of all observations \mathbf{x}_{ijk} , i = 1, ..., r, j = 1, ..., s, k = 1, ..., t.
- R_{i} be the resultant length of the observations in the row i, \mathbf{x}_{ijk} , j=1,...,s, k=1,...,t.
- $R_{.j}$ be the resultant length of the observations in the column j, \mathbf{x}_{ijk} , i=1,...,r, k=1,...,t.
- R_{ij} be the resultant length of the observations in the cell (i, j) of the two-way table, \mathbf{x}_{ijk} , k = 1, ..., t.

The two-way analysis of variance is based on the following identity

$$2\xi (n - R) = 2\xi \left(\sum_{i=1}^{r} R_{i.} - R\right) + 2\xi \left(\sum_{j=1}^{s} R_{.j} - R\right) + 2\xi \left(\sum_{i=1}^{r} \sum_{j=1}^{s} R_{ij} - \sum_{i=1}^{r} R_{i.} - \sum_{j=1}^{s} R_{.j} + R\right) + 2\xi \left(n - \sum_{i=1}^{r} \sum_{j=1}^{s} R_{ij}\right),$$

which is a decomposition of the total variance into between-rows variance, between-columns variance, interaction between the rows-columns and residual variance.

It can be proved that for large ξ

(3)
$$2\xi \left(\sum_{i=1}^{r} R_{i.} - R \right) \sim \chi^{2}_{(r-1)(p-1)},$$

(4)
$$2\xi \left(\sum_{j=1}^{s} R_{.j} - R \right) \sim \chi^{2}_{(s-1)(p-1)},$$

(5)
$$2\xi \left(\sum_{i=1}^{r} \sum_{j=1}^{s} R_{ij} - \sum_{i=1}^{r} R_{i.} - \sum_{j=1}^{s} R_{.j} + R \right) \sim \chi^{2}_{(r-1)(s-1)(p-1)}.$$

(6)
$$2\xi \left(n - \sum_{i=1}^{r} \sum_{j=1}^{s} R_{ij} \right) \sim \chi_{(n-rs)(p-1)}^{2}.$$

To test the null hypothesis H'_0 : There is no difference between rows, we use the statistic defined by

(7)
$$F_{1} = \frac{(n-rs)\left(\sum_{i=1}^{r} R_{i.} - R\right)}{(r-1)\left(n - \sum_{i=1}^{r} \sum_{j=1}^{s} R_{ij}\right)},$$

which has under H'_0 and for large ξ , $F_{(r-1)(p-1),(n-rs)(p-1)}$ distribution. We reject H'_0 for large values of F_1 .

To test the null hypothesis H_0'' : There is no difference between columns, we use the following statistic

(8)
$$F_{2} = \frac{(n-rs)\left(\sum_{j=1}^{s} R_{.j} - R\right)}{(s-1)\left(n - \sum_{i=1}^{r} \sum_{j=1}^{s} R_{ij}\right)},$$

which has under H_0'' and for large ξ , $F_{(s-1)(p-1),(n-rs)(p-1)}$ distribution. We reject H_0'' for large values of F_2 .

To test the null hypothesis H_0''' : There is no interaction between the rows and columns, we use the following statistic

(9)
$$F_{3} = \frac{(n-rs)\left(\sum_{i=1}^{r}\sum_{j=1}^{s}R_{ij} - \sum_{i=1}^{r}R_{i.} - \sum_{j=1}^{s}R_{.j} + R\right)}{(r-1)(s-1)\left(n - \sum_{i=1}^{r}\sum_{j=1}^{s}R_{ij}\right)},$$

which has under H_0''' and for large ξ , $F_{(r-1)(s-1)(p-1),(n-rs)(p-1)}$ distribution. We reject H_0''' for large values of F_3 .

REFERENCES (RÉFERENCES)

Fisher, N. I., Lewis, T. and B. J. J. Embleton (1987). *Statistical analysis of spherical data*. Cambridge University Press.

Mardia, K. V. and P. E. Jupp (2000). Directional Statistics. John Wiley and Sons, Chichester.

Stephens, M. A. (1982). Use of the von Mises distribution to analyse continuous proportions. *Biometrika* **69**, 1, 197-203.

Stephens, M. A. (1992). On Watson's ANOVA for directions. In Mardia K. V. (ed.) Art of Statistical Science, 75-85.

BULLETIN of THE INTERNATIONAL STATISTICAL INSTITUTE - LXII (2007)

Watson, G. S. (1956). Analysis of dispersion on a sphere. Mon. Not. R. Astr. Soc.: Geophys. Suppl. 7, 153-9.

Watson, G. S. and E. J. Williams (1956). On the construction of significance tests on the circle and the sphere. *Biometrika* 43, 344-52.

Watson, G. S. (1983). Statistics on spheres. John Wiley and Sons, New York.