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Abstract
The use of artificial intelligence (AI) in the segmentation of liver structures in medical images has become a popular research
focus in the past half-decade. The performance of AI tools in screening for this task may vary widely and has been tested
in the literature in various datasets. However, no scientometric report has provided a systematic overview of this scientific
area. This article presents a systematic and bibliometric review of recent advances in neuronal network modeling approaches,
mainly of deep learning, to outline the multiple research directions of the field in terms of algorithmic features. Therefore, a
detailed systematic review of the most relevant publications addressing fully automatic semantic segmenting liver structures
in Computed Tomography (CT) images in terms of algorithm modeling objective, performance benchmark, and model
complexity is provided. The review suggests that fully automatic hybrid 2D and 3D networks are the top performers in
the semantic segmentation of the liver. In the case of liver tumor and vasculature segmentation, fully automatic generative
approaches perform best. However, the reported performance benchmark indicates that there is still much to be improved in
segmenting such small structures in high-resolution abdominal CT scans.
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Introduction

The liver is one of the most important organs in the human
body, and impairments to its normal function are life-
threatening. Liver cancer is the sixth most diagnosed cancer
and the third most frequent cause of cancer death world-
wide [1]. Such diagnosis may arise as a primary tumor, i.e.,
occurring in the liver, and usually identified asHepatocellular
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carcinoma (HCC) or as a secondary cancer due to metastasis
of tumors generated in other organs.

Medical imaging techniques are frequently used in the
clinical evaluation of liver diseases to provide fairly detailed
images of soft-tissue organs via a non-invasive procedure,
resulting in cross-sectional images of the abdominal cav-
ity, where the liver is located. Several imaging modalities
can be used to analyze the liver in clinical practice rou-
tine, with computed tomography (CT) being one of the most
frequently used, particularly in the context of liver cancer.
Therefore, the segmentation of liver structures in CT images
has gained increasing attention from the research commu-
nity in the last decade since it represents an important step
towards computer-assisted diagnosis and/or treatment plan-
ning for various hepatic diseases.

Identifying the main liver structures, mainly liver, liver
tumors and vascular system, and anatomic liver regions
using, for example, Couinaud’s segment mapping system
[2], has been one of the main subjects of recent litera-
ture. These structures are relevant for performing several
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diagnoses, treatments, and follow-up tasks in clinical prac-
tice. For example, liver volume assessment is pertinent to
accessing liver hepatic function. When identifying lesions in
terms of number, size, and anatomic location within the liver
structure, this factor becomes necessary to study the viability
and approach of a resective surgery [3]. Finally, the position
of the liver vasculature has to be known so that any inter-
vention does not interfere with the blood supply of the main
tissue areas [4].

In traditional medical practice, the liver structures are
often manually delineated in the images under analysis.
Thismakes training specialized professionals and developing
computational systems able to perform a similar task chal-
lenging. It is also logically time-consuming, labor-intensive,
and prone to subjectivity, making it inefficient and difficult to
scale. Computational software that aids in this task is, there-
fore, highly convenient and necessary to function as a tool
that complements the medical community in their practice
routine.

Liver in CT Images

Taking into consideration the vital importance of the liver
for normal human function, several imaging modalities have
been applied in medical practice worldwide, including Mag-
netic Resonance (MR), Ultrasound (US), Positron Emission
Tomography (PET), and PET-CT combinations, which are
used to investigate itsmorphological and functional structure.

However, CT is the traditional and most commonly uni-
versally used imaging technique, presenting the following
characteristics: i) superior spatial resolution than alternative
imaging techniques, and 2) shorter acquisition times than
MR or PET-CT modalities, making it the preferred and most
trusted imaging modality for liver diagnostic purposes [3].

Traditional CT exams consist of the acquisition of sets
of two-dimensional images, i.e., slices, that correspond to
an amount of tissue, acquired consecutively over one of
the three standard anatomic orientation planes: axial, coro-
nal or sagittal (Fig. 1b-d). Usually, a set of axial CT slices,
each corresponding typically to an axial width of 1.5-10 cm,
represents consecutive areas of the human abdominal cav-
ity (Fig. 1e). Any structure of interest can be delineated in
each slice and finally stacked to build its three-dimensional
(3D) model representation, as exemplified in Fig. 1f. Liver
structures present characteristics represented by different
intensity distributions in CT images. However, the process
of automatic identification of these structures is especially
challenging, due to the following factors:

1. The similar imaging intensities that spatially close liver
organs usually present in CT images is a drawback in the
segmentation process, given the low contrast between
them.

2. Datasets variability is determinant in this domain in two
ways: i) anatomy variability is influenced by a high
range of aspects including subjects-specific ones: age,
gender, ethnicity, and other congenital alterations of the

Fig. 1 Explanation on the location and components of a CT exam: a)
Depiction of the standard anatomical acquisition planes, b-d) CT slices
in axial, coronal, and sagittal planes, e) A stack of CT axial slices that

compose one CT exam, f) A 3D reconstruction of a liver obtained from
its delineation on each axial slice of a CT exam
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abdominal region; liver-specific ones: shape, length, vol-
ume, lesion/ vasculature shape, number, and location; and
ii) imaging variability influenced by acquisition process,
used machine or imaging protocol, which may translate
into highly different signal-to-image characteristics as
well as lesion-to-liver and liver-to-background imaging
intensity ranges.

3. Delineations generated for clinical practice or the devel-
opment of computational algorithms depend on the
human observer’s interpretation and subjectivity. Inter-
observer variability is reported in several datasets [5, 6],
and must be minimized to improve the robustness of the
computational algorithms developed using them.

Semantic Segmentation of Liver Structures in CT
Images

The task of image segmentation consists of grouping similar
regions or segments of an image as belonging to individual
objects, i.e., classes. This can be achieved by three differ-
ent approaches: semantic segmentation - segmenting objects
belonging to a particular target class based on contextual
information, often the neighbouring pixels; instance segmen-
tation - segmenting all regions of an image as belonging to
each individual object; and panoptic segmentation - segment-
ing each object of an image along with the objects’ classes,
combining instance segmentation and semantic segmenta-
tion [7]. This review is focused on semantic segmentation
since it is clearly the most explored approach in the literature
related to segmenting liver structures in CT images.

In segmenting liver structures, the goal is to assign seman-
tic labels, e.g., liver, tumor, vasculature, and background, to
every pixel in the input image. The field evolution applied
to liver analysis in medical images as seen in other medical
oncology subjects ranges from 1) manual, semi-automatic,
to the most recent automatic methods, and 2) image process-
ing, graph-based, to the most recent neuronal network-based
methods [3, 8]. The fully automated segmentation of liver
structures and the appropriate generalization capacity of
the computational methods remain the central challenges in
this field [9]. Profound novelty in segmentation algorithms
emerged only in the last half-decade with the advance of neu-
ronal networks, particularly deep learning networks. To the
best of our knowledge, no study has systematically built a
detailed map of the neuronal network architectural research
lines.

The remainder of this article is organized as follows.
Section “Methods” describes the methodology applied in
developing the current study, including extracting the relevant
literature to be analysed, and presents its bibliometric analy-
sis based on quantitative descriptors and a critical analysis of
its evolution across the analysed period. Section “Review of
Liver Semantic Segmentation Research Directions” presents

a systematic review of the most relevant filtered literature,
analysing the different research directions and scientific
questions. Section “Discussion” discusses the surveyed liter-
ature, Section “Current Limitations and Future Directions”
outlines future directions, and, finally, Section “Conclusion”
concludes the article.

Methods

The current study intended to review the literature of the last
five years, mainly published between January 1, 2019 and
December 31, 2023. This period was chosen for two main
reasons: i) important public datasets, from 2017-2019/2021,
becamewell established in themedical imagefield, serving as
a baseline for an extensive benchmark of proposed methods
by researchers worldwide, in similarity to what has hap-
pened in other medical segmentation tasks [10]; and ii) The
neuronal networks field, for semantic segmentation, suffered
profound advancements in terms of research novelty, focus-
ing on segmentation of structures inmedical images. Towards
this end, a systematic review was conducted that intends to
detail the state of the art in terms of a) a descriptive review
- detailing proposed methodologies, findings, trends of
research, and extracted conclusions, b) an integrative review -
using critical thinking to identify open research questions and
analyse common ideas and research lines, to aid researchers
to position new research in the domain; c) a bibliometric
analysis - describing the literature, recurring to graph and
plot quantitative representations of relevant findings.

Therefore, based on the Preferred Reporting of Items
for Systematic Reviews and Meta Analyses (PRISMA)
statement, specifically the rationale, objective, screening
protocol, and study comparison criteria of the selected bibli-
ography [11], and concerning the semantic segmentation of
liver structures in CT images, this review seeks to answer the
following research questions (RQs):

RQ1 What are the main sources of articles of algorithmic
research on semantic segmentation of liver structures?

RQ2 What are the trends in medical image information
extraction fromCT images when analysing liver struc-
tures?

RQ3 What are the trends in neuronal networkmethodswhen
implementing segmentation algorithms for liver struc-
tures?

In the following sections, the methodology used for con-
ducting the present systematic review is described, including
the search strategy and selection criteria to obtain the
reviewedworks, a description of the results of the used search
strategy is given, and the bibliometric analysis of the result-
ing body of literature is presented.
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Search Strategy and Selection Criteria

This systematic search was conducted in Scopus, an abstract
and citation database hosted by Elsevier Publishers, and Sci-
ence Citation Index - Expanded (SCI-Expanded), one of the
core collection databases of Web of Science (WoS). The fol-
lowing keywords were used to find the relevant publications:
“semantic”, “segmentation” AND “liver”. Excluded unre-
lated terms with the NOT operator in the querying: “ultra-
sound”, “magnetic resonance”, “histopathology”, “MR”. To
strengthen the review’s validity, the screening phase included
the following exclusion criteria: non-image processingfields,
multi-organ segmentation approaches, bibliography refer-
ring to non-CT-relatedmethods, non-Englishwritten articles,
patents, Letters, pre-prints, scientific reports, and narrative
reviews. The most relevant published articles were selected
using a selection protocol, which consisted of the following
steps:

1: Filter the retrieved bibliography published between dates
January 1, 2019, and December 31, 2023 - hence com-
prising the last half decade;

2: Selection of bibliography focused on liver semantic seg-
mentation, including segmentation of liver, lesions, or
vasculature - neuronal network-based versus others;

3: Analysis of the bibliography pool of the previous step
and selection of the retrieved neuronal networks-based
methods - by inspection of the abstracts and keywords;

4: Inclusion of additional studies referred in some of the
selected studies to provide the reader with additional
information facilitating the understanding.

A second screening step of the remainder works was
performed based on the full-text content. A final inclusion
criteria was then used to 1) Ensure that top cited methods are
included, 2) Ensure coverage of all the methodology vari-
ations contemplated in the literature, and 3) Contemplate
publications presenting comparable validation methodolo-
gies. All the data was then compiled and used to answer the
established research questions.

Search Results

After applying all the inclusion and exclusion criteria at the
stage of bibliography retrieval from the used search engines,
the conducted search retrieved 388 works. After duplicate
removal, the resulting literature was subjected to a screen-
ing analysis step based on title and abstract, resulting in 244
selectedworks. This led to the body of literature in the biblio-
metric analysis presented in the following section. Therefore,
two filtering steps were performed: a) the exclusion of all
non-related leading to a total of 244 documents included in
the bibliometric review, and b) the full-text analysis of the

most relevant publications, in terms of citations, publisher
relevance, and novelty of research directions, which led to
a final set of 69 relevant publications for the years 2019 to
2023, which were included in the systematic review.

Bibliometric Analysis

A macro analysis of the 244 publications retrieved by the
criteria previously detailed is presented in this section via
a quantitative evaluation to provide an overview of the
knowledge domain. Table 1 presents details of the retrieved
bibliography on the semantic segmentation of liver structures
in CT images. A data analytics approach was used to extract
factual patterns of text elements that describe each scien-
tific publication. To this end, a word co-occurrence analysis
was conducted to build clustering visualizations and iden-
tify frequently used terms. This step allowed the discovery
of research trends that went down to method-specific novel
techniques emerging in the research field. The results of
this analysis are presented in Section “Abstract and Key-
words Analysis”. Secondly, the bibliography was classified
into pertinent research technique trends identified in the
previous section, and pertinent visual analyses of the time
evolution of the literature taking these subjects into account
were performed as presented in Section “Trending Topics”.
Each section is accompanied by a discussion of the findings
achieved with each visualization presented.

Abstract and Keywords Analysis

Keywords and abstracts are commonly considered clear and
concise summaries of the context detailed in each research
publication. When analysed pragmatically, they may allow
one to discover groupings that affect the structure of the
researched field. To this end, the following methodolo-
gies were applied to reveal research patterns: Keyword
co-occurrence analysis and keyword clustering, co-citation
analysis, and abstract term cluster analysis.

To build and map the knowledge domain between the
topics under study, keyword co-occurrence in the research

Table 1 Global summary statistics of the retrieved bibliography on the
semantic segmentation of liver structures in CT images

Description Value

Documents 244

Sources (Journals, Chapters, etc.) 115

Period 2019 – 2023

Authors 654

Authors per document 3

Average citations per document 5

Average co-citations in bibliography 2
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area was obtained using VOSviewer. The visualization of
the keywords network was chosen to demonstrate the results
of the bibliometric analysis of the literature. The output of
the VOSviewer software is a distance-based map where the
distance represents the strength of the relation between two
knowledge topics. The item label size is directly proportional
to the number of publications found where a keyword was
found, and different colors represent different knowledge
topics clustered by the clustering technique of the software
[12]. Figure 2 presents the resulting co-occurrence map. It
summarizes the field centered on the term “liver segmen-
tation”, highlighting at the right the classical techniques of
“graph cuts” and “feature extraction” methods, which still
emerge frequently in the literature. However, it is possible
to see on the middle-to-left side of the graph that the litera-
ture is mainly characterized by deep learning methods that
vary in terms of implemented models. Regarding architec-
ture design, the term“U-Net” appears frequently combined
with one of its “residual” network variations, and combined
with the term “liver”, novel proposed architecture designs
such as “dilated convolution”, “transformer”, and “attention
mechanism” can be found. On the other hand, works focused
on cancerous lesion segmentation are scarcer in the literature

and appear associated with term variations of “liver cancer”,
“liver lesions” and “liver tumor”.

The information concerning the article co-citations among
the selected literature is available from the bibliographic
records, and thus, the identification of the leading scientific
journals, authors, and methods in the field can be mapped.
The top co-cited relationships between publications can be
observed in Fig. 3, where each node represents an article,
the links between the authors represent co-citations, with the
articles displayed in ascending date from left to right, and
ascending cite count from bottom to top.

Trending Topics

Secondly, the abstract keyword co-occurrence analysis shed
further insight into the relative changes of significance over
time to identify trends and changes in the semantic segmenta-
tion of liver structures in CT images. To this end, an analysis
that provides a time evolution of the technical methodologies
that have been applied in the field under study is presented
in this section.

Figure 4a depicts the proportion between the articles pub-
lished in conference proceedings and journals. In Fig. 4b,

Fig. 2 Network of co-occurring
keywords generated from
abstract and keyword text
information from the found
publications related to the
semantic segmentation of liver
structures in CT images
published between 2019 and
2023
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Fig. 3 Network of co-citation
patterns for publications related
to the semantic segmentation of
liver structures in CT images
published between 2019 and
2023

it is possible to observe the time evolution of the reviewed
research regarding the articles found per year, grouped by
the typology of the analysed structure. It is possible to con-
clude that the current research field is continuously trending,
as the number of published articles has increased up to 2022,
with a slight decrease in 2023. It is also possible to observe
that the semantic segmentation of the liver vasculature is still

an underdeveloped research topic, as a significantly smaller
body of literature focuses on it. Subsequently, considering
that the state-of-art can be segmented into traditional image
processing and analysis and machine learning (ML) based
methods, which are here referred to as “traditional methods”
and “CNN methods”, an analysis of the proposed algorithm
type was also performed. Thus, in Fig. 4c, it is possible

Fig. 4 Publications published between 2019 and 2023 found in terms of
(a) medium of publication (conference proceedings vs. journal article),
(b) liver structure segmented (liver/tumor vs. vasculature), (c) semantic

segmentationmethodused (“Traditional”methodvs.NeuronalNetwork
method) and (c) CNN architecture used
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to observe the time evolution of the reviewed research in
terms of “traditional” versus CNN-based methods. From this
figure, it is possible to conclude that the research is evolv-
ing into the usage of automated CNN-based methods, with
a rising number of publications proposing novel implemen-
tations of this type. Conversely, the number of publications
proposing traditional methods is decreasing.

Finally, lookingmore carefully into the neuronal network-
based studies found in the literature and the implementation
trends discussed in the previous section via word co-
occurrence analysis, the selected bibliography can also be
classified and analysed in this sense. In Fig. 4d, it is possi-
ble to observe the time evolution of the reviewed research
regarding CNN architecture typology trends. It is possible to
conclude that the research is evolving into the residual CNN
architectures and attention mechanisms, rising steadily since
2019. Adversarial methods have appeared in the literature
since 2021. More recently, the first applications of reinforce-
ment learning were proposed (in 2022). The field’s evolution
in terms of method architecture has changed in determi-
nant ways in the past five years, and each of the mentioned
research trends has stated important performance gains, as is
outlined in the following section.

Review of Liver Semantic Segmentation
Research Directions

The general framework of CNN methods follows three main
steps: i) pre-processing of the input medical images, where
various operations are performed on the images to improve
their quality and variability, including resizing and normal-
ization to reduce intensity variation, augmentation to avoid
class biases and overfitting issues by generating more train-
ing samples, and removal of irrelevant artefacts or noise
from the data; ii) implementation of the proposed CNN
model; and, an optional step, iii) post-processing of the out-
put probability map of label assignment to refine the final

segmentation results. The present review is focused on the
different scientific propositions found in the literature to
solve each of the three steps of this framework.

A total of 69 articles of relevant literature were sur-
veyed. The most used performance metrics found in the
studied literature concerning the semantic segmentation of
liver structures in CT images, are detailed in Tables 2 and 3.
A summary of the selected and studied articles, as to the
segmented structure, proposed model, dataset dimension,
pre- and post-processing methods, optimization loss, and
performance evaluation is given in Tables 4, 5, 6, 7. The
architectures proposed are comprehensively surveyed in
the following subsections categorized by the used network
architecture modelling approach: U-Net architectures, other
network designs, Generative models, uncertainty estimation,
and interpretability methods.

Public Datasets - Baseline Data

Public datasets are the main drivers of novelty in segmen-
tation methods of the liver, tumor lesions, and/or vessels in
CT images. Many of these datasets emerged in the context of
conference challenges and consist of image databases with
ground truth delineations of the target structures. Therefore,
the found datasets consist of datasets related to conference
challenges that were published between the years 2007 to
2021, and other public datasets published between 2022 and
2023:

– SLIVER07challenge - held inMICCAI2007conference,
comprises 30 abdominal CT scans, accompanied by cor-
responding ground truth liver delineations, for automated
segmentation [13].

– LTSC’08 challenge - held in MICCAI 2008 conference,
consists of 30 abdominal CT scans, accompanied by
corresponding ground truth liver lesion delineations, for
automated segmentation [14].

Table 2 Evaluation metrics mostly found in the reviewed literature
concerning the semantic segmentation of liver structures in CT images
(A, B and (d(s(A), S(B)) are the ground truth and segmentation out-

put, and the minimum symmetric Euclidean distance between a point
p = s(A) of surface A to surface B, respectively)

Metric Description Formula Range

Dice Repetition rate of the overlap between the resultant segmentation
and the ground truth

DSC(A, B) = 2|A ∩ B|
|A| + |B| × 100 [0, 100]

VOE Error of the volume overlap between the resultant segmentation
and the ground truth

V O E(A, B) = 1 − |A ∩ B|
|A ∪ B| [0, 1]

ASD Mean value of the surface distance at the symmetric position
between the resultant segmentation and ground truth

ASD(A, B) = 1

|S(A)| + |S(B)|× [0,∞]

(∑
sA

d(sA, S(B)) +
∑

sB
d(sB , S(A))

)
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Table 3 Global summary
statistics of the retrieved
bibliography on the semantic
segmentation of liver structures
in CT images (adapted from [5,
25])

Method Description Structure GDC ASD

Yuan [20]† Hierarchical 2.5D FCN network Liver 96.3 1.10

Ben-Cohen et al. 2.5D U-Net with VGG-16 backbone Liver 96.2 1.13

Isensee et al. [22] nnU-Net: 3D Self-adapting network + largest
connected foreground post-processing

Liver 96.2 2.57

Tumor 73.9 0.90

Xia et al. [26]† An ensemble of three 3D ResNet models
simultaneously co-trained

Tumor 72.1 0.89

Zou et al. Two Cascaded U-Nets followed by hole filling
post-processing

Tumor 70.2 1.19

† Reference cited in retrieved bibliography that was included here to complement the reader’s understanding

– VISCERAL challenge - launched in 2015, provides 60
scans per two imagingmodalities,MRI andCT, formulti-
organ anatomical segmentation and landmark detection,
including the liver [15].

– 3Dircadb - 3D Image Reconstruction for Comparison of
Algorithm Database (3D-IRCADb) is a well-established
database of several organ imaging scanswith correspond-
ing segmentation delineations, curated by the French
Institute of Digestive Cancer Treatment. Released in
2012, provides 20 abdominal CT scans of liver and vessel
annotations [16].

– Lits challenge - dataset held in competitions ISBI 2017,
MICCAI 2017, and MSD 2018 (liver challenge) con-
ferences, composed of i) 131 abdominal CT scans for
training, accompanied by corresponding ground truth
liver and lesion delineations; and ii) 70 abdominal CT
scans manually annotated by four radiologists, for test
performance evaluation in an online platform [5].

– CHAOS challenge - launched in 2021, provides 40 CT
scans and 120MRI scans formulti-organ anatomical seg-
mentation, including the liver [17].

– Medical SegmentationDecathlon,MSD-Task08-Hepatic
Vessel - containing 443 contrast-enhanced portal venous
phase CT cases, where annotation were semi-automati
cally segmented, following expert adjustment [18]†.

– Liver Vessel Segmentation, LiVs - published in 2023,
consists of 532 CT scans with liver vessel annotations
delineated by three senior medical imaging experts. The
resultant ground truthswere generated bymajority voting
[19]†.

An extended, detailed description of the segmentation
challenges and datasets can be found in [5]. The top three
performer methods evaluated on the Lits dataset are summa-
rized in Table 3 to establish the baseline performance:

Liver Segmentation The competition winner method con-
sists of a 2.5D FCN network encoder-decoder with no

skip connections that processed 3D CT scans slice-by-
slice, receiving inputs of three stacked consecutive slices as
additional context [20]. The second top performer method
comprises a 2.5D FCN network using a VGG-16 as the
encoder backbone and 3-slice inputs [21]. The third top
performer, tied with the previous method in terms of Dice
coefficient performance, was presented by Isensee et al.,
proving the top performance of 3D CNN. The method con-
sists of a cascade ofU-Nets: twomodels applied sequentially,
where the first operates on down-sampled image slices to find
the ROI localization, and the second is trained to refine the
segmentation maps at full resolution [22].

Liver Tumor Segmentation The top three performing
methods of CNN-methods coupled with a refinement post-
processor. The tumor segmentation winner method consists
of a cascade of 2D residual U-Nets, post-processed with a
hole-filling algorithm [5]. The second top performer method
includes a hybrid network coupling 2D and 3D U-Net con-
volutional paths, post-processed with the largest connected
component algorithm [23]. The third top performer was
proposed by Chlebus et al. and comprises a 2D U-net post-
processed with a tumor pixel candidate classifier [24].

The results obtained at the benchmark allow one to per-
ceive that liver semantic segmentation is a subject with
well-established performance, solved with fully automated
and fully CNN-based methods. In the case of the seman-
tic segmentation of liver lesions in CT images, it became
accepted that hybrid methods, i.e., CNN-based methods cou-
pled with a secondary refinement algorithm, are the top
performers. Regarding the smaller liver structures, their
segmentation remained open to significant improvements.
Several authors identify that the segmentation of lesions still
suffered difficulties in CT images presenting i) fuzzy bound-
aries, ii) different structure sizes, and iii) low soft tissue
contrast. These issues are the main factors that hinder the
segmentation results and were not solved by the base U-Net
architectures.
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U-net Architectures

The U-net architecture is the most explored type of CNN
implementation in the reviewed literature published in 2019
to 2023, presenting significant performance improvements
on the available datasets [5, 21–24], [20] †. A U-net struc-
ture, in its original form [27], consists of an encoder-decoder
architecture. The encoder path consists of a sequence of con-
volutional and downsampling layers, followed by a decoder
path and a set of activation/deconvolution and up-pooling
layers. This network structure fuses higher-scale features
from the encoder path to the decoder inputs via skip con-
nections to optimize the segmentation result in the decoding
path. However, this implies a loss of finer object information,
especially important to identify local and smaller details of
object boundaries correctly. This is particularly challenging
in medical images with relatively low contrast and intensity
differences between structures.

Feature Fusion Strategies

Techniques to help the collection of feature representations
used to compute different descriptors of the original data
are known as feature fusion techniques. This adds context
information to be taken into account at different distances
(within the sequence of network operations) and is important
to detect boundaries of objects with different sizes correctly.

Residual Pathways - The residual structure, firstly proposed
as the Res-Net [28], improves on the previous implemen-
tation by using additional skip connections that propagate
input feature maps into the output of convolutional blocks as
a proposition to minimize the vanishing gradients problem
that arises during optimization of convolutional networks.
This implementation was validated for liver segmentation in
[29] via adding residual connections to each convolutional
block on both encoding and decoding paths. The authors
demonstrated the superiority of their approach against previ-
ous literature on the 3D-IRCADb dataset, especially for the
segmentation of the liver. Li. L. et al. also propose the Dense
U-Net network, combining sets of N residual parallel paths
known as ResNeXt to replace convolutional blocks, i.e., tra-
ditional U-Net [30]. Kushnure et al. proposed the MS-UNet
network, combining theRes2Net block - consisting ofNhier-
archical residual-like connections outputtingN featuremaps,
to replace the traditional convolutional block at both encod-
ing and decoding paths. The method significantly increased
the convolutional layers and model complexity but demon-
strated superior performance than the baseline U-Net and
ResNet models [31]. A seminal approach was proposed in
[6], calledmodifiedU-Net (mU-Net). The authors propose an
object-dependant U-Net: a) for liver segmentation, with the
addition of a residual path of deconvolution and convolution

to process feature maps propagated via skip connection; and
b) for tumor segmentation the propagation of convolution
resulting feature maps via skip connections, avoiding loss of
resolution provoked by pooling operation. Several methods
in the literature evaluate and confirm the positive contribution
of the residual configuration in their proposed architecture
via ablation studies [29, 32].

Dilated Convolution - convolution operation with a wider
receptive field of information while maintaining the number
of computations of its traditional convolution counterpart.
Used to substitute the pooling operation, as it adjusts the
receptive field of the convolutional kernelwithout loosing the
output resolution computed featuremaps [33].Delmoral et al.
proposed the usage of a stack of parallel dilated convolutions,
each with different dilation rates, acting as the image input
feature extractor that is subsequently fed to a U-Net [34]. Liu
et al. proposed amore complexmodel using a set of N dilated
convolutions of input images followed by N U-Nets whose
outputs were concatenated. The method proved to perform
better than 3D CNNs when evaluated on the 3DIRCADb
dataset [35]. Several methods in the literature evaluate and
confirm the positive contribution of dilated convolution in
the proposed architecture via ablation studies [36, 37].

Multi-scale Paths - aim at enlarging the receptive field used
in the feature extraction calculations by introducing new con-
volutional operations and/or with larger filters. However, this
comes at the cost of increased model complexity, number of
parameters, training, and inference time.TheU-Net++model
proposes densely connected andnesteddecoder paths, adding
skip connections and convolutional depth. The authors prove
the performance superiority of U-Net++ in the segmentation
of several medical image structures at the cost of a heavily
more complex model [38]. The Un-Net model reformulates
the encoding path blocks as the concatenated result of the
three convolutions of each block [39]. Fan et al. proposed
MSN-Net by replacing the encoder convolutional blockswith
residual ones and using multi-scale fusion paths of high- and
low-level resolution features [40]. More recently, Kushnure
et al. proposed using theRES2Net convolutional blocks com-
bined with the Squeeze and Excitation (SE) block to perform
feature recalibration in a U-Net++ network. The authors also
proved that in the proposed method, deep supervision actu-
ally damaged the resulting performance [41]. In [37], the
previous method was improved by incorporating dilated ver-
sus standard convolution in amodel with fewer convolutional
layers and parameters than the U-Net baseline. In [42], the
authors qualitatively evaluate the efficacy and limitations in
liver tumor segmentation, highlighting the observed overes-
timation of boundaries of big tumors and underestimation
of small tumors. This work again highlighted the problem
of lack of resolution in small details of boundary regions
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that are difficult to segment successfully. Multi-scale path-
ways in U-Net-like architectures have also been validated for
vessel segmentation. Conversely, Hao et al. proposed a dual-
branched 3D U-Net, combining additional strided and dense
convolution branches in both encoding and decoding paths
[43].

Hybrid Feature Fusion - the concept of fusing feature maps
that encompass 2Dand3Dconvolutions.A seminalworkwas
proposed by Li et al., the Hybrid-DenseUnet architecture,
which was the top performer in liver tumor segmentation in
the 2017 Lits competition with a global Dice performance of
82.4%. The method combines cascaded 2D and 3D densely
connected U-Nets, encompassing intra and inter-slice infor-
mation, and proved its performance advantage over others
[23]. This architecture was enhanced by Alalwan et al. [44],
by replacing pooling operations, i.e., by avoiding inherent
resolution loss, and point-wise - 1 x 1 - convolution to merge
3D depth-wise features, and proposing a model with 5 times
fewer parameters while improving the segmentation perfor-
mance.

Attention Mechanisms

The concept of attention mechanisms aims at emulating
the human visual system, in the sense that it can dynami-
cally weight in or out specific areas of the data [45]. The
mechanism of attention for image processing follows two
principles: a) can model long-distance dependencies decom-
posing the image as multiple patches, i.e., vision transformer
implementation; b) can learn a weighted mathematical rep-
resentation of the inputs being convolutional-free, enabling
focuses or rejection of certain parts of the input data, which
is known as the self-attention mechanism [45, 46]. The lit-
erature includes implementations of attention alternatives
based on spatial attention within a given channel. i.e., the
feature map, different channels attention by weighing the
importance of each channel component information, and
point-wise attention. The reader is referred to [47]† for a
detailed technical explanation of each variation. It is imple-
mented as a network block, which can be embedded inside
the main CNN network, to analyze feature maps produced
at different points. Attention mechanisms can be categorized
as i) channel attention, ii) spatial attention, and iii) hybrid
attention, i.e., integrating more than one type of attention
mechanism.

Channel attention is achieved by incorporating the self-
attention mechanism, most commonly done after the con-
catenation of featuremaps at skip connection network points.
This is applied to the U-Net architectures in [48–51], a mod-
ified U-Net architecture with the EfficientNetB4 and ResNet
decoders in [52], to the UNet++ in [53–55].

Hybrid attention implementations, combining position-
wise and channel-wise attention in [51, 56, 57], channel-wise
and patch-wise attention in [58]. In the DRAUNet network,
transverse and coronal inputs fed a U-Net with multi-scale
residual SE blocks in the encoding path and channel attention
blocks in the decoding path [59]. The CPAD-Net network
combines channel and spatial attention to process every skip
connection feature map outputted from the decoding path
to the decoding. The authors demonstrated qualitative per-
formance gains in terms of lesion boundary segmentation
accuracy [60].

Finally, one study investigating the contribution of atten-
tion mechanisms to liver vessel segmentation was found in
the literature. The contribution of spatial attention blocks at
multi-scale fusion blocks in a 3D U-Net is explored in [61].

Other Architectures

The well-known architecture Faster R-CNN, initially pro-
posed for scene image segmentation, consists of a Region
Proposal Network that produces rectangular smaller regions
locating the target object. The network model that followed
Faster R-CNN was the DeepLab V2, which introduced
a block of Atrous Spatial Pyramid Pooling and became
well-established in the literature [62]. On the 3DIRCADb
dataset, the results were comparable to the ones of DRA-
NET however, a two-step method is more time-consuming.
Long Short-Term Memory (LSTMs) networks primarily
designed to extract information from sequential data were
also explored as an alternative way of computationally inter-
preting 3D information. In [63], the authors used stacks of
three CT slices to input a bidirectional LSTM model and
achieved comparable results to the state-of-the-art on the
3DIRCADb dataset. Zhang et al. proposed the LW-HCN
network, a depthwise spatiotemporal transformation (DST)
network, to bridge 2D and 3D features, fused by a final
point-wise convolution [64]. The approach of using the two-
staged 3D DST network, where the input is processed in
two stages: 1 x 3 x 3 and 3 x 1 x 1 atrous convolutions,
aimed to produce a lightweight model and solve the high
computational complexity of direct 3D convolutions. The
presented results confirmed a model parameter reduction
in 10 with comparable segmentation performance to state-
of-the-art. Kitrungrotsakul et al. proposed the VesselNet
network for segmenting liver vessels by processing andmerg-
ing coronal, sagittal, and axial plane data in multi-pathway
DenseNets. The authors tested their model by processing
patches of candidate vessels extracted from multi-scale fil-
tering to build slice vesselness probability maps. The final
network architecturewas optimized for the 3Dircardb dataset
with cross-validation and benchmarked with a 3D CNN and
a single-pathway DenseNet [65].
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Generative Models and Data Augmentation

The use of generative models addresses the topic of dataset
quality, and data augmentation towards improving the gen-
erated models quality. Generative Adversarial Networks
(GANs) address this research line. GANs consists of two
parts: a 1) discriminator D, which learns the latent dis-
tribution z of the dataset samples x, mapped via function
p = D(x), where p is the probability that a sample is
real/synthetic; and a 2) generator G, which then produces
new/synthetic data, via the learned mapping of x̂ = (G(z)),
where x̂ is the generated sample. The two parts are trained
in an “adversarial setup”, i.e., using a joint loss function
that converges to the generation of images “closer” to the
real ones from G, and to an improved discrimination of
real versus synthetic images from D. CycleGAN was pro-
posed for image-to-image translation of abdominal CT and
validated the idea of generating non-contrast-enhanced CT
examples from contrast-enhancedCTs, intending to augment
the dataset representability of the later category of abdomi-
nal CTs. The authors demonstrated a 68%DSC improvement
on the non-contrast CT liver segmentation. This study is the
most cited work of the entire literature body analysed in the
current study [66].

The GANs can also combine tasks of data augmentation
and segmentation. The CTumorGAN network is a version of
CycleGAN customized to solve the problem of liver tumor
segmentation, i.e., where the Generator portion maps input
CT slices into tumor segmentation results. Proposed in [67],
this network uses shape context rectification to combine
information from the different output neurons and, in this
way, provides the context of neighbouring tumor regions
in the optimization task. In [68], the authors propose the
DeepLab V3 network for the segmentation task and a gen-
erative adversarial network jointly optimized in a common
weighted loss. The approach was validated using the Lits
test dataset, achieving promising superior liver segmentation
performance relative to other methods. In [69], an ensemble
version of two consecutive U-Net-like architectures as the
Generator, and k different discriminators that use different
feature maps obtained from the Generator as input. The gen-
eral architecture was optimized so that elements contribute to
the objective loss, contributing to the trainedGenerator’s gen-
eralizability. The approach was tested for segmenting both
the liver and lesion, where an improvement of the Dice coef-
ficient of 3% and 9% for lesions and liver segmentation over
CycleGAN was observed. In [70], the authors merge the
self-attention mechanisms within a generative adversarial
optimization architecture for liver segmentation. The Gen-
erator consists of an encoder-transformer-decoder network
and a discriminator in an encoder-transformer network. The
adversarial optimization of the Transformer architecture did
not present significant improvements against the baseline

encoder-transformer-decoder network [70]. Most recently, a
benchmark of several generative adversarial network archi-
tectures to generatemore liver tumor exampleswas presented
in [71]. The authors assessed quantitatively the quality of
the generated liver and lesion images using radiomics met-
rics, such as GLCM energy and correlation, to evaluate
distribution similarity between real and synthetic lesions
and compare the resulting lesions generated with different
architectures: cGAN, Tub-sGAN, and PCGAN. Finally, the
authors assessed the segmentation improvement of U-net
architectures when trained with the synthetically generated
images, demonstrating a segmentation improvement of 4.1%
DSC on the top-performing method.

Uncertainty Estimation

Active learning is optimizing data examples that maximize
the model’s learning opportunity. This field has two-fold: i)
to optimize model performance and generalizability, espe-
cially in real-world applications, and ii) to optimize which
samples to be labeled and manage the annotation efforts.
Chelubs et al. proposed a workflow to select CT slices that
maximize dataset variability based on a measure of uncer-
tainty calculated as the model predictive entropy. The effect
of predictive entropy of the output softmax probability map
on a 3D U-Net was analysed. The authors evaluated the
model’s performance evolution by selecting new data based
on model predictive entropy and proved that direct perfor-
mance increases over each active workflow iteration. The
authors also demonstrated how uncertainty measurements,
calculated over entire CT scans, target volume, and slice-
wise, can output a metric of model trustworthiness on the
resulting segmentation [72]. Few-shot (FSS) models are a
recent class of models that, from a small set of labeled
examples, aim to extract class-wise prototypes that can be
leveraged to segment similar and/or other objects in new
images. Hansen et al. exploited the performance of an FSS
model to uncover other abdominal classes in an abdominal
CT scan in an unsupervised manner. The authors proposed
the usage of a 3D encoder as an FSS model and used pre-
dictive cross-entropy as a measure of uncertainty of both the
liver predictions and the extracted prototypes of other struc-
tures present in abdominal CT scans [73].

Model Interpretability

Only one study was found in the literature exploring the
interpretability of CNNs applied to segment liver tumors.
Using the activation maximization DeepDreams method,
the authors analyzed the influence of human-understandable
lesion features on the output of a network. They gathered a
set of lesion descriptors, such as lesion perimeter, sphericity,
and intensity distribution features, and analyzed their effects
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on changes in the output activation. The analysis produced
graphical representations of i) feature values that translate
into greater output changes, hence enabling the calculation
of a measure of sensitivity to the feature value, and ii) feature
values of healthy liver regions versus lesions that translate
into greater or lesser output changes, enabling the calcula-
tion of a measure of robustness to the feature value [74].

Discussion

The research in the liver segmentation field has grown sub-
stantially over the last five years. This systematic review
found 244 studies in total concerning the semantic segmen-
tation of liver structures in CT images, 69 of which were
selected for review. It is important to note that the evo-
lution of the datasets’ quality has positively impacted this
development by driving researchers’ attention to this field.
As the bibliometric analysis shows, the research community
has gradually decreased the attention to non-CNN methods
and increased it to CNN-related methods. This evolution led
to the highest performances ever published in the literature.
Articles being published in recent years propose novelty in
terms of 1) CNN architectures, 2) auxiliary tasks such as data
augmentation - aiming at producingmore robust datasets and,
by extension, more robust models, uncertainty optimization
- conveying information regarding the segmentation confi-
dence, and model explanations to understand data features
that contribute to the models’ decisions. The literature has
been mainly focused on three structures of the liver in CT
images: the liver, as a big structure; liver tumors, as small
structures; and liver vasculature, as even smaller structures.
Regarding the methods’ capability to solve the proposed
RQs, the performance of the proposed semantic segmenta-
tion methods has greatly improved in the past five years,
although at different magnitudes for each type of approach.
Concerning CNN architecture novelty, current top perform-
ers are all based on a U-Net backbone, being, to date, the
preferred architecture design on which researchers base their
proposals.

Concerning liver semantic segmentation, the literature’s
top performers reach near-perfect performance compared
to ground truth annotations in the most large CT datasets
available [75, 76]. This is partly due to the considerable
evolution of CNN methods in segmenting “big” structures,
which benefit greatly from context comparison to being cor-
rectly distinguished from other structures in the images. The
top Lits dataset performer on liver segmentation improved
the 2019 benchmark [5] top performer by 0.7 DSC, proposed
in [76] as the DHT-Net model, presenting a 97 DSC score
performance on the 70 CT test scans.

Regarding tumor segmentation, the literature’s top per-
formers are established in the range of 85 DSC proposed

by the top liver performer, the DHT-Net model [76]. This
represents an increase of 12 DSC relative to the 2019 Lits
top performer. Attention mechanisms have proven valuable
in producing detailed lesion boundaries that were grossly
over-estimated by previous methods, and many authors are
proposing qualitative performance examples to validate these
findings in more recent publications [77]. Liver vessels are
the liver structures that have earned the least attention from
the scientific community. This aspect is mainly due to the
lack of annotated datasets addressing these structures and
the corresponding number of available samples. However,
these structures are highly pertinent when analysing the 3D
anatomy of the liver for various medical treatments per-
formed in medical practice routines. The best performing
proposed vessel semantic segmentation methods have highly
increased their performance relying on image pre-processing
steps applied to the input of the used network [65], image fil-
tering incorporated into the network architecture [78], or on
post-processing cleaning methods [43, 79, 80]. The perfor-
mance of the methods validated on the bigger datasets in the
field, namely the Lits and 3DIrcadb datasets (Tables 4, 6), is
comparatively the most robust and generalizable in the liter-
ature. However, methods validated in partial sub-samples of
these datasets allowed comparative analysis of architecture
designs (Tables 5, 7). Similarly, in the case of the vascu-
lature segmentation benchmark, detailed in Table 8), more
robust datasets surfaced only in very recent years and are
still clearly under-explored in the literature. The conducted
literature bibliometrics study also reinforces that the litera-
ture has changed the main research direction and the number
of publications tendency in 2023, towards the segmentation
of liver vasculature and lesions, where there is still space for
performance improvement. Generative models have proven
helpful specifically in the context of liver diagnosis in CT
images, where contrast-enhanced CT images are widely rep-
resented in public datasets, but the clinical practicemay often
use non-contrastCT scans. This is inmost cases due to patient
clinical limitations to using contrast. The performance of the
methods validated on the bigger datasets in the field, namely
the Lits and 3DIrcadb datasets (Tables 4, 6, 8), is consid-
ered robust and generalizable. However, methods validated
in partial sub-samples of these datasets allowed comparative
analysis of architecture designs (Tables 5, 7). The complex-
ity of models is an aspect that researchers must take into
consideration. The objective is always to achieve the highest
segmentation performance with the least model complexity.
Knowledge distillation of the neural network is a research
direction that addresses this goal. It should be noted the
research line focuses on this complexity. For example, in
[81], the authors explore the concept of knowledge distilla-
tion by distilling the learned segmentation capacity of more
complex networks, teacher networks, into less complex ones,
student networks, with comparable performances.
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Current Limitations and Future Directions

Most of themethods found in the literature have been applied
to the public datasets published throughout the years, par-
ticularly to the MICCAI Lits 2019 and 3DIrcadb datasets.
The availability of datasets for liver lesions is considerably
scarce [29, 82] and liver vasculature [83]; hence, the related
found works were excluded from the summary benchmark.
The study performance benchmarks were divided accord-
ing to the magnitude of the dataset split. The selected full
Lits benchmark studies were all tested on the same 70 CT
test exams. The selected full 3Dircadb studies were per-
formed in a randomized cross-validation design. The full Lits
benchmark provides the biggest test dataset used across all
reviewedworks; however, it is not a randomized case-control
test, which implies that its generalizability in “real-world”
datasets may be limited. The full 3DIrcadb benchmark pro-
vides the most robust study design across all methods;
however, it is a smaller test sample. It is preferable for future
studies to incorporate other collected, clinically representa-
tive datasets, including, for instance, non-contrast-enhanced
or triphasic CT cases. In future works, the exploration of
instance or panoptic segmentation-based approaches could
be explored as an alternative to solve the problemof boundary
segmentation of the smaller liver structures [84]. Generative
models, uncertainty estimation, and interpretability strate-
gies implemented to explain the built CNN models are still
under-explored topics in segmenting liver structures in CT
images. All the aforementioned aspects are vital in producing
more robust and pertinent computer-aided detection (CADe)
or computer-aided diagnosis (CADx) systems for real-world
clinical scenarios.

Conclusion

Artificial intelligence applied to medical images keeps suf-
fering critical transformations and has gained immense
attention from researchers and practitioners. The conducted
bibliometric study aimed at extracting and evaluating the
dissemination of novel trends in the field of liver segmenta-
tion. Although many systematic reviews and meta-analyses
have already been published, this is the first bibliomet-
ric analysis of this field, where 244 scientific publications
were examined using a “quantitative mapping” approach.
Additionally, a comprehensive review of the most recently
proposed methods, supported by a comparative performance
analysis, was performed, detailing results according to the
different CNN-based approaches used in the literature. Gen-
erative models, uncertainty estimation, and interpretability
strategies implemented to explain the produced CNN mod-
els are still under-explored in segmenting liver structures in

CT images but seem to be critical to improving the robustness
and the usage of CADe/CADx systems in clinical practice.
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