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Abstract

This work introduces Map-Optimize-Learn (MOL), a pipeline that leverages expert knowledge
from the fields of Feature Selection (FS), Deep Learning (DL), and optimization to improve
prediction quality and provide an additional layer of interpretation for results obtained from
Tabular datasets. The objective is to investigate the effectiveness of incorporating this expert
knowledge in addressing diverse Machine Learning (ML) classification problems.

The MOL pipeline incorporates various components, including FS strategies, Swarm Intelli-
gence (SI) algorithms, and a Convolutional Neural Network (CNN) to construct different versions
of MOL models. These models are specifically designed to tackle 2D tabular dataset problems by
transforming the representation of 1D samples into 2D, thereby generating valuable patterns for
classification tasks. MOL learns and adapts multiple information about the features to create a
3D dataset for the CNN architecture.

To validate the effectiveness of the approach, a range of benchmark and real-world problems are
selected to evaluate MOL’s performance in different scenarios. The proposed approach is applied
to 13 datasets, including 10 benchmark problems and 3 real-world problems. Results are compared
against state-of-the-art ML algorithms tailored for tabular datasets. Additionally, comparisons
are made against popular FS strategies, as well as deep learning and data transformation-based
approaches. This comprehensive evaluation aims to showcase the applicability of the proposed
method across a wide range of problem domains.

The findings of this research highlight the potential of expert knowledge acquired from FS and
optimization techniques to enhance interpretability and improve results for tabular datasets. The
study also presents the advantages and disadvantages of the MOL strategy, providing valuable
insights into its effectiveness.
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Resumo

Este trabalho apresenta o Map-Optimize-Learn (MOL), um pipeline que aproveita o conhecimento
especializado dos campos Feature Selection (FS), Deep Learning (DL) e tarefas de otimização
para melhorar a qualidade da previsão e fornecer uma camada adicional de interpretação para
os resultados obtidos de conjuntos de dados Tabulares. O objetivo é investigar a eficiência da
introdução desse conhecimento para resolver diversos problemas de classificação com Machine
Learning (ML).

O pipeline MOL incorpora vários componentes, incluindo estratégias FS, algoritmos Swarm
Intelligence (SI) e um Convolutional Neural Network (CNN), para construir diferentes versões
de modelos MOL. Esses modelos são projetados especificamente para lidar com problemas de
conjunto de dados tabulares 2D, transformando a representação de amostras 1D em 2D, gerando
assim padrões para tarefas de classificação. MOL aprende e adapta várias informações sobre os
recursos para criar um conjunto de dados 3D para a arquitetura da CNN.

Para validar a eficácia do proposto, uma série de benchmarks e problemas do mundo real são
selecionados para avaliar o desempenho do MOL em diferentes cenários. A abordagem proposta
é aplicada a 13 conjuntos de dados, incluindo 10 problemas de benchmark e 3 problemas do
mundo real. Os resultados são comparados com algoritmos de ML de estado da arte desenhados
para conjuntos de dados tabulares. Além disso, são feitas comparações com estratégias populares
de FS, bem como abordagens baseadas em DL e transformação de dados. Essa avaliação visa
mostrar a aplicabilidade do método proposto em uma ampla gama de domínios de problemas.

Os resultados desta pesquisa destacam o potencial do conhecimento especializado adquirido de
FS e algoritmos de otimização para melhorar a interpretabilidade e os resultados para conjuntos
de dados tabulares. O estudo também apresenta as vantagens e desvantagens da estratégia MOL,
fornecendo informações valiosas sobre sua eficácia,
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Chapter 1

Introduction

In the past decades, the concepts of adapting to new circumstances, detecting patterns and
predicting new data found in the Machine Learning (ML) field were widely applied to solve a
large variety of problems in multiple knowledge areas [1]. The field received even more attention
with the advance on parallel computing, where several Graphics Processing Unit (GPU)’s are
used to accelerate the training phase of the models. Several ML models were devised and each
one has a set of properties and limitations regarding the type of features, target variable, time
complexity, among other characteristics. Arguably, the most popular ML algorithm, the Artificial
Neural Networks (ANN), has been widely used to learn from data in various domains and of
various types: temporal, images, videos, among others.

The ANN model and others like Random Forest (RF), k-Nearest Neighbors (KNN) or Logistic
Regression (LR) were initially constructed to handle tabular datasets, which are composed by a
set of 1D instances with several features. In order to handle problems based on images, videos
or text, the dataset has to be adapted into a tabular format. Later, with the advance of ML
models research and the introduction of GPUs which could make it feasible, a field named
Deep Learning (DL) emerged. DL is presented as an extension for the ANN models, where the
most popular algorithm, the Convolutional Neural Network (CNN), has been outperforming
other models [2]. However, its good performance has been mostly demonstrated through image
datasets.

Inspired by the fact that CNN can capture signal from some hidden structure in the data,
we propose to apply CNN to data in tabular format, but transforming this tabular data such
that the 1D samples look like 2D images to the CNN. In order to generate these images, the
Map-Optimize-Learn (MOL) strategy was devised [3]. In MOL, the dataset goes through a
feature sorting step, followed by a data domain change that allows the data to be mapped
into an image format. Last, the proposed method reduces the image shape through Feature
Selection (FS), indicating the best subset of features that should be included to generate these
images.

Feature Selection (FS) is a powerful technique employed to identify the optimal subset of

1



2 Chapter 1. Introduction

features in a given dataset [4]. It involves the application of statistical methods or machine
learning algorithms to gather valuable insights about the data and determine the importance
of its features. By reducing the dimensionality of the data, FS greatly enhances the speed
and complexity of the model. The statistical methods employed in the FS problem are also
added as part of the MOL strategy, where they aid in determining the most effective order for
incorporating selected features into the image format.

There have been a few attempts to take advantage of the success of neural network approaches
on images by applying these models to tabular data [5]. They vary in the way the tabular data is
represented [6], preprocessed [7] and in the neural network architecture used. None of them takes
into account "informed" preprocessing, which can be useful in many domain areas, e.g., medicine.

When utilizing ML in practical applications, numerous domains necessitate extensive inter-
pretation. Examples of such domains include Healthcare, Finance, Autonomous Vehicles, Legal
and Ethical Implications, and more. Building upon this foundation, the objective of this work
extends beyond delivering a pipeline with high classification accuracy. It aims to incorporate
an additional layer of interpretation to the obtained results. By integrating knowledge into
the image generation process, a deeper understanding of the model’s behavior in relation to
the classification task can be achieved. Furthermore, this approach enhances understanding of
why a specific set of features holds significance for the dataset, thereby contributing to domain
knowledge.

The purpose of this thesis is to investigate the potential of utilizing expert knowledge acquired
from the field of FS and optimization tasks to enhance the accuracy of predictions, surpassing
the performance of state-of-the-art ML algorithms and other data transformation methods.
To demonstrate the versatility of this approach in solving diverse problems, benchmark and
real-world problems are selected as the focal point. The problem is transformed using the
MOL strategy, incorporating statistical methods, Swarm Intelligence (SI) algorithms, and a
CNN to construct different versions of MOL aimed at improving prediction outcomes. The
proposed approach is applied to each dataset, and the results are compared against baseline
and state-of-the-art ML algorithms designed for tabular datasets. Furthermore, the noteworthy
contributions include:

• Introducing MOL, a novel strategy that leverages the advantages offered by CNNs while
being tailored for tabular data [8].

• Exploring a range of feature selection (FS) methods within MOL to identify important and
relevant features within tabular datasets.

• Incorporating multiple swarm intelligence-based optimization techniques to separate sub
optimal solutions, thereby enhancing overall performance.

• Introducing an interpretative layer to facilitate the understanding of the CNN’s outcomes.

This thesis is organized as follows:
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1. Chapter 2 on page 5: provides a comprehensive overview of essential concepts and
algorithms in ML, DL, SI, and FS, foundational knowledge to understand the development
of this thesis;

2. Chapter 3 on page 37: offers an in-depth exploration of the current state-of-the-art in
data transformation and FS. These pivotal domains are integral to the broader scope of
the MOL strategy;

3. Chapter 4 on page 47: presents the MOL strategy, offering an overview of the strategy.
Details the Map, Optimize, and Learn phases, explaining how these phases interact with
each other. Describes the pipeline employed to generate viable images and results. Also
includes a brief discussion introducing MOL as a Tabular Learning Method;

4. Chapter 5 on page 53: denotes the conducted experiment, encompassing a selection of
10 Benchmark and 3 Real-World scenarios. Provides essential information concerning
hyperparameters and relevant settings employed to configure SI and ML algorithms.
Provides insights into each dataset, elucidating the variations in data types, instances, and
features across the experiments;

5. Chapter 6 on page 61: discuss the achieved results for each dataset. These results were
derived and compared against various combinations of FS strategies, ML algorithms, and
the most effective tabular learning method. The analysis involves evaluating the simulations,
generated images, and outcomes using ML metrics. Additionally, the significance among
the strategies is determined through p-test analyses.

6. Chapter 7 on page 101: summarizes the thesis by presenting its conclusions, highlighting
the significant knowledge gained during the experiments, and suggesting potential avenues
for future research.





Chapter 2

Background

This chapter describes fundamental concepts that support the remainder of this text. Section 2.1
details the standards of Machine Learning (ML) and its application to tabular datasets. Section
2.1.3 on page 10 points out traditional ML algorithms used to solve diversified problems. Section
2.2 on page 21 details the Deep Learning (DL) field. Section 2.4 on page 29 details optimization
algorithms used in this thesis. Finally, Section 2.3 on page 25 points out the fundamentals of the
feature selection problem for tabular datasets.

2.1 Machine Learning

Machine learning is organized into a taxonomy, based on the desired outcome of the model [9].
It is also a sub field of Artificial Intelligence (AI) that explores a computer’s ability to adapt to
new circumstances, identify patterns, and make predictions with new data [1]. These capabilities
are facilitated by models created through the knowledge acquired during the learning phase of
one or multiple algorithms.

The field of ML is divided into various branches, with different approaches being employed
depending on the specific problem at hand. These approaches heavily rely on data, which can
be sourced from diverse origins and may encompass mixed data types. Often, data requires
preprocessing and transformation to facilitate the learning process, rendering it comprehensible
and meaningful. Subsequently, validation and evaluation phases are applied to assess the model’s
performance in making predictions with new data. These variations and processes for constructing
a viable ML model are elaborated upon in the following subsections.

Among the types of ML, paradigms can be categorized into four distinct types:

• Supervised learning: in this type, both the input data and the corresponding outputs or
labels are available for the learning process.;

• Unsupervised learning: this category encompasses situations where there are no

5
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predefined labels or hints regarding the correct outputs, and the algorithm seeks to
discover inherent patterns or structures within the data.;

• Semi-supervised learning: semi-supervised learning combines elements of both super-
vised and unsupervised learning. While there are outputs or labels available for some of
the data, the remainder lacks any hint or guidance;

• Reinforcement learning: In reinforcement learning, algorithms learn a policy that
dictates how to interact with the environment based on observations. Actions taken have
consequences, typically measured through a reward mechanism, guiding the algorithm
toward optimizing its behavior.

This thesis primarily addresses Supervised Learning (SL) problems where the data does not
consist of images, sound, video, text, etc. Consequently, the following concepts discussed are
specifically related to the Supervised Learning paradigm.

2.1.1 Supervised Learning

According to Witten et al. [10], SL approaches necessitate the presence of both inputs and
outputs within the dataset. The inputs serve as the data that is fed into the chosen model to
generate an outcome. However, the outputs within the dataset serve as indicators of the type
of ML task that should be performed, where according to Goodfellow et al. [11], it can vary
between:

• Classification: Among k categories, the model aims to identify which category is the
correct for the input. The algorithm will produce a function f : Rn → {1, . . . , k}, where
y = f(x). The model will assign an input described by the vector x to a category identified
by a number y. Goodfellow et al. [11] also mentions the multiclass classification problems,
where f outputs a probability distribution over the number of classes found in the problem.

• Regression: In contrast to classification tasks, regression seeks to predict a numerical
value based on given inputs. It operates similarly to classification but with a distinct output
format. In regression, the algorithm generates a function f : Rn → R where it maps any
n-dimensional input vector to a real number in R.

As pointed out by Ayodele [12], classification problems align more closely with the Supervised
Learning (SL) concept, while regression problems are unsupervised learning embedded within
the supervised learning framework, e.g. the idea of having a target feature.

To illustrate this, consider a tabular dataset as shown in Figure 2.1 on the next page, where
weather conditions determine whether an individual, represented by the ID feature, will engage
in golfing activities, indicated by the PlayGolf target feature.
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The primary focus of this thesis revolves around classification problems. Nevertheless, for
illustrative purposes, we can utilize the same dataset to exemplify regression problems. In this
context, we would pivot from using the PlayGolf variable as the target and instead employ
variables like Temperature or Humidity. This shift in perspective transforms the problem from
determining whether a player would partake in golf to predicting humidity or temperature based
on the conditions for golfing.

Figure 2.1: Tabular data with instances and features (rows and columns)

Source: Sayad [13]

Assuming that this dataset is preprocessed, it would have 14 instances and 6 features, where
the target variable PlayGolf will support the decision whether or not someone will play golf,
therefore, splitting the data between inputs (set of features - X) and outputs (target variable -
y). When observing each feature found in X, it is possible to notice the presence of ID, which is
a simple identifier for each instance, which means that the input will have 4 features based on
climate conditions.

With the inputs and output defined for our example dataset, ML algorithms used for SL
approaches often learn the probability for the inputs, in the example above, that indicate the
probability to play golf. However, if there are missing values, several models are not able to infer
anything since they are data dependent [12]. The dataset presented in Figure 2.1 shows a few
missing values represented by the question mark. To circumvent this issue, a preprocessing step
is applied to the dataset, where the strategies used in this phase rely on the types of data.

2.1.2 Types of Data

A tabular dataset represents a set of features, where these features can be acquired from multiple
sources in multiple applications. In social media, data is acquired from posts such as text, images,
videos, etc. Not limited to these sources, it is possible to store the social relations between users,
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user-post, etc [14].

Even for data acquired at the same place, website or any other source, there could be distinct
types of information about the same entity, these may vary between two main flavors of data
[15]:

• Quantitative data: numbers and variables that can be measured, e.g. height, width,
length, temperature;

• Qualitative data: characteristics of the feature that can be counted, e.g. the state of a
machine between working, not working, suspended or waiting or, in a game, if the player is
in game, waiting for an opponent, away from keyboard, etc.

Quantitative data can also be divided into two other branches:

• Discrete data: represented as integer numbers standing as indivisible entities, for instance:
the number of persons in a family (1, 2, ..., N );

• Continuous data: numbers that can be divided, represents non integer numbers, for
instance: height, weight, etc.

Qualitative data is divided into three distinct branches:

• Binomial data: mutually exclusive categories: good/bad, true/false, accept/reject;

• Nominal data: data that set a label or name for a specific feature, it does not have a
order. For instance with the following question: Which one is your favourite sport?, it is
possible to get answers like ’Basketball’, ’Soccer’, ’Tennis’, etc.

• Ordinal data: a data that carries an ordering. For instance, it is possible to measure the
quality of a restaurant as: 1- Very Bad; 2- Bad; 3- Neutral; 4- Good; 5- Very Good.

Regarding the target variable, it is possible to find at the ML literature distinct value types for
classification problems:

• Binary: an output variable represented by two classes (Binomial data);

• Multiclass: when a variable has more than two classes, e.g. a car, motorcycle or a bike
are represented as a vehicle and not individually;

• Multilabel: assigns to each sample a set of target labels, for instance finding a genre of a
movie among Horror, Romance, Adventure, etc;

• Multioutput-multiclass: a single model has to handle several joint classification tasks.
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For the golf dataset, Figure (2.1 on page 7): ID is a discrete feature; Outlook is a nominal
data; Temperature in this situation has integer values, therefore is a Discrete data; Humidity
is also a discrete data; finally, Windy and PlayGolf are binomial features. ML algorithms are
used to learn from quantitative data, therefore, for most traditional ML algorithms, the variables
Outlook, Windy and PlayGolf require a set of data transformations in order to allow an algorithm
to infer probabilities for the input features.

2.1.2.1 Data Transformation

Basic data transformation is a minimum requirement when features are not quantitative. As
part of the preprocessing, basic data transformation is applied in order to be able to feed each
algorithm with the data. It is worth reminding that the considered strategies are commonly
applied to supervised classification problems.

Among transformation strategies, the most straightforward is often named Label Encoder
[16], which can be applied to binomial and nominal data. The strategy consists into creating a
dictionary where each label is represented as a number, for example: represent ’No’ as 0 and Yes
as ’1’. For multiple classes, the list of numbers will have the same size of the number of labels.

It is possible to visualize at data mining/machine learning that, when the numeric variable
has a skewed distribution, categories are created depending on the problem. As an example of
this strategy: the transformation of numerical data, representing a person age, being modified
into age categories, where instead of numbers it starts to be identified as ’Young’, ’Adult’, ’Elder’,
transforming from numeric to nominal data.

The target variable also passes through transformations. The most popular approach applies
a label encoder to it and them performs an encoding technique. For neural networks and deep
learning, a standard approach is to apply One-Hot-Encoding (OHE) due to its simplicity: this
transformation assumes a flat label space [17]. The OHE creates a binary vector with size equal
to the number of distinct classes, assigning the index of the original label to this position. The
process can be visualized in Table 2.1 for a 3 class (A, B, C) problem.

Table 2.1: One-Hot-Encoding for a 3 classes (A, B, C) dataset

y yohe1 yohe2 yohe3

A 1 0 0
B 0 1 0
C 0 0 1
B 0 1 0
A 1 0 0
C 0 0 1

After transformations, the dataset with quantitative features is prepared and can be submitted
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to the validation and evaluation phases of the ML pipeline.

2.1.3 Machine Learning Algorithms

Numerous algorithms have been developed to address a wide spectrum of ML problems. Each
algorithm possesses distinct characteristics and operates based on combinations derived from the
input data presented to the model.

In the context of classification problems involving tabular datasets within the SL paradigm, as
highlighted by Russell and Norvig [1], certain algorithms have demonstrated notable performance.
Notably, Artificial Neural Networks (ANN), k-Nearest Neighbors (KNN), Logistic Regression
(LR), and Random Forest (RF) have consistently delivered impressive results when applied to
various data domains spanning multiple application areas.

2.1.3.1 Artificial Neural Network

ANN is a non-linear algorithm that tries to mimic the behavior of neurons in a human brain. The
ANN can be represented by multiple distinct architectures, for instance: Hopfield network and
Boltzmann machine [18]. This work focuses on fully connected networks named Feed Forward
Neural Network (FF) ANN, where this architecture is represented as a group of connected layers
where each layer may have multiple neurons. These layers are named input, hidden and output
layers, where the input receives the data, propagating it to the hidden layers, reaching the output
layer which will return a value based on the model. The training phase of the network is based on
the propagation of data through its architecture [1]. Figure 2.2 shows an ANN architecture with
1 input layer with 2 neurons, 1 hidden layer with 2 neurons and 1 output layer with 1 neuron.

Figure 2.2: Feed Forward ANN architecture

Source: Adapted from Veen and Leijnen [19]

Regarding the number of neurons, the input layer and the output layer have the number of
neurons equal to the number of inputs and outputs respectively, therefore, if a transformation
technique is used to the target variable, the number of outputs will have the same size of the
encoding. In the ANN architecture, the neurons have a value which can be propagated to another
layer of neurons of the output. The values are calculated by using the following equation:
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yi = f(
m∑

j=1
wijxij + b) (2.1)

where yi is the value of the i-th neuron which has m neighbors from a previous layer (j). Also,
wij is the corresponding weight that connects the previous to the next layer, xij is the propagated
data from previous layer, f is an activation function, b is a bias that can also be a learning
parameter during the model optimization [2].

After propagating the data, the network output (ŷ) is compared with the original output (y)
and the model training is evaluated through an error metric [2]. For classification problems with
both multiclass or binary, this function is usually the Log loss/Categorical Cross-Entropy given
by:

LogLoss = − 1
n

n∑
i=1

[yi ∗ loge(ŷi) + (1− yi) ∗ loge(1− ŷi)] (2.2)

where n stands for the number of instances found in the dataset. The objective is to minimize the
network error by updating its weights. The process of training is usually performed by gradient
based algorithms, since the derivative of each activation function can be easily calculated. Next
subsection provides more information regarding these functions.

Activation Functions are used to determine the output of a neuron given an input or set
of inputs, where these functions compute nontrivial problems using a small number of nodes,
assisting the network to capture relations between received inputs and outputs [20]. The correct
combination of activation functions provides a boost for the network predictive capability,
decreasing the error while training the weights while increasing the accuracy when testing the
model based on the network.

Among popular activation functions for supervised classification problems, it is the Sigmoid
function:

sigmoid(x) = 1
1 + e−x

(2.3)

which describes the input probability of being positive (1) or negative (0). Since that the
probability between infinite numbers are verified, the function output has a range between 0 and
1. This function is the most used [20], usually at the output layer when the problem is encoded
by strategies like OHE, allowing the network to capture the most active neuron (neuron with the
highest value at the output layer).

The network architecture is not limited to a single activation function. As mentioned earlier,
each layer may have its own function, where the Rectified Linear Unit (ReLU) is usually used at
hidden layers:
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ReLU(x) = max(0, x) (2.4)

which is a piecewise linear function that will output the input directly if it is positive, otherwise,
it will output zero [21].

When the dataset has multiple labels and is not prepared with an encoding strategy, the
Softmax function can be used:

softmax(xi) = exp(xi)∑
j exp(xj)) (2.5)

where a vector with exponential evaluated values are normalized by the summation of the
exponential of all elements in the vector [22], allowing the model to extend the Sigmoid (Eq. 2.3
on the preceding page) to handle multiple labels. Many other activation functions can be used
for multiple purposes, however, functions that are mentioned in this Section are constantly used
at state of the art ML and Deep Learning (DL) applications.

2.1.3.2 k-Nearest Neighbors

Nearest Neighbors algorithm is a distance based algorithm, where a distance metric is used to
cluster different instances in a group [23]. The algorithm does not require the data to be labeled,
used for multiple learning tasks [24].

The KNN training phase starts with data points with unknown classification, where the
following steps are applied until a stopping criteria is met [24]:

1. Calculate the distance between new and known points;

2. Check if each point is near the neighborhood, if it fits that condition, add the point as a
nearest neighbor.

3. Count the most frequent class among k neighbors instances based on the amount of nearest
neighbors;

4. Label new data points according to the frequency.

The frequency is also the mechanism used to predict data instances when evaluating the model
with the test set. The stopping criteria might be associated with: the time, where the algorithm
will stop after a certain amount of time; a number of iterations controlled by the user; the
distance system, when the overall distance reaches a minimum precision or error.

The KNN has two major parameters found at the optimization phase. The first is used at
the stage 2 of the training phase, where the value k will indicate the number of neighborhood
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points to be considered while inserting new data points to its neighbor; the second parameter
is the distance metric used to measure the distance between data points and associate it to a
neighborhood.

Distance Metrics Distance metrics were used for multiple purposes along the years, where
many were devised and applied for specific conditions. For ML, these metrics are used according
to the type of data, where the most used equation for the distance system is the Minkowski
distance:

d(x, y) =
(

n∑
i=1
|xi − yi|p

)1/p

(2.6)

where x and y are two instances of data and p a parameter value that will transform this general
equation into one of these metrics [25]:

• Euclidean: when p is equal to 2, it will calculate the shortest path between two points if
they are continuously linear;

• Manhattan: when p is equal to 1, this metric assumes that the data has no linear
dependence. When the data is restricted to a grid-like path with categorical variables, the
distance can be analyzed as the amount of steps required to reach the other point.

KNN may also be used for other purposes, for example: to detect outliers in the data. When
applying the algorithm for this task, the Mahalanobis distance might be useful [26]:

d(x, y) = ((x⃗− y⃗)′C−1(x⃗− y⃗))
1
2 (2.7)

where x and y are two instances of data and C is the covariance matrix. In the Mahalanobis
equation, the C matrix eliminates redundant information contained in correlated variables and
can be applied without the normalization by the Euclidean distance.

As a general rule, any distance metric can be used by the KNN algorithm in the ML training
phase, however, selecting this metric is not a straightforward process. Each metric has its own
calculations and properties, making this process to rely on data. The bad selection of a metric
may lead to an overfit or underfit, where the final model will not have a reasonable performance.

2.1.3.3 Logistic Regression

The Logistic Regression (LR) is a linear statistical algorithm built for problems where the target
variable is binary. The algorithm applies a continuous, differentiable function on the linear
regression output to circumvent prediction issues found at the base model [1].



14 Chapter 2. Background

According to [1], the hard threshold (e.g. a parameter to determine where the final output
will be considered 0 or 1) and Sigmoid 2.3 on page 11 functions can be used. These functions
will return the input probability of being positive (1) or negative, where the probability between
infinite numbers are verified, giving a value that ranges between 0 and 1. It is possible to visualize
both functions in Figure 2.3, that shows the hard threshold function on the left and the Sigmoid
on the right.

Figure 2.3: Output functions for a LR: a) Hard threshold function and b) Sigmoid

Source: Adapted from Russell and Norvig [1]

The learning process of a LR relies on fitting a set of weights in order to minimize the data
loss. The model is represented in the following equation:

z = α +
∑

BiXi, (2.8)

where Bi are the learning parameters of the model, Xi are the dataset inputs and α a constant to
weight the summation. As mentioned in [1, 27], due to its mathematical properties, the Sigmoid
function is preferred at the LR, therefore, the final output is given by the following equation:

P (X) = 1
1 + e−(α+

∑
BiXi)

. (2.9)

Similar to the ANN, since the derivative of the Sigmoid function can be easily calculated, the
learning process of the LR is frequently performed by derivative methods, yet it might also be
trained by general purpose optimization algorithms.

As mentioned earlier, the LR was built for problems where the data output ranges between 0
and 1. In order to be applied to solve multiclass problems, the algorithm can be inserted into
the One vs All (OvA) strategy detailed in the next paragraph.

Logistic Regression and One vs All The OvA strategy can be defined as the application of
many classifiers of the same type, where each predicts the input probability of a specific class
[28].
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The model fit process for multiple classes can be visualized in Figure 2.4. The train set is sent
for several algorithms equal to the number of classes found in the data. These algorithms will
pass through a training phase with the same parameters, resulting in multiple sub-models. These
sub-models are grouped to make the final model, which will give predictions for new data. To
perform predictions, the new data instance is sent to all sub-models, where the input probability
for each class is calculated. In the end, the model with a higher probability of being the specific
class is selected as output [28].

Figure 2.4: OvA strategy for multiclass classification

2.1.3.4 Random Forest

Random Forest (RF) is a term for ensemble methods composed by tree-type classifiers [29]. Each
tree classifier is fitted on various sub-samples of the dataset to improve the predictive score and
reduce the overfit [30].

The training phase of a RF is slightly different when compared to other algorithms mentioned
in this section. The difference is located at the initial phase of the training, where a randomly
selected subset of features and instances are split from the dataset and sent to multiple three-
based algorithms [29, 30]. When applying this algorithm for a classification problem, the output
is given by the majority vote of each tree. Regarding the model parameters, it is possible to
mention the number of features to be included on each subset and the tree-type classifier used to
gather outputs.

According to [31], when decreasing the number of selected features, the expectations are to
reduce the required processing time and increase the correlation between trees, it is also possible
to increase the predictive accuracy while creating a model less sensitive to handle outliers. Since
this method selects specific subsets of features, the feature importance is calculated while the
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training phase is performed. The tree classifier depends on applications, where the most common
algorithm used for both regression and classification tasks is the Decision Tree algorithm.

Decision Tree Decision Tree (DT) is an algorithm which mimics an up-side down real-world
tree [32]. A DT built for the dataset shown at Figure 2.1 on page 7 can be visualized at Figure
2.5. The components of the DT are: root node; internal node; termination node; and branches.

Figure 2.5: Decision Tree structure

Source: Raggett [33]

These components can be perceived in the Figure according to the following:

• Root node: is the root of the up-side down tree, represented here as the Outlook feature;

• Branch: each branch represents specific characteristics found in the data, where the
Outlook feature branches are categorical with 3 possible outputs, Humidity branches are
values within a range and Windy branches are binary;

• Internal node: are features found in the dataset, where the algorithm will have to make
a decision based on the value received (Humidity, Windy features);

• Termination node: represents the final decision based on the target variable, for this
example, whether or not the climate conditions are good to Play golf.

According to Ali et al. [31], the training phase propagates the data from the root until it
reaches one terminal node located at the left of the tree, passing through internal nodes. Each
internal node will try to optimize the best split for each feature depending on its type (value
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ranges, categories, etc). With the best data splits for the presented training set, the algorithm
will evaluate the test set using the same structure.

Considering the current purpose of the DT, which is to insert multiple DT’s into a RF
algorithm when reducing the number of features used in the subset given by the RF, it is
expected that this process makes ease the search for the best data split since there are fewer
features and instances when compared to using the whole data. Regarding specific parameters
for the DT algorithm, it varies between the criteria used to measure the quality of the split,
where the entropy is usually selected:

Entropy H(X) = −
∑

p(X) log p(X) (2.10)

measuring the information gain of the specific variable. Other parameters are the maximum
depth of the tree, the maximum number of internal nodes, and which strategy will perform the
data split. The quality of the split, created by the combination of these parameters and data,
will assist to understand the performance of the DT output since the split quality, regarding the
evaluation metrics, would increase the predictive quality of the DT, while a poor split will reduce
its accuracy. Finally, the algorithm will output predictions that are compared against the real
values and the performance can be compared against other algorithms.

2.1.4 Model Validation and Evaluation: Train and Test

The validation is performed under a training and testing phase, measuring and validating the
capabilities of the algorithm to acquire the knowledge, building a model and predict new data
[1, 10]. Figure 2.6 shows the validation process detailed in subsequent subsections.

Figure 2.6: Summary of the validation
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2.1.4.1 Training phase

Previous to the training phase, the dataset is split into 4 new sets: Xtrain; Xtest; ytrain; ytest,
where X are inputs and y the output. Train sets are used to build and validate the model, while
test sets are used to evaluate the predictions for unseen data. During the training phase, the
Xtrain set is sent to the algorithm which will perform its learning mechanism and the algorithm
output will be compared against the ytrain where the performance is evaluated by a ML metric.
After a series of iterations, the learning mechanism, weights, bias and others, should be optimized
for that algorithm, generating a model. Finally, the model is used to generate predictions for the
Xtest set, where the predictions are compared against ytest and the performance is measured by
the same, distinct or multiple ML metrics.

The standard training phase described in the previous paragraph performs a straightforward
model evaluation, however, it is possible to apply other strategies to estimate the risk of a
learner or to perform a better model selection. The most used strategy for this task is Cross-
Validation (CV) [34] with its variation named k-Fold Cross-Validation (kCV) where 4 distinct
steps are applied [35]:

1. Shuffle the dataset;

2. Split the data in k folds of the same length (same number of instances);

3. Create and evaluate a model for each fold;

4. Calculate the kCV score.

According to [35, 36], the parameter k is usually set to 5 or 10, depending on what is being
observed. Increasing the value of k will reduce the variance and might increase the bias, therefore,
the opposite happens when k has a lower value.

The kCV evaluation is a discussion topic where standard approaches calculate the mean of
the metric at each fold, however according to Forman and Scholz [37], the best way to acquire
the scores is by summing up correct and incorrect classifications per class, calculating them on
the final score, leading to more realistic instead of optimistic results. In any case if the score
obtained by the kCV is satisfactory, the data and algorithm can be propagated to the test phase.

2.1.4.2 Testing phase

The testing phase is responsible to measure the real performance of the model built at the
training phase, using the unseen data (Xtest and ytest) to analyze its predictive capability. If the
model used a validation strategy during the training phase, it would require a refit, therefore,
the Xtrain is used to fit the algorithm, generating a new model. The Xtest is propagated to this
model, which returns a set of predictions ŷ that is compared against the ytest and its performance
is evaluated by a ML metric.
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The performance of the model at the test set is analyzed based on how well the function is
being approximated [38], where this concept is applied to ML in the following characteristics:

• Overfitting: the model acquires knowledge for a specific set of data and may not be able
to generalize;

• Underfitting: the model is not able to generalize the training data and has a poor
predictive performance;

• Good fit: a mid term between over and underfitting, where the model acquired sufficient
knowledge and is capable of generalizing while predicting new data.

To address overfitting and underfitting, validation strategies like the cross-validation mentioned in
previous paragraphs can be used. Also, feature selection can improve the algorithms performance
during training.

2.1.5 Evaluation Metrics

Evaluation metrics assess the performance of a model in the training and testing phases. In
classification problems, the model returns the input probability of belonging to a class. The
outcome, according to Sokolova et al. [39], is usually represented by a confusion matrix represented
in Table 2.2, where: TP are True Positive; FP - False Positive; TN - True Negative; FN - False
Negative. Accounting the results obtained by the model, each metric will calculate the score
using the confusion matrix, but using a different mathematical model. It is worth mentioning
that these metrics share the same goal, a maximization problem that has an optimal value in 1.0
and the worst value at 0.0.

Table 2.2: Confusion matrix for binary classification

Class x Prediction Positive Negative

Positive TP FN
Negative FP TN

2.1.5.1 Accuracy

Being the most popular metric used in the literature [39, 40], accuracy is defined by Equation
2.11,

accuracy = TP + TN

TP + FP + FN + FP
(2.11)

Regarding the mathematical model, accuracy has been criticized since it may lead to a biased
score. An example described by [41], assumes an unbalanced dataset where, for each positive
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class, there are 100 negative classes. The same author indicates that a model with a good fit
would produce an 99% accuracy, classifying correctly each negative class since it is majority,
while misclassifying all positive cases.

To mitigate challenges stemming from imbalanced datasets, balanced accuracy serves as a
valuable metric for assessing machine learning algorithms [42]. It is quantified by the following
equation:

Balanced Accuracy = 1
2

( TP
Positives + TN

Negatives

)
(2.12)

The macro-average of recall scores per class is computed by weighting each class’s score based
on the inverse prevalence of its true class. When the classifier performs equally well on both
classes, this computation simplifies to the conventional accuracy.

2.1.5.2 Receiver Operating Characteristic

ROC is described as a comprehensive function to evaluate the performance of a model [39]. The
mathematical model can be described by Equation 2.13:

ROC = P (x|positive)
P (x|negative) (2.13)

where P (x|C) denotes the conditional probability that a data entry has the class label C. As
mentioned by [39], ROC results deal with the most positive to the most negative classification,
being a metric that can be easily analyzed. Regarding unbalanced datasets, it has been proven
that metrics based on precision and recall may return a more realistic result [43].

2.1.5.3 F-score

F-score is a precision-recall based metric, therefore, it is required to understand the mathematical
model of both metrics in order to understand the main goal. Recall or sensitivity or true positive
rate, is calculated by 2.14:

recall = TP

TP + FN
(2.14)

while precision is given by 2.15:

precision = TP

TP + FP
(2.15)

both metrics are used to calculate the F-score, presented in 2.16 on the facing page:
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F-score = 2 ∗ recall ∗ precision

precision + recall
(2.16)

Recall may be defined as the model capability to predict positive results and precision is
the proportion of positive results that are truly positive. The f-score would be the harmonic
mean between these metrics and also can be used to achieve more realistic results for unbalanced
datasets. However, the f-score can balance precision and recall by applying two parameters α

and β.

2.2 Deep Learning

Traditional ML algorithms were used for multiple applications, where they were capable to detect
patterns and adapt to new circumstances. In a counterpart, these algorithms were limited to
process natural data in their raw form, which also require expert knowledge to transform raw
data into a suitable representation to feed an algorithm [44].

According to LeCun et al. [44], methods that automatically discover patterns in raw data
are methods of Representation learning, where Deep Learning (DL) are representation learning
methods with multiple layers of representations. According to the same author, when dealing
with classification tasks, when increasing the number of layers, it is expected that the network
would capture discriminant and important features while suppressing irrelevant information, for
instance: when learning images, layers are responsible to detect the presence or absence of edges
at particular locations, and detect patterns regardless small variations in the image position.

LeCun et al. [44] and Bengio et al. [45] state that the important factor of DL is that each
layer of feature is not designed by humans. They are, in fact, learned from the data using a
learning mechanism. Among those learning mechanisms, it is possible to mention the basic DL
architecture named Deep Feed Forward Network (DFFN). DFFN’s are an extension to the FF
architecture, where multiple hidden layers are inserted into the architecture. As an example,
Figure 2.7 on the next page shows a 4 layer network where the input layer has 3 neurons, 2
hidden layers with 4 neurons each and an output layer with 2 neurons.

As per the research conducted by Nielsen [2], this particular architecture demonstrates greater
computational power than a standard FF. However, its complexity poses challenges in the
training process. Nonetheless, the DFFN has garnered substantial attention in both academic
literature and industry circles. Moreover, various other DL models have been developed to
address distinct challenges in handling diverse data sources. In the context of this thesis, emphasis
is placed on the Convolutional Neural Network (CNN), which has exhibited superior performance
compared to conventional models, particularly in analyzing image data domains.
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Figure 2.7: Deep Feed Forward Network structure

Source: Adapted from Veen and Leijnen [19]

2.2.1 Convolutional Neural Network

As mentioned in the previous paragraph, CNN outperformed traditional ML models and also its
basic structure (ANN) for data represented as images, however, the CNN still share the same
concepts of an ANN, where the first layer will receive the data and the final layer will output a
variable according to the activation function and classes defined at the problem [46].

According to Nielsen [2], it is possible to achieve a great classification result using a DFFN,
however it does not take into account the spatial structure of the image. Also considering a
problem with a (28 x 28 x 1) image shape, only the first layer will have 784 weights to be
optimized, requiring a significant computational time due to its complexity [2, 46]. Nevertheless,
what differs the CNN from the ANN architecture is that convolution is used instead of matrix
multiplication in at least one layer [45]. The layers of a CNN are [46]:

• Input layer: responsible to store the image pixels, following the same guidelines of the
traditional FF;

• Convolutional layer: will determine the output of neurons which are connected to local
regions of the input through the calculation of the scalar product between their weights
and the region connected to the input volume;

• Pooling layer: will then simply perform down sampling along the spatial dimension of
the given input, further reducing the number of parameters within that activation;

• Fully-connected layer: standard approach based on the basic structure (FF), where
weights and bias are learned to return an output.

An example of the basic structure of a CNN can be visualized in Figure 2.8 on the facing
page, where an image of 28x28 pixels is propagated to the first convolutional layer, where its
output is sent to a pooling layer and finishing this architecture with 1 hidden layer of 100 neurons
and one output layer of 10 neurons. The next two subsequent sections will detail the mechanisms
of the Convolutional and Pooling layers that are inserted into the CNN model.
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Figure 2.8: An example of a CNN structure

Source: Nielsen [2]

2.2.1.1 Convolutional Layer

As mentioned by O’Shea and Nash [46], convolutional layers are the key aspect of a CNN, where
parameters of these layers are based on small kernels. Kernels are used to produce 2D activation
maps, acquired from the convolution of each kernel across the spatial dimension when the data
pass through it.

As shown in Figure 2.9 on the next page, a kernel passes through an image and moves
according to its dimension, the scalar product of each value of the kernel is calculated [46]. Each
kernel is used by the network to learn structures, where the kernel map will be activated if it
passes through a specific feature in the same position, therefore, the model will learn from an
area named receptive field instead of connecting each image pixel to the hidden layer.

In LeCun et al. [44] and O’Shea and Nash [46], the authors mention three hyperparameters
that can be optimized through the process, these are named as:

• Depth: the volume produced by the convolutional layer, which is set by the number of
neurons within the input area;

• Stride: used to set the depth around the spatial dimension of the input;

• Zero-padding: process of padding the border of the input.

According to Nielsen [2], the CNN is also based in the shared weights and bias idea, which
means that all neurons in the first hidden layer will learn exact the same feature, however in
distinct locations. The same author points out that this idea is useful to assist the CNN to detect
movements or other modifications applied to the image, where the author mentions a rotation to
a cat image, where it will still be a cat but in a different position. The concept of shared weights
and bias provides a huge advantage when compared to the standard FF network, as it assists to
reduce the number of parameters to be learnt at the training phase. The example given in [2]
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Figure 2.9: An example of a 2D convolution

Source: Bengio et al. [45]

shows that a network for the MNIST dataset (28x28 image shape) requires 23,550 parameters,
while the CNN with 25 feature maps requires 520 parameters. It is also worth mentioning that
feature maps are the common expression found to indicate the output of the hidden neurons in
the layer.

2.2.1.2 Pooling Layer

Pooling layer is a distinct type of layer applied right after the convolution layer, where the
goal is to reduce the representation dimension, reducing the number of parameters and model
complexity [2, 45, 46]. As can be visualized in Figure 2.10 on the facing page, the units of the
pooling layer summarize the information at a specific region of the feature map (2x2 at Figure
2.10 on the next page) according to a specific criteria [2]. Shown in the same figure and caption,
it indicates that a max-pooling layer is applied, which means that the maximum value of the 2x2
region is propagated to the pooling unit. It is worth mentioning that the pooling is applied to
each feature map generated at the convolution layer.

The max-pooling is the most used pooling strategy with a 2x2 size, which will reduce the
map by the half of its original size. For instance, a feature map with dimensions 24x24 is reduced
to 12x12 after pooling. Nevertheless, max-pooling is not the only pooling strategy. The following
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Figure 2.10: Example of a max-pooling layer

Source: Nielsen [2]

strategies can be used [2, 46]:

• L2 pooling: calculate the square root of the sum of the squares at the region;

• Average pooling: calculate the average of the region;

• Overlapping pooling: the stride is set to 2 while the kernel size is set to 3;

2.3 Feature Selection

At Section 2.1 on page 5, it was possible to notice that a tabular dataset is a representation
for multiple features of the same instance. When the dataset goes through a preprocessing,
the data can be considered ready to be used by ML algorithms. Algorithms like the Random
Forest reduce the size of the dataset, aiming to increase the predictive accuracy of the algorithm
when grouping multiple tree-based algorithms. The process of selecting which features should
be inserted into the subset of features to be further evaluated by the ML algorithm is named
Feature Selection (FS).

FS is an optimization problem which emerges with the necessity to reduce the number of
features found in a dataset, creating the best possible subset of features [47]. According to the
same author, there are several benefits to apply FS techniques to the data:

• Faster training phase: less features require less computational time and also a ML
algorithm with less complexity;

• Reduces overfitting: redundant features are excluded from the entire set;

• Improve the predictive capability: less misleading data would increase the obtained
score by the algorithm.
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Drawbacks are associated to the fact that FS does not guarantee that a subset of features will
give a better result when compared to using the complete set. If an algorithm combined with
a specific FS strategy fails to enhance its predictive capability, the time required for the FS
phase plus training phase will be greater when compared with a simple training phase, being an
unnecessary process.

Regarding the optimization task, FS is a bi-objective problem which searches for a solution
that increases the algorithm predictive capability while decreases the number of features. The
solution encoding of an algorithm for the FS task is a binary array with size equal to the number
of features in the dataset, where the i-th variable represents whether or not the i-th feature of
the dataset should be used in the subset. Functions devised to handle the FS problem penalize
the number of features and the score, leading to the traditional FS objective function:

f(x) = αScore(Xtrain, ytrain) + β
|S|
|D|

, (2.17)

where: the score stands for an ML metric acquired from the training stage of an ML model
with the X input with selected features and y the target variable; S stands for the selected
subset of features; D is the full set of features; α is a real number between [0, 1] range and β is
given by (1 - α). The goal for Equation 2.17 is to penalize the learning algorithm score with
the number of selected features, minimizing the score while minimizing features, where both
score and features are weighted by two distinct parameters. However, in order to apply the same
strategy for classification problems, a slightly modification should be performed, modifying the
plus sign to minus, resulting in:

f(x) = αScore(Xtrain, ytrain)− β
|S|
|D|

. (2.18)

The modification would maximize the score while it still minimizes the number of features,
allowing the algorithms to be compared regarding the obtained score applying the classification
metrics as basis. With the definitions of a solution and the cost function to evaluate it, according
to Guyon and Elisseeff [47], this problem is usually solved by three distinct approaches that will
be explained on subsequent subsections: Filter; Wrapper and Embedded.

2.3.1 Filter

Filter approaches are based on a feature rank which suggests which features are the most
prominent in the dataset [4]. The feature rank is calculated according to a criteria based on a
statistical test or strategy which will be able to sort the features according to its importance.
Filters do not require to fit a ML model in order to acquire the feature rank, therefore, it is
considered a quick method for FS, however, the final model performance might suffer a decrease
on the predictive capability since it does not consider the baseline model for FS.
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As mentioned in previous paragraph, the process to acquire the feature rank depends on
the strategy, however, with the calculated feature rank, the features are selected according to a
threshold defined by the user, where this threshold will indicate which features should be used in
the feature subset. Among popular filter approaches, it is possible to mention the Correlation
criteria and Mutual Information (MI).

2.3.1.1 Correlation criteria

The correlation criteria is a simple method for feature selection that captures the linear
dependencies between the features and the target variable. The base correlation model is
Pearson Correlation (PC) coefficient, defined here as:

R(Xi) = cov(xi, y)√
var(xi) ∗ var(y)

(2.19)

where cov is the covariance and var is the variance. Correlation can vary in the range [-1, 1],
where positive correlation indicates that both variables move towards the same direction and
negative correlation indicates that both variables move towards the opposite direction.

To be able to select the most correlated features at the FS task, the absolute value of
each correlation is calculated, where according to the defined threshold, features will appear in
the selected subset. The threshold for FS can vary between a single real value between [0, 1]
representing a percentage of features to be included or statistical measures, for instance: mean,
median, min, max, etc.

2.3.1.2 Mutual Information

While the PC captures the linear dependency between pairs of variables, the MI uses Shannon
Entropy between two variables. As defined in [4], MI uses the Shannon entropy as basis
represented here by Equation 2.20,

H(y) = −
∑

x

p(Y )log(p(Y )) (2.20)

which stands for the information content in the target variable. When observing the x variable
in relation to the target, the conditional entropy is defined as:

H(Y |x) = −
∑

x

∑
y

p(x, y)log(p(y|x)). (2.21)

Equation 2.21 implies that by observing a variable x, the uncertainty in the output y is reduced
[4]. The decrease in uncertainty is given as:
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MI(y, x) = H(y)−H(y|x). (2.22)

Equation 2.22 gives the mutual information between X variable and target. If these two variables
are independent, the MI score will be zero, otherwise the result will be greater than zero. Similar
to the correlation criteria, the threshold can be a statistical measure and a percentage of features,
however, the results of the MI vary between range [0, ∞), requiring the results to be normalized
in order to be able to select the feature subset.

2.3.2 Embedded

The Embedded approach, different from the Filter approach, requires a baseline model. The
strategy makes a trial to insert the FS at the training phase of the algorithm [4]. This approach
is done by selecting an objective function which will evaluate the process, for instance an ML
metric to determine if the generated subset helps the model to increase its performance.

At the training phase, an algorithm is used to gather knowledge from the data and optimize
its learning mechanism in order to become a model capable to generalize the data for multiple
scenarios. In the Embedded approach, the learning mechanism (weights, bias, thresholds, etc) is
used to rank the selected features, where a threshold or statistical measure is also used to select
features to be used in the subset.

The Embedded approach offers several advantages, notably in potentially streamlining the
process of enhancing model performance by automatically eliminating redundant features through
its intrinsic learning mechanism. However, it’s worth noting that a feature deemed unimportant
by the algorithm might still contribute to identifying novel patterns when combined with other
features. On the other hand, as only a single new subset is generated, there could be insufficient
diversity between the subset and the original dataset. This limitation may result in wasted
processing time when attempting to fit the model to this new subset.

2.3.3 Wrapper

The Wrapper approach is an extension for the Embedded model, using a baseline model which
will assist to select the feature subset [4]. The strategy fits a model with the complete dataset
and will repeat the following instructions until a stopping criteria is reached:

1. Compute the feature importance;

2. Reduce the dataset, e.g. create the subset, according to a criteria;

3. Fit a new instance of the same model with the subset.
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The feature importance is computed from the model learning mechanism, which can be used
to indicate the less relevant set of features. The criteria used to reduce the dataset can be the
feature importance or a percentage of features to be selected. Finally, the stopping criteria is
defined as a minimum number of features to be found at the subset or a maximum number of
iterations or time.

The benefits of using a Wrapper strategy are related to the number of distinct subsets
generated along the process, exploiting multiple combinations of data until it finds a good
subset of features for the specific model. In a counterpart, the strategy requires a model to be
fit, therefore, when dealing with a large scale dataset, this strategy might have a performance
downgrade regarding the required computational time. Also, the control parameters for this
strategy: learning algorithm parameters; stopping criteria; and criteria to create the feature
subset, are problem dependent, requiring a parameter tuning to achieve the best performance,
also leading to more computational time.

2.4 Swarm Intelligence Optimization

The optimization field is mainly located in the mathematical background based on the assumptions
to solve any problem involving a decision making process. According to Chong and Zak [48], this
area received a huge attention in the past years due to the progress of the computer technology
and the flexibility of application in multiple knowledge areas.

At the optimization process, the algorithm searches for a feasible solution according to
optimization criteria, and results are evaluated by an objective function whose purpose is to
measure the quality of the solution [48]. The best solution achieved is interpreted as the best
decision based on the algorithm criteria. Standard optimization problems are defined on the
following format:

minimize f (x)

subject to lj ≤ xj ≤ uj , j = 1, . . . , n.
(2.23)

where f : Rn → R is nonlinear, multimodal and can be nondifferentiable or noncontinuous. We
assume each variable is box-constrained, otherwise lj = −∞ and uj =∞. Also, other problems
may vary according to their objective function, where the function can be a bi-objective cost
function or have several other constraints.

In this thesis, the optimization area is summarized in the Swarm Intelligence (SI) field, where
bio-inspired algorithms are developed for a general purpose optimization process. The algorithms
found in this branch were applied in interdisciplinary scenarios which assisted researches and the
industry to acquire and develop high-end solutions for multiples problems.

SI is a branch of Artificial Intelligence (AI) which encompasses bio-inspired algorithms to
solve diversified optimization problems [49]. In this category, each algorithm simulates the
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collective intelligence of species that can be found in real world, for instance, the bees foraging
behavior, the movement of flocking birds, the ant colony system, etc. Prominent algorithms
that are commonly used in the literature are: Artificial Bee Colony (ABC) [50]; the Ant Colony
Optimization (ACO) [51]; and the Particle Swarm Optimization (PSO) [52].

Besides the theoretical environment of SI algorithms, the No Free Lunch theorem [53]
corroborates the fact that there is not an algorithm capable of solving all problems, being one
of the reasons to focus in algorithms for a specific area. For instance: ACO algorithm is a well
known strategy to solve the traveling salesman problem and job scheduling; ABC and PSO
presented good results when applied to continuous and discrete encoding in multiple domains
[50, 54].

Regarding SI’s applications, surveys found in Karaboga et al. [50] and Wei and Qiqiang [54]
have presented a huge variety of them in economics, engineering, computer science, etc. In the
data mining area, it is shown by [55] that ACO and PSO are the most used algorithms, where
the approaches vary on parameter tuning, training small or medium scale ML models and feature
selection. However, the optimization process of ACO does not circumvent the problem created
in the thesis, which will be presented in the next Chapter. Therefore, the following subsections
will detail the standards of SI algorithms and the optimization process of ABC and PSO.

2.4.1 Swarm Intelligence Base Algorithm

The standard mechanism is applied to each algorithm based on the swarm intelligence. The
basic structure is represented by a 2-Dimensional matrix of shape Number of Solutions (NS) x
Problem Dimension and a vector of shape NP. Each row of the matrix is the candidate solution
of a specific problem, which is evaluated by a function f subject to constraints g.

The main structure is generated in a common phase named Initialization phase, where the
initial values of the matrix are generated according to 2.24,

xt=0
ij = lj + ϕ ∗ (uj − lj), (2.24)

where x0
ij is the j-th problem variable of the i-th particle in the swarm, ϕ is a random number

sampled from a uniform distribution and set into a range between [0, 1], uj and lj are respectively
the upper and lower bounds of the problem for the j-th variable. With the initialized matrix,
each solution will have its respective fitness value calculated (xif ), finishing the initialization
phase that leads to the individual mechanism performed by the SI algorithm until a stopping
criteria is reached. The stopping criteria is usually the number of function calls, which stands by
the number of times a solution was evaluated by the objective function.
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2.4.2 Artificial Bee Colony

Inspired by the mathematical modeling of honey bees forage pattern proposed by Tereshko and
Loengarov [56], Karaboga and Basturk [57] devised the ABC algorithm. The ABC encompasses
three distinct group of bees: Employed; Onlooker; and Scout bees, which search for food sources
in the environment while manage to trade information with other bees inside the hive. The
optimization process is controlled by three parameters: NS; a limit variable for each solution;
and a stopping criteria. The solutions are modified in three distinct phases where each phase is
named with the name of each bee group.

Employed Bees: at this phase, bees are sent to explore the neighborhood searching for
more promising food sources. For each candidate solution (xi), a local search is combined with a
greedy selection process, the solution is modified according to the following:

xt+1
ij = xt

ij − ϕ× (xt
ij − xt

kj) (2.25)

where ϕ is a random uniform value between range [-1, 1], k is a random integer between range
[0, NS] and the indexes are the j-th variable of the i-th solution and the k-th solution. After
the information exchange, the new solution is evaluated according to the objective function,
calculating its fitness value. If the fitness value of the new solution is better than its previous
state, the old solution is replaced, otherwise, the limit value of the i-th solution is increased by 1.

Onlooker Bees: at this phase, the bees are selected according to a criteria and sent to trade
information with a distinct bee from the hive. The common process for the selection process
is the roulette wheel selection, however, a tournament among bees can be applied [50]. The
roulette selection is similar to a fitness proportionate roulette, where the probability is calculated
according to the following:

Pi = f(xi)∑NS
n=1 f(xn)

(2.26)

The selected bee is sent to search for more promising food sources, where it will perform the
same process of the employed bee phase. The same greedy selection process is applied. If the
solution fails to converge, the limit value of the selected bee is increased by 1.

Scout Bees: the last phase is a random motion searching for a food source. This process
is performed when a solution has its limit equal or higher than a maximum limit. It is worth
mentioning that, in the canonical ABC, only one bee can be considered a scout at each iteration.
Summarizing this phase as the optimization process, it is a reset process, where the scout bee
will have its values re-initialized according to Equation 2.24 on the facing page.

The cycle of Employed, Onlooker and Scout bees is applied while a stopping criteria is not
reached. This stopping criteria is usually the number of iterations or number of function calls,
e.g. the number of times a solution is evaluated. When the process is finished, the algorithm
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outputs the best solution found for the problem which can be compared or used to solve the
specific problem. The complete procedure of the ABC algorithm can be found in Algorithm 1.

Algorithm 1: ABC pseudocode
Input: Objective function f(x), D, LB, UB, NFE, NS, LIMIT
Output: Best solution found Pg = {xg1, xg2, xg3, ..., xgD}
// After each function evaluation:
// 1) Increment FEs counter;
// 2) Check for a possible new global best;
// 3) Check the stopping criteria.

1 FEs← 0
2 MaxV ← abs(UB − LB)
3 MinV ←MaxV ∗ −1
// Initialization phase

4 for i← 0 to to NP do
5 Initialize the food source (xi) between [LB, UB]
6 xif ← f(xi)
7 end
8 Save global best information (xg, xgf )
// Optimization process

9 repeat
10 for i← 0 to NP do
11 xi ← EmployedBees(xi, xj)
12 xi ← OnlookerBees(xni)
13 xg, xgf ← Compare(xi, xg)
14 xi ← ScoutBees(LIMIT)
15 end
16 until FEs == NFE

2.4.3 Particle Swarm Optimization

Introduced by Eberhart and Kennedy [52], the PSO is an SI algorithm based on the movement of
flocking birds, the algorithm refers to the candidate solutions and the population as, respectively,
particles and swarm, where each particle is composed by the following attributes: velocity (v);
position (x); a fitness (xf ) value associated to the position; a local best position (x̂); and a local
best fitness (x̂f ). At each generation t, the position is updated according to the movement rule
(2.27),

xt+1
i = xt

i + vt+1
i , (2.27)

where the i-th particle of the swarm is moved according to the new velocity given by (2.28)

vt+1
i = w × vt

i + ϕ1 × c1 × (x̂i
t − xt

i) + ϕ2 × c2 × (xt
g − xt

i), (2.28)

where w, c1 and c2 are control parameters to adjust the particle movement of distinct components
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of the formula, while ϕ1 and ϕ2 are random numbers sampled from a uniform distribution between
range [0, 1]. After moving a particle, the fitness value is calculated according to an objective
function. If the new position xt+1

i has a better fitness value when compared to xt
i, the local best

position is replaced and it is compared with the position of the global best particle in the swarm
xg.

Figure 2.11: Depiction of PSO movement

The movement equation of PSO is divided into three terms: inertia; memory; and cooperation.
An example of PSO movement is presented in Figure 2.11, where the inertia term is the capability
of the particle to keep moving in the same direction, the memory is a movement towards the
best trajectory ever visited by the particle, and lastly, the cooperation guides the particle to the
best particle direction. The pseudocode of PSO is shown in Algorithm 2 on the following page.

2.4.4 Evolutionary Particle Swarm Optimization

Along the years, PSO has been criticized regarding its optimization mechanism. The works
developed by Miranda and Fonseca [58], and Zeng and Cui [59], show that, at each iteration,
when the i-th particle is the current global best, the last term weighted by c2 would be excluded,
resulting in a movement performed only with the first and second terms. Also, when a particle
replaces its local best at generation t, t+1 generation would have its second term excluded, since
the current position is the same as the local best position. Besides the criticisms related to the
movement rule, there is a deep discussion about the correct values for each control parameter,
requiring a parameter tuning for each distinct application. As an approach to circumvent issues
found on classic PSO, Miranda and Fonseca [58] developed a novel algorithm named Evolutionary
PSO (EPSO), which combines strategies found on the AI literature to enhance the algorithm
optimization process.

The merge of evolution strategies with PSO introduces: 4 dynamic weights wi for the particle
movement; replicas; and reproduction components, into the basic algorithm. In EPSO, the
dynamic weights replace the static weights, e.g. movement formula control parameters, found in
PSO and also each particle has its own collection of weights, which differs from PSO that has
weights for the whole population. Regarding the optimization process, EPSO starts by generating
replicas, each replica will copy the particle information and their weights are mutated according
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Algorithm 2: PSO pseudocode
Input: Objective function f(x), D, LB, UB, NP, NFE, c1, c2, w

Output: Best solution found Pg = {x1, x2, x3, ..., xD}
// After each function evaluation:
// 1) Increment FEs counter;
// 2) Check for a possible new global best;
// 3) Check the stopping criteria.

1 FEs← 0
2 MaxV ← abs(UB − LB)
3 MinV ←MaxV ∗ −1
// Initialization phase

4 for i← 0 to to NP do
5 Initialize particle (xi) between [LB, UB]
6 Initialize velocity (vi) between [MinV, MaxV]
7 xif ← f(xi)
8 end
9 Save all local best information (x̂i, x̂if , x̂iµ, x̂iσ)

10 Save global best information (xg, xgf , xgµ, xgσ)
// Optimization process

11 repeat
12 for i← 0 to to NP do
13 vi ← MoveParticle(xi, vi, x̂i, xg, c1, c2, w)
14 xi ← UpdatePosition(xi, vi)
15 x̂i, x̂if ← Compare(xi, x̂i)
16 xg, xgf ← Compare(x̂i, xg)
17 end
18 until FEs == NFE

to Equation (2.29),

wt
rk = wt

ik + τN(0, 1), (2.29)

where τ is the mutation rate and N(0, 1) is a sample drawn from a Gaussian distribution of
mean 0 and standard deviation and wt

ik is the k-th weight of the i-th particle. With this new
collection of weights, each of the NR replicas and the original particle are moved with the new
movement formula (2.30),

vt+1
i = wt

i1 × vt
i + wt

i2 × (x̂t
i − xt

i) + wt
i3 × P [(xt

g∗ − xt
i)], (2.30)

where P stands for a communication factor, e.g. a binary mask filled with ones with probability
cp. Furthermore, Equation (2.30) introduces a perturbation in the global best as xg∗ :

xg∗ = xg × (1 + wi4 ×N(0, 1)). (2.31)

In the end, a tournament between all replicas and the original particle is performed. The
winner is assigned as the new i-th particle and, in case of the winner is a replica, the weights are
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also replaced. Finally, the current particle is compared with the local and global best particles
as it happens in PSO. The EPSO pseudocode is presented in Algorithm 3.

Algorithm 3: EPSO pseudocode
Input: Objective function f(x), D, LB, UB, NP, NFE, τ , CP, NR, MLL
Output: Best solution found Pg = {x1, x2, x3, ..., xD}
// After each function evaluation:
// 1) Increment FEs counter;
// 2) Check for a possible new global best;
// 3) Check the stopping criteria.

1 FEs← 0
2 MaxV ← abs(UB − LB)
3 MinV ←MaxV ∗ −1
// Initialization phase

4 for i← 0 to to NP do
5 Initialize particle (xi) between [LB, UB]
6 Initialize velocity (vi) between [MinV, MaxV]
7 Initialize strategic weights (w∗

i1, w∗
i2, w∗

i3, w∗
i4) between [0, 1]

8 xif ← f(xi)
9 end

10 Save all local best information (x̂i, x̂if , x̂iµ, x̂iσ)
11 Save global best information (xg, xgf , xgµ, xgσ)

// Optimization process
12 repeat
13 for i← 0 to to NP do
14 bestreplica ← GenerateReplicas(NR, w∗

i , τ)
15 bestreplicaf ← f(bestreplica)
16 xnew ← MoveParticle(xi, vi, x̂i, xg, CP )
17 xnewf ← f(xnew)
18 xi, xif , vi, w∗

i ← Compare(xnew, bestreplica)
19 x̂i, x̂if ← Compare(xi, x̂i)
20 xg, xgf ← Compare(x̂i, xg)
21 end
22 until FEs == NFE





Chapter 3

Data Transformation and Feature Se-
lection for Machine Learning

This Chapter describes the state-of-the-art techniques used for the core ideas found in the
proposed approach: 1) data transformation, where the data domain is changed; followed by
2) a Feature Selection (FS) phase based on image similarity to fit the Convolutional Neural
Network (CNN). Gathering these main concepts, developed works that are mentioned in this
Chapter met at least one of the following criteria:

• the proposal used a pipeline of data transformation or FS to deal with tabular datasets
problems and further solve them by using Machine Learning (ML) algorithms;

• the proposal compares the technique with other transformation or feature selection strategies
applied at public tabular datasets;

• the work is a survey or discussion regarding the state-of-the-art algorithms for FS, data
transformation or ML.

To summarize the collected information, a brief overview of each contribution will be detailed in
subsequent sections, where the next section points out the review of data transformation for ML,
while Section 3.2 on page 41 outlines the review of FS for ML.

3.1 Data Transformation for Machine Learning

Data transformation methods can be broadly divided into three categories: input encoding;
reshaping; or embedding methods. These methods are agnostic to the data domain and can be
applied to: all features found in data or to the target variable with the purpose to adjust the
statistical distribution or prepare the data for specific algorithms. The next subsection shows
recently and widely used methods to achieve this goal.
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3.1.1 Input/Output Encoding

Since most ML and Deep Learning (DL) approaches require numerical data as input, categorical
data must be transformed to numbers, where Input Encoding (IE) is an area that applies several
methods to overcome this problem. Among popular strategies it is possible to mention: 1)
Ordinal/Integer Encoding; 2) One-Hot-Encoding; 3) Learned Embedding.

Ordinal Encoding: is a straightforward yet efficient strategy to transform categorical data
into binary. Using a group of colors as data example of categories: Red; Blue; Yellow; Green,
this encoding strategy will set a numerical value for each class, encoding each subsequent data
instance into the same format [60]. The group of colors will be transformed like the following:
Red will be assigned as the number 0; Blue will be identified as 1; Yellow will be used as 2; and
Green will be transformed to 3. The numerical sequence increases according to the number of
distinct classes found at the feature.

One-Hot-Encoding: this strategy was detailed in the previous Chapter (Table 2.1 on
page 9). As a reminder: it assumes a flat label space creating binary vectors with size equal to
the number of distinct classes.

Learned Embedding: in this strategy, categories are mapped into distinct vectors that are
adapted at the training phase of an Artificial Neural Networks (ANN). The strategy is a mix of
both ordinal and one-hot encoding, where it still allows to understand relationships learned from
data and uses a vector representation [61]. This strategy is part of Embedding methods, where,
according to Brownlee [61], it is a technique developed to provide a distributed representation
for words in the text data context.

3.1.2 Data Reshaping

Tabular datasets are represented by rows and columns (instances and features) as shown in the
previous Chapter. An ML model collects the dataset and applies its learning mechanism to
acquire knowledge from it. Data reshaping is a process applied at the pre-processing phase that
can make ease the learning process. According to Wickham et al. [62], reshaping the data will
create or reduce the number of features, allowing to visualize the data from a new perspective.
According to the same authors, in the reshaping scenario, the data is divided into two categories:

1. Identifier: which is related to the ID feature that identifies the measured unit;

2. Measured variables: features used to measure the target variable (input variables).

where the identifier acts as a pivot to allow these transformations for each measured variable.
Several approaches can be applied in order to reshape the dataset, where widely used approaches
at the data pre-processing domain are presented in the next topics of this subsection.
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3.1.2.1 Gather and Spread

Gather in the most general term stands as collecting or assembling distinct entities into a group.
In the data domain, gather represents the action of collecting information from a spread-out or
scattered state and group them into a dataset. As a pre-processing strategy, Gather aims to
transform data from a wide format into a long, e.g. reduce the number of features inserting it
into groups.

In the documentation of scientific programming languages (R, Python, MATLAB, etc.),
Gather can be found in reshape packages, where the function will group multiple columns and
collapse them into a key. The transformation process using Gather can be visualized at Figure
3.1. In the Figure, the dataset has 6 features: id (the identifier); and 5 measured variables - trt,
work.T1, work.T2, home.T1, home.T2. Each home and work variables are transformed into a
new key, while its values are set into a new feature named time.

Figure 3.1: Gather example as a function for data pre-processing.

Source: Bradley [63]

The Spread concept in a general term stands as extending an entity, the meaning of the word
may vary according to the area. In the data pre-processing domain, Spread acts as the process
of splitting a variable into one or more variables. As a pre-processing strategy, Spread aim to
capture parts of the variable and split them into several others, transforming a long dataset into
a wide dataset, the opposite of Gather.

Regarding the transformation process, Spread is performed in the opposite direction of Gather.
Using the same Figure 3.1 as example, the values found in the key feature are transformed in
unique features with its respective value, e.g. it will have several features - work.T1, work.T2,
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home.T1, home.T2 - instead of key. Spread is usually used when the data represents time, where
the programmer aims to split the date in quarters, bimonthly, etc.

3.1.2.2 Separate and Unite

Separate and Unite are straightforward concepts, one opposite to the other similar to Gather and
Spread. Separate indicates the process to split an entity in multiple entities, while Unite represents
the joint of multiple entities into one. In the data pre-processing domain, these approaches are
performed for both categorical and numerical variables, aiming to remove irrelevant information
that can be found in the original feature or group of features.

The dataset found at Table 3.1 has 3 features: the identifier; a Year-Month and City-State
measured variables. The values found at the Year-Month feature show 2 information, the year
and the month separated by the hyphen, while City-State show the City with the State inside
parenthesis. Separate function will split Year-Month into Year and Month, where the month
might be transformed using ordinal encoding or transformed into month related information, e.g.
bimonthly, quarters, semesters. While City-State is transformed into City and State, however,
since the values found in City are unique, the feature can be removed, while the state information
can be maintained.

Table 3.1: Example of features that can be transformed by Separate

ID Year-Month City-State

1 2006-Jan Grand Forks (ND)
2 2006-Feb Fargo (ND)
3 2006-May Rochester (MN)
4 2006-Jun Dubuque (IA)
5 2007-Jan Ft. Collins (CO)
6 2007-Feb Lake City (MN)
7 2007-May Rushford (MN)
8 2007-Jun Unknown

Source: Adapted from Bradley [63]

3.1.3 Tabular Learning Methods

A few works have been investigating how to take advantage of deep learning methods such as
CNN, mostly used successfully for image data, applied to tabular data. Arik and Pfister [64]
propose an end-to-end model, named Attentive Interpretable Tabular Learning (TabNet), where
tabular data is fed directly to a CNN, which is responsible for feature extraction and classification.
Various datasets are tested and results outperform classical learning methods such as boosting
and gradient-based as well as AutoML.
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Not limited to CNN, Huang et al. [65] proposed layers named Transformer layers that create
modifications of the dataset embedding of categorical features into a robust contextual embedding.
The robust embedding is sent to a traditional ANN in a multi layer format that performs the
learning task. The method baptized TabTransformer outperformed several ML baseline algorithms
while matches the performance of a tree based algorithm in distinct supervised classification
tasks. A different work proposed by Somepalli et al. [66], also presented an embedding layer.
The method named Self-Attention and Intersample Attention (SAINT) creates a projection of
categorical and numerical variables in a feature space. The projection is sent to an embedding
layer that applies two tasks named Self-Attention and Intersample Attention, which focus in
learning the features representation based on samples instead of looking towards the complete
feature. Similar to TabTransformer, SAINT also propagates the learned content to an ANN for
the final learning task.

Another brand new pipeline devised to handle tabular data, named Net-Disjunctive Normal
Form (Net-DNF) was devised by Katzir et al. [6]. The pipeline learn based on a network
named Disjunctive Normal Form Networks, which is based on three components. The main
component is a block of layers based on disjunctive normal form, which create features and can be
trained. The other layers are feature selection and location, where the FS is performed through
a greedy hierarchical FS, while the localization, according to the author, encourages each unit in
a Net-Disjunctive Normal Form (Net-DNF) ensemble to specialize in some focused proximity of
the input domain. The work provides an end to end pipeline that can handle tabular datasets,
however, the results indicate that the model is outperformed by state-of-the-art ML algorithms.

Criticizing the classic CNN and transformer methods that require several parameters to be
learned and also several input data to acquire knowledge, the work developed by Kossen et al.
[67] introduce another end to end pipeline that added flexibility to use training data directly
when making predictions, named Non-Parametric Transformers (NPTs). A mechanism named
self-attention captures the relationship between data points found in the training set, test set
and between them. The results are compared and the model was able to outperform TabNet
and standard ML algorithms.

Part of the pipelines, like TabNet, received several attention from researchers. Gorishniy
et al. [7], the authors compare several DL strategies in a few datasets. The authors mention that
these DL learning pipelines for tabular datasets are not capable to outperform a Residual Neural
Network (ResNet) or gradient boosting Decision Tree (DT) algorithms. Also, Kadra et al. [68]
compare TabNet and other pipelines against an empirical study of the regularization impact in
the standard ANN algorithm, where pipelines were outperformed by the method.

3.2 Feature Selection for Machine Learning

Focusing on classification supervised learning problems, among published works regarding FS, it
is possible to notice that algorithms and measurements are the focus, where distinct evaluation
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criteria are used to verify the quality of the FS performed by the algorithm. Between analyzed
works, it was possible to check that Filter has a distinct way to evaluate it, while Wrapper and
Embedded share the same evaluation criteria since it follow the same basic idea.

3.2.1 Filter Feature Selection

Filters were criticized based on the assumption that this category ignores the data structure,
considering that features are independent of each other [14]. Nevertheless, this category is still
used in some applications and as comparison for the development of novel strategies. Table 3.2
present a variety of popular filter methods that can be used for classification problems, where
each is identified according to the strategy criteria, e.g. if it is based on statistical information or
information gain [69].

Table 3.2: Popular filter methods of FS for classification problems

Name Filter Strategy

ANOVA Statistical
Correlation Statistical
Fisher Score Information
Gain Ratio Information
Mutual Information Statistical
Relief/ReliefF Information

Source: Adapted from Jović et al. [69]

Methods presented at Table 3.2 are used to solve diversified problems, including benchmarks
and real-world scenarios. Several works can be found at the literature pointing out where they
can be efficient in order to provide the best feature subset. To summarize the application of
each method, next subsections present a brief discussion of the approach while will also present
distinct cases of success.

3.2.1.1 Analysis of Variance - ANOVA

ANOVA or Analysis of Variance is a statistical test that measure the dispersion in data points,
comparing the differences between two or more groups [70]. The outcome of the test is a p-value
used to verify the statistical significance between these groups. This significance is measured by
evaluating one of the following hypothesis:

• H0 : All features have equal variance;

• H1 : At least one feature is different.
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The accept or reject of the hypothesis is based on a confidence level, which is usually 0.05. The
rejection of the null hypothesis (H0 ) will indicate if the feature subset should be included in the
training set.

In the literature, ANOVA has been widely used for FS. In the study described by Dey and
Rahman [71], ANOVA is combined with a recursive feature selection approach to detect anomaly
in networks. The test was used as comparison among multiple filter algorithms for large scale
datasets, where ANOVA presented a poor performance for the benchmark datasets [72]. Not
limited to the standard approach, a recent work use ANOVA as a validation process of a Random
Forest (RF) ensemble, where the test combined with a One vs Rest algorithm was used to select
the best group of features for a dataset of Alzheimer’s disease and mild cognitive impairment
[73].

3.2.1.2 Correlation

The correlation criteria was a widely used filter strategy in the past decade, however, as pointed
out by Li et al. [14], data may be presented in graphs, trees and other structures, hindering the
process to acquire relevant information when using a correlation criteria. This leads to the fact
that using this approach for a feature selection may lead to a poor performance as shown in Neto
[74], where the Pearson correlation had the worst overall performance when compared against 10
other FS wrapper and embedded algorithms.

In another perspective, the correlation can be combined with other approaches to enhance
the canonical idea assisting ML models to increase its predictive capability, which is the case
presented at Gopika and A [75], where other 3 variations of correlation based strategies where
used to assist a DT and a Logistic Regression (LR) for a private dataset regarding internet of
things. Also, the approach performed by Saqlain et al. [76] combines the Fisher score with the
Matthews correlation coefficient, where it is used to capture the subset with higher correlation
among subsets selected by Fisher score. Both approaches improve the accuracy when compared
to the standard correlation as a FS strategy.

3.2.1.3 Fisher Score

The Fisher score is based on the Fisher information, which measure the amount of information
that a variable carries regarding another. According to Gu et al. [77], the Fisher score as a
feature selection strategy lead to an sub-optimal feature subset, however, even with limitations
the strategy is constantly used as a FS criteria.

The strategy is constantly used for real-world problems, for instance, the work developed by
[78], applied Fisher score to select the feature genes of hepatocellular carcinoma and to identify
hub genes with the Maximal Clique Centrality algorithm, where the approach achieved a statistical
significance when compared against others. In Hasanloei et al. [79], Fisher was combined with
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Laplacian score, this combined strategy was applied to detect Quantitative structure–activity
relationships regarding drug design using compounds with known and unknown activities under a
semi-supervised environment, which show that the Fisher score assisted to achieve better results
for the FS phase. The score was also used to detect intrusions, identifying binary real-world data
regarding if the group of features represent or not a DDoS attack [80]. Fisher score selected a
subset of features which was propagated to a k-Nearest Neighbors (KNN), DT and a Support
Vector Machine (SVM).

3.2.1.4 Gain Ratio

Gain ratio or information gain is a entropy-based feature selection strategy [81]. The Entropy is
used to measure how much information a feature gives regarding another variable. Following the
same procedure of other filter methods, this strategy will create the feature rank, where features
are inserted in ascending order according to the information acquired by entropy.

In the work presented by Win and Kham [81], this strategy searched for the best subset
of features and subsequently propagated to train a RF based model. The training phase
was performed in 2 public available datasets where the approach achieved the best score for
both datasets. In Rodriguez-Galiano et al. [82], the Gain ratio was used to predict modelling of
groundwater nitrate pollution, the strategy was compared against other wrapper and filter feature
selection, where it had the same performance of a mutual information strategy. Nevertheless, the
approach achieved higher error when compared to a wrapper SVM.

3.2.1.5 Mutual Information

The mutual information applied to the FS problem was used in several cases in distinct knowledge
areas, however, it suffer with the same problem that the correlation criteria does, where the
data may hinder the mutual information to acquire relevant information. The approach was also
included in the comparison made at Neto [74], where the mutual information was the second
with worst performance when applied to four benchmarks and a real-world problem.

Following the idea found at the correlation criteria, since mutual information achieved a poor
general performance for FS, the strategy was inserted or modified in several algorithms in order
to achieve greater results. The work developed by Gao et al. [83] measured a mutual information
criteria for each class found in the dataset instead of generalizing, where the approach was
applied to 20 datasets and compared against several methods. In Sharmin et al. [84], the mutual
information is applied to discretize and point out the relevance of each feature, the algorithm
created by the authors is compared at 30 benchmark datasets against several methods using
mutual information.
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3.2.1.6 Relief

Relief is a simple yet efficient FS algorithm constantly presented at the literature. The strategy
consist into estimating the quality of attributes based on near-hit or near-miss instances, e.g.
if these features are close to the feature vector. Relief strategy was created to handle binary
problems, while the version devised by Kononenko [85], named ReliefF can be applied to multiclass
problems.

The strategy was used to solve diversified problems in distinct knowledge areas, for instance,
the work developed by Reddy et al. [86] developed a model based on Relief FS to identify the
gender of persons that gave a written review for a popular tourism algorithm. At Suresha
and Parthasarathi [87], ReliefF was used to select the best features to assist a SVM to classify
Alzheimer disease based on three distinct types of classification: normal. Alzheimer disease; and
Mild Cognitive Impairment. The work presented by Zhang et al. [88], a ReliefF is combined
to the Information gain to acquire distinct information of the data, where the best subset is
propagated to a RF to detect network intrusion. For all these approaches the experiment show
that reliefF was useful to capture a great subset of features that led the algorithm to increase
the standard model performance.

3.2.2 Embedded and Wrapper Feature Selection

Embedded and Wrapper methods follows the same concept of acquiring knowledge based on the
baseline model, however, the means to reach the most important features are performed in distinct
ways. The Embedded process, as described in previous Chapter, acquire the feature importance
after a training section of the model, therefore, the state-of-the-art of this strategy vary among
the models, for instance: ANN, KNN, LR, RF. Not limited to these models, it worth mentioning
other two models that are based on gradient boosting: Extreme Gradient Boosting (XGB) [89]
and the Light Gradient Boosting Machine (LGBM) [90]. These algorithms were also used to
solve diversified problems and are widely used on competitions to solve real-world problems [91].

Regarding Wrapper methods, this strategy has several other sub-strategies that can be applied
according to a algorithm criteria. Among popular strategies, it is possible to mention:

• Forward Selection: select relevant features through a significance level acquired by fitting
regression models [92];

• Step-wise Selection: similar to the forward selection, however, it keeps verifying the
significance level of already selected features and can remove then according to the new
significance level [93];

• Recursive Feature Elimination (RFE): fit the model with a complete dataset and keep
removing features according to a significance level and a criteria which can be a percentage
of features [94].
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Between the mentioned approaches, RFE received more attention due to its ability to analyze
all the features and create distinct subsets while fitting multiple models. RFE was combined
with a SVM to assist on the diagnostic of Alzheimer’s disease [95] and Diabetic Retinopathy [96].
Was also combined with a RF for enhanced agricultural crop. Not limited to these approaches,
a high number of applications can be found at Google Scholar from the last decade until the
present.

As mentioned earlier, wrapper strategy can have other sub-strategies (RFE, forward, etc).
General purpose optimization algorithms, like evolutionary and swarm intelligence, are also used
to solve the FS problem acting as wrapper, however, acquiring a feasible subset by applying its
own optimization process. These approaches have a solution encoding based on a binary array,
where each variable indicates whether or not a feature from data will be included in the subset.
These algorithms are evaluated through a ML metric score acquired from the training phase of
the model using the selected subset. The process is repeated until a stopping criteria is met,
where the most used is a number of iterations.

3.2.3 Filter vs Embedded vs Wrapper

As presented in this section and previous Chapter, FS problem can be solved with multiple
strategies. It is not straightforward to define which strategy will be useful, being data dependent.
Dependencies are related to the data type or the model capability to acquire the knowledge
from it or algorithm limitations in order to search for the best subset of features. Not limited
to problems related to data, these strategies can be compared in 2 distinct scenarios: time
complexity and predictive accuracy.

Time Complexity: By looking through how these strategies perform, it is clear that Filter
strategies have the best performance. Part of these algorithms are commonly used in the data
pre-processing phase, not requiring a model to be fit, therefore, being faster when compared to
Embedded and Wrapper. Embedded and Wrapper strategies have to fit a model. However, the
feature importance acquired at the embedded approach require the baseline model to be fit once,
which is different in Wrapper, that uses a sub-strategy that may fit the model several times to
acquire the feature rank.

Predictive Accuracy: papers mentioned at the Filter section have made comparisons
against other wrapper and embedded strategies, where it is clear that wrapper methods have
outperformed embedded and filters. Its performance is justified by reapplying a model to learn
several combinations of features in order to achieve the best possible score. Embedded and Filter
may have a similar performance. Nevertheless, since it rely on data, filter strategies may not be
able to acquire the features relation and may lead the model for a state of over or underfit.
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Map-Optimize-Learn

Map-Optimize-Learn (MOL) is a three stages strategy based on data transformation, Feature
Selection (FS) and Deep Learning (DL) with the purpose to transform a 2D tabular dataset into
a 3D dataset, e.g. 1D samples into 2D instances, aiming to construct relevant information to
feed a Convolutional Neural Network (CNN)’s to improve the prediction quality when compared
to standard Machine Learning (ML) algorithms applied for tabular datasets.

The transformation process of 1D to 2D instances provides a novel representation for the
instance, where an image format will be created according to the best solution found in the
optimization process. The map and optimize stages of MOL are shown in Figure 4.1, where an
arbitrary process is applied to the dataset found in Figure 2.1 on page 7. Subsequent sections
will detail the process of each phase and point out which algorithms can be applied to each.

Figure 4.1: Map and optimize phases of MOL

47
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4.1 MOL: Map

The Map stage mirrors the feature importance analysis conducted through various Filter FS
strategies. The collection of algorithms detailed in the Filter FS section of Chapter 3 on page 37
can effectively determine feature importance, typically arranged in descending order of relevance.
Each feature receives a rank based on its importance within the sorted array. This rank then
dictates the reordering of features, shaping the row-wise image format during transformation.

For demonstrative purposes, the procedure is depicted in Figure 4.1 on the previous page,
highlighting the map stage within a red box. Within the figure, the sample dataset showcases
its feature importance arbitrarily assigned and arranged accordingly. Based on the obtained
sequence, Temperature emerges as the most important feature, whereas Windy holds the least
significance among them.

A second instance is exemplified in Table 4.1, employing Pearson Correlation as the mapping
method. This dataset comprises 4 features and 4 instances. Adhering to the Map phase
guidelines, the pairwise correlation between each feature and the Target Variable yields the
computed correlations depicted in Table 4.2. These correlations highlight x1 as the most pivotal
feature, whereas x3 emerges as less influential.

The results obtained in the example are used to sort the dataset, which is submitted to the
subsequent phase of MOL.

Index x1 x2 x3 x4 Target Variable
1 12 5 8 21 1
2 6 14 3 9 0
3 17 4 11 7 1
4 10 2 19 15 0

Table 4.1: Generated Dataset to present the Map Phase

Features Target Variable Order
x1 0.82 1
x2 -0.38 2
x3 -0.12 4
x4 0.18 3

Table 4.2: Pairwise Pearson Correlation for the features found in the previous dataset

In the preceding chapter, it was demonstrated that algorithms for determining feature
importance differ based on various criteria such as statistical information, distance, entropy,
and more. Given the diverse nature of these algorithms, each will assign unique importance
values to features, resulting in varying final ranks depending on the specific algorithm employed.
Consequently, identifying the most suitable algorithm for optimal performance at this stage is
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not straightforward.

The nature of the data types present within the dataset can aid in selecting a method, aligning
with the algorithm foundational principles. This correlation between the data types and the
algorithm underlying principles can guide the choice of an appropriate approach for determining
feature importance.

Images can be produced by employing the standard available format from the dataset,
typically using the features in their existing order. However, employing an importance-based
method is anticipated to aid in grouping similar features within specific regions of the image.
This process helps a Convolutional Neural Network (CNN) in capturing pertinent information
during the final stage of the strategy, particularly when learning from images.

While determining the absolute best method might not be definitive, the anticipated effect of
employing the optimal strategy is to generate images that closely resemble one another during
the optimization phase. This closeness in resemblance among images is a key expectation of the
most effective strategy.

4.2 MOL: Optimize

The objective of the optimize stage is to generate images for each instance in the dataset, aiming
to streamline the learning process of the CNN algorithm. This stage operates on the premise that
computer vision techniques, widely considered state-of-the-art, can efficiently identify correlations
within images compared to conventional learning algorithms handling tabular data characterized
by various variables (e.g., categorical and numerical).

In order to create images, the process is performed according to a solution, represented in a
solution vector (v), this vector is split in 3 components detailed as follows:

• x = v1, representing the X dimension of the image;

• y = v2, representing the Y dimension of the image;

• z = v3:NF +2, representing a binary vector with variables corresponding to each feature of
the dataset ds.

The binary variables found in the remainder of the solution indicates whether the i-th feature
should be used, where NF is the total number of features. The optimization problem is defined
as follows:
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minimize 1
NI

NI−1∑
i=1

1
NF

NF∑
j=1

(ds[i,j] − ds[i+1,j])2, if z[j]

0, otherwise

subject to 2 ≤ x× y ≤ NF,

x× y =
NF∑
i=1

zi,

x ∈ N0 (4.1)

where x × y indicates the total number of pixels in each reshaped image and NI is the number
of instances found in the dataset ds.

Formulation (4.1) poses a nondifferentiable integer problem. It is recognized that gradient-
based methods struggle to find solutions in discontinuous, non-separable, and nonlinear landscapes
[97], similar to the characteristics of the problem described in (4.1). The objective function aims
to minimize the mean squared error while imposing constraints ensuring that the number of
selected features aligns with the shape of the generated image. The features are arranged in a
row-wise format according to their computation order during the map stage.

The optimization phase will reshape the instances found in the dataset, generating images
based on criteria, defined at the map stage, and the best solution found at the optimization
problem. It is expected that similar images are created, allowing the CNN to detect patterns
from this format leading to an improvement to the classification task. The generated images are
sent to the learning phase of MOL, where the training, validation, and testing are performed.

Returning to Figure 4.1 on page 47, two examples of solutions are shown, where the first
will use a 2x2 image format including all features, while the second will use a 1x1 image format
with the first and last feature. The features are inserted into an image format using the feature
importance order acquired in the map phase. In the Figure, an example instance found in the
data is used to illustrate the values filling the image matrix, where later these values are replaced
by colors according to their magnitude. The new image feature is created for each instance, e.g.
an image is created for each instance.

4.3 MOL: Learn

The learning phase in MOL serves to understand and derive insights from the generated images.
In this phase, the CNN learns the format and characteristics of the images rather than a specific
set of features. The choice of CNN as the model was based on its ability to detect local spatial
coherence by employing convolution on adjacent pixel patches. The resulting feature maps,
obtained from the sliding window over the image, help capture deep relationships derived from
the patterns generated in the map and optimization stages. The image dataset is divided into
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training and test sets, with a cross-validation strategy used during training to evaluate model
performance. The trained model is then utilized to predict outcomes for the test set images

4.4 MOL as a Tabular Learning Method

MOL is a Tabular-based Learning Method (TBM) that can be compared to various methods
discussed in Chapter 3 on page 37. While similar pipelines start with standard tabular datasets
and aim to learn from the data points, MOL introduces several components that diverge in their
approach to achieving this goal.

MOL strategy is designed to enhance prediction quality given a preprocessed dataset; however,
it does not handle missing data. The map phase necessitates a preprocessed dataset to capture
data information and determine feature importance, enabling the rearrangement of present
features within the dataset.

In contrast to other TBM strategies employing transformers or embedding layers to generate
new information and feed it to ML or DL models, MOL restructures features based on insights
gained from statistical methods and optimization, creating images from non-image data. Previous
works discussed in Chapter 3 on page 37 indicate that ML models tend to perform better when
identifying essential features within the dataset. Therefore, MOL’s optimization phase focuses
on feature selection to minimize the complexity of propagating comprehensive information to
a CNN model. Instead, the strategy emphasizes the CNN learning key characteristics from an
image set with fewer details.





Chapter 5

Experiments

This chapter provides a comprehensive overview of the experiment conducted, including the
algorithms, techniques, hyperparameters, and settings used to compute the results. It is divided
into two subsections, with the first section outlining the experimental settings, and the second
section detailing the dataset structure, such as the goal and features information.

5.1 Methodology

The methodology employed in the experiments, which are composed of two phases: data
preprocessing and statistical comparison of the Map-Optimize-Learn (MOL) approach against
state-of-the-art Machine Learning (ML) and Feature Selection (FS) techniques. The experiments
were implemented using Python, with the SciPy, Keras and TensorFlow libraries for the models
and the NumPy library for handling numerical floating-point precision.

The MOL approach employs several strategies to sort the dataset at the map stage, in-
cluding ANOVA F-test, Pearson Correlation, Euclidean distance, Fisher score, Information
Gain/Gain ratio, and Mutual Information. For the optimization task, we used three popular
swarm intelligence algorithms: Particle Swarm Optimization (PSO), Evolutionary Particle
Swarm Optimization (EPSO), and Artificial Bee Colony (ABC), which were selected for their
demonstrated capabilities in solving diversified problems, as discussed in Chapter 3.

The MOL approach was compared against seven state-of-the-art ML algorithms commonly
applied to tabular datasets: Artificial Neural Networks (ANN), Logistic Regression (LR), k-
Nearest Neighbors (KNN), Random Forest (RF), Extreme Gradient Boosting (XGB), Light
Gradient Boosting Machine (LGBM), and TabNet. To further investigate the performance
of these algorithms, both Wrapper and Embedded strategies were explored, along with their
Baseline versions, as follows:

• Wrapper: Utilizing a Recursive Feature Elimination (RFE) strategy, 10% of the features
were dropped at each iteration.
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• Embedded: Initially, a Baseline run was conducted to capture feature importance. Features
with importance above the average were retained for a second dataset used to evaluate
the Embedded approach. For the ANN model, Permutation Importance was employed to
capture feature importance values.

For the purpose of addressing the challenge of unbalanced datasets and ensure accurate
model evaluation, the training phase employed stratified 10-fold cross-validation, with balanced
accuracy serving as the evaluation metric. For two real-world experiments, comparison against
results from the literature was conducted using the same accuracy metric employed in those
studies. Hyperparameters for each model were tuned using a Grid Search (GS) algorithm, and
results were compared based on balanced accuracy and the Wilcoxon signed-rank test to assess
statistical significance.

Each algorithm was tested using both embedded and wrapper FS strategies, as well as
without feature selection. To handle unbalanced datasets and evaluate the performance of each
model correctly, the training phase was performed under stratified 10-fold cross-validation, using
balanced accuracy as the evaluation metric. Two of the real-world experiments are compared
against results found in the literature, therefore the same accuracy metric used in the literature
is used in those experiments. The hyperparameters of each model were tuned using a GS
algorithm, and the results were compared based on the balanced accuracy metric and the
Wilcoxon signed-rank test to measure statistical significance.

The FS techniques employed the following parameters: the Convolutional Neural Network
(CNN) used one convolutional layer with 32 filters and one max-pooling layer; the ANN had a
learning rate of 0.001; the LR was trained using the Limited-memory Broyden–Fletcher–Goldfarb
–Shanno (LBFGS) algorithm with an l2 penalty; the KNN used a KD-tree to compute the
neighbors and a Euclidean distance metric; the RF used 100 estimators based on decision trees
and performing bootstrap; and XGB and LGBM used a learning rate of 0.1 with gradient
boosting decision tree algorithms. The network-based models used a single hidden layer with
neurons equal to the mean of the input from the FS and the output, and they were trained
using the Adaptive Moment estimation (ADAM) algorithm for a maximum of 100 iterations.
These parameters are commonly found in multiple libraries and have been shown to achieve good
performance on various problems.

Table 5.1 shows the grid of hyperparameters used for each algorithm, which includes critical
parameters that typically increase the performance of the models. Some parameters were not
optimized, as several studies have shown that the standard parameters achieve better performance
in multiple problems, such as the learning parameters of the ADAM algorithm and the CNN
architecture parameters, given that the data is generated through MOL. The dataset was split
into train, validation and test, where the test set encompasses 33% of the whole dataset.

Concerning the swarm intelligence algorithms, they shared a population of 50 solutions and
500 function evaluations (10 iterations), applying the following parameters: the PSO had w=
0.8; c1= 1.8; c2= 1.8; for the EPSO τ is equal to 0.8 and a communication probability of 0.9;
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Table 5.1: List of parameters that compose the grid of each algorithm at the hyperparameter
tuning phase with a GS

Algorithm Parameters Values

ANN
Training algorithm [LBFGS, ADAM]
Learning rate [from 10−1 to 10−10]
Hidden layer neurons [from 5 to 50 with a step of 5]

KNN
Number of neighbors [from 2 to 10]
Distance metric [Euclidean, Manhattan]
Weight metric [Uniform, Distance]

LR
Penalty function [L1, L2]
Gamma [Log space of 20 values from -4 to 4]

RF

Max. features in the best split [1, 3, 10]
Min. number of splits [2, 3, 10]
Min. samples to be in a leaf [1, 3, 10]
Number of estimators [100, 300, 500]

XGB

Gamma [0.5 to 3.0 with a 0.5 step]
Sub samples [0.6, 0.8, 1.0]
Samples by tree [0.6, 0.8, 1.0]
Maximum depth [2 to 5]

LGBM
Maximum number of leaves [31, 127]
Min. data in a leaf [30, 50, 100, 300, 400]
L1 and L2 regularization [0.1, 1, 1.5]

CNN Learning rate [from 10−1 to 10−4]

Finally, for the ABC, the maximum limit value is the average value between number of features
and number of solutions. The parameters were selected based in historical performance of the
algorithms presented in previous works across multiple domain areas as shown in Miranda and
Fonseca [58], Zhou et al. [98], Neto et al. [99] and others.

5.2 Datasets

This section present the selected datasets to perform the complete experiment. The datasets were
selected based on distinct characteristics, where it vary among number of features, problem type,
number of instances and number of outputs (binary or multiclass) and also based on distinct
data types, varying among binary, continuous and nominal.

The problem type divides the experiment section in two distinct branches, where the first
branch performs the evaluation of the strategy on well established benchmarks found evaluating
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machine learning algorithms. On the other hand, the second branch will focus on the application
of the algorithms and strategies to a series of real-world problems, comparing the obtained results
against other found in the literature. Table 5.2 presents the general dataset structure.

Table 5.2: Structure of each dataset used in the experiment. Attributes show the number of
binary (b), continuous (c), and nominal (n) features in the dataset. The problem type presented
with the letter R stands by Real-World, while with the letter B indicates a Benchmark

Dataset
Attributes

Problem # Classes # Instances
b c n Total

Cancer 0 9 0 9 B 2 699
Card 40 6 5 51 B 2 690
Diabetes 0 8 0 8 B 2 768
Gene 120 0 0 120 B 3 3,175
Glass 0 9 0 9 B 6 214
Heart 18 6 11 35 B 2 920
Horse 25 14 19 58 B 3 364
Soybean 46 9 27 82 B 2 683
Thyroid 9 6 6 21 B 19 7,200
KDD 4 34 4 42 B 2 494,020
Cardiac Pathology 6 3 4 18 R 2 9,484
Forest Cover Type 44 10 0 54 R 7 581,012
Poker Hand 0 0 11 11 R 10 1,025,010

5.2.1 Benchmark Datasets

The following subsections details the classification task of each Benchmark dataset, pointing
out general information, origin, special properties, etc. The benchmark experiment also follow
guidelines specified by Prechelt [100] which indicate how to correctly compare part of the datasets.

5.2.1.1 Cancer

The Breast Cancer dataset is a classification task that aims to detect tumors as either benign or
malignant based on cell descriptions obtained through microscopic examination. The dataset
contains only continuous input variables. The target class is represented by two outcomes, with
65.5% of cases being benign and the remaining being malignant. The original dataset can be
found at the UCI repository of machine learning datasets, which was originally obtained from
the University of Wisconsin Hospitals.
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5.2.1.2 Card

The Credit Card dataset is a classification task aimed at determining whether a customer’s credit
card application should be approved or not. The dataset consists of real credit card applications,
and the output indicates whether the application was granted or not. However, the attribute
information has been modified for confidentiality reasons.

5.2.1.3 Diabetes

The Diabetes dataset is a classification task aimed at diagnosing diabetes in Pima Indians.
The data includes variables such as age, blood pressure, and body mass index. The dataset
consists of 8 inputs and 2 outputs, where 65.1% of the target variable represents examples with
a negative diagnosis for diabetes. The dataset was created by Prechelt [100] who added noise
and made modifications to the original Pima Indians dataset available at the UCI repository.
These modifications were made for preparation and optimization purposes.

5.2.1.4 Gene

The Gene Dataset is a classification task which aims to detect Intro/Exon boundaries in nucleotide
sequences. The input is collected from a a window of 60 DNA sequence elements, where the
algorithm has to detect if the 120 inputs is an intron/exon boundary, exon/intron or none of these.
According to Prechelt [100], the number of attributes and features vary since each nucleotide,
which is a four-valued nominal attribute, is encoded binary by two binary inputs (The input
values used are 1 and 1, therefore the inputs are not declared as boolean.

5.2.1.5 Glass

The Glass dataset represents a classification task to identify glass types. According to [100], the
results of a chemical analysis of glass splinters (percent content of 8 different elements) plus the
refractive index are used to classify the sample to be either oat processed or non oat processed
building windows, vehicle windows, containers, tableware, or head lamps.

5.2.1.6 Heart

The Heart dataset has two distinct versions, where the first named as ‘Heart‘ and the second
named as ‘Heartc‘, where ‘Heartc‘ is a smaller dataset which contains data from the Cleveland
Clinic Foundation, while ‘Heart‘ is a combination of Cleveland Clinic Foundation, Hungarian
Institute of Cardiology, V.A. Medical Center Long Beach, and University Hospital Zuric.

The classification task of the dataset consists into detecting whether one of four vessels is
reduced in diameter. The collected data is related with different patients and medical analysis,
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such as blood pressure, age, pain descriptions, etc.

5.2.1.7 Horse

The classification task of the Horse Dataset aim to predict if a horse that has colic will survive,
faint or will be euthanized. The examples of the dataset contains 62% cases where a horse
survived, 24% fainted and 14% it was euthanized.

5.2.1.8 Soybean

The Soybean dataset is a classification task with the objective to recognize 19 different diseases of
soybeans. The inputs are related with the bean size and the plant description. In the literature,
it is possible to find several results for the Soybean dataset, however, the Soybean version created
by Prechelt [100] use the Soybean Large dataset from UCI repository with some modifications.
In the literature, the original dataset has a limited number of instances for a few classes, where
in the majority of cases, only 15 of 19 classes are used. In this version, more instances can be
found for these classes, allowing the algorithm to learn all the 19 target classes.

5.2.1.9 Thyroid

The Thyroid dataset is a classification task with the goal to diagnose hypo-function or hyper-
function based on patient query and exam data. The dataset contains several missing values that
were adjusted by Prechelt [100]. There are three different outputs: thyroyd has over function;
normal function; or under function, the class probabilities are respectively, 5.1%, 92.6% and
2.3%. Among the benchmark experiment, the Thyroid set is the most unbalanced dataset.

5.2.1.10 KDD

The KDD is a classification task used to detect anomaly systems. The dataset was proposed
by Stolfo et al. [101], the data was captured using an Intrusion Detect System which recorded
7 weeks of network traffic. The goal is to detect wether it is a normal connection or an attack.
The types of attack may vary between four categories:

1. Denial of Service Attack (DoS)

2. User to Root Attack (U2R)

3. Remote to local Attack (R2L)

4. Probin Attack
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Among the features, it is possible to find several information related with attributes that can
be extracted from TCP/IP connections and network traffic based on same host or same service
connections. Comparing KDD with the other datasets in the benchmark experiment, it is clearly
the set with the most number of instances and continuous features, however, it is not the one
with most features, classes or number of features.

5.2.2 Real World Datasets

The following subsections details the classification tasks of each selected Real-World dataset,
describing features, statistical information and relevant data description.

5.2.2.1 Cardiac Pathology

The dataset was collected at a hospital specialized in cardiovascular system located at the
northeastern part of Brazil. The data is pseudonymised, where patients personal information
is modified by an artificial identifier which can be one way to comply both with the European
Union’s and Brazilian’s new General Data Protection Regulation demands for secure data storage
of personal information. Features considered important to the clinical evaluation approaches are
included (heart murmur and heart sound) as well as general information about the patient (Age,
Height, Weight).

Data was analyzed through bivariate and multivariate analysis, where preprocessing was
performed in order to follow medical domain standards (e.g. age ranges, pressure ranges, etc)
applying: data transformation; cleaning; normalization; removal of irrelevant features, such as
ID and features with more than 95% of missing values. It was detected that the S2 feature had
a strong relation with the patient history and the target variable which indicates the presence
or absence of a cardiac pathology. This information led us to create a feature named History
Based Emergency Level (HEL), which based on the knowledge that the patient already visited
the hospital once, may indicate an emergency level, from best to worst: green, yellow or red,
regarding the patient with CP.

The final dataset, with the inclusion of the feature engineering and exclusion of irrelevant
data, has a population of 9,484 (53% of the original dataset) and 13 features: Weight; Height;
Body-Mass-Index (BMI); Age; Wrist state (WS); Blood Pressure (PPA); Second heart sound
(B2); Heart murmur (HM); Cardiac frequency (CF); Disease History (DH); Gender; Visit Reason
(VR); and History Emergency Level (HEL). It is worth mentioning that 6,144 individuals (64.96%)
were healthy and 3,340 (35.31%) had CP, which maintains the characteristic of an unbalanced
dataset.
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5.2.2.2 Forest Cover Type

The Forest Cover Type dataset, owned by Dua et al. [102], comprises various tree observations
from four regions within the Roosevelt National Forest in Colorado, United States of America.
These observations are derived from cartographic variables measured in 30x30 meter sections of
the forest. The primary objective of this dataset is to predict the forest cover type based on the
provided information. The dataset is publicly available at the UCI Machine Learning Repository.

5.2.2.3 Poker Hand

According to Dua et al. [102], in each instance of the Poker Hand dataset, a hand consisting of
five playing cards randomly drawn from a standard deck of 52 cards. To describe each card,
two attributes are used: suit and rank, resulting in a total of 10 predictive attributes for each
hand. The dataset includes a Class attribute that specifies the "Poker Hand" associated with
each combination of cards.

It’s crucial to note that the order of the cards within a hand is significant, leading to variations
in possible hands. For instance, due to this ordering factor, there are 480 possible Royal Flush
hands, one for each combination of suits, compared to the 4 variations if the order were not
considered.
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Results

This chapter follows a structure similar to the Experiment chapter, featuring distinct sections
for benchmark and real-world problems. Each dataset is accompanied by a table presenting
statistical results, including a significance test and a brief discussion. The concluding section
offers a summarized performance overview for each approach.

In every experiment, be it benchmark or real-world, a comprehensive table includes the
following columns:

• Algorithm: the model used to train the data;

• FS Str: the main strategy, options include

– Baseline (B): a baseline approach without feature selection;

– Embedded Feature Selection (FS) (E);

– Wrapper FS (W);

– Map-Optimize-Learn (MOL);

• Optimization Strategy (Opt Str): The swarm intelligence optimization algorithm employed
in the Optimize phase of MOL;

• Train: The accuracy achieved on the training set using the best model selected through
grid search.

• Test: the accuracy achieved on the test set;

• # Feat: the number of features selected;

Highlighted results in each table signify the best combination of algorithm, feature selection
strategy, and other parameters. Furthermore, images generated for the best combination are
depicted using a color scale, where lighter shades correspond to lower values and darker shades to
higher values. In terms of feature selection with TabNet, the algorithm reports feature importance
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calculated during its process. However, it does not explicitly identify the features being utilized,
likely due to the inherent nature of its feature selection methodology. While it is possible to
estimate the number and identity of selected features using a threshold, this approach may not
provide precise results, therefore, the number of features has been intentionally avoided.

6.1 Benchmark Problems

This Section present the obtained results for the Benchmark experiment detailed in the previous
chapter.

6.1.1 Cancer

The results obtained by each approach combination for the Cancer dataset are presented in Table
6.1 on page 64.

Analyzing the results of Map-Optimize-Learn (MOL), the MOL-Distance-EPSO demonstrated
the best performance for this dataset, achieving a 97,70% accuracy on the test set. However,
during cross-validation, the algorithm exhibited a slightly lower score of 95.42%, suggesting
a potential underfitting scenario. Similar behavior is observed across other MOL approaches,
where cross-validation scores are consistently lower than the respective test set predictions. These
results should be examined in conjunction with the generated images showcased in 6.1 on the
next page. In this provided subset, a distinct pattern is discernible, distinguishing outcomes
0 and 1. While this pattern is evident in the subset, its presence in the entire dataset is not
guaranteed, and the existence of similar images in both outcomes may pose challenges for the
model, preventing it from achieving higher accuracy.

In subsequent experiments, within the Embedded approaches, k-Nearest Neighbors (KNN)
demonstrated superior performance compared to other algorithms, while in the Wrapper
experiment, Random Forest (RF) exhibited the best results, and in the baseline result, Light
Gradient Boosting Machine (LGBM) outperformed others. Interestingly, KNN-E and LGBM-B
showcased a similar behavior observed in MOL approaches, with higher test scores hinting
at a potential underfit scenario. Conversely, RF-W correctly classified every set during cross-
validation but achieved a lower score in the test set compared to KNN-E. Despite these results,
all approaches fell short when compared to TabNet, which achieved 99.08% accuracy in the test
set.

Analyzing the cross-validation results and performing a statistical significance test, TabNet
displayed statistical significance compared to MOL-Distance-EPSO, LGBM-B, KNN-E, and
RF-W (p < 0.05). Conversely, other algorithms did not exhibit statistical significance in cross-
validation when compared to each other (p >= 0.05). The number of selected features ranged
from 6 to 8, with the majority of the experiments opting for 8 features, while the best MOL
combination selected only 6. Although the exact number of features selected by TabNet is
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unclear, considering a feature importance threshold of 0.05, the model identified 8 significant
features.

(a) Outcome 0 (b) Outcome 1

Figure 6.1: Input generated by MOL-Distance-EPSO for the Cancer dataset.

6.1.2 Card

Table 6.2 on page 66 presents the outcomes for each approach combination on the Card dataset.
The results reveal that the majority of MOL combinations achieved relatively similar performances,
with MOL-GainRatio-EPSO emerging as the top performer in the test set. Similar to the Cancer
dataset, there is a tendency towards a slight underfit scenario in the cross-validation results.
Furthermore, the analysis uncovers that most MOL approaches utilized 50 features, while MOL-
Correlation-PSO deviated by using only 20 features, resulting in the poorest performance among
all combinations.

Examining the outcomes generated by MOL-GainRatio-EPSO, depicted in 6.2 on page 67, can
be challenging for the human eye due to the dataset’s large number of features. Consequently, part
of this challenge is managed by the CNN properties to identify patterns in the generated images.
Different kernel sizes may yield varied performances, suggesting that a more comprehensive
evaluation of the images could enhance accuracy in this dataset.

Among the remaining strategies, RF emerged as the best Embedded approach, while RF
achieved the highest score within the Wrapper methods, and Artificial Neural Networks (ANN)
demonstrated the best baseline performance in this dataset. Ranking these results by the
score obtained in the test set, MOL-GainRatio-EPSO would be positioned in the third position
after RF-W and RF-B. Upon analyzing the cross-validation scores, RF-B exhibited statistical
significance (p < 0.05) when compared against these methods, while RF-W showed no significant
improvements compared to the best MOL approach (p >= 0.05). The number of selected features
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Table 6.1: Statistical comparison of the obtained balanced accuracy at the training and testing
for the Cancer dataset

Algorithm FS Str Map Str Opt Str Train Test # Feat

CNN MOL ANOVA ABC 0.9504 ± 0.0259 0.9713 8
CNN MOL Correlation ABC 0.9581 ± 0.0223 0.9655 8
CNN MOL Distance ABC 0.9542 ± 0.026 0.9713 8
CNN MOL Fisher ABC 0.9466 ± 0.0295 0.9713 8
CNN MOL Gain Ratio ABC 0.9618 ± 0.0258 0.9713 8
CNN MOL Mutual Info. ABC 0.9599 ± 0.0278 0.9713 8

CNN MOL ANOVA PSO 0.933 ± 0.0887 0.9713 8
CNN MOL Correlation PSO 0.9618 ± 0.0244 0.9713 8
CNN MOL Distance PSO 0.9561 ± 0.0173 0.9713 8
CNN MOL Fisher PSO 0.9561 ± 0.0244 0.9713 8
CNN MOL Gain Ratio PSO 0.9259 ± 0.0922 0.9713 8
CNN MOL Mutual Info. PSO 0.9599 ± 0.0263 0.9713 8

CNN MOL ANOVA EPSO 0.9619 ± 0.0257 0.9713 8
CNN MOL Correlation EPSO 0.9619 ± 0.0257 0.9655 8
CNN MOL Distance EPSO 0.9542 ± 0.0334 0.9770 6
CNN MOL Fisher EPSO 0.9543 ± 0.0286 0.9713 8
CNN MOL Gain Ratio EPSO 0.9581 ± 0.0239 0.9713 8
CNN MOL Mutual Info. EPSO 0.9580 ± 0.0224 0.9713 8

KNN E - - 0.9530 ± 0.0239 0.9800 8
LGBM E - - 0.9561 ± 0.0256 0.9723 8

LR E - - 0.9556 ± 0.0201 0.9615 8
ANN E - - 0.9628 ± 0.0217 0.9692 8
RF E - - 0.9685 ± 0.0248 0.9769 8

XGB E - - 0.9614 ± 0.0213 0.9493 8

KNN W - - 0.9673 ± 0.0072 0.9769 8
LGBM W - - 1.0000 ± 0.0000 0.9546 8

LR W - - 0.9557 ± 0.005 0.9538 8
ANN W - - 0.9546 ± 0.0064 0.9692 8
RF W - - 1.0000 ± 0.000 0.9769 8

XGB W - - 1.0000 ± 0.0000 0.9646 8

KNN B - - 0.9626 ± 0.0286 0.9769 -
LGBM B - - 0.9514 ± 0.0253 0.9846 -

LR B - - 0.9486 ± 0.0295 0.9538 -
ANN B - - 0.9498 ± 0.0334 0.9692 -
RF B - - 0.9614 ± 0.0196 0.9769 -

XGB B - - 0.9528 ± 0.0253 0.9646 -

TabNet - - - 1.0000 ± 0.0000 0.9908 -
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across the experiment varied, with algorithms achieving higher accuracy selecting 17 features out
of 51. However, selecting this number of features would not be possible in any MOL strategy
due to the squared image constraint devised in the optimization phase of the strategy.

6.1.3 Diabetes

Table 6.3 on page 68 show the results for each combination on the Diabetes dataset. It is possible
to notice that most of the algorithms had a poor performance on this set. The performance
can be related with the limited number of iterations used in the experiments or data quality
since there are few examples of the problem. Nevertheless, MOL-Distance-ABC achieved the
best performance among the available MOL combinations in this experiment, achieving a 76,04%
balanced accuracy, at least 2% better compared to the other approaches, in the test set where
the generated images uses all the features found in the dataset.

In the other feature selection experiments, ANN emerged as the most effective Wrapper
combination, RF secured the highest performance among the baseline experiments, and LGBM-E
presented the best Embedded approach. It is worth noting that KNN demonstrated results
similar to LGBM but with lower accuracy in cross-validation. Consequently, we consider LGBM
superior based on this criterion. When comparing results with MOL combinations, an interesting
observation surfaces. The statistical test indicates that ANN showed significance when compared
against MOL-Distance-EPSO (p < 0.05). This is attributed to the fact that MOL exhibited
poor performance in cross-validation; however, the model used in the test phase achieved better
results compared to others.

Upon observing the generated images by MOL-Distance-ABC in Figure 6.3 on page 69,
distinctive characteristics are evident in the sampled subset, aiding in distinguishing instances
representing outcome 0 from those indicating outcome 1. It is crucial to note that the presence
of the same pattern throughout the entire dataset isn’t guaranteed, potentially impacting the
model’s ability to achieve peak accuracy. Hypothetically assuming uniformity in the dataset
images, a visual comparison of outcome 0 images in rows 3 and 4 with outcome 1 images in the
same rows reveals similarities in color for a few points, indicating analogous numerical values.
This similarity might pose a challenge for the model, depending on the parameters employed in
the Convolutional Neural Network (CNN). Since this experiment serves as a general evaluation
of model performance, the prospect of tailoring the model and adjusting settings specifically for
this experiment could be pertinent for optimal results.

6.1.4 Gene

Table 6.4 on page 70 showcases the outcomes for the Gene dataset. Despite its extensive feature
set, the dataset, as per the creator’s intent, is optimized for achieving high accuracy with minimal
effort. While acknowledging this optimization, it remains valuable to assess the algorithms’
performance in this dataset. Notably, among various MOL combinations, MOL-ANOVA-PSO
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Table 6.2: Statistical comparison of the obtained balanced accuracy at the training and testing
for the Card dataset

Algorithm FS Str Map Str Opt Str Train Test # Feat

CNN MOL ANOVA ABC 0.8418 ± 0.0623 0.8779 50
CNN MOL Correlation ABC 0.7492 ± 0.0346 0.7965 50
CNN MOL Distance ABC 0.838 ± 0.0681 0.8721 50
CNN MOL Fisher ABC 0.8437 ± 0.0566 0.8779 50
CNN MOL Gain Ratio ABC 0.8456 ± 0.0583 0.8721 50
CNN MOL Mutual Info. ABC 0.8456 ± 0.055 0.8779 50

CNN MOL ANOVA PSO 0.8418 ± 0.0589 0.8663 50
CNN MOL Correlation PSO 0.7492 ± 0.0531 0.6279 20
CNN MOL Distance PSO 0.838 ± 0.0615 0.8547 50
CNN MOL Fisher PSO 0.8437 ± 0.0605 0.8779 50
CNN MOL Gain Ratio PSO 0.8456 ± 0.0602 0.8721 50
CNN MOL Mutual Info. PSO 0.8456 ± 0.0589 0.8779 50

CNN MOL ANOVA EPSO 0.8447 ± 0.0582 0.8779 50
CNN MOL Correlation EPSO 0.7221 ± 0.0561 0.7791 50
CNN MOL Distance EPSO 0.8399 ± 0.0605 0.8779 50
CNN MOL Fisher EPSO 0.8427 ± 0.0613 0.8779 50
CNN MOL Gain Ratio EPSO 0.8508 ± 0.0542 0.8837 50
CNN MOL Mutual Info. EPSO 0.8399 ± 0.0599 0.8779 50

KNN E - - 0.8460 ± 0.0575 0.8272 31
LGBM E - - 0.8765 ± 0.0668 0.8840 26

LR E - - 0.8697 ± 0.0611 0.8511 44
ANN E - - 0.8584 ± 0.0507 0.8723 36
RF E - - 0.8711 ± 0.0729 0.8886 35

XGB E - - 0.8540 ± 0.0464 0.8364 36

KNN W - - 0.8884 ± 0.0047 0.8652 17
LGBM W - - 1.0000 ± 0.0000 0.8832 17

LR W - - 0.8562 ± 0.0113 0.8647 12
ANN W - - 0.8562 ± 0.0084 0.8647 12
RF W - - 1.0000 ± 0.000 0.8902 17

XGB W - - 0.8614 ± 0.0213 0.8493 10

KNN B - - 0.8258 ± 0.0766 0.8168 -
LGBM B - - 0.8472 ± 0.0545 0.8660 -

LR B - - 0.8561 ± 0.0532 0.8606 -
ANN B - - 0.8382 ± 0.0626 0.8785 -
RF B - - 0.8586 ± 0.0682 0.8957 -

XGB B - - 0.8421 ± 0.0587 0.8598 -

TabNet - - - 0.8487 ± 0.1059 0.8639 -
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(a) Outcome 0

(b) Outcome 1

Figure 6.2: Input generated by MOL-GainRatio-EPSO for the Card dataset.
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Table 6.3: Statistical comparison of the obtained balanced accuracy at the training and testing
for the Diabetes dataset

Algorithm FS Str Map Str Opt Str Train Test # Feat

CNN MOL ANOVA ABC 0.712 ± 0.0609 0.6979 8
CNN MOL Correlation ABC 0.7467 ± 0.0562 0.7240 8
CNN MOL Distance ABC 0.7237 ± 0.0596 0.7604 8
CNN MOL Fisher ABC 0.7432 ± 0.0684 0.7500 8
CNN MOL Gain Ratio ABC 0.7261 ± 0.0667 0.7344 8
CNN MOL Mutual Info. ABC 0.7138 ± 0.068 0.7188 8

CNN MOL ANOVA PSO 0.712 ± 0.0543 0.7083 8
CNN MOL Correlation PSO 0.7467 ± 0.0612 0.7188 8
CNN MOL Distance PSO 0.7237 ± 0.0644 0.6354 8
CNN MOL Fisher PSO 0.7432 ± 0.0666 0.7396 8
CNN MOL Gain Ratio PSO 0.7261 ± 0.0695 0.7396 8
CNN MOL Mutual Info. PSO 0.7138 ± 0.0632 0.7240 8

CNN MOL ANOVA EPSO 0.7058 ± 0.0591 0.7188 8
CNN MOL Correlation EPSO 0.7372 ± 0.0627 0.6354 8
CNN MOL Distance EPSO 0.7151 ± 0.0641 0.6354 8
CNN MOL Fisher EPSO 0.7492 ± 0.0694 0.7292 8
CNN MOL Gain Ratio EPSO 0.7346 ± 0.0712 0.7031 8
CNN MOL Mutual Info. EPSO 0.7102 ± 0.0663 0.6354 8

KNN E - - 0.7121 ± 0.0519 0.7425 7
LGBM E - - 0.7230 ± 0.0431 0.7426 7

LR E - - 0.7318 ± 0.0593 0.7008 7
ANN E - - 0.7442 ± 0.0600 0.6916 5
RF E - - 0.7142 ± 0.0337 0.6824 7

XGB E - - 0.7222 ± 0.0412 0.7092 5

KNN W - - 0.7990 ± 0.2381 0.6896 7
LGBM W - - 1.0000 ± 0.0000 0.7201 4

LR W - - 0.7747 ± 0.1028 0.6897 4
ANN W - - 0.7768 ± 0.3602 0.7376 6

RF W - - 1.0000 ± 0.0000 0.7039 6
XGB W - - 0.7614 ± 0.0213 0.7293 6

KNN B - - 0.6968 ± 0.0739 0.6896 -
LGBM B - - 0.7002 ± 0.0612 0.7109 -

LR B - - 0.6986 ± 0.0626 0.6703 -
ANN B - - 0.7170 ± 0.0586 0.6804 -
RF B - - 0.7031 ± 0.0394 0.7437 -

XGB B - - 0.6656 ± 0.0330 0.6751 -

TabNet - - - 0.8668 ± 0.1190 0.7477 -
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(a) Outcome 0 (b) Outcome 1

Figure 6.3: Input generated by MOL-Distance-ABC for the Diabetes dataset.

demonstrated the best result, achieving a balanced accuracy of 93.06% in the test set. With the
exception of MOL-MutualInfo-PSO and MOL-Correlation-PSO, every other MOL combination
achieved over 90% accuracy. Interestingly, all MOL strategies employed the complete set of
features in an image format, suggesting convergence toward a common representation. However,
even with the entire feature set, the algorithms selected distinct image sizes. For instance,
MOL-Distance-ABC indicated the optimal format as a 30x4 image, while MOL-Distance-EPSO
presented results with a 60x2 image shape.

The remainder experiments presented TabNet with 97,23% score in the test set and higher
scores were also presented in the cross-validation. The strategy also presented statistical
significance (p < 0.05) against Extreme Gradient Boosting (XGB)-E, MOL-ANOVA-PSO and
XGB-B which were the best results obtained in the Embeded, MOL and Baseline experiments
respectively.

The images presented in Figure 6.4 on page 71 pose a challenge for human visual identification
due to the extensive number of features incorporated into the model’s solution. However, upon
closer inspection, it becomes apparent that images corresponding to outcome 0, located in row 1
column 4 and row 3 column 2, exhibit numerous darker points in comparison to others. This
pattern is not exclusive to outcome 0 but is also observed in outcome 1 images. This visual
complexity is interesting when considering the application of CNN. The intricate patterns might
contain distinctive features that a CNN could evaluate for accurate predictions. On the other
hand, the number of features and the variability in image sizes among different MOL strategies
present potential challenges for a CNN, as the model may need to adapt to varying spatial
configurations of information within these images.
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Table 6.4: Statistical comparison of the obtained balanced accuracy at the training and testing
for the Gene dataset

Algorithm FS Str Map Str Opt Str Train Test # Feat

CNN MOL ANOVA ABC 0.9131 ± 0.0122 0.9142 120
CNN MOL Correlation ABC 0.8824 ± 0.0277 0.9016 120
CNN MOL Distance ABC 0.9089 ± 0.0199 0.9193 120
CNN MOL Fisher ABC 0.9131 ± 0.0224 0.9067 120
CNN MOL Gain Ratio ABC 0.9144 ± 0.0186 0.9281 120
CNN MOL Mutual Info. ABC 0.9051 ± 0.0121 0.9231 120

CNN MOL ANOVA PSO 0.9131 ± 0.0153 0.9306 120
CNN MOL Correlation PSO 0.8824 ± 0.0258 0.9092 120
CNN MOL Distance PSO 0.9089 ± 0.0194 0.9180 120
CNN MOL Fisher PSO 0.9131 ± 0.0192 0.9168 120
CNN MOL Gain Ratio PSO 0.9144 ± 0.0188 0.9256 120
CNN MOL Mutual Info. PSO 0.9051 ± 0.0223 0.8903 120

CNN MOL ANOVA EPSO 0.9125 ± 0.0158 0.9142 120
CNN MOL Correlation EPSO 0.8881 ± 0.023 0.9117 120
CNN MOL Distance EPSO 0.9072 ± 0.0197 0.9218 120
CNN MOL Fisher EPSO 0.9114 ± 0.0186 0.9105 120
CNN MOL Gain Ratio EPSO 0.9148 ± 0.0184 0.9155 120
CNN MOL Mutual Info. EPSO 0.8967 ± 0.0208 0.9079 120

KNN E - - 0.7985 ± 0.0161 0.7961 108
LGBM E - - 0.9635 ± 0.0130 0.9443 119

LR E - - 0.9053 ± 0.0179 0.9144 116
ANN E - - 0.9081 ± 0.0262 0.9071 16
RF E - - 0.9297 ± 0.0180 0.9217 118

XGB E - - 0.9624 ± 0.0105 0.9446 117

KNN W - - 0.8132 ± 0.1483 0.7616 40
LGBM W - - 0.9994 ± 0.0003 0.9445 116

LR W - - 0.9195 ± 0.0574 0.9223 40
ANN W - - 0.9997 ± 0.0008 0.9333 40
RF W - - 0.9997 ± 0.0001 0.9321 40

XGB W - - 0.9614 ± 0.0013 0.9293 40

KNN B - - 0.7669 ± 0.0174 0.7640 -
LGBM B - - 0.9545 ± 0.0150 0.9045 -

LR B - - 0.8994 ± 0.0206 0.9061 -
ANN B - - 0.9012 ± 0.0196 0.8980 -
RF B - - 0.9203 ± 0.0186 0.8960 -

XGB B - - 0.9593 ± 0.0148 0.9071 -

TabNet - - - 0.9979 ± 0.0053 0.9723 -
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(a) Outcome 0 (b) Outcome 1

Figure 6.4: Input generated by MOL-ANOVA-PSO for the Gene dataset.

6.1.5 Glass

Table 6.5 on the following page presents the results obtained by each combination for the Glass
dataset. Due to the number of iterations, instances, and features, this dataset can be challenging,
and any wasted iteration can lead to poor performance, which is evident for every combination
tested. The results obtained by MOL indicates that these combinations performed extremely
poorly for this problem, and statistical significance is not required to demonstrate that they
were the worst results and have no significance when compared to the others. The best obtained
result was achieved by MOL-GainRatio-ABC with 58,60% balanced accuracy in the test set.

Experiment performed with the other strategies presented TabNet with the best outcome
for this dataset, where the algorithm had close to 1% improvements compared against XGB-E.
XGB also had the best performance among the Wrapper algorithms and the RF achieved the
best performance using the Baseline approach.

Figure 6.5 on page 73 showcases the images generated by MOL-Distance-ABC. These images
exhibit a few blocks with higher intensity, which are somewhat similar to instances found in both
outcomes. This similarity could potentially challenge the performance of the CNN. However, it’s
worth noting that while these images are relatively interpretable to the human eye, the values
they represent are associated with the minimum and maximum values found in the dataset.
Consequently, the numerical scale of the image in different pixels differs from what the human
eye perceives. This incongruity may pose a challenge for the CNN in interpreting these images
accurately.
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Table 6.5: Statistical comparison of the obtained balanced accuracy at the training and testing
for the Glass dataset

Algorithm FS Str Map Str Opt Str Train Test # Feat

CNN MOL ANOVA ABC 0.3978 ± 0.0586 0.4340 8
CNN MOL Correlation ABC 0.354 ± 0.0685 0.2642 8
CNN MOL Distance ABC 0.3721 ± 0.0497 0.2830 8
CNN MOL Fisher ABC 0.4037 ± 0.0567 0.4340 8
CNN MOL Gain Ratio ABC 0.4224 ± 0.0729 0.5660 8
CNN MOL Mutual Info. ABC 0.3912 ± 0.0831 0.5660 8

CNN MOL ANOVA PSO 0.3978 ± 0.0678 0.4340 8
CNN MOL Correlation PSO 0.354 ± 0.0603 0.4340 8
CNN MOL Distance PSO 0.3721 ± 0.0492 0.2830 8
CNN MOL Fisher PSO 0.4037 ± 0.0829 0.4340 8
CNN MOL Gain Ratio PSO 0.4224 ± 0.0669 0.4340 8
CNN MOL Mutual Info. PSO 0.3912 ± 0.0841 0.4340 8

CNN MOL ANOVA EPSO 0.3943 ± 0.0671 0.2642 8
CNN MOL Correlation EPSO 0.3542 ± 0.0649 0.2642 8
CNN MOL Distance EPSO 0.3787 ± 0.0651 0.4340 8
CNN MOL Fisher EPSO 0.3847 ± 0.0764 0.2830 8
CNN MOL Gain Ratio EPSO 0.3851 ± 0.0743 0.2642 8
CNN MOL Mutual Info. EPSO 0.3938 ± 0.0773 0.2642 8

KNN E - - 0.6372 ± 0.1116 0.5663 8
LGBM E - - 0.6384 ± 0.0918 0.6184 8

LR E - - 0.5928 ± 0.1087 0.6420 8
ANN E - - 0.6839 ± 0.1175 0.6566 8
RF E - - 0.7691 ± 0.1272 0.6409 8

XGB E - - 0.7052 ± 0.1655 0.6909 8

KNN W - - 0.7816 ± 0.2102 0.4393 6
LGBM W - - 1.0000 ± 0.0000 0.6383 8

LR W - - 0.6156 ± 0.499 0.3722 6
ANN W - - 0.7069 ± 0.1846 0.3897 8
RF W - - 1.0000 ± 0.0000 0.6209 8

XGB W - - 0.7330 ± 0.2497 0.6496 6

KNN B - - 0.5104 ± 0.0928 0.5163 -
LGBM B - - 0.6646 ± 0.1681 0.6383 -

LR B - - 0.4011 ± 0.0620 0.3523 -
ANN B - - 0.4373 ± 0.0535 0.3723 -
RF B - - 0.7614 ± 0.1435 0.6822 -

XGB B - - 0.7030 ± 0.1497 0.6296 -

TabNet - - - 0.9386 ± 0.0612 0.7310 -



6.1. Benchmark Problems 73

(a) Outcome 0 (b) Outcome 1

Figure 6.5: Input generated by MOL-GainRatio-ABC for the Glass dataset.

6.1.6 Heart

Table 6.6 on the following page provides an overview of the outcomes obtained for the Heart
dataset across various combinations. Among the MOL strategies, results are notably consistent
in terms of the test score, with the most favorable outcome achieved by MOL-MutualInfo-ABC,
boasting a 79.13% balanced accuracy in the test set. Combinations employing Mutual Information
(Mutual Information (MI)) as a map strategy, particularly with both EPSO and ABC algorithms,
yielded superior results, indicating their effectiveness in generating image formats. All MOL
strategies opted for selecting 34 features to generate images. When comparing RF-E, which had
the second best performance in the test set, and MOL-MutualInfo-ABC, no statistical significance
was found in the test results (p >= 0.05).

An examination of the images generated by MOL-MutualInfo-ABC in Figure 6.6 on page 75
reveals a distinct pattern in the image corresponding to outcome 1. Each sample in this category
is identical and does not appear in the image representing outcome 0. While this pattern is
evident in the sampled images, it is crucial to note that the entire dataset may not uniformly
exhibit the same behavior. If the complete dataset show this pattern, it would be identifiable by
the human eye, allowing for easy differentiation between positive and negative classes. However,
it is essential to emphasize that this generalized experiment does not account for dataset-specific
nuances. With a more nuanced construction of the CNN architecture and fine-tuning of other
parameters, there is potential for enhanced accuracy, especially considering the observed image
similarities in these samples.
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Table 6.6: Statistical comparison of the obtained balanced accuracy at the training and testing
for the Heart dataset

Algorithm FS Str Map Str Opt Str Train Test # Feat

CNN MOL ANOVA ABC 0.8478 ± 0.0351 0.7435 34
CNN MOL Correlation ABC 0.8507 ± 0.0449 0.7696 34
CNN MOL Distance ABC 0.8362 ± 0.0421 0.7565 34
CNN MOL Fisher ABC 0.8478 ± 0.0339 0.7870 34
CNN MOL Gain Ratio ABC 0.8449 ± 0.0481 0.7870 34
CNN MOL Mutual Info. ABC 0.8566 ± 0.0352 0.7913 34

CNN MOL ANOVA PSO 0.8478 ± 0.0363 0.7609 34
CNN MOL Correlation PSO 0.8507 ± 0.0366 0.7739 34
CNN MOL Distance PSO 0.8362 ± 0.0471 0.7652 34
CNN MOL Fisher PSO 0.8478 ± 0.0355 0.7478 34
CNN MOL Gain Ratio PSO 0.8449 ± 0.0466 0.7609 34
CNN MOL Mutual Info. PSO 0.8566 ± 0.0438 0.7696 34

CNN MOL ANOVA EPSO 0.8478 ± 0.0374 0.7478 34
CNN MOL Correlation EPSO 0.8515 ± 0.0378 0.7522 34
CNN MOL Distance EPSO 0.8326 ± 0.0498 0.7652 34
CNN MOL Fisher EPSO 0.8449 ± 0.0408 0.7783 34
CNN MOL Gain Ratio EPSO 0.8478 ± 0.0467 0.7696 34
CNN MOL Mutual Info. EPSO 0.8508 ± 0.0459 0.7783 34

KNN E - - 0.8379 ± 0.0485 0.7721 25
LGBM E - - 0.8447 ± 0.0406 0.7511 23

LR E - - 0.8464 ± 0.0370 0.7646 31
ANN E - - 0.8473 ± 0.0495 0.7598 29
RF E - - 0.8500 ± 0.0414 0.7895 29

XGB E - - 0.8406 ± 0.0341 0.7589 27

KNN W - - 0.8750 ± 0.3694 0.7379 34
LGBM W - - 1.0000 ± 0.0000 0.7421 24

LR W - - 0.8577 ± 0.1287 0.7733 34
ANN W - - 0.9230 ± 0.0355 0.7562 34
RF W - - 1.0000 ± 0.0000 0.7592 34

XGB W - - 1.0000 ± 0.0000 0.7392 34

KNN B - - 0.8297 ± 0.0428 0.7379 -
LGBM B - - 0.8278 ± 0.0413 0.7334 -

LR B - - 0.8447 ± 0.0385 0.7733 -
ANN B - - 0.8401 ± 0.0609 0.7559 -
RF B - - 0.8288 ± 0.0427 0.7769 -

XGB B - - 0.7759 ± 0.0427 0.7250 -

TabNet - - - 0.9712 ± 0.0341 0.7127 -
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(a) Outcome 0 (b) Outcome 1

Figure 6.6: Input generated by MOL-MutualInfo-ABC for the Heart dataset.

6.1.7 Horse

Table 6.6 on the facing page presents the performance metrics of various models and feature
selection methods on the Horse dataset. Among MOL approaches, MOL-Correlation-PSO present
the best performance. However, the training scores obtained in the cross-validation indicates a
possible underfit scenario.

The best overall results were achieved by MOL-Correlation-PSO, followed by MOL-Distance-
ABC and TabNet. TabNet performance in the cross-validation points out statistical significance
when compared to both MOL approaches (p < 0.05), while the testing indicates a 3% superior
performance with the predictions produced by the combination with the correlation map and
Particle Swarm Optimization (PSO) algorithm.

Figure 6.7 on page 77 showcases the images generated by MOL-Correlation-PSO. Within this
subset, images corresponding to outcome 0 exhibit a similar pattern, while images associated with
outcome 1 display a more diverse range of patterns. It’s important to note that this particular
problem involves more than two potential outcomes, implying that the patterns observed in
these groups might also appear in the third group. Due to the substantial number of features
involved, distinguishing clear patterns with the naked eye is challenging. Moreover, the fact that
the optimization algorithm did not reduce the number of selected features suggests that the
algorithms struggled to simultaneously create smaller and more uniform images. Consequently,
this issue might have trapped the solutions in local optima, impeding convergence.
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Table 6.7: Statistical comparison of the obtained balanced accuracy at the training and testing
for the Horse dataset

Algorithm FS Str Map Str Opt Str Train Test # Feat

CNN MOL ANOVA ABC 0.6258 ± 0.0594 0.6923 58
CNN MOL Correlation ABC 0.6483 ± 0.0499 0.7033 58
CNN MOL Distance ABC 0.6414 ± 0.0704 0.7473 58
CNN MOL Fisher ABC 0.6524 ± 0.0547 0.7143 58
CNN MOL Gain Ratio ABC 0.6521 ± 0.0632 0.7033 58
CNN MOL Mutual Info. ABC 0.6372 ± 0.0427 0.7363 58

CNN MOL ANOVA PSO 0.6258 ± 0.0598 0.7143 28
CNN MOL Correlation PSO 0.6483 ± 0.0515 0.7692 58
CNN MOL Distance PSO 0.6414 ± 0.0653 0.7253 30
CNN MOL Fisher PSO 0.6524 ± 0.056 0.6923 28
CNN MOL Gain Ratio PSO 0.6521 ± 0.0542 0.6923 58
CNN MOL Mutual Info. PSO 0.6372 ± 0.0498 0.7033 30

CNN MOL ANOVA EPSO 0.6206 ± 0.0587 0.7253 32
CNN MOL Correlation EPSO 0.6372 ± 0.0539 0.7253 32
CNN MOL Distance EPSO 0.6468 ± 0.0617 0.7143 32
CNN MOL Fisher EPSO 0.656 ± 0.0542 0.7033 32
CNN MOL Gain Ratio EPSO 0.6447 ± 0.0554 0.7143 32
CNN MOL Mutual Info. EPSO 0.6427 ± 0.0524 0.7253 18

KNN E - - 0.4712 ± 0.0749 0.4921 53
LGBM E - - 0.5352 ± 0.0958 0.6111 43

LR E - - 0.5378 ± 0.1089 0.7095 57
ANN E - - 0.5798 ± 0.0849 0.6071 57
RF E - - 0.5059 ± 0.0815 0.6135 57

XGB E - - 0.5846 ± 0.0772 0.6016 52

KNN W - - 0.7360 ± 0.1988 0.3897 20
LGBM W - - 0.9980 ± 0.2779 0.6548 57

LR W - - 0.7520 ± 0.0751 0.6987 39
ANN W - - 0.9768 ± 0.4888 0.6016 57
RF W - - 0.9980 ± 0.0019 0.6238 39

XGB W - - 0.8380 ± 0.2779 0.7087 57

KNN B - - 0.7290 ± 0.0555 0.4643 -
LGBM B - - 0.8910 ± 0.0847 0.6454 -

LR B - - 0.6754 ± 0.0847 0.6754 -
ANN B - - 0.7235 ± 0.0767 0.6010 -
RF B - - 0.5579 ± 0.0662 0.5879 -

XGB B - - 0.7149 ± 0.0519 0.7053 -

TabNet - - - 0.8502 ± 0.3121 0.7360 -
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(a) Outcome 0 (b) Outcome 1

Figure 6.7: Input generated by MOL-Correlation-PSO for the Horse dataset.

6.1.8 Soybean

The table with identifier 6.8 on the following page displays the outcomes of each model-feature
selection method combination for the Soybean dataset.

The test set results showed that LGBM-E had the best overall performance, achieving the
same score as ANN-W. The MOL-Distance-ABC and MOL-Correlation-EPSO methods also
had good results, but not as good as the two aforementioned approaches. On the validation
set, ANN-W had the best k-folds results and was statistically significant when compared to the
other methods (p < 0.05). Despite MOL-Distance-ABC’s strong overall performance, it was not
able to match the performance of ANN-W on the test set. Both methods used the same number
of features, suggesting that transforming the problem into images may not lead to improved
classification results.

Figure 6.8 on page 79 showcases the images generated by MOL-Distance-ABC for the Soybean
dataset. Upon closer examination, it becomes evident that the subset contains images in Outcome
0 that are distinct from those in Outcome 1. In Outcome 1, the right side of the images displays
three pixels that differentiate them, while the left part of the image exhibits a distinct wave-like
pattern created by the darker pixels. Interestingly, this pattern is absent in the images associated
with Outcome 0 within the presented subset. The model results suggest that not all images in
the dataset are identical, but it has nonetheless achieved excellent performance on this dataset.
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Table 6.8: Statistical comparison of the obtained balanced accuracy at the training and testing
for the Soybean dataset

Algorithm FS Str Map Str Opt Str Train Test # Feat

CNN MOL ANOVA ABC 0.9752 ± 0.0671 0.9294 82
CNN MOL Correlation ABC 0.9673 ± 0.0414 0.9235 82
CNN MOL Distance ABC 0.9772 ± 0.0619 0.9694 82
CNN MOL Fisher ABC 0.9788 ± 0.0568 0.9635 82
CNN MOL Gain Ratio ABC 0.9456 ± 0.1014 0.9218 82
CNN MOL Mutual Info. ABC 0.9032 ± 0.2018 0.8059 46

CNN MOL ANOVA PSO 0.8745 ± 0.2278 0.8176 42
CNN MOL Correlation PSO 0.8607 ± 0.2475 0.8647 40
CNN MOL Distance PSO 0.8374 ± 0.218 0.7941 42
CNN MOL Fisher PSO 0.8798 ± 0.1579 0.7000 38
CNN MOL Gain Ratio PSO 0.8731 ± 0.2322 0.8412 40
CNN MOL Mutual Info. PSO 0.8635 ± 0.0554 0.9235 82

CNN MOL ANOVA EPSO 0.8006 ± 0.1822 0.8000 38
CNN MOL Correlation EPSO 0.8831 ± 0.109 0.8588 38
CNN MOL Distance EPSO 0.8898 ± 0.1683 0.8353 38
CNN MOL Fisher EPSO 0.2711 ± 0.1911 0.1471 38
CNN MOL Gain Ratio EPSO 0.8206 ± 0.177 0.7941 38
CNN MOL Mutual Info. EPSO 0.2558 ± 0.1916 0.2647 26

KNN E - - 0.9584 ± 0.0266 0.9143 34
LGBM E - - 0.9607 ± 0.0305 0.9142 52

LR E - - 0.9737 ± 0.0220 0.9125 79
ANN E - - 0.9704 ± 0.0214 0.9125 61
RF E - - 0.9807 ± 0.0178 0.9173 78

XGB E - - 0.9694 ± 0.0208 0.9125 38

KNN W - - 0.9742 ± 0.0075 0.9260 82
LGBM W - - 1.0000 ± 0.0006 0.9534 55

LR W - - 0.9852 ± 0.0090 0.9525 80
ANN W - - 0.9913 ± 0.0039 0.9642 80

RF W - - 1.0000 ± 0.0000 0.9514 55
XGB W - - 1.0000 ± 0.0000 0.9334 45

KNN B - - 0.9620 ± 0.0209 0.9260 -
LGBM B - - 0.9695 ± 0.0250 0.9575 -

LR B - - 0.9730 ± 0.0222 0.9525 -
ANN B - - 0.9723 ± 0.0243 0.9642 -

RF B - - 0.9764 ± 0.0211 0.9552 -
XGB B - - 0.9579 ± 0.0220 0.9534 -

TabNet - - - 0.9937 ± 0.0085 0.9564 -
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(a) Outcome 0 (b) Outcome 1

Figure 6.8: Input generated by MOL-Distance-ABC for the Soybean dataset.

6.1.9 Thyroid

The table labeled as 6.9 on the following page exhibits the results of each combination of model
and feature selection method for the Thyroid dataset.

The test results revealed that XGB-E exhibited the most outstanding performance among
all the experiments, outperforming the others. Following closely was MOL-GainRatio-ABC,
which achieved a similar score to MOL-Distance-PSO. The remaining MOL combinations also
demonstrated improved test scores compared to their respective baselines. However, upon
analyzing the validation sets, it became evident that the results obtained by MOL seemed to
exhibit slight underfitting, with the achieved results on the train set being less than 3%.

Statistical analysis indicated that XGB-E showed significant differences when compared to the
MOL methods (p < 0.05). It is worth noting that while XGB-E had the best overall performance
in the test set, MOL could still maintain its performance and achieve a near point to XBG-E
performance for this dataset.

The images generated by MOL-GainRatio-ABC for the Thyroid dataset are depicted in
Figure 6.9 on page 81. This dataset comprises 19 distinct classes, and the presented images
correspond to outcomes 0 and 1. Upon close examination, it becomes evident that the pattern
identified in the subset associated with outcome 0 does not repeat in outcome 1, making it easily
discernible to the human eye. Given the dataset’s numerous instances and classes, the generated
images may exhibit variability, with some images from outcome 0 or 1 possibly appearing in other
outcomes as well. However, the CNN inherent characteristics in image analysis may capture
underlying patterns that contribute or hinder the strategy results.
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Table 6.9: Statistical comparison of the obtained balanced accuracy at the training and testing
for the Thyroid dataset

Algorithm FS Str Map Str Opt Str Train Test # Feat

CNN MOL ANOVA ABC 0.9285 ± 0.005 0.9552 20
CNN MOL Correlation ABC 0.9263 ± 0.0018 0.9353 20
CNN MOL Distance ABC 0.9344 ± 0.0062 0.9624 20
CNN MOL Fisher ABC 0.9352 ± 0.0054 0.9668 20
CNN MOL Gain Ratio ABC 0.9313 ± 0.0052 0.9685 20
CNN MOL Mutual Info. ABC 0.9304 ± 0.0045 0.9413 20

CNN MOL ANOVA PSO 0.9298 ± 0.0061 0.9618 14
CNN MOL Correlation PSO 0.9257 ± 0.0015 0.9369 14
CNN MOL Distance PSO 0.9294 ± 0.0054 0.9673 12
CNN MOL Fisher PSO 0.9292 ± 0.0061 0.9380 12
CNN MOL Gain Ratio PSO 0.9289 ± 0.0063 0.9424 14
CNN MOL Mutual Info. PSO 0.9272 ± 0.0041 0.9353 12

CNN MOL ANOVA EPSO 0.9254 ± 0.0008 0.9270 6
CNN MOL Correlation EPSO 0.9254 ± 0.0008 0.9270 6
CNN MOL Distance EPSO 0.9278 ± 0.0048 0.9386 8
CNN MOL Fisher EPSO 0.9265 ± 0.0026 0.9347 6
CNN MOL Gain Ratio EPSO 0.9254 ± 0.0008 0.9358 4
CNN MOL Mutual Info. EPSO 0.9272 ± 0.0044 0.9341 6

KNN E - - 0.6557 ± 0.0724 0.6637 17
LGBM E - - 0.9972 ± 0.0039 0.9947 9

LR E - - 0.7145 ± 0.0749 0.7330 18
ANN E - - 0.9168 ± 0.0394 0.9172 16
RF E - - 0.9981 ± 0.0034 0.9816 9

XGB E - - 0.9839 ± 0.0193 0.9848 10

KNN W - - 0.8042 ± 0.0042 0.8046 7
LGBM W - - 0.9421 ± 0.1523 0.9399 14

LR W - - 0.6431 ± 0.2803 0.4146 14
ANN W - - 0.8900 ± 0.0311 0.7665 7
RF W - - 0.9345 ± 0.2712 0.9352 7

XGB B - - 0.9421 ± 0.0136 0.9364 -

KNN B - - 0.5235 ± 0.0394 0.5234 -
LGBM B - - 0.9327 ± 0.0138 0.9299 -

LR B - - 0.3776 ± 0.0364 0.4228 -
ANN B - - 0.7137 ± 0.0718 0.7586 -
RF B - - 0.9249 ± 0.0233 0.9254 -

XGB B - - 0.9215 ± 0.0136 0.9264 -

TabNet - - - 0.9984 ± 0.0069 0.9597 -
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(a) Outcome 0 (b) Outcome 1

Figure 6.9: Input generated by MOL-Gain Ratio-ABC for the Thyroid dataset.

6.1.10 KDD

The results obtained by each combination of strategies and algorithms, for the KDD dataset, can
be found in Table 6.10 on page 83.

The KDD dataset serves as a benchmark for which achieving high accuracy is relatively
straightforward, as demonstrated in this experiment. In the MOL experiments, every combination
achieved a test set accuracy exceeding 90%, and it is noteworthy that the number of selected
features remained consistent across all combinations, with only two features being excluded from
the final dataset. Among the MOL combinations, the best performance was observed in the
MOL-Correlation-EPSO combination.

The remaining experiments also yielded excellent results when feature selection strategies
were not applied. Baseline algorithms outperformed the same algorithms with FS strategies. The
highest accuracy was achieved by the LGBM algorithm. Upon analyzing statistical significance
across this experiment, no statistically significant differences (p >= 0.05) were found in the
cross-validation when performing pairwise comparisons among the algorithms with the highest
accuracy in the test set.

Figure 6.10 on the next page displays the images generated by MOL-Distance-ABC for the
KDD dataset. It’s important to note that the values in the KDD dataset vary from 0 to millions.
To create illustrative images, the dataset used for generating these images was normalized between
0 and 1. While some recurring patterns are discernible, the generated images are distinguishable
to the human eye. Upon closer inspection of this small sample of images, it becomes apparent
that certain patterns appear to be exclusive to Outcome 1. This observation potentially aligns
with the algorithm’s overall performance in classifying this specific outcome.
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It’s worth emphasizing that the KDD dataset encompasses multiple classes, extending beyond
two outcomes. Analyzing the similarities among the images provides insights into the algorithm’s
performance based on this visual representation. However, it’s crucial to consider that the
presence of other images sharing the same pattern across classes might pose challenges for the
CNN’s performance, particularly given the inherent complexity of the problem.

(a) Outcome 0 (b) Outcome 1

Figure 6.10: Input generated by MOL-Correlation-EPSO for the Gene dataset.

6.2 Real-World Problems

This section presents the results obtained from the Real-World experiment discussed in the
previous chapter. It is essential to note that, in this analysis, only the test scores were evaluated.
Due to comparisons against literature results and the unavailability of training scores, the focus
is solely on the performance of the model on the test set.

6.2.1 Cardiac Pathology

Table 6.11 on page 85 presents the results obtained from the study, including the test score and
the number of selected features by each algorithm under a specific strategy.

Among the optimization algorithms, the mapping strategy based on the Euclidean distance
yielded the best scores when combined with all three algorithms. ABC was unable to generalize
the data, achieving an accuracy of only 64.42% on the test set. PSO, on the other hand, achieved
very good accuracy on the test set (92.25%). Finally, the EPSO algorithm achieved a training
score of 93.60% and a test score of 93.92%.

Among the approaches that utilized feature selection, the ANN achieved the highest test score
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Table 6.10: Statistical comparison of the obtained balanced accuracy at the training and testing
for the KDD dataset

Algorithm FS Str Map Str Opt Str Train Test # Feat

CNN MOL ANOVA ABC 0.9388 ± 0.0526 0.8840 40
CNN MOL Correlation ABC 0.9402 ± 0.0604 0.9330 40
CNN MOL Distance ABC 0.9123 ± 0.0669 0.9199 40
CNN MOL Fisher ABC 0.9824 ± 0.0078 0.9933 40
CNN MOL Gain Ratio ABC 0.9872 ± 0.0077 0.9933 40
CNN MOL Mutual Info. ABC 0.9824 ± 0.0068 0.9933 40

CNN MOL ANOVA PSO 0.9812 ± 0.0079 0.9914 40
CNN MOL Correlation PSO 0.9907 ± 0.0073 0.9865 40
CNN MOL Distance PSO 0.9812 ± 0.0083 0.9935 40
CNN MOL Fisher PSO 0.9306 ± 0.0493 0.9243 40
CNN MOL Gain Ratio PSO 0.9848 ± 0.0097 0.9865 40
CNN MOL Mutual Info. PSO 0.9807 ± 0.0075 0.9542 40

CNN MOL ANOVA EPSO 0.9819 ± 0.0086 0.9895 40
CNN MOL Correlation EPSO 0.9892 ± 0.0081 0.9935 40
CNN MOL Distance EPSO 0.9851 ± 0.0095 0.9692 40
CNN MOL Fisher EPSO 0.9845 ± 0.0082 0.9445 40
CNN MOL Gain Ratio EPSO 0.9862 ± 0.0106 0.9923 40
CNN MOL Mutual Info. EPSO 0.9871 ± 0.0091 0.9913 40

KNN E - - 0.7509 ± 0.0493 0.7321 28
LGBM E - - 0.8245 ± 0.0587 0.7962 34

LR E - - 0.8132 ± 0.0771 0.7215 28
ANN E - - 0.8734 ± 0.4374 0.7922 32
RF E - - 0.7648 ± 0.0348 0.7456 22

XGB E - - 0.8031 ± 0.0404 0.7503 -

KNN W - - 0.9261 ± 0.4114 0.6919 40
LGBM W - - 0.9012 ± 0.0327 0.8162 38

LR W - - 0.8352 ± 0.2482 0.7878 28
ANN W - - 0.8056 ± 0.0146 0.7476 15
RF W - - 0.9998 ± 0.1458 0.7947 40

XGB W - - 0.9997 ± 0.0465 0.8756 41

KNN B - - 0.7009 ± 0.0657 0.6919 -
LGBM B - - 0.9803 ± 0.0429 0.9998 -

LR B - - 0.8002 ± 0.0271 0.7802 -
ANN B - - 0.9845 ± 0.0049 0.9914 -
RF B - - 0.8048 ± 0.0888 0.8303 -

XGB B - - 0.9858 ± 0.0100 0.9997 -

TabNet - - - 0.9862 ± 0.0028 0.9761 -



84 Chapter 6. Results

at 90.38% under an Embedded FS strategy, while the Wrapper strategy resulted in a 90.58% test
score. The LGBM achieved a 90.59% balanced accuracy at the test set among models without
any feature selection.

The images displayed in Figure 6.11 depict the generated patterns for the dataset. While
some pixels in these images are discernible to the human eye, it’s important to note that the
values within these images are scaled to the maximum number. For instance, the first pixel is a
binary variable. Consequently, these produced images may appear to have the same color, but
the underlying values differ and are constrained to distinct scales.

(a) Outcome 0 (b) Outcome 1

Figure 6.11: Input generated by MOL-Correlation-PSO for the Cardiac Pathology dataset.

6.2.2 Forest Cover Type

Table 6.12 on page 86 presents the results obtained from the study, showcasing the test scores
and the number of selected features by each algorithm under a specific strategy.

In this dataset, we compared the results obtained by XGB, LGBM, CatBoost, AutoML
Tables, and TabNet with the findings reported in published papers available in the literature.
Among these algorithms, TabNet achieved the highest accuracy of 96.99%, securing the top
position. MOL-Distance-EPSO came in second, recording the best score among all other MOL
approaches with a respectable 95.08% accuracy.

Regarding the process of feature selection introduced in MOL, an interesting observation
emerged as all the algorithms and combinations selected the same number of features. This
uniform behavior indicates that the selected optimization algorithms might not have fully
converged. There is a possibility that the optimization function used in the MOL optimization
phase needs further refinement. Despite the good results achieved by the Distance-EPSO
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Table 6.11: Statistical comparison of the obtained balanced accuracy at the testing for the
Cardiac Pathology dataset

Algorithm FS Str Map Str Opt Str Test # Feat

CNN MOL ANOVA ABC 0.9254 12
CNN MOL Correlation ABC 0.9250 12
CNN MOL Distance ABC 0.9254 12
CNN MOL Fisher ABC 0.6559 12
CNN MOL Gain Ratio ABC 0.6559 12
CNN MOL Mutual Info. ABC 0.9245 12

CNN MOL ANOVA PSO 0.9253 12
CNN MOL Correlation PSO 0.9263 12
CNN MOL Distance PSO 0.9254 12
CNN MOL Fisher PSO 0.6241 12
CNN MOL Gain Ratio PSO 0.7258 4
CNN MOL Mutual Info. PSO 0.9254 12

CNN MOL ANOVA EPSO 0.9232 4
CNN MOL Correlation EPSO 0.8932 4
CNN MOL Distance EPSO 0.9250 4
CNN MOL Fisher EPSO 0.6442 4
CNN MOL Gain Ratio EPSO 0.6442 4
CNN MOL Mutual Info. EPSO 0.9209 4

ANN E - - 0.9038 6
KNN E - - 0.7310 6
LR E - - 0.9030 9
RF E - - 0.5178 1

XGB E - - 0.8888 10
LGBM E - - 0.9000 11

ANN W - - 0.9038 5
KNN W - - 0.9019 5
LR W - - 0.9058 5
RF W - - 0.8711 5

XGB W - - 0.9042 5
LGBM W - - 0.9012 12

ANN S - - 0.9050 13
KNN S - - 0.7457 13
LR S - - 0.9030 13
RF S - - 0.8990 13

XGB S - - 0.8888 13
LGBM S - - 0.9059 13

TabNet - - - 0.9147 -



86 Chapter 6. Results

combination, this observation raises concerns that the current optimization phase might be
hindering the overall process for this dataset.

Table 6.12: Statistical comparison of the obtained accuracy at the testing for the Forest Cover
Type dataset

Algorithm FS Str Map Str Opt Str Test # Feat

CNN MOL ANOVA ABC 0.8683 52
CNN MOL Correlation ABC 0.6683 52
CNN MOL Distance ABC 0.8684 52
CNN MOL Fisher ABC 0.8156 52
CNN MOL Gain Ratio ABC 0.8187 52
CNN MOL Mutual Info. ABC 0.8348 52

CNN MOL ANOVA EPSO 0.8765 52
CNN MOL Correlation EPSO 0.6322 52
CNN MOL Distance EPSO 0.9508 52
CNN MOL Fisher EPSO 0.6442 52
CNN MOL Gain Ratio EPSO 0.6442 52
CNN MOL Mutual Info. EPSO 0.9209 52

CNN MOL ANOVA PSO 0.8467 52
CNN MOL Correlation PSO 0.7133 52
CNN MOL Distance PSO 0.8133 52
CNN MOL Fisher PSO 0.8789 52
CNN MOL Gain Ratio PSO 0.7960 52
CNN MOL Mutual Info. PSO 0.9256 12

XGB [5] - - - 0.8934 -
LGBM [5] - - - 0.8928 -

CatBoost [5] - - - 0.8514 -
AutoML Tables [5] - - - 0.9495 -

TabNet [5] - - - 0.9699 -

Upon analyzing the samples of the generated images shown in Figure 6.12, several key points
are evident in the images produced by MOL-Distance-EPSO. These key points are situated at
the first and last pixels of the first row, and the last pixel of the last row. Notably, these points
are easily visualized, and the colors observed range between shades of grey and white.

Similar to findings from previous datasets, the generated patterns exhibit different patterns
in both outcomes, where the values are set into the same scale. In the other hand, the values
that the CNN analyzes are in another scale, potentially impacting the learning process. The
extent to which this mixing hinders learning depends on the prevalence of repeatable patterns
within the dataset.
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While the CNN may encounter challenges in this regard, it has the ability to search for and
identify other types of patterns and numerical values associated with each black color pixel. This
capability enables the CNN to detect hidden patterns that may not be immediately apparent to
the human eye. As a result, the CNN’s computational power allows it to excel in uncovering
intricate patterns within the generated images, ultimately contributing to a more comprehensive
understanding of the underlying data.

(a) Outcome 0 (b) Outcome 1

Figure 6.12: Input generated by MOL-Distance-EPSO for the Forest Cover dataset.

6.2.3 Poker Hand

Table 6.13 on the next page provides a comprehensive overview of the obtained results, presenting
both the test scores and the number of selected features by each algorithm under a specific
strategy.

Similar to the previous dataset, the performance results for XGB, LGBM, CatBoost, and
Deep Neural Decision Tree are sourced from published papers in the literature. Among the
outcomes, TabNet exhibited the highest accuracy, reaching an impressive 99.20%. Following
closely are MOL-ANOVA-EPSO with an accuracy score of 90.70% and MOL-GainRatio-EPSO
with a score of 90.72%.

In terms of the feature selection process executed by MOL, it is evident that the optimization
process encountered challenges in identifying a combination with fewer than 10 features. This
outcome implies that at least one feature was consistently included in the selected combinations.
However, the results reveal the significance of this particular combination, as demonstrated by
CNN-MOL-ANOVA achieving a noteworthy accuracy improvement of around 30% accuracy
score compared to other approaches like ABC. This emphasizes the pivotal role of selecting
appropriate components to constitute the MOL pipeline, underlining the influential role this
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process plays in achieving optimal results.

Table 6.13: Statistical comparison of the obtained accuracy at the testing for the Poker Hand
dataset

Algorithm FS Str Map Str Opt Str Test # Feat

CNN MOL ANOVA ABC 0.8973 10
CNN MOL Correlation ABC 0.8610 10
CNN MOL Distance ABC 0.7815 10
CNN MOL Fisher ABC 0.8015 10
CNN MOL Gain Ratio ABC 0.8509 10
CNN MOL Mutual Info. ABC 0.6365 10

CNN MOL ANOVA EPSO 0.8821 10
CNN MOL Distance EPSO 0.6611 10
CNN MOL Correlation EPSO 0.6344 10
CNN MOL Fisher EPSO 0.6525 10
CNN MOL Gain Ratio EPSO 0.6653 10
CNN MOL Mutual Info. EPSO 0.8133 10

CNN MOL ANOVA PSO 0.8745 10
CNN MOL Distance PSO 0.8167 10
CNN MOL Correlation PSO 0.8338 10
CNN MOL Fisher PSO 0.7238 10
CNN MOL Gain Ratio PSO 0.9072 10
CNN MOL Mutual Info. PSO 0.8247 10

XGB [5] - - - 0.7110 -
LGBM [5] - - - 0.7000 -

CatBoost [5] - - - 0.6660 -
Deep Neural DT [5] - - - 0.6510 -

TabNet [5] - - - 0.9920 -

The generated images corresponding to the Poker Hand dataset are available for observation
in Figure 6.13 on the facing page. Once again, it’s noticeable that the patterns vary in every
pixel of the image, however, this is a multiclass problem, where the patterns can appear for
distinct classes, potentially posing a challenge for the classification process. Despite this mixing,
it’s noteworthy that certain patterns consistently appear in samples belonging to outcome 1.
This observation holds the promise of enhancing predictions for this specific outcome, given the
regular presence of these distinctive patterns among the samples.
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(a) Outcome 0 (b) Outcome 1

Figure 6.13: Input generated by MOL-GainRatio-PSO for the Poker Hand dataset.

6.3 Results Remarks

This section will be presented into three distinct subsections:

1. Benchmark Comparison Overview: This section will offer an encompassing view of
the benchmark comparison, highlighting key insights and findings;

2. Remarks on Real-World Scenarios: The second section will dive into comments
concerning real-world scenarios, providing a context-specific analysis of the results;

3. Cardiac Pathology Scenario: The third section will provide a comprehensive analysis of
the results obtained from the Cardiac Pathology dataset, with a focus on their real-world
interpretability;

4. Exploration of MOL Strategies: The final section will center around MOL strategies,
denoting into their various aspects and their implications on the experimental outcomes.

6.3.1 Benchmark Overview

To facilitate the benchmark result comparison, Table 6.14 on the next page provides a ranked
overview of each algorithm and combination for every dataset. The rank score is determined
by averaging the positions achieved by each strategy across all Benchmark experiments. These
positions are derived from the scores attained by all strategies for each dataset in the test set.
Subsequently, the final ranking is established by sorting the obtained average positions, offering
a consolidated average perspective on the performance of each strategy across datasets. It is
worth mentioning that the table provides comparison only for the benchmark problems.
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Table 6.14: Overall rank obtained by each strategy on the Benchmark experiment. The table
contains: the Algorithms used in the Benchmark experiment; the Feature Selection strategy (FS
Str); the Map and Optimization strategies used by MOL (Map Str and Opt Str); The amount of
times the algorithm was, respectively, the best, second best and third best to solve a problem;
The average position obtained among all the algorithms; and the final Rank obtained

Algorithm FS Str Map Str Opt Str #1 #2 #3 Avg. Position Rank

CNN MOL ANOVA ABC 0 0 0 17.9 ± 6.71 15
CNN MOL Correlation ABC 0 0 0 22.3 ± 8.28 27
CNN MOL Distance ABC 2 1 0 13.0 ± 9.63 5
CNN MOL Fisher ABC 0 1 1 9.8 ± 7.78 1
CNN MOL GainRatio ABC 0 0 0 11.6 ± 5.54 3
CNN MOL MutualInfo ABC 1 0 1 12.1 ± 7.92 4

CNN MOL ANOVA PSO 0 0 0 16.0 ± 7.04 10
CNN MOL Correlation PSO 1 0 0 18.0 ± 9.43 16
CNN MOL Distance PSO 0 0 1 18.9 ± 11.57 17
CNN MOL Fisher PSO 0 0 0 19.6 ± 7.62 21
CNN MOL GainRatio PSO 0 0 0 17.6 ± 6.22 13
CNN MOL MutualInfo PSO 0 0 0 19.0 ± 6.08 18

CNN MOL ANOVA EPSO 0 0 0 21.2 ± 8.66 24
CNN MOL Correlation EPSO 0 0 0 24.8 ± 10.61 34
CNN MOL Distance EPSO 0 0 0 17.8 ± 8.96 14
CNN MOL Fisher EPSO 0 0 0 20.5 ± 8.77 23
CNN MOL GainRatio EPSO 0 0 0 19.1 ± 9.75 19
CNN MOL MutualInfo EPSO 0 0 0 22.3 ± 11.28 28

KNN E - - 0 0 1 22.5 ± 12.51 29
LGBM E - - 1 0 0 14.0 ± 10.35 6

LR E - - 0 0 0 23.3 ± 9.13 33
ANN E - - 0 0 0 23.0 ± 7.38 31
RF E - - 0 1 2 14.5 ± 11.67 7

XGB E - - 0 3 0 20.4 ± 12.94 22

KNN W - - 0 0 0 26.2 ± 10.11 35
LGBM W - - 0 0 1 16.8 ± 10.54 11

LR W - - 0 0 0 23.1 ± 9.55 32
ANN W - - 0 1 0 21.3 ± 10.9 25
RF W - - 0 1 0 15.5 ± 8.57 9

XGB W - - 0 0 0 19.1 ± 9.65 20

KNN B - - 0 0 0 28.1 ± 10.09 37
LGBM B - - 1 1 0 17.3 ± 11.58 12

LR B - - 0 0 0 26.5 ± 8.75 36
ANN B - - 0 0 1 22.8 ± 10.93 30
RF B - - 1 0 1 15.0 ± 12.49 8

XGB B - - 0 1 0 21.8 ± 11.15 26

TabNet - - - 3 0 1 10.3 ± 11.64 2
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In the benchmark experiment outlined in this thesis, the algorithms that consistently exhibited
the highest average performance were:

1. MOL-Fisher-ABC;

2. TabNet;

3. MOL-GainRatio-ABC.

On the other hand, the algorithm that consistently outperformed others across multiple
datasets was TabNet, with XGB-E delivering the second-best performance and RF-E ranking
third in terms of performance.

When comparing the top three average performers, TabNet consistently ranked in four
distinct problems, showcasing its robust performance. In contrast, MOL-Fisher-ABC claimed
the top positions in two problems, while MOL-GainRatio-ABC, despite its competitive average
performance, did not secure a top-three ranking in any problem. It’s noteworthy that the
worst positions for these algorithms were 28th, 37th, and 19th for different datasets, indicating
occasional performance dips. This information, coupled with the standard deviation analysis,
highlights the greater consistency of MOL performance based on average outcomes. In contrast,
the other algorithms delivered commendable results across most datasets but occasionally faced
challenges in specific scenarios.

When comparing the results achieved by various MOL strategies, it becomes evident that the
selection of algorithms for inclusion in the strategy is not a straightforward process. For instance,
when employing the ABC algorithm, the Fisher map yielded the best results, yet this wasn’t the
case when the PSO or EPSO algorithms were utilized. On average, ABC demonstrated superior
performance compared to PSO and EPSO, which struggled to consistently produce optimal
outcomes. The performance disparity of these two algorithms might be attributed to the fact
that PSO makes modifications to the entire candidate solution, whereas ABC alters only one part
of the solution in each iteration. To translate this into the context of the specific optimization
problem encountered in MOL, it suggests that PSO variations attempt to simultaneously change
the image format and the selected features, while ABC focuses on modifying a single dimension
of the image or adding/removing a feature from the selected subset.

Upon closer examination of the performance of MOL with the ABC algorithm, it is apparent
that the two top-performing combinations delivered great results across several datasets, including
Cancer, Card, Gene, Soybean, Thyroid, and KDD. While other strategies also demonstrated
strong performance in specific instances, this particular combination excelled when the datasets
contained multiple features encapsulated within the same attribute. For example, the Cancer
dataset includes 9 continuous features, and the Diabetes dataset contains 8 continuous features.
It is worth noting that when the total number of features in a dataset is an odd number, MOL will
inevitably eliminate at least one feature to create a squared image, as dictated by the constraints
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of the optimization problem. This could potentially pose a challenge if the excluded feature is
crucial for the problem, and the selected map strategy fails to distinguish its significance.

In the case of the Glass dataset, it’s worth noting that, apart from TabNet, all other algorithms
struggled to deliver satisfactory results. This dataset comprises 214 instances, with 33% allocated
to the test set, leaving just 164 instances for training. Additionally, the dataset features 9
attributes and encompasses 6 distinct outcomes. Machine learning algorithms trained with
these characteristics often face challenges with overfitting, resulting in poor test set performance.
On the other hand, deep learning models, such as CNN, typically require a more substantial
dataset to perform well. In scenarios with a limited number of instances, pre-trained networks
are commonly employed. However, it’s important to highlight that pre-trained networks come
with specific image size requirements, which the Glass dataset fails to meet.

6.3.2 Real-World Overview

The objective of the experiment was twofold: firstly, to facilitate a comparison against results
found in existing literature; and secondly, to address challenges inherent to real-world data
scenarios. The experiment offered a unique perspective on MOL strategies, with the combinations
involving the ABC algorithm being notably surpassed by those involving the PSO and EPSO
algorithms. This outcome contrasts with the direction taken in the benchmark experiment.

To be more specific, the outcomes from the cardiac pathology dataset underscore the strength
of the MOL-Distance-EPSO combination. This positive trend extends to the Forest Cover Type
dataset as well. However, interestingly, the same MOL-Distance-EPSO combination encounters
challenges when dealing with the complexities of the Poker Hand dataset. A parallel behavior
is observed with MOL-MI-EPSO, which showcases great overall performance for the first two
datasets but encounters difficulties in handling the poker hand dataset.

Within the realm of the poker hand dataset, the MOL-ANOVA-PSO combination emerges
as the most effective, managing to enhance the results for the Deep Neural Decision Tree and
other state-of-the-art algorithms. Notably, these improvements only fall short of the performance
achieved by TabNet.

The observations indicates that no MOL strategies were able to maintain outcome quality
across all the real-world experiments. MOL achieved the best result for the Cardiac Pathology
and TabNet achieved for the remainder datasets, however, both MOL and TabNet were able to
maintain its performance across the experiment and outperform other commonly used strategies.

6.3.3 Cardiac Pathology Scenario

As previously discussed in the preceding chapter, the Cardiac Pathology dataset was compiled
from a hospital specializing in heart conditions among teenagers and children. This dataset
encompasses 13 distinct features, which are as follows: Weight; Height; Body-Mass-Index (BMI);
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Age; Wrist state (WS); Blood Pressure (PPA); Second heart sound (B2); Heart murmur (HM);
Cardiac frequency (CF); Disease History (HDA); Gender; Visit Reason (VR); and History
Emergency Level (HEL).

In this section, we will delve into the results derived from the combination of MOL organized
according to the Correlation strategy and optimized using the PSO. This particular combination
demonstrated the highest performance in the dataset, selecting a total of 12 features. The initial
configuration of the dataset, without the target variable, can be seen in Table 6.14.

Figure 6.14: Initial version of the Cardiac Pathology dataset

The dataset is partitioned into two subsets: Train and Test. The Map process employs the
Correlation strategy, where each feature is assessed based on its correlation with the target
variable, resulting in the following initial list of features:

7 6 12 4 11 8 10 9 5 2 0 3 1

This list suggests that feature number 7, which represents the HM feature, should be the first
feature, followed by B2, HEI, and subsequent features in accordance with their relevance. The
final outcome of the Map phase presents a dataset that can be visualized in Table 6.15.

Figure 6.15: Sorted dataset based on the Correlation map

The sorted dataset is then submitted to the Optimization phase, where the PSO algorithm found
the following solution:

4 3 1 1 1 1 1 1 1 1 1 1 1 1 0
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The provided solution complies with the constraints of the objective function, indicating that the
image shape is 4 × 3. Furthermore, it points out the exclusion of the last feature, Height, from
the dataset. This modified dataset, excluding the Height feature, serves as the foundation for
image generation.

In the dataset, the BMI and Weight features are the only attributes represented by floating-
point values, whereas the other variables are either binary or integer features scaled from 0
to a maximum of 7. However, when generating images using the actual feature values, these
visualizations may not distinctly reveal patterns. For clarity and better visualization, the
presented images in Figure 6.16 and Figure 6.17 on the next page have been scaled between 0
and 1 and represent, respectively, outcome 0 and outcome 1.

Figure 6.16: Test set samples of images for Outcome 0
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Figure 6.17: Test set samples of images for Outcome 1

It is worth to mention that this particular set of images is extracted from the test set, whereas
the previous images, depicted in Figure 6.11 on page 84, originate from the training set of the
dataset.

In the clinical domain related to cardiac pathology, the Body Mass Index (BMI) is generally
not considered a significant indicator of pathology, whereas the presence of the second heart
sound and murmur are recognized as highly relevant features Ferreira et al. [103]. The feature
selection process undertaken by the combination highlights murmur, the second heart sound, and
the history of emergency level as the top three most relevant features, based on the correlation
criteria with the pathology.
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The emergency level is an interesting inclusion in this context, as it is an engineered feature
and have a significant correlation with both the visiting reason and the second heart sound
concerning the target variable. However, it is worth noting that the visiting reason is ranked as
the 5th most important feature.

Upon visual examination of the generated images, a discernible pattern can be noticed: in the
first row, representing these three important variables, at least one of the three pixels exhibits a
darker color. Conversely, the presented cases without pathology do not display dark pixels in the
first row. However, an observation arises when analyzing the last three images in Outcome 1,
which, like the images in Outcome 0, lack darker pixels in the first row. This phenomenon may
indicate a false positive case upon visual inspection.

To delve deeper into the comparison of these image subsets, Figure 6.16 on page 94 and
Figure 6.17 on the preceding page present, respectively, the original numerical values of each
feature without minimum-maximum scaling.

Upon closely examining the numerical values found in the last three images previously discussed,
it’s notable that each case corresponds to a patient from a distinct age group, as follows: 0
signifies early childhood (birth to 5 years); 1 designates middle childhood (6 to 12 years); and
2 represents teenagers. Interestingly, for each of these cases, the BMI falls below the normal
values, as per the official BMI standards in Brazil for young female children. It is important to
highlight that these specific images do not indicate the presence of a murmur but rather suggest
the presence of the pathology. In addition to this analysis, when the trained model is reapplied
to predict these cases, the convolutional neural network (CNN) correctly classifies 13 out of 16
cases in Outcome 1, with misclassifications occurring specifically in the last three mentioned
images.

To address this issue, a more refined parameter tuning approach for the CNN model could be
employed. Adjustments to filters and the type of pooling layer may yield different outcomes and
merit further exploration. However, it is noteworthy that the combination algorithm successfully
captured the essence of the problem and its relevant information before creating the images
and feeding them into the model. In a hospital environment, these images could be presented
alongside the numerical values. This integration could facilitate a closer inspection by a specialist,
enhancing diagnostic quality. Specialists could analyze the obtained values more comprehensively
and leverage the images to gain a different perspective, ultimately contributing to improved
diagnostic

6.3.4 MOL Results Overview

The MOL strategy demonstrated a performance that fluctuated across various experiments,
at times emerging as the most effective approach and at others, showing potential limitations
depending on the specific scenario. Nevertheless, there remain several areas for refinement that
can further enhance its overall performance. Summing up the acquired results, key points surface
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Figure 6.18: Numerical values of the test set samples for Outcome 0

that have proven advantageous for the MOL strategy:

• Images: visualizing the generated images can provide valuable insights into diverse issues.
For instance, in the Cardiac Pathology experiment, these images could potentially offer a
preliminary diagnostic indication of the pathology, prompting experts in the field to make
necessary and informed decisions.

• Attributes: datasets where the majority of the features are within the same attribute is
arguably the best scenario for MOL.

• Learning Process: in certain scenarios, MOL exhibited a performance surpassing that
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Figure 6.19: Numerical values of the test samples for Outcome 1

of other frequently employed algorithms. This is attributed to the exceptional pattern
recognition capabilities of CNN, enabling it to identify patterns that posed challenges for
other algorithms, where part of these patterns were created by the Map and Optimize
phases.

It is evident that during the Map and Optimization process of MOL, the image creation
process often generates patterns that are recurrent across multiple classes. For instance, images
generated for Outcome 0 may closely resemble those created for Outcome 1 and subsequent
classes. The extent of similarity among these images can vary, depending on the dataset. However,
in scenarios where the similarity between images across different target outcomes is pronounced,
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it can pose challenges for the classification process.

Upon a comprehensive analysis of the entire experiment, a few areas become apparent where
room for improvement exists:

• Pipeline: choosing the components to comprise the entire pipeline can be a complex task,
primarily due to the multiple techniques available for the Map and Optimize methods.

• Map: the experiments clearly demonstrate that a well-suited selection of the Map method
can enhance the pipeline’s performance. However, the process of correctly choosing the
strategy is not straightforward, leaving room for an automated selection technique. This
auto-selection approach could intelligently pick the Map method based on the characteristics
of the data, optimizing the overall process.

• Optimize: similar to the Map phase, the optimization phase presents its own complexity
in the quest to identify the most suitable algorithm to create the best combination with
the input from the Map phase. Introducing a more intricate solution involving multiple
algorithms that generate numerous outputs and conducting various tests with them could
simplify the strategy selection process. However, with regard to the optimization process,
there is room for discussion for potential modifications in the formulation. Modifying this
process could result in inputs that are distinct across the classes, potentially opening the
door for the application of other algorithms, such as gradient-based approaches. This, in
fact, might offer more straightforward choices for feature selection strategies.

• Learn: variations of the CNN can be used to achieved an improved outcome. Not limited
to new algorithms, the parameter tuning could be inserted into a self-adaptive scheme
where based on previous experiments, a certain range of the parameters of the CNN could
be used.





Chapter 7

Conclusion

This work presented Map-Optimize-Learn (MOL), a novel strategy focused on modeling data
represented tabular datasets. It involved the utilization of various concepts and algorithms across
three distinct phases: Map, Optimize and Learn. In the initial Map phase, the objective was
to detect the relevance of each feature in the dataset. Subsequently, the insights obtained from
this phase, regarding feature significance, were employed in the Optimize phase. In the second
phase, multiple Swarm Intelligence (SI) algorithms were used to generate a set of images that
maximized similarity based on the importance derived from the previous Map phase. Combining
the information given in Map with the results obtained in Optimize, the last phase used the
generated images to learn possible patterns.

The experiment conducted a comparative analysis between the MOL strategy and state-
of-the-art Machine Learning (ML) algorithms. This study involved assessing the baseline
algorithm both independently and in combination with various Feature Selection (FS) strategies
to discern whether such combinations enhanced or impeded its performance. The evaluation
encompassed three real-world problems and ten benchmark problems derived from existing
literature, encompassing datasets with significant variations in terms of instance count, classes,
number of features, and feature attributes.

The experiment identified a specific combination of MOL with the ABC algorithm that
consistently outperformed others. Conversely, various combinations of MOL with different
Particle Swarm Optimization (PSO) variants generally yielded less impressive results compared
to alternative algorithms and strategies. However, in real-world scenarios, underperforming
combinations displayed notable improvements, demonstrating the adaptability of MOL phases in
addressing diverse challenges. Furthermore, aside from numerical outcomes, the input generated
for the Convolutional Neural Network (CNN) during the Learn phase revealed discernible patterns,
potentially aiding in the identification of relevant information in scenarios with a limited number
of features.

Despite the performance, an important observation arose regarding the strategy’s behavior.
It was noted that the same combination might not consistently perform uniformly across various
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problems. This issue highlights a few challenges:

• Finding the correct combination in MOL might require significant time in real-world
implementations.

• Compared to other algorithms that might need only a few attempts and parameter tuning
to achieve the same objective, MOL typically requires several attempts to find the best
possible combination for a specific problem.

• The complexity and processing time of MOL are amplified due to its multiple phases, each
incorporating several algorithms.

• Identifying the optimal set of parameters that best fits all methods for every conceivable
scenario is another challenging task.

Although the Map phase tends to operate swiftly in comparison to other stages, the Optimize
phase often demands significant processing time due to the involvement of SI algorithms. Even in
parallel programming environments, implementing these algorithms and the Optimize objective
function remains a complex and detailed task, thereby amplifying the time required for real-world
implementations.

Considering the drawbacks, there are a few aspects that can be highlighted to enhance the
strategy’s quality and diminish the time needed to build and process the pipeline:

• Enhancing the strategy by incorporating self-adaptive capabilities to automatically select
the most suitable Map method for a given dataset and tailor the parameters for the
Optimize algorithm.

• Revamping the Optimize objective function to enable the utilization of gradient-based
algorithms, thereby reducing reliance on searching for an optimal solution using SI
algorithms.

• Fine-tuning the CNN model utilized in the Learn phase by adapting its parameters and
enabling other models to perform predictions on the generated images.
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