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Resumo

Os processos de patologia digital devem garantir que a qualidade das amostras examinadas é man-
tida durante todo o processo para prever um diagnóstico exato, que é crucial para muitos casos de
oncologia. O controlo de qualidade é, portanto, fundamental para garantir que não se perde ma-
terial importante durante a preparação bruta das lâminas. Os técnicos do laboratório de patologia
têm de verificar o número de fragmentos presentes manualmente nas lâminas com o número de
fragmentos descritos nos relatórios macroscópicos. Este processo moroso e trabalhoso interrompe
a cadeia digital, causando atrasos na obtenção do diagnóstico completo pronto a ser analisado pelos
patologistas. Para ultrapassar este problema, investigadores desenvolveram um sistema autónomo
capaz de detetar o número de fragmentos e conjuntos em cada lâmina através de métodos con-
vencionais de aprendizagem autónoma e de redes convolucionais profundas. Apesar disso, muitos
problemas continuam a dificultar o desempenho do algoritmo, como as diferenças de tamanho dos
tecidos e fragmentos desconectados. Esta dissertação baseia-se na pesquisa anterior, explorando os
modelos previamente desenvolvidos e propondo correcções e melhorias. Apresentamos os resul-
tados para as tarefas de deteção e contagem separadamente. Utilizamos o YOLOv5 e o YOLOv9
para detetar fragmentos e conjuntos. Para a contagem, não só derivamos a contagem de fragmen-
tos por conjunto e dos conjuntos a partir das detecções dadas pelos modelos de deteção, como
também prevemos contagens utilizando classificadores padrão baseados em diferentes arquite-
turas. Os resultados de todas as experiências provam que tanto a deteção como a contagem são
melhores quando se utilizam as detecções do YOLOv9. Analisamos extensivamente os resultados
de contagem do YOLOv9 através de validação cruzada e entre os domínios das características das
amostras, utilizando um conjunto de dados alargado composto por 2053 imagens de treino, 499 de
validação e 701 de teste de vários órgãos, natureza e tipos de técnicas de coloração. Além disso,
exploramos a classificação de grafos para a contagem de fragmentos por conjunto como uma nova
abordagem para este caso. Os resultados experimentais não são competitivos em comparação com
os outros métodos propostos, mas continuam a ser relevantes como uma análise exploratória do
problema e para aprofundar a compreensão das relações intrínsecas entre fragmentos e conjuntos.
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Abstract

Digital pathology processes must ensure that the quality of the examined specimens is maintained
during the whole pipeline to predict the most accurate diagnosis, which is crucial for many on-
cology cases. Quality control is then critical to ensure no loss of valuable material during the
gross preparation of slides. Pathology lab technicians must manually cross-check the number of
fragments per set present on slides with the number of fragments per set described in macroscopic
reports. This time-consuming and labor-intensive process breaks the digital pipeline, causing
delays in obtaining the complete diagnosis ready for pathologists to review. Researchers have
developed an autonomous system that can detect the fragments and sets on each slide through
conventional machine learning and deep convolutional network methods to surmount this. De-
spite that, many issues still hinder the algorithm’s performance, like differences in tissue sizes
and disconnected fragments. This dissertation builds upon previous work by exploring the pre-
viously developed models and proposing new methods that improve detection and counting. We
present the results for the detection and counting tasks separately. We use YOLOv5 and YOLOv9
to detect fragments and sets. For counting, we not only derive fragments per set and set counts
from the detections given by the detection models but also predict counts using standard classi-
fiers with different backbones. The results from all experiments prove that both detection and
counting are improved using YOLOv9 detections. We extensively analyze the YOLOv9 counting
results through cross-validation and across sample domains, using an extended dataset comprised
of 2053 train, 499 validation, and 701 test histopathology images of various organs, specimens,
and staining technique types. Furthermore, we explore graph classification for counting fragments
per set as a novel approach for this case. Experimental results are not competitive compared with
the other proposed methods but remain relevant as an exploratory analysis of the problem and to
deepen the understanding of the intrinsic relationships between fragments and sets.
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Chapter 1

Introduction

Digital Pathology (DP) implements the study and diagnosis of disease in a digitized environment

through systems and tools that transform physical pathology slides into digital images along with

their corresponding meta-data, enabling their analysis, review, and storage [1].

The digital counterparts of the glass slides are whole slide images (WSIs) that, enriched with

experts’ annotations and labels, mutated digital pathology into computer-aided diagnosis (CAD)

[87], typically using Artificial Intelligence (AI) tools that aid professionals in routine practice

decisions, meaningfully impacting patient care [14, 4]. However, the widespread use of these

systems still raises concerns among specialists: is the quality of diagnosis from an AI system

comparable to a human? Do the images used for digital diagnosis embed sufficient information

that is as valuable as their physical counterparts? Most errors in the laboratory testing pipeline

occur during the pre-analytical testing phase before even considering the pathology slides for

interpretation [50], so focusing on guaranteeing that slides accurately represent information is

critical.

In this context, it is paramount to guarantee that the quality of digital slides is consistent with

their physical representation and that the information embedded in them is enough for an accu-

rate diagnosis while also maintaining reliability when presented with out-of-scope or erroneous

samples [23]. For this, pathology lab technicians routinely perform quality control checkpoints

throughout the pathology pipeline, namely cross-checking the number of fragments present on

macroscopic lab reports with the number of fragments on slides after mounting and scanning. To

expedite this process, Albuquerque et al. [9] proposed automatically doing this quality control pro-

cess by performing the analysis with the help of AI tools that alert technicians when discrepancies

are found. In Figure 1.1, we describe their proposed pipeline for automated detection in compari-

son with the traditional manually intensive method: on A, the fragments are scanned and manually

compared to the macroscopic report; on B, the slides are scanned and posteriorly assessed by an

automated system.

Thus, the motivation for this work comes from the need for more research on developing

intelligent systems that automatically perform fragment detection and counting reliably so that

pathology clinicians can benefit from a less labor-intensive but equally trustworthy process and

1
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B

A

grossing/tissue placement macroscopic report slide mounting

manual fragments 
assessmentslide scanning

slide scanning automatic fragments
assessment

Figure 1.1: Pipeline for the number of fragments assessment checkpoint. Recreated from [9].

patients can benefit from expedited diagnosis, which is crucial in time-sensitive cases.

The counting that pathology technicians verify in the cross-checking process is the number of

fragments present in each set, so this is the objective task to optimize for our research, along with

counting sets, as this is also a significant value to collect for pathologists. Nevertheless, detecting

fragments and sets is crucial for this assessment, as it is essential that the system that provides this

count also visually presents the results for aided confirmation.

We empirically evaluate detection models and counting methods that solve these tasks. First,

we analyze the results obtained by the previous work on detecting fragments and sets by Albu-

querque et al. [9] to examine the critical difficulties when detecting structures in these images.

Since we have access to an extended dataset of a total of 2053 train, 499 validation, and 701 test

images, we finetune the YOLOv5 [117] detection model to verify how the model performs with

access to more data. We also finetune the state-of-the-art detector, YOLOv9 [122], to analyze its

detection performance for both fragments and sets and its average across both classes. Consider-

ing the counting tasks, we study two different approaches: to derive counts from the detections

inferred from the detection models and to predict counts by training simple classifiers with vary-

ing backbone models, such as ResNet [52], ViT [36], and DINOv2 [89]. To test whether the

best-performing model generalizes well across domains, we analyze this method by specimen,

organ, and technique type. We further examine its behavior across each type when some domains

are withheld from training. We also perform cross-validation across all counting methods to con-

solidate results.

We further perform an exploratory study of graph-based approaches as novel methods for

counting fragments per set in samples, motivated by the strength of these methods in capturing

structural and hierarchical relationships between nodes. For this, we reframe the problem as a

graph classification and transform our dataset accordingly. First, we detect fragments using a

fragment detection method and crop around the detected fragments centroids. Afterward, we

extract features from these crops and use them to define our graph nodes, which are connected by

edges with weight determined by the distance between these centroids. The ground truth labels

are then assigned to each image graph, and a graph classification model predicts the number of

fragments per set present in each image. During training, we use bounding box annotations as

our fragments to crop. Still, during evaluation, we crop according to the detections inferred from

YOLOv9 or with a fixed resolution around fragments defined by Connected Component Analysis
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(CCA). We also extract features from the fragment crops by handcrafting representative features

or extracting them through a contrastive-based feature extractor model. The different versions of

the model are evaluated using the same metrics as the other counting methods.

Considering our approach, our hypothesis is that improving automated detection and count-

ing methods for this quality control process can effectively decrease the time spent by pathology

technicians on this task. Since we obtained good results for both detection and counting, we are

confident that clinically integrating these methods would positively affect pathology clinicians’

routines. Therefore, the main contribution of our work is providing strong counting and detec-

tion methods while analyzing and exploring approaches to continuously improve and increase the

reliability of results as further research into future clinical integration.

The impact of this work is aligned with the promotion of prosperity, peace, and sustainable

progress promoted by the United Nations. The 17 Sustainable Development Goals (SGD) [88],

presented in Figure 1.2, encourage the eradication of poverty and other inequalities while han-

dling global issues like climate change by fostering improvements in education, health, and the

environment, through economic and social growth. This work is integrated within the following

goals1:

Goal 3: Good Health and Well-being ensures healthy lives and promotes well-being for

all. This work enhances diagnostic efficiency in pathology through AI, leading to faster

disease detection and treatment, thereby improving patient outcomes and overall health.

Goal 8: Decent Work and Economic Growth promotes sustained economic growth and

decent work for all. Automating pathology tasks reduces manual labor, increases productiv-

ity, and allows technicians to focus on more complex tasks. This enhances job satisfaction

and supports economic growth through technological innovation.

Goal 9: Industry, Innovation, and Infrastructure aims to build resilient infrastructure

and foster innovation. By integrating AI in digital pathology, this work modernizes diag-

nostic processes, driving innovation in healthcare infrastructure and contributing to a more

advanced medical industry.

Figure 1.2: The 17 Sustainable Development Goals [88].

1The content of this publication has not been approved by the United Nations and does not reflect the views of the
United Nations or its officials or Member States.
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The document is organized as follows. Chapter 2 defines the background concepts necessary

for understanding this work and presents an overview of the existing literature and state-of-the-art

methods related to quality control in digital pathology, detection and counting, and its application

in the digital pathology field. Chapter 3 details the detection and counting problem, the methodol-

ogy proposed to improve it, the metrics and protocols used for evaluation, and the comprehensive

analysis of the results obtained, including cross-validation and domain generalization. Chapter 4

introduces the exploratory work around graph classification as a counting approach, the methodol-

ogy proposed, the metrics and protocols used for evaluation, and the review and discussion of the

results obtained. Finally, Chapter 5 establishes conclusions from the present research and proposes

directions of improvement for further work.



Chapter 2

Literature Review

This chapter introduces the central notions of quality control in digital pathology and detection

and counting approaches. We review the existing literature to establish a background for the

relationship between these concepts, considering the context of fragment detection and counting

as a measure of quality control in an automated pathology environment.

2.1 Quality Control in Digital Pathology

Artifacts present on slides, either during their preparation or digitization, can negatively affect

slide quality and, consequently, the quality of diagnosis [23]. As WSI images are the primary

material to automate the fragment detection and counting process, in sections 2.1.1 and 2.1.2,

respectively, we analyze the effects of slide preparation and digitization on image quality and their

approaches for quality control. We also explore the role of data annotation and quality as input for

digital AI tools that perform quality control in Section 2.1.3.

2.1.1 Slide Preparation

Slide preparation compiles a series of processes that transform biological samples into observable

microscopic slides, and it varies according to the biological sample’s nature, which can account for

distinct errors further along the testing pipeline. The most common samples are either histological

or cytological, which describe either the tissues or cells’ structure [86]. The slides must be well-

preserved, transparent, thin, and with precise components distinguishable by color [23]. Table 2.1

describes the principal steps of preparing histology and cytology samples and the most common

errors in each step.

Errors along the pipeline can cause artifacts - alterations in tissue details due to improperly

fixed or mishandled samples during tissue processing [114] - which can affect image quality when

digitizing slides. These artificial structures or alterations either stem from intrinsic characteristics

of the specimens or are due just to their preparation, independently of their domain.

Artifacts have multiple classifications, such as prefixation, fixation, tissue-processing, staining,

and mounting artifacts, and are also related to bone tissue, microtomy, or floatation and mounting

5
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Table 2.1: Steps and common errors present on histology and cytology pipelines. Recreated from
Brixtel et al. [23].

Histology Cytology

1. Sample
Bad tissue quality

Sample air dried before fixation
Error in sample identification

1. Sample

Difficulties during sampling
Altered sample due to

lubricant or other reagent
Sample air dried before
immersion into fixative

2. Recording /
Grossing

Error during recording procedure
Not enough fixation time
Too small fixative volume

Grossing irrelevant pathological regions
2. Recording Error during recording

procedure

3. Tissue
Processing Bad Dehydration 3. Sample

Processing Dysfunction in procedure

4. Embedding /
Sectioning

Bad Tissue position
Section too thick

Artifacts
4. Staining

Baths not filled up correctly
Out-of-date reagents

Wrong protocol

5. Staining
Baths not filled up correctly

Out-of-date reagents
Wrong protocol

5. Coverslipping No coverslip
Bubble

6. Coverslipping No coverslip
Bubble 6. Digitization

Slide identifier not recognized
Wrong area scanned

Inappropriate color profile
Sub-optimal focus plan selected

7. Digitization

Slide identifier not recognized
Wrong area scanned

Inappropriate color profile
Sub-optimal focus plan selected

8. Diagnosis

8. Diagnosis

[114]. Some of the most common artifacts are tissue folding, wrinkling, scoring, and tearing,

biological or foreign object contamination, dust or dirt particles, sample thickness variation, air

bubbles, or ink and marker stains [114, 23]. These artifacts decrease slide quality and affect

analysis accuracy [124]. To target this, researchers explore approaches that can detect and quantify

the severity of the artifacts present on slides, such as methods for automated quality estimation

[13, 62], low-resolution artifact detection [105, 54, 41, 47, 48], identification of tissue folds [17,

71, 92, 15], pen ink markers [10], and staining quality [137], among many others. CAD benefits

from such systems as additional input to improve slide accuracy [23].

These artifacts often serve as edge cases that models may not be adequately equipped to handle

but are imperative to address. Moreover, understanding how artifacts impact the quality of slides

is essential for developing effective quality control or computer-aided decision systems.

2.1.2 Slide Digitization

Slide digitization involves the procedures required to convert a physical pathology slide into an

identical digital counterpart. Ensuring minimal to no loss of information is crucial, thereby main-

taining the diagnostic accuracy of digitized samples on par with the one performed on physical

slides. We provide an overview of the most common issues related to slide digitization regarding
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image format and compression in Section 2.1.2.1, color variations in Section 2.1.2.2, and out-of-

focus areas in Section 2.1.2.3.

2.1.2.1 Whole-Slide Images: scanners, format, and compression

After preparation, slides are digitized into WSIs using WSI scanners. There are multiple market

options for WSI scanners that can vary on objective lens type and magnification (focal planes),

scanning camera and speed, illumination, and slide capacity [93, 23]. Despite differences among

scanners, regulations are needed to ensure image stability and quality. While different scanners

may not significantly impact diagnosis performance if image quality is maintained [95], the diver-

sity of data sources is still essential for training deep learning models not to skew predictions.

WSIs are formatted as multiresolution pyramids that hold optical data at different magnifica-

tions, from the tiled baseline image at full resolution on the bottom to a thumbnail with reduced

pixel dimensions on the top [42]. They also hold a macro image that is a low-resolution overview

snapshot of the entire glass slide, helpful to guide the scanner detection system and for focus-point

selection [42]. This structure allows for the retrieval of slide images at various zooming levels

depending on the task at hand, expediting its display and facilitating sharing through networks,

consequently changing the temporal and spatial domain of pathologic diagnosis [23, 87]. Still,

issues like poor scan coverage and failure of automatic detection can arise when macro images are

absent or misrepresent the slide under analysis [42, 9].

Scanners use file compression for efficient transmission and interoperability. The compression

rate set by the scanner affects effectiveness, with low rates potentially introducing artifacts [23].

Although scanners commonly use lossy compression, its impact on image quality in machine

learning tasks is minimal. The widely used JPEG format and its compression rate are typically

sufficient to preserve information during transmission [66].

2.1.2.2 Color

Staining encompasses techniques designed to "highlight important features of tissue as well as to

enhance the tissue contrast" [11] for interpreting slides using different stains and dyes. Laborato-

ries may adopt distinct staining and scanning protocols, along with other stain dyes or scanning

equipment, leading to potential color variations in samples of the same specimen across multiple

laboratories or even diversity within the same institution [87]. Even though there are standardized

staining protocols [72, 136], in practice, discrepancies may persist, and systems must perform

cohesively in all cases. Ensuring color calibration in scanners or color normalization on WSIs

helps establish a standardized foundation for posterior slide interpretation, either manually by

pathologists or as a preprocessing step for CAD systems [23, 102]. Color calibration and color

normalization works are described as follows.

Color Calibration [127] consists of comparing known color patches with a digitized im-

age. Particularly for pathology, the general recommendation is to compare slides with a

target slide with unique spectral characteristics, but its use is rare among scanners [33].
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Researchers propose approaches to surmount this, including using different target slides

[16, 134] or calibrations that eliminate the need for target slides [107, 31]. The consensus is

that calibration reduces system-to-system variability, generating consistent outputs between

laboratories and scanners. [23].

Color Normalization [102] consists of doing the mean color transformation from one im-

age to another. Color normalization methods are divided into (1) global color normalization,

which separates color and intensity information in space through histogram matching [70]

or color transfer [99]; (2) stain separation, which estimates images’ stain vectors and uses

them for stain intensity correction and replacement, through either supervised [81, 65, 46]

or unsupervised models [77, 18]; and (3) generative-model-based approaches, which use ad-

versarial deep learning to apply a style transfer to a WSI and do not require prior references

for learning like the other methods [104, 30, 138].

Color calibration and normalization techniques ensure images have consistent color for anal-

ysis. However, the impact of these techniques as a processing step for posterior computer-aided

analysis cannot be related to increased accuracy [23]. Even though some studies show improve-

ments using color normalization methods [112, 32], particularly with more recent generative-

adversarial network (GAN) approaches [90, 119], many studies prove the opposite, reporting a

reduction in accuracy [21, 43, 116]. However, these techniques

2.1.2.3 Blurriness

Scanners can produce WSIs with out-of-focus (OOF) areas, either locally, regionally, or globally,

defined as poorly focused or blurry regions of interest [23]. Issues related to slide preparation, like

the ones described on 2.1.1, may affect image acquisition, causing "thermal variations, internal

or external vibrations, errors in the focus determination of a focus point, or in the generation of a

WSI focus map" [23], which are the root for OOF areas. These artifacts can hinder pathologists’

rendering of accurate diagnoses or impact the accuracy of automated image analysis [68].

To tackle this, automated focus quality assessment (FQA) aims to identify instances where a

slide needs complete rescanning and to generate an FQA map, built according to local path-level

focus estimations, which facilitates visual inspection and guides subsequent processing steps [23].

Approaches have evolved from simple image processing methods to manually engineered and

learned feature classification [23]. Feature classification approaches need training data manu-

ally annotated by human experts or generated automatically using in-focus images that can be

enhanced synthetically through blurring techniques, most commonly Gaussian blur [68, 23]. Re-

search on each method is described as follows.

Image Processing Methods use traditional tools for image processing to detect OOF areas

through features like contrast and entropy [121] or variations in brightness [12]. The com-

plexity of these methods escalates quickly since each threshold has to be defined manually

for every focus configuration.
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Manually Engineered Feature Classification Methods require a handcrafted selection of

measures of quality that can describe blurriness confidently as features, such as neighbor-

hood contrasts, local intensity statistics, wavelet-based derivative-based, or sharpness-based

features, to name a few [44, 55]. Considering manually labeled and automatically gener-

ated data, these methods are proven to have poor transfer ability, either between datasets,

scanners, or stains [80, 55].

Learned Feature Classification Methods are mainly convolutional deep learning meth-

ods that require minimal human input regarding hand-engineered features or hand-picked

thresholds, improving transfer ability [135]. Solutions are either specifically developed for

WSI FQA, like DeepFocusNN [103] and FocusLiteNN [126] or adapted from standard ar-

chitectures by retraining them for the task [8]. Generally, CNN-based methods trained on

automatically generated data perform better than other FQA methods.

In line with other quality control measures, FQA provides helpful inputs that can minimize the

influence of focus problems on the clinical workflow during and after digitization. Quantitative

OOF maps can "flag regions that might otherwise be misclassified by image analysis algorithms,

preventing OOF-induced errors" [68], which, along with the identification of blurred images, can

aid pathologists in deciding which cases are still analyzable or the ones that need full rescans.

2.1.3 Data Annotation and Quality

As described in the last sections, many quality control methods rely on deep learning algorithms,

from artifact and OOF area detection to stain normalization. These are often the best-performing

approaches for all cases. Since they depend highly on data for training, data quality and quantity

directly affect the outcome of these algorithms.

Deep Learning approaches particularly require large datasets for training, which must deal

with the high data variability present in clinical routines by guaranteeing good generalization -

the algorithm must handle both previously seen and new, unforeseen cases [82]. Good gener-

alization is hard to achieve since unexpected cases are often artifacts that are, in fact, not fre-

quently present on datasets. Moreover, fully supervised approaches demand pixel-level annota-

tions, a time-consuming and resource-intensive process for laboratories [82]. Therefore, not only

do datasets have to ensure that they are robust to variations, but they also must represent high-

quality, carefully labeled, and annotated data [23].

Robust algorithms require high-quality annotations that fully support their outcomes. Stan-

dardizing annotation protocols is a way to ensure that quality measures are transverse to all

datasets. Such protocols are defined by pathology professionals’ established reference standards,

though often through their subjective interpretations [85]. Considering principles that show a rig-

orous ground truth when annotating data for computer-aided pathology models is crucial for ap-

plying standardization, namely increasing the number of evaluators for each case, recruiting expert

evaluators, establishing a fair resolution method in cases of grading discrepancies, and implement-

ing a systematic voting process or using a neutral arbiter in cases of disagreement [83, 29]. These
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parameters are only sometimes feasibly implemented, which could cause bias in the algorithm’s

results.

Addressing the data quantity challenge is crucial in utilizing deep learning models for CAD

solutions. Constructing comprehensive datasets poses heightened difficulties, particularly in qual-

ity control tasks such as artifact detection or stain normalization. Handling edge cases is essential

for seamlessly integrating algorithms into clinical practice, preventing potential misdiagnoses fur-

ther along the testing pipeline. Data Augmentation, transfer learning, domain adaptation, and

weakly supervised learning approaches are the leading solutions to alleviate data scarcity [23]. An

extensive overview of these approaches can be found on [110].

2.2 Detection and Counting

Most tasks within digital pathology invariably need the identification/quantization of histologic

primitives. Since our study concerns detecting and counting fragments that can be of various

specimens, it is crucial to review the most common Machine Learning (ML) algorithms for object

detection and classification since counting is usually handled as such.

In Section 2.2.1, we study Conventional Machine Learning (CML) methods; in Section 2.2.2,

Deep Learning (DL) methods; and in Section 2.2.3 Graph Neural Network (GNN) methods. We

also introduce evaluation and generalization concepts and techniques in Section 2.2.4 to outline

the importance of robust models.

2.2.1 Conventional Machine Learning Methods

Conventional machine learning methods can be used throughout the framework for both local-

ization and classification. These tasks rely heavily on extracting features from the WSIs to feed

the classical ML models representative information according to the goal task, which is usually

performed by assigning quantitative values to textures, color, and morphological and topological

characteristics [22, 7]. Generally, the most common feature extraction methods are color his-

tograms and wavelet scattering, which, among many others, are extensively described in [7].

Some of the most common classical machine learning techniques that are used to interpret

samples, fed with the features extracted beforehand, include Support Vector Machines (SVM),

Linear Discriminant Analysis (LDA), Random Forest classifiers (RF), Bayesian classifiers, Lo-

gistic Regression (LR), K-Nearest Neighbor Regression (KNNR), K-Means clustering (K-Means)

and Ensemble Boosting (EB) [7]. Some practical applications of these techniques regarding DP

are presented in Section 2.3.1.1.

2.2.2 Deep Learning Methods

Most studies for classification and detection use deep networks to extract features and, in many

cases, provide predictions. Supervised, weakly supervised, unsupervised, and transfer learning are

learning schemas within deep learning that researchers exploit to solve DP problems. We define
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image recognition models relevant to our work in Section 2.2.2.1, as they are the basis of many

vision-related tasks and can be used for image classification, and define specific object detection

models in Section 2.2.2.2.

2.2.2.1 Image Recognition Models

These models are leveraged for various tasks across many fields, such as digital pathology, for

both image classification and detection algorithms:

Convolutional Neural Network (CNN) [74] is a feed-forward neural network character-

ized by convolutional layers, the first in a series of layers that collectively identify intricate

features within an image. A feature map is produced by performing convolutions using a

filter that moves through the input image’s receptive field. This hierarchical process con-

tinues through additional convolutional layers interleaved with pooling layers that reduce

parameter dimensionality and model complexity. This process progressively identifies more

complex patterns. The final layer, the fully connected layer, classifies the input based on the

extracted features, directly connecting each node in the output layer to nodes in the previous

layer. Figure 2.1 represents a simplified architecture of a CNN.

Figure 2.1: Generic architecture of Convolutional Neural Networks [73].

Residual Neural Network (ResNet) [52] is an advanced neural network architecture de-

signed to address the vanishing gradient problem encountered in deep networks. It intro-

duces the concept of residual learning through shortcut connections that bypass one or more

layers. These shortcuts allow gradients to flow directly through the network, facilitating the

training of very deep networks. Each residual block typically consists of convolutional lay-

ers and identity mappings, enabling the model to learn residual functions about the layer’s

inputs rather than unreferenced functions. This structure allows ResNet to maintain accu-

racy while significantly increasing network depth, improving performance in recognizing

intricate patterns. The architecture usually ends with global average pooling followed by a

fully connected layer for classification. Figure 2.2 exemplifies a generic residual block used

in the ResNet architecture.
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identity

Figure 2.2: Residual learning building block [52].

Vision Transformer (ViT) [36] is a neural network architecture designed for image recog-

nition tasks, characterized by its use of transformer layers instead of traditional convolu-

tional layers. The input image is divided into fixed-size patches, which are then linearly

embedded and combined with position embeddings to retain spatial information. These em-

bedded patches are processed through a series of transformer encoder layers, which use self-

attention mechanisms to capture intricate features and relationships within the image. This

process continues through multiple transformer layers, progressively enabling the model to

learn more complex patterns. The final layer, typically a fully connected layer, classifies the

input based on the aggregated features from the transformer layers.

Self-Distillation with No Labels (DINO, DINOv2) [26, 89] is a self-supervised learning

framework that leverages vision transformers (ViTs) for image representation learning with-

out the need for labeled data. The architecture employs a student-teacher model where the

student network learns to predict the output of the teacher network, known as knowledge

distillation. This approach allows the model to capture intricate features within an image

through a hierarchical learning process, described succinctly in Figure 2.3. DINOv2 is

a foundation model based on DINO that introduces several enhancements to the original

architecture, such as training acceleration, improved training stability, and feature repre-

sentation quality. It refines the self-supervised learning process by incorporating advanced

data augmentations incorporating curated data and refined losses, centering, and regulariza-

tion. DINOv2 is considered a foundation model as it generates robust, generalizable, and

universal features that can be leveraged for many tasks, both at pixel or image level.

2.2.2.2 Detection Models

Object detection models can be divided into two main types: One-stage object detectors and Two-

stage object detectors. One-stage object detectors aim to detect objects within images in a single

forward pass without requiring a previous separate feature proposal step. Some of the most com-

mon one-stage detection models are as follows:

You-Only-Look-Once (YOLO) [97] is a one-stage object detector designed to predict

bounding boxes and class probabilities. The entire image is initially divided into various
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Figure 2.3: Simplified view of the DINO model [26].

grids of different sizes, and anchor boxes are generated within each grid based on prede-

fined scale and size parameters. Each anchor box simultaneously predicts the objectness

score, box center offset (x and y), box width, box height, and class scores in a single step.

The network quickly processes predictions without the need for separate feature extrac-

tors. There are several YOLO versions that improve over this initial approach, with the

latest being YOLOv9 [122], released in February 2024, that incorporates Programmable

Gradient Information (PGI) with a novel Generalized Efficient Layer Aggregation Network

(GELAN).

Detection Transformer (DeTR) [25] integrates transformers into a single-stage detector

framework. DETR operates by treating object detection as a direct set prediction problem.

The input image is processed through a backbone CNN to extract features, which are then

passed into a transformer encoder-decoder structure. Within the transformer, each position

encodes a global context of the image and predicts the presence and location of objects using

a set-based prediction approach. This eliminates the need for predefined anchor boxes by

directly regressing bounding boxes and assigning class probabilities through self-attention

mechanisms.

Two-stage object detectors detect objects within images in two separate steps: a region pro-

posal network (RPN) and a subsequent object detection network. Some of the most common

two-stage detection models are as follows:

Fast and Faster-RCNN [100] is a two-module object detection network. Fast-RCNN and

Faster-RCNN behavior only differs in how region proposals are obtained: Fast-RCNN uses

Selective Search, which iteratively finetunes over-segmented input images to predict re-

gions, while Faster-RCNN uses a Region Proposal Network (RPN), which uses feature maps

extracted from the input images to predict regions. Both methods identify potential object

regions within an image. The second module is a CNN (VGG-16) used to classify objects

in the proposed regions.

Mask-RCNN [51] is an extension of Faster R-CNN, introducing a third branch for object

mask prediction. While Faster R-CNN has two outputs per candidate object, Mask R-CNN
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enhances it by incorporating pixel-to-pixel alignment. The architecture retains the two-stage

process, with the first stage being an RPN, proposing candidate object bounding boxes,

and the second predicting class labels, bounding-box offsets, and binary masks for each

region of interest (RoI). During training, a multi-task loss is defined on each sampled RoI,

including classification, bounding-box regression, and average binary cross-entropy loss for

mask prediction.

2.2.3 Graph Neural Network Methods

Graph Neural Networks (GNNs) are deep learning methods based on neural networks capable of

handling data represented by graphs. In graph-structured data, entities are represented as nodes,

and relationships between entities are represented as edges. GNNs can capture node and graph-

level relationships and often complex dependencies between nodes and edges. These analyses are

challenging due to the heterogeneity and diversity of graphs, their irregular and considerable struc-

ture, and the incorporation of other interdisciplinary domains. GNNs have several applications,

from computer vision to recommender systems and software mining, among many others, with an

impressive performance on link prediction and classification tasks [128]. We define the generic

GNN framework in Section 2.2.3.1 and some other standard GNN models in Section 2.2.3.2.

2.2.3.1 Generic Definition

GNNs aim to update node representations iteratively by combining the representations of neigh-

boring nodes with their representation from the preceding iteration. Considering that graph G =

(V ,E ) and V is the set of nodes with features Xv, where H0 = Xv, the learning process combines

two steps, applied to each layer k [128]:

Aggregate, which applies a permutation-invariant function to the node’s neighbors, gener-

ating the node’s features:

ak
v = Aggregatek{Hk−1

u : u ∈ N(v)} (2.1)

where N(v) is the set of neighbors for the v-th node.

Combine, which updates the node representations by combining the aggregated features

with the current node representations, generating the node embeddings:

Hk
v =Combinek{Hk−1

v ,ak
v} (2.2)

This iterative process, also called message-passing, is repeated for a fixed number of steps or until

convergence, resulting in the final node representations that can be used for downstream tasks,

like node classification or link prediction. This generic framework is adapted in the literature

to other variants, like Graph Convolutional Networks (GCN), Graph Autoencoders (GAE), and
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Graph Recurrent Networks (GRN), to name a few, for both supervised and unsupervised learning

approaches [128].

The outputs of the GNNs can be used to perform both node-level and graph-level predictions.

Node-level predictions compute values for each node, which is useful for classification and re-

gression tasks since the labels of each node are predicted, and the node embedding is then fed

to a Multi-Layer Perceptron (MLP). Graph-level predictions predict a single value for the whole

graph, typically used to determine graph similarities or whole graph classifications, in which the

node embedding follows a pooling process before being fed to a separate MLP [3].

2.2.3.2 Standard Model Definitions

The following models are typically mentioned in literature and are useful for various tasks, namely

for detection and classification, so understanding their behavior is critical for our research. These

models can be generically defined as follows [128]:

Graph Convolutional Network (GCN) [67] extends upon the convolutional neural network

to deal with graph-structure data instead of grid-based data by applying localized first-order

approximation of spectral graph convolutions, through normalized Laplacians. For each

layer, the node embeddings are updated according to the following propagation rule, which

generally defines the Aggregate and Combine functions:

Hk+1 = σ(D̃
−1
2 ÃD̃

−1
2 HkW k) (2.3)

where Ã = A+ I, I ∈ RNxN represents the adjacency matrix of the graph with self connec-

tions, so self features are considered when updating node embeddings; D̃ is a diagonal ma-

trix that represents the degree of Ã; σ is the activation function, like ReLU; and W k ∈RFxF ′

is the learnable weight laywise linear transformation matrix for the k-th layer. In simpler

terms, GCNs aggregate the neighborhood features with the ones from the present layer

through an aggregator function, which is then combined with the learnable weight matrix

followed by the node activation to extract the embeddings.

GraphSAGE [49] can be viewed as an extension of GCN. It is a spatial-based graph neural

network with a general inductive framework (it does not require the entire graph structure

during learning) that, instead of training individual embeddings for each node, learns a

function that generates embeddings by sampling and aggregating features from a node’s

local neighborhood. It uses LSTM and Pooling aggregators, unlike the mean aggregator for

GCNs and concatenates, instead of summing to combine the learned weight matrix and the

node activations. Since it does not require the full graph for training, it uses mini-batches

that only contain the nodes that are being computed, making it much more computationally

lightweight and suitable for large graphs. The Aggregate and Combine functions for this
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model are defined as follows:

H(l+1)
N (v) = Aggregatel({Hu,∀u ∈ N (v)}) (2.4)

where H(l+1)
N (v) represents the node embedding generation at the current (l+1)-th depth from

the target node v ∈ V .

H(l+1)
v = σ(W (l+1) ·Concat(H(l)

v ,H(l+1)
N (v))) (2.5)

where W (l+1) is the learning weight matrix and σ the activation function.

Graph Attention Network (GAT) [120] is a spatialbased graph neural network that uses

Self-Attention as the aggregator for neighborhood features, by enabling the assignment of

different weights when aggregating information. In simple terms, Self-Attention performs a

weighted mean of the node features through the application of a LeakyReLU, being essen-

tially a single fully connected layer parameterized by a weight vector a:

ei, j = attn(H i
l ,H

j
l ) = LeakyReLU(a[WH i

l ||WH j
l ]) (2.6)

This self-attention mechanism is used to compute an attention score αi, j that determines the

importance of node j to node i, by applying a softmax function to the attention block:

αi, j = so f tmax(ei, j) (2.7)

The aggregated node features are then combined by multiplying with a learnable weight

matrix followed by a non-linear activation to extract the embeddings. The node embedding

update can be written as follows:

H i
(l+1) = σ( ∑

j∈Vi∪{i}
αi, jH

( j)
l ) (2.8)

This mechanism could be extended for multi-attention, where K-independent attention mech-

anisms are executed in parallel. We only described a single block for simplification pur-

poses.

2.2.4 Evaluation and Generalization

Developing robust and reliable models requires extensive evaluation to guarantee model perfor-

mance remains stable even when presented with unseen data and under varying conditions. In this

Section, we explore methodologies and metrics used to evaluate the performance of detection and

counting models. Additionally, we discuss strategies for verifying and ensuring the generalizabil-

ity of these models when faced with changes in data and clinical settings.
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2.2.4.1 Evaluation Metrics

Evaluation metrics are adopted to assess and compare the performance of each model effectively.

Despite the existence of specific performance metrics adapted to each domain, most of them rely

on the combinations between the ground truth class and predicted class, namely true positives

(TP), false positives (FP), true negatives (TN), and false negatives (FN) [140].

Concerning detection, it is crucial to distinguish correct and incorrect predictions spatially.

The Intersection over Union (IoU), also called the Jaccard Index, is frequently used to make this

distinction in detection by measuring the area of overlap between the predicted bounding box and

the ground truth bounding box and comparing it against a predefined threshold tailored for the task

at hand [91]:

IoU =
area(Bb ∩Bgt)

area(Bb ∪Bgt)
(2.9)

These are other relevant measures for our work regarding object detection:

• Precision [91] represents how well the model can identify only relevant objects. It is given

by the fraction of correct positive predictions:

P =
T P

T P+FP
(2.10)

• Recall [91] represents how well the model can find all the relevant cases. It is given by the

fraction of correct positive predictions among all the ground truths:

R =
T P

T P+FN
(2.11)

• Average Precision [91] is given by the weighted average of the precision at different recall

levels, calculated by the area under the precision-recall curve:

AP =
N

∑
n
(Rn+1 −Rn)Pinterp(Rn−1) (2.12)

where Pinterp(Rn−1) is the maximum precision whose recall value is greater or equal to Rn+1.

• Mean Average Precision [91] measures the accuracy of object detectors by averaging AP

over all classes or at specific IoU thresholds:

mAP =
1
N

N

∑
i=1

APi (2.13)

where APi is the AP in the ith class and N is the total number of classes evaluated.

Concerning classification, these are the most relevant evaluation metrics for our research:
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• Accuracy [40] represents the frequency with which the model correctly predicts cases. It is

calculated as the proportion of correct predictions overall predictions:

A =
T P+T N

T P+T N +FP+FN
(2.14)

• F1-score [40] represents the harmonic mean of precision and recall, providing a balance

between the two metrics:

f 1 = 2∗ P∗R
P+R

(2.15)

where P is precision and R is recall.

• Mean Absolute Error [40] measures the extent to which predictions differ from the actual

probability by the absolute value of this difference:

mae =
1
n

n

∑
i=1

|yi − ŷi| (2.16)

where n is the total number of predictions, yi is the ground truth value and ŷi is the predicted

value.

2.2.4.2 Domain Generalization

Domain Generalization (DG) involves training a model using data from one or more related but

different source domains to effectively generalize to any out-of-distribution (OOD) target domain

[139]. This is based on the assumption that the model cannot access all the data domains during

training, as it is common for many machine-learning tasks. As mentioned in Section 2.1.3, this is

particularly true in pathology settings since there are many variability sources within the clinical

processes while gathering relevant data and between the data in itself.

Various methods are proposed in the literature to counter the effect of the shift in distribution

between the source and target data for both multiple or single source domains. Some of the most

relevant methods fall into the following categories [139, 123]:

Data Manipulation These methods focus on manipulating input data so that models can

access a broader and improved representation during training, encouraging generalization

when learning. Examples are data augmentation methods, such as image transformations,

task or domain adversarial gradients, and learnable or random augmentation networks,

among others. Another approach is to use generative models to expand source data do-

mains.

Learning Strategies These methods directly apply various strategies during training that

promote domain generalization. These methods include ensemble learning, self-supervised

learning, regularization strategies, reinforcement learning, and meta-learning, among others.
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Representation Learning These methods encompass two distinct strategies: domain in-

variant representation learning, which is based on the intuition that if the model is invari-

ant to the domain shift in the source data, it will also be invariant to the domain shift in

the target data; and feature disentanglement, that decouples domain-shared or specific fea-

tures into generalizable representations. Some domain-invariant learning strategies include

kernel methods, explicit feature alignment, domain adversarial learning, and invariant risk

minimization.

Average or worst-case performances on domains held out from training are commonly used

to test domain-shift scenarios and verify how the model generalizes to unseen data or different

domains [139]. However, model selection is crucial when evaluating DG models, as the distri-

bution between data splits directly affects performance interpretations [45]. Three strategies are

considered [45]: Test-domain validation set, which uses training and validation subsets pooled

from per-domain training and validation splits and considers the highest accuracy on the valida-

tion set; Leave-one-domain-out cross-validation, which considers k training models each without

a training domain and averages accuracies over the performance on held-out domains; and Test-

domain validation set (oracle), which considers the accuracy of on a validation set that has similar

distribution to the test domain. This last requires prior knowledge of the test domain, which is not

always available.

2.3 Detection and Counting applied to Digital Pathology

The analysis of WSIs allows the extraction of valuable quantitative and qualitative features use-

ful to several tasks, such as localization, segmentation, detection, and classification of biological

tissues [61]. When applied to the pre-analytical testing phase, this analysis helps control the im-

ages’ quality, which is posteriorly interpreted manually by pathologists or fed to AI diagnosis

tools. It can relieve pathology clinicians of time-consuming and labor-intensive preprocessing

tasks, namely manually comparing fragments in slides with their corresponding macroscopic re-

ports [9], as we explore in this work. Consequently, expediting quality control protocols also

expedites testing results, crucial in time-sensitive diagnosis.

As we have described in Section 2.1, analysis of WSIs is a challenging endeavor: images

are large, require multiscale awareness, and can contain artifacts that hinder model performance,

which may also be affected by poorly generalized training data. Considering these challenges,

it was necessary to adapt existing models or develop new ones targeted to the digital pathology

domain [110, 61]. Cell and nuclei segmentation, tissue classification, tumor detection, and disease

prediction/prognosis are the most common tasks in this domain. Tasks regarding counting struc-

tures are not commonly explored in the field, although counting mitosis or cells is considered in

some disease prediction models [110].

As such, we explore the most relevant applications of detection and counting in digital pathol-

ogy in the following sections. We also review the literature related to our work for fragment

detection and counting in Section 2.3.2.
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2.3.1 Detection and Counting

This Section showcases some practical examples of ML approaches applied to general digital

pathology tasks related to object detection, classification, and localization. As specific applica-

tions of counting structures in pathology images are scarce, and counting can be approached as a

classification/localization problem, we mention applications related to these tasks as well as for

object detection.

2.3.1.1 Conventional Machine Learning Methods

Some of the applications in studies for classification, localization, and detection-related tasks

within digital pathology are listed in Table 2.2. There are multiple tasks within the field, with dif-

ferent motivations and concerns, so we group them into specimen classification, region-of-interest

(ROI) localization, and tumor detection, as these are broader categories.

Table 2.2: Conventional machine learning techniques for object detection by
digital pathology task [7].

Method
Specimen

Classification
ROI

Localization
Tumor

Detection

Support Vector Machine (SVM) [27] [19] [6] [98] [94] [38] [37] [53] [22]
Linear Discriminant

Analysis (LDA) [27] - -

Random Forest (RF) - [98] [22]

Bayesian Classifier [27] [37]

Logistic Regression (LR) - - [38]
K-Nearest Neighbor
Regression (KNN) [27] [19] - [22]

K-Means Clustering - [94] [84] -

Ensemble Boosting (EB) - [98] [38] [22]

Some publications compare the performance of CML methods with DL methods, and gener-

ally, the DL methods outperform the CML ones. The studies that use only CML approaches for

the goal task are, in most cases, before the widespread use of DL methods in the digital pathology

realm. Today, conventional machine learning approaches are primarily used in collaboration with

deep learning methods.

Extracting relevant features is crucial for the success of these methods, as they define the

distinction between tissues, cells, or simply areas of interest in the samples that drive the predic-

tions. However, extracting meaningful handcrafted features can be complex and computationally

burdening and often requires extensive prior domain knowledge of the disease to define highly rep-

resentative features. This limited what could be learned from available data, leading researchers

to explore deep learning techniques that automatically extract global features and that do not ex-

clusively perform the goal task [22].
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2.3.1.2 Deep Learning Methods

Deep learning has been widely used as an effective technique for multiple tasks within digital

pathology and applied to various cancer types. Computer-aided diagnosis solutions for detection

and classification-related problems usually use CNN variants adjusted to the specific task they

are solving [110]. We list some applications of deep learning methods per the learning schema

adopted:

Supervised Learning Supervised learning relies on training over labeled data to make predic-

tions during inference time. Classification methods are the most common, but regression and

segmentation models can also be applied to the detection and classification of bio-structures.

Considering classification, CNNs are the gold standard for region-level and image-level tasks,

although attention-based models have gained some traction in global image analysis [110]. In dig-

ital pathology, local-level approaches have been used for various tasks, such as mitosis [115, 96]

and cell/nuclei detection and classification [64, 101]. As for global-level approaches, their appli-

cations focus more on disease prediction or grading, such as detecting breast cancer metastases

[78, 20, 69] or identifying and classifying invasive breast cancer [39, 35, 132].

Considering regression, approaches have been used in digital pathology by exploiting Fully

Connected Networks (FCN) for mitosis [28] and nuclei [131] detection and classification tasks

and applying CNN-based methods for nuclei [109] and cell detection [130]. Xie et al. [129] also

explored Fully Convolutional Regression Networks for automated cell counting.

Weakly Supervised Learning Weakly supervised learning models use scarcely labeled data to

perform predictions. They exploit image-level annotations to automatically infer pixel/path-level

information, which is particularly valuable in DP since annotating patches or pixels is complex and

time-consuming for pathology technicians [110]. Weakly supervised learning has been applied to

numerous detection and classification tasks in digital pathology for gastric cancer, [125], prostate

cancer [24], breast cancer metastasis [5], and mitosis detection [76]. Huang and Chung also

explored weakly supervised learning methods for localizing cancerous evidence in histopathology

images [60].

Unsupervised Learning Unsupervised learning aims to identify patterns in underlying data

without the help of labels. These methods use raw input data without expert annotations, mak-

ing them hard to adapt for heavily label-reliant tasks like object detection [110]. Nonetheless,

unsupervised learning approaches applied to detection and classification are present in, for exam-

ple, nuclei detection [56]. Hu et al. [58] also used GANs to extract cell-visual representations,

which can be used for cell counting. Research in this area is valuable since it helps circumvent the

lack of specialized annotated data in the DP field.

Transfer Learning Transfer learning aims to apply knowledge from one source domain to a

target domain, relaxing the assumption that the train and test set should be dependent [110]. It
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is frequently used in DP since large pre-trained models are readily available and can be finetuned

on task-related images. It is typically done with VGGNet [108], InceptionNet [113], ResNet [52],

MobileNet [57] and DenseNet [59], as with other variants trained on ImageNet or other large

image datasets, as the COCO dataset for YOLO [97]. Transfer learning models have been used for

several detection tasks within DP, for example, breast cancer metastasis detection and classification

[79, 75], and cell detection [118].

2.3.1.3 Graph Neural Networks

Histological images portray the micro-anatomy of a tissue sample, serving as a diagnostic tool

for pathologists who analyze morphological alterations in tissues, spatial cell relationships, cell

density, and other relevant factors. GNNs can model these relationships more efficiently than con-

ventional or deep learning methods by transforming biological samples into graph representations

considering their morphology, topology, and spatial representation, customized to tackle the de-

fined task, thus avoiding the limited context given by patch-based detection methods [3]. Models

like CNNs fail to consider these relationships within their computation, so fine-grained dependen-

cies, critical to understanding and perceiving visual data, go unnoticed. GNNs address this issue

by modeling those relationships and leveraging drops in performance when faced with unfamiliar

samples [128].

A traditional workflow for graph-based tasks in digital pathology can be defined by construct-

ing the graph to represent the input data, modeling the GNN-based algorithm that performs the

prediction, and interpreting the resulting graph for the given task. Graph construction is essential

to build the input for the models, and it can be described by the following steps [3]:

Node definition: Background and tissue regions are segmented by Gaussian smoothing

and Otsu thresholding. Nodes can be defined by detected or segmented cells (cell graphs),

fixed-sized patches (patch graphs), or tissue regions (tissue graphs), done through clustering,

segmentation, or selection algorithms.

Node embeddings: Features are extracted according to morphological and topological

properties, such as shape, size, orientation, nuclei intensity, and chromaticity. This is done

using deep neural methods (CNNs), aggregated features from neighboring patches, or self-

supervised approaches (autoencoders).

Edge definition: Edges are defined by how likely two nodes interact, which can be by

predefined proximity thresholds, Pearson correlation-based graphs, probabilistic models,

distance-based graphs, or simply by defining an adjacency graph by the centroid distance

[106].

The input graph is then processed using a graph-based deep learning model that analyzes

the graph-structured data. Standard GNN models namely GCN, GraphSAGE, GAT (as described

in 2.2.3.2) as well as their variants or other models, such as, for example, Graph Isomorphism

Networks (GIN) [133], have been explored to solve classification and detection tasks within digital
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pathology, for breast [63], lung [2], colorectal [111] and prostate [125] cancer detection, among

other tasks.

Graph pooling is finally performed to reduce computational complexity, minimize graph out-

put for posterior predictions, and provide relationship details and interpretations. Global Pooling,

or the readout layer, applies simple aggregators like the mean, sum, or even global attention mech-

anisms that only focus on relevant nodes to reduce the graph to a single pooled vector for all nodes

[3]. Hierarchical Pooling, however, learns a hierarchical representation of the graph and is used

through another graph pooling layer that pools information from multiple vertices to one vertex to

reduce the graph, such as DiffPool and SAGPool [3].

Generally, graph-based techniques have shown impressive results in most cancer detection

tasks within digital pathology since using entity-based models allows for the interpretability of

their semantic relationships, making algorithms more robust to unknown samples [3].

2.3.2 Application to Fragment Detection and Counting

As discussed in the previous sections, recent advances in detection and classification methods can

positively influence results in tasks related to digital pathology. Applying GNN-based methods

can capture hidden morphological and topological relationships between tissues that generally

improve results.

General detection or classification methods for digital pathology specifically applied to frag-

ment detection and counting have barely been explored, except by Albuquerque et al. [9]. New

approaches for detection and counting are worth exploring to bridge this gap, which could poten-

tially improve on previous results. The work done by Albuquerque et al. and its outcomes are

highly relevant to our research, so we detail the methods they explored in the following sections.

In Section 2.3.2.1, we explain the annotation and labeling protocol followed for the images in

the dataset. We describe their conventional machine learning approach and deep learning strate-

gies in sections 2.3.2.2 and 2.3.2.3, respectively. In Section 2.3.2.4, we review the outcomes and

limitations of their work.

2.3.2.1 Annotation and Labelling

The whole-slide images used for the task include 1276 samples from colorectal biopsies and

polypectomies specimens, manually annotated in 11,300 fragments and 3,517 sets by one pathol-

ogist and two biomedical scientists, with an 80/20 split on train and test images.

Fragments represent individual tissues, and sets are groups of fragments repeated within the

slide. Slides have repeated cuts as a precaution to prevent the potential loss of slide material

caused by artifacts, inadequate focus, or similar factors. This redundancy ensures that if any of

the repetitions is compromised, clinicians can still make informed decisions based on the unaf-

fected repetitions, thereby maintaining the reliability of diagnostic assessments. When slides are

mounted, they can be of 3 types, as represented in figure 2.4: a) several sets with only one fragment

(number of fragments equal to the number of sets); b) same set with multiple different fragments;
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and c) several copies of the same set of different fragments. Sometimes, equal sets can have a

different number of fragments since repeated cuts are not always completely equal.

Fragment Annotation Set Annotation

c)

b)

a)

Figure 2.4: Fragment and Set Annotation. Recreated from [9].

The images contain annotations based on the protocol used for slide mounting. There are two

types of annotations: counting and spatial annotations. Counting annotations follow the protocol

described above but account for the number of fragments per set (fragments/set), as pathologists

assign the real value to samples when counting. For example, in the case of a) in Figure 2.4, the

ground truth would be 1, as there is a single fragment in each set, and in the case of b) and c) would

be 4, as there are four fragments/set. Cases where the number of fragments/set is ten or higher

are annotated as containing various fragments. Spatial annotations allow for detecting fragments

and sets, as they are annotated with each corresponding rectangular bounding box coordinates,

with a label of 0 for fragments and 1 for sets. The variability in sets and fragments and their

topological and morphological characteristics are a big challenge for counting and detection since

the developed models must account for all cases. Figure 2.5 shows some real examples of tissue

differences.

Figure 2.5: Examples of macro slide images present in the dataset.

2.3.2.2 Conventional Machine Learning

This first approach applies supervised classifiers to binarized histopathology images for fragment

and set classification, followed by unsupervised hierarchical clustering for their localization. The

steps performed can be divided into image pre-processing, feature extraction, binary classification,

and grouping and are described as follows.
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Image Pre-Processing applies several transformations to the image, namely removing black

spots using a region-growing algorithm in the blue channel, binarizing the image through

Otsu’s adaptive thresholding, applying morphological operations to remove noise, and fi-

nally, reversing the image to have white tissue objects on a dark background.

Feature Extraction extracts representative features from the image from each pair of con-

nected components and uses them to calculate pairwise features (distance between centroids,

percentile distance between points in object contours, normalized area of the bounding box,

and circularity ratios), to decide if they belong to the same fragment or set. There is also

noise removal by only considering connected components that are at least 5% bigger than

the most prominent component.

Binary Classification predicts whether pairs of connected components belong to the same

fragment or set by training five different classifiers (LDA, QDA, NB, LR, SVM) with cross-

validation. Training of the entire dataset uses the best parameters for each model and is done

twice: once to check if the components belong to the same fragment and another to check if

they belong to the same set.

Grouping creates two graphs: a Strong Graph with highly confident connections (thresh-

old of 0.9) and a Weak Graph with all pairwise predictions. After identifying connected

subgraphs in the Strong Graph, additional connections are considered between pairs of sub-

graphs that likely represent the same fragment/set. This involves calculating mean predic-

tions between components and establishing connections if they surpass a permissive thresh-

old (above 0.5). The process is repeated until no more pairs of subgraphs meet the criteria.

To tackle discrepancies generated by the pre-processing step, they explore another approach that

applies the feature extraction, binary classification, and grouping steps to patches limited by the

ground truth fragments’ bounding boxes instead of the whole image.

2.3.2.3 Deep Learning

The deep learning approach for detecting and classifying fragments relies on two state-of-the-art

detection deep learning models, Faster R-CNN [100] and YOLOv5 [117]. The hyperparameters

used were optimized by a grid search, resulting in the best parameters for YOLOv5 being an image

size of 512x512, batch size of 32, and 200 training epochs, while Faster R-CNN performed best

with a batch size of 8; both models utilized Stochastic Gradient Descent with a starting learning

rate of 10−4.

2.3.2.4 Outcomes and Limitations

Regarding conventional ML methods, results indicate that the preprocessing step does not induce

considerable inconsistencies in images since using ground truth fragments hardly improves met-

rics across classifiers compared to component labeling on the entire image. Logistic regression
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emerges as the top-performing traditional model, consistently achieving mAP@0.5 values over

0.8 for fragment, set, or both classes detection. In contrast, while SVM excels in fragment detec-

tion, it shows lower mAP@0.5 values for set detection.

Deep learning models, particularly YOLOv5, outperform conventional methods in most met-

rics, achieving a top mAP@0.5 of 0.977 for all classes. At the same time, Fast R-CNN remains

competitive in precision and mAP@0.5, though it requires more time and effort to optimize hy-

perparameters compared to YOLOv5.

Generally, the methods employed performed positively for detecting and counting fragments.

Nevertheless, challenges may emerge when applying these techniques in clinical settings. The

findings could exhibit bias towards the specific domain, as slides of a diverse nature might present

unique common patterns. Additionally, the data employed might lack adequate representation of

edge cases like slides with artifacts or uncommon patterns and size variations. Moreover, given

that the data originates from a single lab, it may generalize poorly to WSIs obtained using different

scanners or resolutions. GNN approaches could improve these results as they rely on the intrinsic

relationships between objects, which provide more context than image patches, and effectively de-

tect and count these different tissues. In their work, no result metrics are presented that effectively

count the fragments and sets in the images. Gathering these values is crucial to aid pathology

technicians in cross-checking the quality control process.
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2.4 Summary

In this chapter, we provided an overview of the background knowledge of detection and classifi-

cation methods applied to quality control in digital pathology, namely for fragment detection and

counting.

In digital pathology, the quality control of WSIs is crucial for accurate diagnosis and the effec-

tiveness of CAD systems. Slide preparation and digitization are critical stages, with potential er-

rors and artifacts that can impact image quality. We analyzed solutions for handling these artifacts

relating to color and blurriness and the importance of using high-quality standardized annotated

data for training automated solutions.

Fragment detection and counting is presented as a quality control checkpoint that ensures the

consistency and reliability of digital slides compared to their physical counterparts. We analyzed

the most common detection and classification models as approaches for solving the task at hand,

as fragments and sets need to be identified and counted to improve the quality control process

effectively.

Finally, we reviewed known applications of detection and classification in the digital pathology

realm, highlighting our task of detecting and counting tissue fragments, which has barely been

explored in literature and which we build upon. As far as we know, deep graph-based approaches

have never been studied for fragment detection and counting in histopathology samples.
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Improving Fragment Detection and
Counting

This chapter proposes a methodology for improving fragment detection and counting. We intro-

duce the motivation for this problem in Section 3.1, analyze the dataset used throughout the work

in Section 3.2, and describe the methods applied to tackle the issue in Section 3.3. We detail the

experimental setup in Section 3.4 and discuss the results and accompanying reflections in Section

3.5.

3.1 Problem Statement

As discussed in the previous chapter, digital pathology must rely on quality control procedures to

ensure that computed-assisted diagnosis is as reliable as manual evaluations. Fragment detection

and counting are routine procedures that could benefit significantly from automated approaches

due to their time-consuming and manual-intensive nature.

The previously described approach by Albuquerque et al. [9] already demonstrated positive

results in correctly detecting sample fragments and sets, proving that the practicability of such

systems is achievable. However, specimens have high shape and size variability, so the model is

not sufficiently robust, especially for OOD samples, which is crucial for integration into clinical

routines. Additionally, the published work did not provide results for counting, which is the central

task in real laboratory settings, as pathologists manually compare the number of fragments per set

present to assess if the mounted slides match their macroscopic lab report.

In this work, we look at the detection and counting problem as an improvement of the work

already developed by Albuquerque et al. [9], focusing on refining erroneous predictions without

hindering the correct predictions of familiar cases while improving metric results. Common errors

consisted of the following: a) Large fragments that are not homogeneous, so tissues within that

fragment are detected independently when they should not; b) Fragments with disconnected tissues

that should not be counted independently (in the example, the top disconnected part of the middle

fragment is considered another separate fragment by the model); c) Artifacts or negligible tissues

28
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that should be ignored and not detected; d) Sets that have slight differences and are not detected

as such. Figure 3.1 shows examples of these errors obtained by implementing their previous best-

performing model on their original dataset.

(a) (b)

(c)

(d)

Figure 3.1: Common errors with the fragment detection and counting model proposed by [9].

To address these and other issues and enhance the results of the previously developed models,

we propose a methodology for overall detection and counting improvement, focusing on a detailed

analysis of the performance of the models to assess robustness. Our objective is to solve the

detection of fragments and sets in the WSIs and count the fragments per set and sets present in

the samples. The pathology technicians use the fragments per set value in the manual comparison

process. These are the tasks we focus on further in this chapter.

3.2 Dataset Analysis

The problem we aim to improve is highly linked to the data, as the WSIs are the primary vehicle

for the research. We must detail and analyze the samples available for our study before addressing

the proposed methodology to provide a broader understanding moving forward.
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For this study, we used an extension of the previous dataset used by Alburquerque et al. [9].

Two pathologists and two biomedical scientists manually annotated the dataset, following the stan-

dard protocol described in Section 2.3.2.1. All cases were retrieved from PoTURgal’s IMP Diag-

nostics Laboratory data archive and digitized with 2 Leica GT450 WSI scanners at 40x equivalent

magnification.

This extended version has 2053 train images, 499 validation images, and 701 test images.

Although both train and validation images have counting and spatial annotations, test images only

have counting annotations. Consequently, algorithms that depend directly on spatial annotations

cannot be evaluated using the test set, as is the case of the detection models. The same goes for the

task of counting sets, as the counting annotations only have the count of fragments per set, as this

is the objective task that pathology technicians need to solve in their laboratory routines. Since the

counting annotations do not include the count for sets, we also do not use the test set to evaluate

this task.

The histopathology images present in the dataset are characterized by their specimen type

- Biopsy, Surgical Specimen, Polypectomy, TUR (Transurethral Resection) and Biopsy or Polypectomy;

organ type - Gastric, Ovary, Breast, Prostate, Duodenum, Jejuno/Ileum, Colorectal, Bladder, Esophagus,

Seminal vesicle, Ganglia, Cervix, Uterus, Liver, Skin, Gallbladder, Appendix, Soft tissue, Oral Cavity,

Vulva, Pancreas, Thyroid, and Others; and staining technique - H&E (hematoxylin and eosin) staining

and Immunostaining. Figures 3.2, 3.3, and 3.4 show the Distribution of the cases in the dataset by

specimen type, organ type, and staining technique, respectively.
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Figure 3.2: Distribution of cases by specimen type for the train, validation, test, and all sets.

The test set is built considering the specimen, organ, and staining technique type distribution

in the train and validation sets, allowing a thorough evaluation of some OOD data.

Besides these attributes, cases are also described by the ground truth associated with their

counting annotations, which reflect the number of fragments per set in the image. These values

follow a "gold standard" defined by the annotators’ agreement on the number of fragments per

set in each image, as some cases are ambiguous even among technicians. Following the "gold

standard" simplifies experiments and allows generalization.
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Figure 3.3: Distribution of cases by organ type for train, validation, test, and all sets.
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Figure 3.4: Distribution of cases by staining technique for train, validation, test, and all sets.

Since there is no direct counting annotation for sets, the ground truth used during training and

validation for the set counting task is gathered from counting the number of sets identified in the

spatial annotations, as they are labeled with ’1’. The distribution of the dataset’s fragments per set

and set counts are shown in Figures 3.5 and 3.6, respectively.
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Figure 3.5: Distribution of cases by their fragment per set count for train, validation, test, and all
sets.
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Figure 3.6: Distribution of cases by their set count for train, validation, and both sets.

As explained previously in 2.3.2.1, the representation of fragments and sets in the image di-

rectly affects their count. Various fragments per set are cases where the number of fragments per

set is equal to or higher than 10, according to pathology technicians, so this is the highest value
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that our models consider when counting. The number of sets equal to or above 6 follows the

same logic. The distribution shown aligns with clinical routine samples and reflects an average

distribution count in a diagnostics laboratory.

An exceptional case is not mentioned in Section 2.3.2.1. In some instances, multiple copies

of the same set do not match, as one or more sets have a slightly different number of fragments,

usually just one more fragment. In cases like those in Figure 3.7, the "gold standard" ground truth

for fragments per set instinctively should be 2.5 and 1.5, respectively. In these cases, pathology

technicians count as if a fragment was cut from the set with a fragment missing, so the number of

fragments per set is modified to 3 and 2. Due to how we approach the problem, we only consider

the integer ground truths in these cases.

Figure 3.7: Samples which have a different number of fragments in each set. The ground truth
considered for each case is 3 and 2, respectively.

3.3 Methodology

Since our objective is to improve results for both detection and counting, the methodology we

propose is divided into a detection task and a counting task. In Section 3.3.1, we detail our methods

for tackling the detection task, and in Section 3.3.2, our approach for handling the counting task.

3.3.1 Detection

With access to a dataset of histopathology images spatially annotated with bounding boxes, each

labeled with ’0’ for fragments and ’1’ for sets, the natural step is to apply detection models that

can learn to identify the bio-structures in new unlabelled data.

Considering the results previously obtained by Albuquerque et al. [9], we first replicate their

best results using their original dataset to identify common errors in their proposed model. The

cases described in Section 3.1, where the model failed to detect fragments or sets correctly, were

gathered from this initial review. Considering this, we finetune the same best-performing model,

YOLOv5, but using the extended dataset, which more than doubles the number of samples. Addi-

tional data benefits training as the model is exposed to more samples and, in our case, also more

diverse, increasing robustness. This helps us gain perspective on the impact of the extended dataset

on the model.
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Different authors proposed iterations that improve the original YOLO model, briefly described

in Section 2.2.2.2, such as YOLOv5 [117]. YOLOv5 improves upon the original YOLO by intro-

ducing enhancements like better network architectures, enhanced training techniques, and more

efficient data augmentation strategies. These improvements help achieve higher accuracy and

faster inference times than previous versions. The latest iteration is YOLOv9 [122], a state-of-the-

art detection model that further builds on previous YOLO versions’ advancements by addressing

data loss challenges during deep network transmission. YOLOv9 introduces the concept of pro-

grammable gradient information (PGI) to retain complete input information, ensuring reliable

gradient updates. Additionally, it employs a new lightweight architecture, the Generalized Effi-

cient Layer Aggregation Network (GELAN), which optimizes parameter utilization and enhances

performance. Hence, we finetune YOLOv9 using the extended dataset since it generally achieves

better benchmarks in standard datasets.

All in all, we consider these two models to detect individual fragments and sets. We compare

the methods and apply 5-fold cross-validation to evaluate further and consolidate results.

3.3.2 Counting

Pathology technicians verify that mounted slides match their macroscopic lab reports by checking

the number of fragments per set. Counting sets helps confirm the number of bio-material repe-

titions on each slide, although this is not the primary task. Therefore, the counting methods we

propose address both tasks: counting fragments per set and counting sets.

We tackle this problem using two distinct approaches: first, by deriving counts directly from

detections provided by the detection models, and second, by reframing the task as a classification

problem, wherein each image is assigned labels corresponding to the number of fragments per

set and the number of sets present. We compare all the models and evaluate both approaches

thoroughly, applying 5-fold cross-validation to consolidate findings. We also further analyze the

best-performing model by gathering counting metrics across distinct dataset characteristics and by

studying domain generalization.

3.3.2.1 Deriving Counts from Detections

After finetuning the detection models, we begin inference to get detection results and then count

the number of sets and fragments detected from the predicted labels. To gather the fragments per

set prediction, we calculate the ratio between the number of detected fragments and the detected

sets. Since the ratio might not always be whole, as the model can predict a non-divisible number

of fragments by the number of sets, we split our analysis into two groups: firstly, only the cases

where the model provided integer-based predictions (confident cases) and secondly, including also

the cases where the model provided fractional-based predictions (sensitive cases). If the model is

clinically integrated, these last cases are potential candidates for manual evaluation by pathology

technicians, as they either indicate instances where the model wasn’t sure about its prediction or

ambiguous, complex samples. For this reason, we also included cases where the model predicted
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0 fragments or sets in this group, as this indicates an error case. These cases can be used as a reject

option.

3.3.2.2 Predicting Counts from Classifiers

Reframing the counting problem as classification helps simplify the approach, as the focus of the

counting task does not require fragment or set localization but simply assigning counts for each

image. We treat the problem as multiclass classification, where each count is considered a possible

class. The general model architecture consists of a pretrained backbone feature extractor and two

MLP classification heads, one that classifies the fragments per set and another that classifies sets.

Each MLP has a single hidden layer and an output layer according to the number of classes for

each count. As described in Section 3.2, fragments per set counts range from 1 to 10, and set

counts range from 1 to 6, so the model considers 10 and 6 classes for fragments per set and sets,

respectively, in the output layers. A single class prediction is extracted as the maximum predicted

probability from the model output class vector, as the target labels represent a single ground truth

count value. The target set counts are obtained from spatial annotations, and the target fragments

per set counts are gathered from the "gold standard" counting annotations.

3.4 Experimental Setup

To demonstrate the application of the proposed methodology, we conduct an empirical evaluation

of the models proposed for both detection and counting. This section outlines the key aspects

of our approach, including the details of the implemented models and the evaluation method,

highlighting the cross-validation and the domain generalization processes.

3.4.1 Models and Parameters

To elucidate the design choices and configurations that underpin our empirical evaluation, we

discuss the specific architectures, parameter settings, and training protocols employed. All the

experiments were developed with Python using the PyTorch library to build and evaluate models.

3.4.1.1 Detection Models

For YOLOv5, we use Utralytics YOLOv5 implementation, which is available at https://gith

ub.com/ultralytics/yolov5 as it is regularly updated and maintained and provides helpful

references for inference and finetuning the models with custom data. As for YOLOv9, we used

the authors’ implementation, which is available at https://github.com/WongKinYiu/

yolov9. They use Ultralytics’ YOLOv5 implementation as the base to implement the YOLOv9

architecture, so the training and inference procedures are similar for both implementations.

We train both models using a batch size of 32 with images of 512x512 pixels for 200 epochs,

with an initial learning rate of 10−2 and a final learning rate of 10−3. We use initial pretrained

weights and then finetune the models using our data. We use the YOLOv5s model and the

https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/WongKinYiu/yolov9
https://github.com/WongKinYiu/yolov9
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YOLOv9-C model as the initial training point for finetuning YOLOv5 and YOLOv9, respectively.

The hyperparameters chosen were based on the previous work by Albuquerque et al.[9] and by

tuning according to empirical trial analysis. The hyperparameters were the same for both models

for fair comparison.

The YOLOv5 and YOLOv9 implementations already provide precision, recall, and mAP@50

metrics for each class and their average across all classes. However, they do not explicitly give the

IoU, even though it is computed to calculate the mAP@50 metric. Considering this, we altered

the validation script to provide this metric for each class and its average across all classes.

To perform the counting task from the detection models, we adapt the inference script to count

the fragments per set and sets as described in the methodology. The count values are only calcu-

lated after Non-Maximum Suppression (NMS) is applied on inference results to reject overlapping

detections, with a confidence threshold of 0.25 and an IoU threshold of 0.45, with a maximum of

300 detections. All the models we use for evaluation correspond to those with the best validation

loss during training.

3.4.1.2 Classification Models

To train the classification models for counting, we used three different pretrained feature extractor

backbones: ResNet, ViT, and DINOv2.

The training process was similar for all three experiments, and the hyperparameters chosen

were tuned using empirical analysis. We train all the models for 100 epochs with a learning rate

of 10−3 and a batch size of 32. We use the AdamW optimizer with a 10−3 weight decay rate and

a linear learning rate scheduler with a 10−3 warmup factor decaying by each epoch. We use the

cross-entropy loss since the counting task is reframed as a multiclass classification problem. For

a fair comparison with the detection models, it was logical for the input size of the images to be

512x512, but that was only possible for the ResNet model since the other two models had input

size constraints, as they are transformer-based and rely on patches. Considering this, these are the

particular configurations of each model:

ResNet: We use the PyTorch implementation of ResNet-18 architecture with pretrained

weights as the backbone. The last fully connected layer is removed from the model, and all

the other layers, except for the last basic block, remain frozen during training. The input

image size we use is 512x512.

ViT: We use the PyTorch implementation of Vit-B\32 architecture with pretrained weights

as the backbone. The pretrained model limits the image size to 224x224, which is the input

size we use to train this model. The last fully connected layer is removed from the model,

and all the other layers remain frozen during training.

DINOv2: We use the linear classification pretrained head of the DINOv2 model from Meta

AI, dinov2_vitb14_lc, as the model backbone. The last fully connected layer is removed
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from the model, and all the other layers remain frozen during training. Due to model con-

straints, the input image must have dimensions divisible by the patch size, which is 14, so

the input image size we use is 504x504, as it is the highest value lower than 512, which is

divisible by the patch size.

As described in the methodology, and after the backbone feature extractor, each model has

two MLP classification heads, with one hidden layer: one that predicts fragments per set, with a

final layer with ten output classes, and another that predicts sets, with a final layer with six output

classes. All the models we use for evaluation correspond to those with the best validation loss

during training.

3.4.2 Evaluation Process and Metrics

For the detection models, both YOLOv5 and YOLOv9 are evaluated on the validation set, as there

are no spatial annotations for test images. Since they share a base implementation, both models’

metrics are computed similarly. The precision, recall, mAP@50, and IoU are computed per class

(fragment and set) and averaged to give overall results for the model performance.

As for the counting methods, the accuracy, mean absolute error, and f1-score are calculated

for both fragments per set and set count predictions and averaged to give overall results for model

performance in both tasks. The metrics are computed for the classification models, and the counts

are derived from the detection models’ inference results. For this last counting method, predictions

for these cases are ceiled to the nearest integer when dealing with sensitive cases, as described in

the methodology. Considering some cases have a different number of fragments in each set, the

ceiling of the prediction value goes accordingly with how the pathology technicians approach

these cases, as described in Section 3.2.

Since the sets’ ground truth count can only be obtained from the spatial annotations, as ex-

plained in Section 3.2, the counting methods are evaluated on the validation dataset. Nonetheless,

the fragments per set ground truth value is available for the test dataset, so the fragments per set

are also evaluated with test data besides the validation. This ensures more reliable results, as test

cases were not used to tune hyperparameters or draw conclusions during empirical trials. There is

also a higher and more diverse number of test samples, which benefits the robustness of the results

in the same regard.

3.4.2.1 Cross-Validation

To further validate findings, we apply a 5-fold cross-validation procedure. We use the training

and validation images to split the data into five different folds with a randomized distribution, with

three folds having 510 images and the others 512. We train the model using four folds and validate

them using the remaining fold, repeating this process for all folds. We evaluate the robustness of

the model by averaging the results for the validation across all metrics. We apply cross-validation

to both the detection and counting tasks, and all the models are trained using the same parameters

described previously.
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3.4.3 Domain Generalisation

We apply techniques to increase (in-domain) generalization during model training, like data aug-

mentation and model regularisation methods. Nonetheless, verifying if the model stands against

diverse domains is crucial since, if clinically integrated, it might be presented with unforeseen

samples of various shapes, sizes, and characteristics, and it is expected to predict their fragments

per set count correctly.

To study how well the best-performing model generalizes to new domains, we initially analyze

counting metrics for fragments per set across each specimen, organ, and staining technique type

using the test dataset. This helps gauge which sample characteristics are more challenging for the

model to count and how the model behaves when presented with a sample from an unforeseen do-

main, since some images on the test set have different organ and staining technique types from the

images on the training set. These unprecedented samples already present in the test set are Thyroid

and Immunostaining cases. As there are only 8 Thyroid and 2 Immunostaining samples in the test

set and ten samples are insufficient to assess how well the model generalizes the domain, we train

the best-performing model using fewer samples, removing the cases where the organ is Prostrate,

Cervix, and Breast and place this samples in the test set. By doing this, we can analyze the reli-

ability and robustness of the model in predicting fragments per set counts of types of samples it

has not been trained on. We train the model using the same parameters as described previously.

We chose to remove the Prostate, Cervix, and Breast samples as they have high representation in

the training set (third, fourth, and fifth most common, respectively) and because they are hard,

ambiguous samples. Examples of samples of these organ types are present in Figure 3.8.

Figure 3.8: Examples of Prostrate, Cervix, and Breast organ samples, respectively.

After removing the training and validation samples and placing them in the test set, the dataset

distribution is as follows: 1700 training images (187 prostrate, 86 cervix, and 80 breast samples

removed), 450 validation images (33 prostate and 16 cervix samples removed) and 1103 test im-

ages.

3.5 Results

In this section, we analyze the results obtained from the experiments conducted. We examine the

results in two parts: firstly, by evaluating the performance of the detection models and secondly,
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by reviewing the results of the various counting methodologies. Finally, we discuss the overall

impact of the experiments’ outcomes and the methodology’s limitations.

3.5.1 Detection

In Table 3.1, we present the results of each applied detection model and the best-performing results

obtained by Albuquerque et al. [9] in their previous experiment to use as a baseline comparison.

The best results for each metric are shown in bold.

Table 3.1: Comparison of the detection models metrics, including the previous research results.

Fragment Set All

Model IoU P R map@50 IoU P R map@50 IoU P R map@50

0.93 0.941 0.940 0.970 0.920 0.957 0.969 0.985 0.925 0.949 0.955 0.977

0.925 0.898 0.907 0.930 0.942 0.966 0.976 0.987 0.934 0.942 0.959 0.745

0.939 0.940 0.917 0.959 0.950 0.986 0.992 0.993 0.944 0.963 0.954 0.976

YOLOv5 (Albuquerque et al.[9])

YOLOv5

YOLOv9

The results obtained for both detection models are on par with the results of the baseline

experiment. However, the baseline generally surpasses the new detection models in the fragment

detection task, with a slightly noticeable difference for recall and map@50. Since the dataset we

trained contains more than twice as many images as the previously used dataset, the examples

introduced could represent more complex, ambiguous cases. Hence, the performance for this task

decreases. This makes sense when considering set detection performs better for both YOLOv5 and

YOLOv9 when compared with the baseline since it is a more straightforward task, and increasing

samples directly improved these results. Generally, YOLOv9 is the best-performing detection

model with impressive results across all metrics.

Table 3.2: Comparison of the detection models metrics with 5-fold cross-validation.

Fragment Set All

Model IoU P R map@50 IoU P R map@50 IoU P R map@50

0.929 0.903 0.932 0.948 0.921 0.966 0.973 0.983 0.925 0.935 0.953 0.966

0.932 0.950 0.924 0.961 0.945 0.979 0.983 0.992 0.938 0.964 0.954 0.976

YOLOv5

YOLOv9

Considering cross-validation across five-folds, YOLOv9 still outperforms YOLOv5 across all

evaluation metrics, and the results obtained are similar to the results obtained by training with the

original data split, proving robustness and good generalization, as shown in Table 3.2.

To visually evaluate improvements over the baseline detections by Albuquerque et al. [9],

Figure 3.9 shows the detections presented in the problem statement in Section 3.1, but now using

the best-performing detection model, YOLOv9.

As shown, the model correctly detects the fragments and sets for cases a), c), and d): in a),

the model no longer detects disconnected tissues inside the large inhomogeneous fragment; in c),

the model no longer detects the artifact/negligible tissue as a fragment and in d) the model detects
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(a) (b)

(c)

(d)

Figure 3.9: YOLOv9 detection results, on the right, in comparison to YOLOv5 detection results
by [9], on the left, for the common errors experienced.

both sets, even with the slight difference in fragments. However, the model still fails to detect the

middle fragment as a single fragment in case b), treating the disconnected tissues as independent

fragments. This proves that the model still needs finetuning to account for all errors in detection.

3.5.2 Counting

As described in previous sections, the set count can only be evaluated using the validation dataset

due to the dataset annotations. Since validation results may be skewed as they were used during

experimental trials to tune hyperparameters empirically, assessing the methods on the test data is

essential. However, as it only has counting annotations, it can only be used for the fragments per

set task.

To evaluate which counting method is better at predicting the number of fragments per set

and sets present in a histopathology image, we compare all of them across the defined evaluation

metrics. The methods that derive counts from detection models have their results for only the

confident cases and both confident and sensitive cases, as explained in Section 3.3.2.1. The best

results per metric are highlighted in bold.
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3.5.2.1 Using the validation set

In Table 3.3, we present the results for all the counting methods proposed using the validation set:

the counting values derived from the detections inferred by the detection models, YOLOv5 and

YOLOv9, and the counting values from the predictions of the classification models.

Table 3.3: Comparison of the counting methods metrics using the validation set.

Fragments per Set Set All Total Cases Sensitive Cases

A mae f1 A mae f1 A mae f1

0.847 0.214 0.680 0.922 0.095 0.716 0.884 0.155 0.699 C 359

0.687 0.471 0.489 0.814 0.232 0.551 0.751 0.352 0.510 C+S 499

0.914 0.120 0.734 0.982 0.023 0.982 0.948 0.071 0.751 C 441

0.858 0.202 0.673 0.954 0.062 0.903 0.906 0.132 0.694 C+S 499

0.723 0.425 0.473 0.922 0.086 0.600 0.823 0.256 0.518 - - -

0.687 0.527 0.496 0.860 0.162 0.546 0.774 0.345 0.533 - - -

0.661 0.573 0.479 0.890 0.118 0.569 0.776 0.346 0.538 - - -

Model

YOLOv5 140 (28%)

YOLOv9 58 (12%)

resnet_18

vit_b32

dinov2

YOLOv9 yields the best metrics, including for the confident and confident+sensitive cases.

Compared with YOLOv5, the other detection-based approach, YOLOv9 outperforms it by far

when considering all predictions (confident+sensitive). Even though the detection results for

YOLOv5 were not far from YOLOv9’s results, the model is not as good at counting fragments

per set in the image as it is at localizing fragments and sets individually. Since it identifies about

28% of cases as sensitive, the model is most likely identifying more structures than it should, even

though the structures it identifies are generally correctly placed. YOLOv9, on the other hand,

only identifies about 12% of cases as sensitive, and even when they are considered for evaluation

alongside the confident cases, it is still the best-performing method. Nevertheless, the performance

still decreases when considering sensitive cases, meaning the model still detects some structures

as fragments or sets when it should not.

The classification models’ results are generally lower than those obtained by deriving counts

from detections. The simple classifier architecture might not hold enough expressive power to

classify samples correctly. Finetuning the totality of the backbone feature extractors required

more data since it quickly led to overfitted models. The features extracted could not be specific

enough for this task as they were not explicitly trained on medical imaging or histopathology

samples, which could potentially improve results. From the classification models, the one with

the ResNet18 backbone was the model with the best performance. The small amount of training

data, when compared with the one used to train the more complex ViTB32 and DINOv2 models,

is better suited to finetune a simpler model, such as ResNet-18, as complex models quickly led to

overfitting without cohesive finetuning strategies. Notwithstanding, the results were competitive

with the YOLOv5 evaluated with confident+sensitive cases.

As with the detection models, the counting methods perform worse for counting fragments per

set than for counting sets. Realistically, counting fragments per set is a more challenging task due
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to fragment variability, even causing ambiguity among professionals in some complicated cases.

As for counting sets, since they are usually repetitions of a group of fragments, it is easier for

methods to model this relationship (except in some rare cases where sets have a different number

of fragments, typically a tiny fragment more between sets). Because of this, methods are expected

to have better results for this task than for counting fragments per set.

Table 3.4: Comparison of the counting methods metrics with 5-fold cross-validation using the
validation set.

Fragments per Set Set All Total Cases
(average)

Sensitive Cases
(average)

A mae f1 A mae f1 A mae f1

0.784 0.317 0.599 0.924 0.102 0.679 0.854 0.210 0.628 C 365

0.644 0.473 0.452 0.813 0.232 0.518 0.729 0.352 0.481 C+S 511

0.876 0.187 0.703 0.976 0.034 0.945 0.926 0.110 0.723 C 459

0.828 0.261 0.630 0.951 0.069 0.739 0.890 0.165 0.652 C+S 511

0.692 0.502 0.438 0.935 0.076 0.688 0.813 0.289 0.493 - - -

0.640 0.620 0.384 0.850 0.169 0.609 0.745 0.395 0.430 - - -

0.628 0.656 0.351 0.889 0.125 0.638 0.759 0.391 0.412 - - -

Model

YOLOv5 146 (29%)

YOLOv9 52 (10%)

resnet_18

vit_b32

dinov2

The cross-validation results in Table 3.4 validate these findings, as YOLOv9 still stands as the

best-performing method. All the models have slightly lower results on average, likely due to some

variations in sample complexity between folds.

3.5.2.2 Using the test set

Generally, results evaluated using the test set strengthen the previous section’s observations, as

shown in Table 3.5. YOLOv9 remains the best-performing model, even when considering confi-

dent+sensitive cases, contrary to YOLOv5. While lacking accuracy, it does not have the lowest

f1-score and mean absolute error, which proves that even when not predicting cases correctly,

those errors are not as pronounced in other models. The classification models are still behind the

detection-based counting methods, although the model with the ResNet18 was competitive with

YOLOv5, yielding better results when considering confident+sensitive cases.

Table 3.5: Comparison of the counting methods metrics using the test set.

Fragments per Set Total Cases Sensitive Cases

A mae f1 Cases Sensitive

0.790 0.265 0.678 C 476
0.625 0.449 0.472 C+S 701
0.929 0.089 0.893 C 662
0.904 0.128 0.854 C+S 701
0.776 0.333 0.466 - - -

0.719 0.404 0.450 - - -

0.650 0.516 0.399 - - -

Model

YOLOv5 225 (32%)

YOLOv9 39 (6%)

resnet_18

vit_b32

dinov2
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The test set results provide higher confidence in the models developed as test samples are

held out from the training/validation process and have a distinct distribution in terms of structural

characteristics, namely specimen, organ, and staining technique type. It would be beneficial to

have counting annotations for set counts so that set count results could also be evaluated using this

data. This would ensure model robustness for both tasks, not only the fragments per set count.

3.5.3 Domain Generalisation Analysis

To verify robustness and adequate generalization across domains, we first review the results of the

best-performing counting method, YOLOv9, independently by each sample’s specimen, organ,

and staining technique types. The results analyzed are for the fragments per set counting task and

are evaluated on the test set.

Table 3.6 presents the results concerning the specimen type. The model has a lower per-

formance on Polypectomy specimens, which makes sense considering those samples are not as

frequent during training, as shown in Figure 3.2. The distribution of sensitive cases follows the

distribution of specimen types frequency in the test dataset, which is expected, considering more

samples introduce higher variability.

Table 3.6: Results of the YOLOv9 counting method by specimen type.
(C - confident cases; S - sensitive cases)

Specimen Type Total Cases A mae f1 Sensitive Cases

C 464 0.942 0.063 0.892
C+S 491 0.921 0.096 0.850

C 11 0.909 0.091 0.600
C+S 12 0.917 0.083 0.667

C 145 0.876 0.186 0.850
C+S 153 0.843 0.242 0.781

C 1 1.000 0.000 1.000
C+S 1 1.000 0.000 1.000

C 1 1.000 0.000 1.000
C+S 2 1.000 0.000 1.000

C 8 1.000 0.000 1.000
C+S 8 1.000 0.000 1.000

C 32 0.969 0.063 0.964
C+S 34 0.912 0.147 0.848

Biopsy 27

Surgical Specimen 1

Polipectomy 8

Biopsy + Polipectomy 0

Surgical Specimen + Polipectomy 1

TUR 0

Biopsy or Polipectomy 2

The results regarding each organ are shown in Table 3.7. Uterus and Oral Cavity samples show

the worst performance of all organs, likely because they are more challenging cases. An example

of a detection of a Uterus sample worth analyzing is present in Figure 3.10. As is shown, the

model fails to detect one of the fragments at the bottom of the image because it is partially cut,

making the count of fragments per set not whole, thus a sensitive case. However, since the count

is above 10, it is still correct, which indicates that these cases are worth considering even if the

detector partially fails.

The model performs well on Thyroid samples, even though it is not trained in cases of this

organ. Most of these cases are large homogeneous fragments, exemplified in Figure 3.11, which

the model is comfortable detecting and counting. Prostate samples are the third most common
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Figure 3.10: Detection of a Uterus sample. The model fails to detect the circled fragment in the
left set, which corresponds to the circled fragment in the right set.

sample in the test set, and their performance is lower than that of other standard samples, especially

for the f1-score. As mentioned, these are harder, ambiguous samples, which may hinder the

model’s learning process. Consequently, the imbalance between precision and recall in counting

is more significant. The model performs well when counting Gastric samples, even though these

are not the most common samples during training, proving good generalization. Generally, this is

also true for most of the other organ types.

Table 3.7: Results of the YOLOv9 counting method by organ type.
(C - confident cases; S - sensitive cases)

Organ Total Cases A mae f1 Sensitive Cases

C 373 0.957 0.043 0.918
C+S 394 0.939 0.076 0.873

C 1 1.000 0.000 1.000
C+S 1 1.000 0.000 1.000

C 40 0.875 0.125 0.467
C+S 43 0.837 0.163 0.489

C 11 0.909 0.182 0.926
C+S 11 0.909 0.182 0.926

C 3 1.000 0.000 1.000
C+S 3 1.000 0.000 1.000

C 189 0.878 0.175 0.872
C+S 200 0.845 0.220 0.829

C 1 1.000 0.000 1.000
C+S 1 1.000 0.000 1.000

C 3 1.000 0.000 1.000
C+S 3 1.000 0.000 1.000

C 11 1.000 0.000 1.000
C+S 12 0.916 0.166 0.829

C 2 0.500 1.000 0.333
C+S 3 0.667 0.667 0.500

C 11 1.000 0.000 1.000
C+S 11 1.000 0.000 1.000

C 4 0.750 0.250 0.778
C+S 5 0.600 0.600 0.542

C 1 1.000 0.000 1.000
C+S 1 1.000 0.000 1.000

C 8 1.000 0.000 1.000
C+S 8 1.000 0.000 1.000

C 4 1.000 0.000 1.000
C+S 5 1.000 0.000 1.000

Gastric 21

Breast 0

Prostate 3

Duodenum 0

Jejuno/Ileum 0

Colorectal 11

Bladder 0

Esophagus 0

Cervix 1

Uterus 1

Skin 0

Oral Cavity 1

Vulva 0

Thyroid 0

Others 1

Regarding the staining technique, the model is not trained with immunostained samples, but
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it correctly counts the number of fragments in all test images of this type, implying good general-

ization. This is likely due to the color jitter in the data augmentation during the detection model

training. An example of a sample using this staining technique is shown in Figure 3.11. However,

only two immunostaining samples are in the test dataset, so the model should be tested on more

samples to draw firm conclusions.

Figure 3.11: Thyroid and Immunostaining samples, respectively.

Table 3.8: Results of the YOLOv9 counting method by staining technique type.
(C - confident cases; S - sensitive cases)

Technique Total Cases A mae f1 Sensitive Cases

C 660 0.929 0.089 0.891
C+S 699 0.904 0.129 0.851

C 2 1.000 0.000 1.000
C+S 2 1.000 0.000 1.000

Hematoxylin and Eosin Stain (HE) 39

Immunostaining 0

3.5.3.1 Domain Withdrawal

Since many organs are only tested on a few images, no substantial evidence can be derived from

the effectiveness of the results presented above for these cases. Proving good generalization is

crucial for cementing the robustness and reliability of the YOLOv9 counting method. For this, we

re-analyze the results for the counting method by using specimen, organ, and staining technique

types when the Prostate, Cervix, and Breast samples are removed during training. The removed

samples from the train and validation sets are grouped in the test set and used to compute the

results.

Table 3.9 shows results by specimen type for the fragment per set counting task when con-

sidering the YOLOv9 counting method with the removed samples. Overall, the performance is

lower than when considering the complete dataset for training, but the difference in performance

is not accentuated. The model with the removed samples performed slightly better in some cases,

like for Polypectomy samples, as an added case during evaluation correctly predicted this type.

Most of the Prostate, Cervix, and Breast samples removed were Surgical Specimens and Biopsies,

which increased the test dataset with an additional 230 and 153 test samples, respectively. This

increase and the simultaneous decrease in training samples did not significantly affect the model’s

performance. TUR’s performance suffered with the removal of samples since almost all the TUR
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samples were Prostate cases, which the model did not have access to during training, leading to

worse performance for this specimen type.

Table 3.9: Results of the YOLOv9 counting method by specimen type, using the model trained
without Prostate, Cervix or Breast samples.

(C - confident cases; S - sensitive cases)

Specimen Type Total Cases A mae f1 Sensitive Cases

C 588 0.871 0.173 0.790
C+S 644 0.825 0.225 0.682

C 238 0.849 0.160 0.545
C+S 242 0.839 0.182 0.542

C 145 0.883 0.228 0.751
C+S 154 0.864 0.240 0.776

C 0 - - -
C+S 1 1.000 0.000 1.000

C 2 1.000 0.000 1.000
C+S 3 1.000 0.000 1.000

C 23 0.652 1.174 0.132
C+S 24 0.625 1.160 0.113

C 34 0.912 0.089 0.711
C+S 35 0.886 0.143 0.669

Biopsy 56

Surgical Specimen 4

Polipectomy 9

Biopsy + Polipectomy 1

Surgical Specimen + Polipectomy 1

TUR 1

Biopsy or Polipectomy 1

It is worth noting that, even if not providing confident predictions for all or some cases, as in

the Biopsy+Polypectomy and Surgical Specimen+Polypectomy types, respectively, the estimation

of the counting values is still correct. The same happens when the model is trained using the

entire dataset, even if it is more difficult to verify. This proves that predictions are often close to

the ground truth, and approximating that result by ceiling yields correct counting predictions.

The results for the fragment per set counting task by organ type when considering the YOLOv9

counting method with the removed samples are shown in Table 3.10. Organs like the Jejuno/Ileum,

Esophagus, Skin, Vulva, and Thyroid maintain their performance even if trained with fewer and

less challenging samples, which indicates good generalization for these cases. Still, more test

samples are needed to draw more decisive conclusions, as all these cases are not significantly

represented on the test set. Adding to this conclusion, although slightly lower, Gastric, Duodenum,

and Oral cavity samples also maintained their performance. Gastric samples, in particular, are the

most common samples in the test set, and the performance is similar to that of using the complete

dataset for training, meaning robust generalization for the counting method.

Interestingly, Colorectal and Uterus samples perform better using this model. This suggests

that increasing the variability and difficulty of the samples affects each organ type differently, and

patterns learned by some organ types may benefit the detection and counting of some cases more

than others do. In contrast, Breast, Prostate, Cervix, Bladder and Others performance decreased

during training, likely due to reduced representation of these complex cases during training. The

lack of challenging cases hindered detection, as Prostate and Cervix have many sensitive cases.

The results for the fragment per set counting task by staining technique type when considering

the YOLOv9 counting method with the removed samples are shown in Table 3.11. The perfor-

mance of most samples decreased, likely due to the reasons pointed out previously. The model
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Table 3.10: Results of the YOLOv9 counting method by organ type, using the model trained
without Prostate, Cervix, or Breast samples.

(C - confident cases; S - sensitive cases)

Organ Total Cases A mae f1 Sensitive Cases

C 383 0.953 0.047 0.889
C+S 394 0.937 0.063 0.867

C 81 0.790 0.210 0.515
C+S 81 0.790 0.210 0.515

C 231 0.745 0.407 0.414
C+S 262 0.703 0.445 0.392

C 10 1.000 0.000 1.000
C+S 11 0.909 0.091 0.911

C 3 1.000 0.000 1.000
C+S 3 1.000 0.000 1.000

C 187 0.882 0.198 0.855
C+S 200 0.855 0.225 0.840

C 0 - - -
C+S 1 0.000 0.500 0.000

C 3 1.000 0.000 1.000
C+S 3 1.000 0.000 1.000

C 102 0.794 0.314 0.579
C+S 114 0.737 0.395 0.482

C 2 1.000 0.000 1.000
C+S 3 1.000 0.000 1.000

C 11 1.000 0.000 1.000
C+S 11 1.000 0.000 1.000

C 4 0.750 0.500 0.667
C+S 5 0.600 0.800 0.625

C 1 1.000 0.000 1.000
C+S 1 1.000 0.000 1.000

C 8 1.000 0.000 1.000
C+S 8 1.000 0.000 1.000

C 4 0.500 0.750 0.200
C+S 5 0.400 0.800 0.133

Gastric 11

Breast 0

Prostate 32

Duodenum 1

Jejuno/Ileum 0

Colorectal 13

Bladder 1

Esophagus 0

Cervix 12

Uterus 0

Skin 0

Oral Cavity 1

Vulva 0

Thyroid 0

Others 1

still correctly predicts immunostaining samples, but the issue of confidence in these predictions

remains the same as that of the model trained with the complete dataset.

Table 3.11: Results of the YOLOv9 counting method by staining technique, using the model
trained without Prostate, Cervix, or Breast samples.

(C - confident cases; S - sensitive cases)

Technique Total Cases A mae f1 Sensitive Cases

C 1028 0.864 0.197 0.773
C+S 1101 0.831 0.235 0.677

C 2 1.000 0.000 1.000
C+S 2 1.000 0.000 1.000

Hematoxylin and Eosin Stain (HE) 73

Immunostaining 0

Overall, this analysis highlights the importance of having challenging cases during training,

as this drives the detection model to learn better representations and, in turn, provide more ac-

curate counting results. Nonetheless, the lower performance when removing these cases could be

attributed to a decrease in the training sample volume of 383 images, as fewer images during train-

ing generally equate to a reduced performance in every case. Following an incremental withdrawal
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approach in the analysis, removing a domain independently and testing on the others could solve

this issue, as the analysis will be separated, and the number of training samples will not decrease

significantly in each removal. This would also allow us to verify which sample type affects the

performance of results.

Still, even if lower, the performance for this task surpasses the other proposed counting meth-

ods, so the generalization quality can generally be ensured in comparison.

3.5.4 Discussion

From the conducted experiments, we can confidently say that we improved the results of the detec-

tion and counting of fragments and sets in histopathology images. The best-performing method,

YOLOv9, effectively improved detection results and reliably counted both fragments per set and

sets.

Regarding the detection task, the experiments could benefit from exploring other detection

models, primarily state-of-the-art transformer-based detectors, to compare and challenge the re-

sults of the YOLOv9 detection models. With good detection results, more counting predictions

could be derived with hopefully comparable or even better performance.

As we proved good generalization strength of the best-performing YOLOv9 model, it would

be wise to gather more test data, especially for underrepresented specimen, organ, or staining

types, to analyze further how the model behaves in each circumstance. This is crucial for poten-

tial clinical integration, as the model must provide reliable results for each unforeseen case it is

presented with. Moreover, increasing the training data would also guarantee that the model has

access to more diverse samples when training, likely providing better results if that were the case.

Another problem with the data is the lack of spatial annotations in the test set that do not allow the

computation of metrics for the set count task using the test set, which is crucial for an unbiased

evaluation.

The separation between confident and sensitive cases serves as a good rough starting point

for a reject option approach, as sensitive cases only constitute about 10% of the samples for the

YOLOv9 counting method, which is a fair number of samples to be considered for manual evalua-

tion by pathology clinicians in routine practice. Nonetheless, the confident predictions can still be

improved, and considering all those cases as correct will still lead to some error margin, particu-

larly for the fragments per set count. Imposing restrictions on the counts and predictions based on

structural and hierarchical relationships between fragments and sets could narrow this error mar-

gin and gather a more robust subset of confident predictions. This would increase the number of

rejected samples, proving it worth exploring other counting approaches that improve these results,

especially for the fragments per set count. Hence, pathology technicians have to evaluate the least

amount of samples manually.



Chapter 4

Exploring Graph-Based Learning for
Fragment Counting

This chapter analyzes the viability of graph-based learning approaches as counting methods. Sec-

tion 4.1 exposes our motivation for this approach and the proposed methodology. Details of the

experiments applied are described in Section 4.2, and the analysis of the results obtained is present

in Section 4.3.

4.1 Graph Neural Networks for Fragment Counting

The relationship between fragments and sets in histopathology images is intricate, as the represen-

tation of fragments directly affects the representation of sets and vice-versa. Pathology technicians

count fragments per set in samples to cross-check with macroscopic reports as a quality control

procedure, so any model that performs this task must provide reliable results for counting frag-

ments per set. The experiments conducted in Chapter 3 provide a robust methodology for counting

sets and fragments per set through a reliable detection model, YOLOv9. Nonetheless, there could

be room for improvement, particularly for fragments per set, as they are the target task and have

lower performance when compared with set counting. Considering this, we found it pertinent

to explore graph-based approaches to focus on the nuances of the spatial and structural relation-

ships between fragments and sets. With this objective, we propose a methodology for counting

fragments per set in histopathology images using GNNs, described generically in Figure 4.1.

4.1.1 Graph Data Structure

We approach the task as a graph classification problem, where each sample is defined by a com-

plete graph with a corresponding target label of fragments per set, given by the ground truth count-

ing annotations, as in the previous methods. Fragments are detected and cropped from the sample

images, and features are extracted from each cropped fragment to define the graph nodes. All

fragments are connected, and the edge weights are defined as the normalized Euclidean distance

between the cropped fragment’s centroids. We consider a complete graph to capture the global

48
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Figure 4.1: The graph classification method for fragments per set counting.

context between fragments and different sets, which is crucial to modeling the spatial relationship

that separates fragments by the set they belong to.

4.1.2 Fragment Detection Methods

During training, the fragments detected are cropped from the spatial bounding box annotations as

a simplification to minimize error sources. This guarantees that the errors inherent to detection

using another method do not affect the training process. Logically, this is not viable during evalu-

ation, so we consider two strategies to detect the fragments: connected component analysis or the

YOLOv9 detections. For the connected component analysis, we consider the components whose

areas are above 5% of the area of the biggest component computed from the binarised and OTSU

thresholded sample images. These components are then cropped around their centroids to a fixed

resolution. For the YOLOv9 detections, we perform inference using the YOLOv9 detection model

described in the previous chapter and use each detected fragment’s bounding box coordinates to

crop the sample images.

4.1.3 Fragment Feature Extraction

After cropping fragments, we also follow two strategies to extract fragment features: handcrafted

features and features extracted by a contrastive-based model.

For the handcrafted features, we compute the 25th percentile distance between every point in

the objects’ contours, their normalized bounding box area, and their circularity. These features are

selected based on theoretical knowledge, as they describe the shape and size of blob-like structures

such as fragments.

For the contrastive-based approach, we train a standard convolutional network architecture us-

ing triplets - anchor, positive, and negative - to extract features from the fragment crops that encode

the relationship between fragments in different sets. We build this model based on the intuition

that sets are similar groups of fragments, repeated through the image, so corresponding fragments
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from different sets should have similar features and thus be represented closely in feature space.

This helps extract structural information from the samples, which is essential for defining sets and,

consequently, correctly counting the fragments per set.

However, some considerations about sample structure must be considered when building the

model. We extract fragments from the bounding box spatial annotations and group them by their

sets. These fragments are then used to build triplets and train the model. When slides are mounted,

they can have different set configurations, as illustrated previously in Section 2.3.2.1, so each

extracted fragment is an anchor, and the positive and negative pairs are built accordingly:

Multiple sets with multiple fragments: Sets are repetitions of groups of fragments in the

sample image, so matches are considered as corresponding fragments from different sets.

As such, the positive is randomly chosen from any matched fragments, and the negative is

any other fragment that isn’t a match from the same set or another.

There is an exception where the number of fragments in sets might have slight variations,

a rare instance where those odd fragments have no match. In those cases, the negative is

still randomly chosen from the unmatched fragments, but the positive is augmented from

the anchor fragment.

Multiple sets with single fragment: Sets are repetitions of a single fragment in the sample

image, so the positive is randomly chosen from any fragment from a different set. There

are no negatives in this case, as all fragments are matches, so we choose a random fragment

from another sample image as the negative.

Single set with multiple fragments: There is a single set, so there are no fragment repeti-

tions and, consequently, no fragments to match. In this case, the positive is the augmented

anchor fragment, and the negative is randomly chosen from the other fragments in the set.

Single set with single fragment: There is only one fragment and one set, so there is no

direct positive or negative. In this case, we use the augmented anchor as the positive and a

random fragment from another sample image as the negative.

This matching process is treated as a generalized assignment problem, where fragments are

matched according to their bounding box area. Given that each fragment f in a set S has an area

denoted by A( f ), the goal is to find pairs of fragments ( fi, f j) from different sets that minimize the

absolute difference in their areas, so the optimal assignment has a cost defined formally by:

min ∑
fi∈Si, f j∈S j

|A( fi)−A( f j)|Xi j (4.1)

where Si = { fi1, fi2, . . . , fini} and X is the boolean assignment matrix where X [i, j] = 1 indicates

matching between fi and f j. To solve this, we use SciPy’s implementation of a modified Jonker-

Volgenant algorithm [34] with no initialization. After computing the optimal matches, we group

them by each fragment for creating triplets, as described above.
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The triplets are then used to train a standard convolutional network comprised of four con-

volutional layers for feature extraction, followed by two fully connected layers for embedding

projection. Each convolutional layer is paired with ReLU activation and max-pooling, with a fi-

nal dropout layer to prevent overfitting. When graphs are built for the counting task, this model

processes the cropped fragments given by the fragment detection methods, and the resulting lower-

dimensional feature embeddings from the forward pass are used as node features.

4.1.4 Graph Classification Model

Using the graph representation of the sample images, we train a graph neural network model

for graph classification, mirroring the classifier architecture described in the previous chapter.

The backbone of the model consists of a single Graph Convolutional Network (GCN) layer that

aggregates features based on the mean of neighboring nodes, as this captures the whole graph

distribution, followed by a ReLu activation layer. A single GCN layer is sufficient since each

graph is complete, so during message passing, all nodes aggregate information from all others. We

use max pooling as the readout layer for coarsening the graph as it selects the nodes with the most

representative features. After a dropout layer to introduce regularisation, an MLP classification

head processes those features with a single hidden layer paired with ReLU activation and an output

layer of 10 classes, as the task is to count fragments per set. A single class prediction is extracted

as the maximum predicted probability from the model output class vector, as the target labels

represent a single ground truth count value for each graph, gathered from the "gold standard"

counting annotations.

4.2 Experimental Setup

To illustrate the application of the proposed graph counting method, we empirically evaluate its

performance in the fragments per set counting task. This Section provides details of the implemen-

tation for both the contrastive-based feature extractor and the final proposed counting model, as

well as the respective evaluation process and metrics used for both cases. As in the last chapter, all

experiments were conducted using Python, leveraging the PyTorch library for model development

and evaluation.

4.2.1 Contrastive-Based Feature Extractor

Before training, the fragments are cropped from the ground truth bounding box spatial annotations

in each image. Still, as they vary significantly in size, we apply padding to a fixed resolution of

128x128 pixels. To maintain the most information in each fragment crop without losing much

resolution, we resize the crops according to their aspect ratio to the largest resolution below 128

pixels in the x and y-axis and then pad to this fixed resolution. We experimented with 64x64,
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256x256, and 512x512 pixels, but 128x128 was the resolution that offered the best tradeoff be-

tween computational complexity and image quality, cemented by the fact that the average fragment

crop resolution is 80x90 pixels.

We train the model using a batch size of 32 for 100 epochs, with a learning rate of 5 ·10−4. We

use the Stochastic Gradient Descent optimizer with weight decay of 10−2 and 0.9 momentum and

a learning rate scheduler that reduces the learning rate upon the model plateauing by the average

training loss, with five epoch patience. We use triplet margin loss to force a distance between

different pairings by a specified margin, which we set as 0.5. We experimented with other larger

margin values but found better separation between anchor-positive and anchor-negative pairs with

this value, as it is smaller and narrows the window of semi-hard negatives, improving learning.

The model processes the fragment crops and extracts feature embeddings of dimension 32, which

are then used to define node features in sample graphs.

4.2.1.1 Evaluation Process and Metrics

We evaluated the contrastive-based feature extractor by calculating the difference between the

Euclidean distance between anchor-negative and anchor-positive pairs. A larger distance indicates

better separation between negative and positive samples. We also computed accuracy, which we

defined as the proportion of triplets for which the model correctly identifies the positive sample as

closer to the anchor than the negative sample.

4.2.2 Graph Classification Model

We divided the graph classification model training according to the feature-extracting approach, ei-

ther handcrafted or contrastive model-based. When using the handcrafted features, we use cropped

fragments from the ground truth spatial annotations directly to compute those values. However,

when using the contrastive model features, we need to apply the fixed padding resolution described

in the Section above since 128x128 pixels is the only resolution accepted by the feature extractor

model.

We train the handcrafted approach for 100 epochs and the contrastive model approach for 150

epochs, with a 10−3 learning rate and a batch size of 32. We use the AdamW optimizer with

a 10−2 weight decay rate and a learning rate scheduler that reduces the learning rate upon the

model plateauing by the average training loss, with five epoch patience. Similarly to the counting

methods described in the last chapter, we use the cross-entropy loss as we treat the problem as a

multiclass classification problem.

Regarding specific model parameters, we use a single GCN layer with 512 hidden channels

for both approaches, as it performed better than other dimensions (64, 128, and 256). We consider

the model with the best validation loss during training for evaluation with the test set.
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4.2.2.1 Evaluation Process and Metrics

During the evaluation, when considering fragments detected from the connected component anal-

ysis, we used a patch size of 90 pixels to crop around their centroids, as this was the value with

the best empirical performance. This is cemented by the fact that the average fragment bounding

box size in the training data is 80x90 pixels. As mentioned before, when considering fragments

inferred from the YOLOv9 detector, we cropped fragments considering their bounding box coor-

dinates.

We conduct the experiments following the same guidelines as the other counting approaches

analyzed in the last chapter but with some simplifications. We only evaluate this method using the

test set, as the objective task of counting fragments per set can be evaluated using only numerical

ground truth annotations. Also, no cross-validation is applied to validate results. The model is

evaluated using the accuracy, mean absolute error, and f1-score and directly compared with our

best-performing counting method, YOLOv9.

4.3 Results

In this Section, we present and discuss the results of the graph classification model explored for

the fragments per set counting task. We also initially review the training process of the contrastive-

based feature extractor model as it directly influences the analysis of the counting results that use

this approach.

4.3.1 Contrastive-Based Feature Extractor

To choose the final contrastive-based feature extractor to use when building graph data for the

counting task, we analyzed the evolution of the metrics during training and validation. We chose

the most stable model with the lowest validation loss during training (at epoch 59).

0.8bO

0.825

0.800

0.779

0.7b0

0.725

0.700

0.675

0

Training and Validation Accuracy

20 40

Epoch

60 80 100

0.7

0.6

0.9

0.3

0.2

0

Training and Validation Distances

20 40

Epoch

60 80 100

Figure 4.2: Accuracy and distance throughout the training of the contrastive-based feature
extractor.

As shown in Figure 4.2, the validation set distances oscillate significantly during training,

indicating that the model does not reliably separate positives from negatives. However, even if
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oscillating, the distances and accuracy increase, proving that negatives are represented further

from the positives, even if this distance is not great. This difficulty could be due to the similarity

of anchor and positive samples and the negatives being too different from the two, forming "easy

negatives" that the model can not effectively learn from. Solutions like "hard negative" mining and

using another loss function that considers more than just one positive and negative sample could

be worth exploring to improve the robustness of the feature extractor and, consequently, the results

of the graph classification counting model.

4.3.2 Graph Classification Model

Table 4.1 shows the results of the counting graph classification model, considering the different

approaches described previously to build the graph image representation. We present the results

considering the two feature extraction approaches, handcrafted or contrastive-based, and the two

techniques for fragment detection used in the evaluation, connected component analysis (CCA)

and the YOLOv9 detections.

Table 4.1: Results for the fragments per set counting task using the graph classification model.
(CCA - Connected Component Analysis)

Patches Node Features Fragments/Sets

A mae f1

Handcrafted 0.631 0.816 0.318
Contrastive 0.444 1.077 0.216
Handcrafted 0.709 0.534 0.343
Contrastive 0.698 0.492 0.341

CCA

YOLOv9

The graph-building approach that showed the best results was the one that used the YOLOv9

fragment detections with the handcrafted features, even though the encoded features with the same

fragment detection technique showed similar results. This proves that fragment detection directly

influences the performance of the counting method as more robust fragment predictions form

more confident node representations that allow for better counting results. The graphs built using

YOLOv9 fragments are more compact as CCA overestimates the fragments detected. Since the

model was trained using the ground truth spatial annotations of the fragments bounding boxes, it is

not robust enough to discern which structures are actually fragments, as this was not the primary

task the model was guided to learn. This means that the problem might not be related to the

fragment detection method but to what the model learned from the training data, which is partly

incompatible with more crude detection approaches.

Another highlight from the results is that the contrastive-based feature extractor underper-

formed compared to handcrafted features. This goes against our initial intuition that the model

would benefit from viewing nodes as embeddings of the spatial and structural relationships be-

tween fragments and sets. When analyzing the evolution of the training metrics of the contrastive-

based approach, the distance between negative and positive samples increases unstably and within
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a small range, which might indicate a lack of robustness in effectively representing opposed frag-

ments. A more robust and expressive feature extractor might capture these relationships better and

provide better counting results. Another hypothesis is that the nature of the feature extractor may

not be adequate to solve the problem in itself. Considering that handcrafted features provided bet-

ter counting results, assuming a feature extractor that focuses more on the intrinsic properties of

the fragments instead of encoding the relationships between them could yield better performance.

Nevertheless, the handcrafted features performed well for both detection methods, proving that

robust extracted features are crucial for the task and can leverage less confident detections. How-

ever, using a robust detection method is the determining factor for achieving better performance,

as with solid initial fragment detections, even a weaker feature extractor could provide results.

4.3.3 Discussion

As a whole, the graph classification model results were poor when compared to the approaches

presented in the previous chapter, being at most comparable with the results obtained using the

DINOv2 counting method, which was the worst-performing counting model on the test set, as

seen on Table 3.5. In fact, we did not improve the results previously presented for the fragments

per set counting task.

Some revisions could be suggested regarding the method proposed beyond those already dis-

cussed in the review of the results. Exploring more complex GNN architectures, like GraphSAGE

or GIN, or even other aggregation methods, which could be learnable, could make the GNN clas-

sification model more invariant to the quality of the fragments detected. As mentioned before,

stronger or more adequate feature extractors could provide more expressive node representations

from which the model could learn. Another suggestion would be to consider only connections

between nodes from the same set instead of building a complete graph or even some simple con-

nections between sets to encode this relationship. This could help the model separate better the

fragments by set, improving counting.

The lack of general improvement using this method raises questions about the necessity of

employing a graph-based approach altogether, as the complexity of this method might not align

with the complexity of the task. Moreover, this method is highly dependent on fragment detection,

and considering the results extracted directly from the detection model, YOLOv9, are already

good, there is no strong evidence from experimental analysis to suggest it is worth computing the

fragments per set count using the graph-based approach.

Notwithstanding, this work was valuable as a deeper analysis of the specific characteristics of

fragments and sets and how they relate to each other. This can be seen as an exploratory baseline

that can be reworked and improved, or simply used to extract knowledge about the subject to

leverage other counting approaches for the fragments per set counting task.



Chapter 5

Conclusions

This work explores the quality control problem of detecting and counting fragments in digital

pathology. We analyze how errors with the already proposed model can be mitigated and how

pathologists can gain insights into how trustworthy detections are within these systems.

To understand the context of the problem and provide a comprehensive overview of the back-

ground knowledge required for its interpretation, we reviewed the existing literature on quality

control in digital pathology, detection, and counting methods and their use and application within

the digital pathology field. We identified the lack of research in digital pathology for the specific

task of detecting and counting fragments as a quality control procedure.

To bridge this gap, we proposed a methodology for improving fragment detection and counting

through detection models, deriving counts from them, and developing classification models that

single-handedly solve the counting problem. We identified key challenges and variability in tissue

fragment shapes and sizes through a comprehensive dataset analysis. We introduced improved de-

tection models, such as YOLOv9, which outperformed YOLOv5 by providing more accurate and

confident detections. For counting methodologies, our experiments revealed that deriving counts

from detection models generally offered better results than using standalone classification models.

Fragment variability posed a substantial challenge, making counting fragments per set more com-

plex than counting sets. YOLOv9 emerged as the best-performing model throughout, cemented

by the extensive analysis of its performance across various sample characteristic domains and by

the solid results when some domains were withheld from training.

Furthermore, we performed an exploratory analysis on graph-based learning as another ap-

proach for counting fragments per set, as handling the problem as a graph classification method

could leverage the intrinsic structural and hierarchical properties of fragments and sets. We in-

troduced data samples as graphs of fragment crops connected by edges representing the distances

between each fragment. Each node contains features extracted from the cropped fragments by a

detection method, such as the bounding box annotations during training and Connected Compo-

nent Analysis (CCA) or YOLOv9 detections during evaluation. We extracted features by hand-

crafting representations or extracting feature embeddings through a contrastive-based feature ex-

tractor model. The performance of this method was, at best, comparable with the worst counting
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approach of the other counting methods. Nonetheless, it serves as a ground study of the structural

properties within samples and how they interact, or even as a basis for further improvements of

other graph or non-graph-based approaches.

In conclusion, this work enhances quality control systems in digital pathology by improving

fragment detection and counting methodologies. Hopefully, the results analyzed in this work

can be leveraged to investigate even more accurate and reliable solutions that encourage clinical

integration of models in routine digital pathology systems, ultimately supporting better clinical

decision-making and expediting patient outcomes.



References

[1] Esther Abels, Liron Pantanowitz, Famke Aeffner, Mark D. Zarella, Jeroen van der Laak,
Marilyn M. Bui, Venkata N.P. Vemuri, Anil V. Parwani, Jeff Gibbs, Emmanuel Agosto-
Arroyo, Andrew H. Beck, and Cleopatra Kozlowski. Computational pathology definitions,
best practices, and recommendations for regulatory guidance: a white paper from the digital
pathology association. Journal of Pathology, 249:286–294, 11 2019.

[2] Mohammed Adnan, Shivam Kalra, and Hamid R Tizhoosh. Representation learning of
histopathology images using graph neural networks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Workshops, pages 988–989, 2020.

[3] David Ahmedt-Aristizabal, Mohammad Ali Armin, Simon Denman, Clinton Fookes, and
Lars Petersson. A survey on graph-based deep learning for computational histopathology.
Computerized Medical Imaging and Graphics, 95:102027, 2022.

[4] Muhammad Joan Ailia, Nishant Thakur, Jamshid Abdul-Ghafar, Chan Kwon Jung, Kwangil
Yim, and Yosep Chong. Current trend of artificial intelligence patents in digital pathology:
A systematic evaluation of the patent landscape. Cancers, 14, 5 2022.

[5] Shazia Akbar and Anne L Martel. Cluster-based learning from weakly labeled bags in
digital pathology. arXiv preprint arXiv:1812.00884, 2018.

[6] Khaled Al-Thelaya, Marco Agus, Nauman Ullah Gilal, Yin Yang, Giovanni Pintore, Enrico
Gobbetti, Corrado Calí, Pierre J. Magistretti, William Mifsud, and Jens Schneider. Inshade:
Invariant shape descriptors for visual 2d and 3d cellular and nuclear shape analysis and
classification. Computers and Graphics, 98:105–125, 2021.

[7] Khaled Al-Thelaya, Nauman Ullah Gilal, Mahmood Alzubaidi, Fahad Majeed, Marco
Agus, Jens Schneider, and Mowafa Househ. Applications of discriminative and deep learn-
ing feature extraction methods for whole slide image analysis: A survey. Journal of Pathol-
ogy Informatics, 14:100335, 1 2023.

[8] Tomé Albuquerque, Ana Moreira, and Jaime S. Cardoso. Deep ordinal focus assessment
for whole slide images. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV) Workshops, pages 657–663, October 2021.

[9] Tomé Albuquerque, Ana Moreira, Beatriz Barros, Diana Montezuma Felizardo, Sara
Oliveira, Pedro Neto, João Monteiro, Liliana Ribeiro, Sofia Goncalves, Ana Monteiro, Is-
abel Pinto, and Jaime Cardoso. Quality control in digital pathology: Automatic fragment
detection and counting. In 2022 44th Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBC), volume 2022, pages 588–593, 07 2022.

58



REFERENCES 59

[10] Sharib Ali, Nasullah Khalid Alham, Clare Verrill, and Jens Rittscher. Ink removal from
histopathology whole slide images by combining classification, detection and image gener-
ation models. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI
2019), pages 928–932, 2019.

[11] Hani A Alturkistani, Faris M Tashkandi, and Zuhair M Mohammedsaleh. Histological
stains: A literature review and case study. Global Journal of Health Science, 8:72, 6 2015.

[12] David Ameisen, Christophe Deroulers, Valerie Perrier, Jean-Baptiste Yunès, Fatiha
Bouhidel, Maxime Battistella, Luc Legres, Anne Janin, and Philippe Bertheau. Stack or
trash? fast quality assessment of virtual slides. Diagnostic Pathology, 8:S23, 09 2013.

[13] Ali R. N. Avanaki, Kathryn S. Espig, Albert Xthona, Christian Lanciault, and Tom R. L.
Kimpe. Automatic image quality assessment for digital pathology. In Anders Tingberg,
Kristina Lång, and Pontus Timberg, editors, Breast Imaging, pages 431–438, Cham, 2016.
Springer International Publishing.

[14] Wei Ba, Shuhao Wang, Meixia Shang, Ziyan Zhang, Huan Wu, Chunkai Yu, Ranran Xing,
Wenjuan Wang, Lang Wang, Cancheng Liu, Huaiyin Shi, and Zhigang Song. Assessment of
deep learning assistance for the pathological diagnosis of gastric cancer. Modern Pathology,
35:1262–1268, 9 2022.

[15] Morteza Babaie and Hamid R. Tizhoosh. Deep features for tissue-fold detection in
histopathology images. In Constantino Carlos Reyes-Aldasoro, Andrew Janowczyk, Mitko
Veta, Peter Bankhead, and Korsuk Sirinukunwattana, editors, Digital Pathology - 15th Eu-
ropean Congress, ECDP 2019, Proceedings, Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
pages 125–132. Springer Verlag, 2019. Publisher Copyright: © 2019, Springer Nature
Switzerland AG.; 15th European Congress on Digital Pathology, ECDP 2019 ; Conference
date: 10-04-2019 Through 13-04-2019.

[16] Pinky A. Bautista, Noriaki Hashimoto, and Yukako Yagi. Color standardization in whole
slide imaging using a color calibration slide. Journal of Pathology Informatics, 5:4, 1 2014.

[17] Pinky A. Bautista and Yukako Yagi. Improving the visualization and detection of tissue
folds in whole slide images through color enhancement. Journal of Pathology Informatics,
1:25, 1 2010.

[18] Babak Ehteshami Bejnordi, Geert Litjens, Nadya Timofeeva, Irene Otte-Holler, Andre
Homeyer, Nico Karssemeijer, and Jeroen AWM van der Laak. Stain specific standard-
ization of whole-slide histopathological images. IEEE Transactions on Medical Imaging,
35:404–415, 2 2016.

[19] Andrey V. Belashov, Anna A. Zhikhoreva, Tatiana N. Belyaeva, Anna V. Salova, Elena S.
Kornilova, Irina V. Semenova, and Oleg S. Vasyutinskii. Machine learning assisted classi-
fication of cell lines and cell states on quantitative phase images. Cells, 10(10), 2021.

[20] Aïcha BenTaieb and Ghassan Hamarneh. Predicting cancer with a recurrent visual atten-
tion model for histopathology images. In Alejandro F. Frangi, Julia A. Schnabel, Christos
Davatzikos, Carlos Alberola-López, and Gabor Fichtinger, editors, Medical Image Com-
puting and Computer Assisted Intervention – MICCAI 2018, pages 129–137, Cham, 2018.
Springer International Publishing.



REFERENCES 60

[21] Francesco Bianconi, Jakob N. Kather, and Constantino Carlos Reyes-Aldasoro. Experimen-
tal assessment of color deconvolution and color normalization for automated classification
of histology images stained with hematoxylin and eosin. Cancers, 12:3337, 11 2020.

[22] Said Boumaraf, Xiabi Liu, Yuchai Wan, Zhongshu Zheng, Chokri Ferkous, Xiaohong Ma,
Zhuo Li, and Dalal Bardou. Conventional machine learning versus deep learning for mag-
nification dependent histopathological breast cancer image classification: A comparative
study with visual explanation. Diagnostics, 11:528, 3 2021.

[23] Romain Brixtel, Sebastien Bougleux, Olivier Lezoray, Yann Caillot, Benoit Lemoine,
Mathieu Fontaine, Dalal Nebati, and Arnaud Renouf. Whole slide image quality in dig-
ital pathology: Review and perspectives. IEEE Access, 10:131005–131035, 2022.

[24] Gabriele Campanella, Vitor Werneck Krauss Silva, and Thomas J. Fuchs. Terabyte-scale
deep multiple instance learning for classification and localization in pathology. CoRR,
abs/1805.06983, 2018.

[25] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov,
and Sergey Zagoruyko. End-to-end object detection with transformers. In Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision – ECCV
2020, pages 213–229, Cham, 2020. Springer International Publishing.

[26] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jegou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In 2021
IEEE/CVF International Conference on Computer Vision (ICCV), pages 9630–9640, 2021.

[27] Thanatip Chankong, Nipon Theera-Umpon, and Sansanee Auephanwiriyakul. Automatic
cervical cell segmentation and classification in pap smears. Computer Methods and Pro-
grams in Biomedicine, 113(2):539–556, 2014.

[28] Hao Chen, Xi Wang, and Pheng Ann Heng. Automated mitosis detection with deep regres-
sion networks. In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI),
pages 1204–1207, 2016.

[29] Po-Hsuan Cameron Chen, Craig H Mermel, and Yun Liu. Evaluation of artificial intelli-
gence on a reference standard based on subjective interpretation. The Lancet Digital Health,
3(11):e693–e695, 2021.

[30] Xihao Chen, Jingya Yu, Shenghua Cheng, Xiebo Geng, Sibo Liu, Wei Han, Junbo Hu,
Li Chen, Xiuli Liu, and Shaoqun Zeng. An unsupervised style normalization method for
cytopathology images. Computational and Structural Biotechnology Journal, 19:3852–
3863, 2021.

[31] Wei-Chung Cheng, Firdous Saleheen, and Aldo Badano. Assessing color performance of
whole-slide imaging scanners for digital pathology. Color Research and Application, 44,
03 2019.

[32] Francesco Ciompi, Oscar Geessink, Babak Ehteshami Bejnordi, Gabriel Silva de Souza,
Alexi Baidoshvili, Geert Litjens, Bram van Ginneken, Iris Nagtegaal, and Jeroen van der
Laak. The importance of stain normalization in colorectal tissue classification with con-
volutional networks. In 2017 IEEE 14th International Symposium on Biomedical Imaging
(ISBI 2017), pages 160–163. IEEE, 4 2017.



REFERENCES 61

[33] Emily Clarke and Darren Treanor. Colour in digital pathology: A review. Histopathology,
70, 09 2016.

[34] David F. Crouse. On implementing 2d rectangular assignment algorithms. IEEE Transac-
tions on Aerospace and Electronic Systems, 52(4):1679–1696, 2016.

[35] Angel Cruz-Roa, Hannah Gilmore, Ajay Basavanhally, Michael Feldman, Shridar Gane-
san, Natalie Shih, John Tomaszewski, Anant Madabhushi, and Fabio González. High-
throughput adaptive sampling for whole-slide histopathology image analysis (hashi) via
convolutional neural networks: Application to invasive breast cancer detection. PLOS ONE,
13:e0196828, 05 2018.

[36] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for
image recognition at scale. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[37] Vaishali Durgamahanthi, Ramesh Rangaswami, C Gomathy, and Anita Christaline Jhon
Victor. Texture analysis using wavelet-based multiresolution autoregressive model: Appli-
cation to brain cancer histopathology. Journal of Medical Imaging and Health Informatics,
7(6):1188–1195, 2017.

[38] Babak Ehteshami Bejnordi, Maschenka Balkenhol, Geert Litjens, Roland Holland, Peter
Bult, Nico Karssemeijer, and Jeroen van der Laak. Automated detection of dcis in whole-
slide h& e stained breast histopathology images. IEEE Transactions on Medical Imaging,
35, 04 2016.

[39] Babak Ehteshami Bejnordi, Maeve Mullooly, Ruth M Pfeiffer, Shaoqi Fan, Pamela M
Vacek, Donald L Weaver, Sally Herschorn, Louise A Brinton, Bram van Ginneken, Nico
Karssemeijer, et al. Using deep convolutional neural networks to identify and classify
tumor-associated stroma in diagnostic breast biopsies. Modern Pathology, 31(10):1502–
1512, 2018.

[40] C. Ferri, J. Hernández-Orallo, and R. Modroiu. An experimental comparison of perfor-
mance measures for classification. Pattern Recognition Letters, 30(1):27–38, 2009.

[41] Adrien Foucart, Olivier Debeir, and Christine Decaestecker. Artifact identification in digital
pathology from weak and noisy supervision with deep residual networks. In 2018 4th
International Conference on Cloud Computing Technologies and Applications (Cloudtech),
pages 1–6, 2018.

[42] Filippo Fraggetta, Yukako Yagi, Marcial Garcia-Rojo, Andrew J. Evans, J. Mark Tuthill,
Alexi Baidoshvili, Douglas J. Hartman, Junya Fukuoka, and Liron Pantanowitz. The im-
portance of eslide macro images for primary diagnosis with whole slide imaging. Journal
of Pathology Informatics, 9, 1 2018.

[43] Michael Gadermayr, Sean Steven Cooper, Barbara Klinkhammer, Peter Boor, and Dorit
Merhof. A quantitative assessment of image normalization for classifying histopathological
tissue of the kidney. In Volker Roth and Thomas Vetter, editors, Pattern Recognition, pages
3–13, Cham, 2017. Springer International Publishing.



REFERENCES 62

[44] Dashan Gao, Dirk Padfield, Jens Rittscher, and Richard McKay. Automated training data
generation for microscopy focus classification. In Tianzi Jiang, Nassir Navab, Josien P. W.
Pluim, and Max A. Viergever, editors, Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2010, pages 446–453, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[45] Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In Inter-
national Conference on Learning Representations, 2021.

[46] Anubha Gupta, Rahul Duggal, Shiv Gehlot, Ritu Gupta, Anvit Mangal, Lalit Kumar, Nis-
arg Thakkar, and Devprakash Satpathy. Gcti-sn: Geometry-inspired chemical and tissue
invariant stain normalization of microscopic medical images. Medical Image Analysis,
65:101788, 2020.

[47] Maryam Haghighat, Lisa Browning, Korsuk Sirinukunwattana, Stefano Malacrino, Nasul-
lah Khalid Alham, Richard Colling, Ying Cui, Emad Rakha, Freddie C. Hamdy, Clare Ver-
rill, and Jens Rittscher. Automated quality assessment of large digitised histology cohorts
by artificial intelligence. Scientific Reports, 12:5002, 3 2022.

[48] Maryam Haghighat, Lisa Browning, Korsuk Sirinukunwattana, Stefano Malacrino, Nasul-
lah Khalid Alham, Richard Colling, Ying Cui, Emad Rakha, Freddie C. Hamdy, Clare Ver-
rill, and Jens Rittscher. Automated quality assessment of large digitised histology cohorts
by artificial intelligence. Scientific Reports, 12:5002, 3 2022.

[49] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

[50] Robert Hawkins. Managing the pre- and post-analytical phases of the total testing process.
Annals of Laboratory Medicine, 32:5–16, 2012.

[51] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In 2017 IEEE
International Conference on Computer Vision (ICCV), pages 2980–2988, 2017.

[52] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016.

[53] Simin He, Jun Ruan, Yi Long, Jianlian Wang, Chenchen Wu, Guanglu Ye, Jingfan Zhou,
Junqiu Yue, and Yanggeling Zhang. Combining deep learning with traditional features
for classification and segmentation of pathological images of breast cancer. In 2018 11th
International Symposium on Computational Intelligence and Design (ISCID), volume 01,
pages 3–6, 2018.

[54] Md Shakhawat Hossain, Toyama Nakamura, Fumikazu Kimura, Yukako Yagi, and
Masahiro Yamaguchi. Practical image quality evaluation for whole slide imaging scan-
ner. In Toyohiko Yatagai, Yoshihisa Aizu, Osamu Matoba, Yasuhiro Awatsuji, and Yuan
Luo, editors, Biomedical Imaging and Sensing Conference, volume 10711, page 107111S.
International Society for Optics and Photonics, SPIE, 2018.



REFERENCES 63

[55] Mahdi S. Hosseini, Jasper A. Z. Brawley-Hayes, Yueyang Zhang, Lyndon Chan, Konstanti-
nos N. Plataniotis, and Savvas Damaskinos. Focus quality assessment of high-throughput
whole slide imaging in digital pathology. IEEE Transactions on Medical Imaging, 39:62–
74, 2018.

[56] Le Hou, Vu Nguyen, Ariel B. Kanevsky, Dimitris Samaras, Tahsin M. Kurc, Tianhao Zhao,
Rajarsi R. Gupta, Yi Gao, Wenjin Chen, David Foran, and Joel H. Saltz. Sparse autoencoder
for unsupervised nucleus detection and representation in histopathology images. Pattern
Recognition, 86:188–200, 2019.

[57] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. CoRR, abs/1704.04861, 2017.

[58] Bo Hu, Ye Tang, Eric I-Chao Chang, Yubo Fan, Maode Lai, and Yan Xu. Unsupervised
learning for cell-level visual representation in histopathology images with generative ad-
versarial networks. IEEE Journal of Biomedical and Health Informatics, 23(3):1316–1328,
2019.

[59] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. Densely
connected convolutional networks. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2261–2269, 2017.

[60] Yongxiang Huang and Albert C. S. Chung. Evidence Localization for Pathology Images
Using Weakly Supervised Learning, page 613–621. Springer International Publishing, 2019.

[61] Andrew Janowczyk and Anant Madabhushi. Deep learning for digital pathology image
analysis: A comprehensive tutorial with selected use cases. Journal of Pathology Informat-
ics, 7:29, 1 2016.

[62] Andrew Janowczyk, Ren Zuo, Hannah Gilmore, Michael Feldman, and Anant Madabhushi.
Histoqc: An open-source quality control tool for digital pathology slides. JCO Clinical
Cancer Informatics, pages 1–7, 12 2019.

[63] Guillaume Jaume, Pushpak Pati, Antonio Foncubierta-Rodriguez, Florinda Feroce, Giosue
Scognamiglio, Anna Maria Anniciello, Jean-Philippe Thiran, Orcun Goksel, and Maria
Gabrani. Towards explainable graph representations in digital pathology. arXiv preprint
arXiv:2007.00311, 2020.

[64] Muhammad Nasim Kashif, Shan E. Ahmed Raza, Korsuk Sirinukunwattana, Muhammmad
Arif, and Nasir Rajpoot. Handcrafted features with convolutional neural networks for de-
tection of tumor cells in histology images. In Proceedings - International Symposium on
Biomedical Imaging, volume 2016-June, page 1029 – 1032, 2016. Cited by: 45.

[65] Jakob Nikolas Kather, Cleo-Aron Weis, Alexander Marx, Alexander K. Schuster, Lothar R.
Schad, and Frank Gerrit Zöllner. New colors for histology: Optimized bivariate color maps
increase perceptual contrast in histological images. PLOS ONE, 10:e0145572, 12 2015.

[66] Jason Keighley, Marc de Kamps, Alexander Wright, and Darren Treanor. Digital pathol-
ogy whole slide image compression with vector quantized variational autoencoders. In
John E. Tomaszewski and Aaron D. Ward, editors, Medical Imaging 2023: Digital and
Computational Pathology, volume 12471, page 124711B. International Society for Optics
and Photonics, SPIE, 2023.



REFERENCES 64

[67] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolu-
tional Networks. In Proceedings of the 5th International Conference on Learning Repre-
sentations, ICLR ’17, 2017.

[68] Timo Kohlberger, Yun Liu, Melissa Moran, Po-Hsuan Cameron Chen, Trissia Brown, Ja-
son D. Hipp, Craig H. Mermel, and Martin C. Stumpe. Whole-slide image focus quality:
Automatic assessment and impact on ai cancer detection. Journal of Pathology Informatics,
10:39, 1 2019.

[69] Bin Kong, Xin Wang, Zhongyu Li, Qi Song, and Shaoting Zhang. Cancer metastasis de-
tection via spatially structured deep network. In Marc Niethammer, Martin Styner, Stephen
Aylward, Hongtu Zhu, Ipek Oguz, Pew-Thian Yap, and Dinggang Shen, editors, Informa-
tion Processing in Medical Imaging, pages 236–248, Cham, 2017. Springer International
Publishing.

[70] Sonal Kothari, John H. Phan, Richard A. Moffitt, Todd H. Stokes, Shelby E. Hassberger,
Qaiser Chaudry, Andrew N. Young, and May D. Wang. Automatic batch-invariant color
segmentation of histological cancer images. In 2011 IEEE International Symposium on
Biomedical Imaging: From Nano to Macro, pages 657–660. IEEE, 3 2011.

[71] Sonal Kothari, John H. Phan, and May D. Wang. Eliminating tissue-fold artifacts in
histopathological whole-slide images for improved image-based prediction of cancer grade.
Journal of Pathology Informatics, 4:22, 1 2013.

[72] G.L. Kumar, J.A. Kiernan, and DAKO A/S. Education Guide - Special Stains and H & E:
Pathology. Dako North America, 2010.

[73] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[74] Yann LeCun, Koray Kavukcuoglu, and Clement Farabet. Convolutional networks and ap-
plications in vision. In Proceedings of 2010 IEEE International Symposium on Circuits and
Systems, pages 253–256, 2010.

[75] Byungjae Lee and Kyunghyun Paeng. A robust and effective approach towards accurate
metastasis detection and pn-stage classification in breast cancer. In Alejandro F. Frangi,
Julia A. Schnabel, Christos Davatzikos, Carlos Alberola-López, and Gabor Fichtinger, edi-
tors, Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, pages
841–850, Cham, 2018. Springer International Publishing.

[76] Chao Li, Xinggang Wang, Wenyu Liu, Longin Jan Latecki, Bo Wang, and Junzhou Huang.
Weakly supervised mitosis detection in breast histopathology images using concentric loss.
Medical Image Analysis, 53:165–178, 2019.

[77] Xingyu Li and Konstantinos N. Plataniotis. A complete color normalization approach to
histopathology images using color cues computed from saturation-weighted statistics. IEEE
Transactions on Biomedical Engineering, 62:1862–1873, 7 2015.

[78] Yi Li and Wei Ping. Cancer metastasis detection with neural conditional random field.
arXiv preprint arXiv:1806.07064, 2018.



REFERENCES 65

[79] Yun Liu, Krishna Gadepalli, Mohammad Norouzi, George E Dahl, Timo Kohlberger, Alek-
sey Boyko, Subhashini Venugopalan, Aleksei Timofeev, Philip Q Nelson, Greg S Cor-
rado, et al. Detecting cancer metastases on gigapixel pathology images. arXiv preprint
arXiv:1703.02442, 2017.

[80] Xavier Moles Lopez, Etienne D’Andrea, Paul Barbot, Anne-Sophie Bridoux, Sandrine Ror-
ive, Isabelle Salmon, Olivier Debeir, and Christine Decaestecker. An automated blur detec-
tion method for histological whole slide imaging. PLoS ONE, 8:e82710, 12 2013.

[81] Marc Macenko, Marc Niethammer, J. S. Marron, David Borland, John T. Woosley, Xiaojun
Guan, Charles Schmitt, and Nancy E. Thomas. A method for normalizing histology slides
for quantitative analysis. In 2009 IEEE International Symposium on Biomedical Imaging:
From Nano to Macro, pages 1107–1110, 2009.

[82] Niccolò Marini, Stefano Marchesin, Sebastian Otálora, Marek Wodzinski, Alessandro Ca-
puto, Mart van Rijthoven, Witali Aswolinskiy, John Melle Bokhorst, Damian Podareanu,
Edyta Petters, Svetla Boytcheva, Genziana Buttafuoco, Simona Vatrano, Filippo Fraggetta,
Jeroen van der Laak, Maristella Agosti, Francesco Ciompi, Gianmaria Silvello, Henning
Muller, and Manfredo Atzori. Unleashing the potential of digital pathology data by training
computer-aided diagnosis models without human annotations. npj Digital Medicine, 5, 12
2022.

[83] Raphaël Marée. The need for careful data collection for pattern recognition in digital pathol-
ogy. Journal of Pathology Informatics, 8:19, 1 2017.

[84] Ezgi Mercan, Selim Aksoy, Linda Shapiro, Donald Weaver, Tad Brunyé, and Joann El-
more. Localization of diagnostically relevant regions of interest in whole slide images: a
comparative study. Journal of Digital Imaging, 29:496–506, 08 2016.

[85] Diana Montezuma, Sara P. Oliveira, Pedro C. Neto, Domingos Oliveira, Ana Monteiro,
Jaime S. Cardoso, and Isabel Macedo-Pinto. Annotating for artificial intelligence appli-
cations in digital pathology: A practical guide for pathologists and researchers. Modern
Pathology, 36:100086, 4 2023.

[86] Chris Murphy. Histology, Cytology, pages 991–993. Springer Netherlands, Dordrecht,
2013.

[87] Soojeong Nam, Yosep Chong, Chan Kwon Jung, Tae Yeong Kwak, Ji Youl Lee, Jihwan
Park, Mi Jung Rho, and Heounjeong Go. Introduction to digital pathology and computer-
aided pathology. Journal of Pathology and Translational Medicine, 54:125–134, 2020.

[88] United Nations. The 17 sustainable development goals, 2024.

[89] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil
Khalidov, Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido
Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li,
Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien
Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust
visual features without supervision. Transactions on Machine Learning Research, 2024.

[90] Sebastian Otálora, Manfredo Atzori, Vincent Andrearczyk, Amjad Khan, and Henning
Müller. Staining invariant features for improving generalization of deep convolutional neu-
ral networks in computational pathology. Frontiers in Bioengineering and Biotechnology,
7, 8 2019.



REFERENCES 66

[91] Rafael Padilla, Sergio L. Netto, and Eduardo A. B. da Silva. A survey on performance met-
rics for object-detection algorithms. In 2020 International Conference on Systems, Signals
and Image Processing (IWSSIP), pages 237–242. IEEE, 7 2020.

[92] Sakari Palokangas, Jyrki Selinummi, and Olli Yli-Harja. Segmentation of folds in tissue
section images. Conference proceedings : ... Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology
Society. Conference, 2007:5642–5, 02 2007.

[93] Ankush Patel, Ulysses G.J. Balis, Jerome Cheng, Zaibo Li, Giovanni Lujan, David S. Mc-
Clintock, Liron Pantanowitz, and Anil Parwani. Contemporary whole slide imaging de-
vices and their applications within the modern pathology department: A selected hardware
review. Journal of Pathology Informatics, 12:50, 1 2021.

[94] Mohammad Peikari, Mehrdad J. Gangeh, Judit Zubovits, Gina Clarke, and Anne L. Martel.
Triaging diagnostically relevant regions from pathology whole slides of breast cancer: A
texture based approach. IEEE Transactions on Medical Imaging, 35(1):307–315, 2016.

[95] Sathyanarayanan Rajaganesan, Rajiv Kumar, Vidya Rao, Trupti Pai, Neha Mittal, Ayushi
Sahay, Santosh Menon, and Sangeeta Desai. Comparative assessment of digital pathology
systems for primary diagnosis. Journal of Pathology Informatics, 12:25, 1 2021.

[96] Siddhant Rao. Mitos-rcnn: Mitotic figure detection in breast cancer histopathology images
using region based convolutional neural networks. International Journal of Medical and
Health Sciences, 12(10):514 – 520, 2018.

[97] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 779–788, 2016.

[98] Zaka Ur Rehman, M. Sultan Zia, Giridhar Reddy Bojja, Muhammad Yaqub, Feng Jinchao,
and Kaleem Arshid. Texture based localization of a brain tumor from mr-images by using
a machine learning approach. Medical Hypotheses, 141:109705, 2020.

[99] E. Reinhard, M. Adhikhmin, B. Gooch, and P. Shirley. Color transfer between images.
IEEE Computer Graphics and Applications, 21:34–41, 2001.

[100] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc., 2015.

[101] David Romo-Bucheli, Andrew Janowczyk, Hannah Gilmore, Eduardo Romero, and Anant
Madabhushi. Automated tubule nuclei quantification and correlation with oncotype dx risk
categories in er+ breast cancer whole slide images. Scientific Reports, 6, 2016. Cited by:
59; All Open Access, Gold Open Access, Green Open Access.

[102] Santanu Roy, Alok kumar Jain, Shyam Lal, and Jyoti Kini. A study about color normaliza-
tion methods for histopathology images. Micron, 114:42–61, 11 2018.

[103] Caglar Senaras, M. Khalid Khan Niazi, Gerard Lozanski, and Metin N. Gurcan. Deepfocus:
Detection of out-of-focus regions in whole slide digital images using deep learning. PLOS
ONE, 13:e0205387, 10 2018.



REFERENCES 67

[104] Makhmud Shaban, Christoph Baur, Nassir Navab, and Shadi Albarqouni. Staingan: Stain
style transfer for digital histological images. 2019 IEEE 16th International Symposium on
Biomedical Imaging (ISBI 2019), pages 953–956, 2018.

[105] Hossain Md Shakhawat, Tomoya Nakamura, Fumikazu Kimura, Yukako Yagi, and
Masahiro Yamaguchi. [paper] automatic quality evaluation of whole slide images for the
practical use of whole slide imaging scanner. ITE Transactions on Media Technology and
Applications, 8:252–268, 2020.

[106] Harshita Sharma, Norman Zerbe, Sebastian Lohmann, Klaus Kayser, Olaf Hellwich, and
Peter Hufnagl. A review of graph-based methods for image analysis in digital histopathol-
ogy. Diagnostic pathology, 1(1), 2015.

[107] Prarthana Shrestha and Bas Hulsken. Color accuracy and reproducibility in whole slide
imaging scanners. Journal of Medical Imaging, 1:027501, 7 2014.

[108] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014.

[109] Korsuk Sirinukunwattana, Shan E. Ahmed Raza, Yee-Wah Tsang, David R. J. Snead, Ian A.
Cree, and Nasir M. Rajpoot. Locality sensitive deep learning for detection and classification
of nuclei in routine colon cancer histology images. IEEE Transactions on Medical Imaging,
35(5):1196 – 1206, 2016. Cited by: 896; All Open Access, Green Open Access.

[110] Chetan L. Srinidhi, Ozan Ciga, and Anne L. Martel. Deep neural network models for
computational histopathology: A survey. Medical Image Analysis, 67:101813, 1 2021.

[111] Linda Studer, Shushan Toneyan, Inti Zlobec, Heather Dawson, and Andreas Fischer. Graph-
based classification of intestinal glands in colorectal cancer tissue images. Proceedings of
MICCAI 2019, 13-17 October 2019, Shenzhen, China, 2019.

[112] Zaneta Swiderska-Chadaj, Thomas de Bel, Lionel Blanchet, Alexi Baidoshvili, Dirk
Vossen, Jeroen van der Laak, and Geert Litjens. Impact of rescanning and normalization
on convolutional neural network performance in multi-center, whole-slide classification of
prostate cancer. Scientific Reports, 10:14398, 9 2020.

[113] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1–9, 2015.

[114] Syed Ahmed Taqi, Syed Abdus Sami, Lateef Begum Sami, and Syed Ahmed Zaki. A review
of artifacts in histopathology. Journal of Oral and Maxillofacial Pathology, 22:279, 5 2018.

[115] David Tellez, Maschenka Balkenhol, Irene Otte-Höller, Rob van de Loo, Rob Vogels, Peter
Bult, Carla Wauters, Willem Vreuls, Suzanne Mol, Nico Karssemeijer, Geert Litjens, Jeroen
van der Laak, and Francesco Ciompi. Whole-slide mitosis detection in h&e breast histology
using phh3 as a reference to train distilled stain-invariant convolutional networks. IEEE
Transactions on Medical Imaging, 37(9):2126–2136, 2018.

[116] David Tellez, Geert Litjens, Péter Bándi, Wouter Bulten, John-Melle Bokhorst, Francesco
Ciompi, and Jeroen van der Laak. Quantifying the effects of data augmentation and stain
color normalization in convolutional neural networks for computational pathology. Medical
Image Analysis, 58:101544, 12 2019.



REFERENCES 68

[117] Ultralytics. YOLOv5: A state-of-the-art real-time object detection system. https://do
cs.ultralytics.com, 2021.

[118] Mira Valkonen, Jorma Isola, Onni Ylinen, Ville Muhonen, Anna Saxlin, Teemu Tolonen,
Matti Nykter, and Pekka Ruusuvuori. Cytokeratin-supervised deep learning for automatic
recognition of epithelial cells in breast cancers stained for er, pr, and ki-67. IEEE transac-
tions on medical imaging, 39(2):534–542, 2019.
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