FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

A micro-kernel API for Linux

Joaquim Monteiro

DISSERTATION

[BPORTO

FEU FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO

Mestrado em Engenharia Informatica e Computacao

Supervisor: Pedro Souto

July 25, 2024

A micro-kernel API for Linux

Joaquim Monteiro

Mestrado em Engenharia Informética e Computagao

July 25, 2024

Abstract

Writing device drivers, and other programs that interact with hardware, is, typically, hard and
error-prone. Due to the architecture of many operating systems in use today, such as Linux, it
usually requires writing kernel level code, which is of higher difficulty than regular user space
code. Additionally, kernel level code runs in kernel space, meaning that a problem in one kernel
component can affect the entire system, making it crash, behave incorrectly, or open up security
vulnerabilities.

This dissertation proposes an interface for writing these kinds of software in user space on
Linux, similar to the interfaces provided by micro-kernel operating systems. This is implemented
with a kernel module that communicates with user processes through Netlink sockets (and an
accompanying user space library) and executes privileged commands on their behalf. With it, user
processes can perform operations such as reading and writing to memory-mapped devices, and
receiving interrupt notifications. It also provides fine-grained control over the resources a process
can access to the system administrator. As such, it allows writing programs that can interface with
hardware and that, at the same time, run in an isolated user space process with the least amount of
privilege required to perform their tasks.

A simple PS/2 keyboard driver and a framebuffer program were written to test and demonstrate
the solution’s capabilities.

Contents

1 Introduction
1.1 Document Structure e e e

2 State of the art

2.1 Background
2.1.1 Devicedrivers
2.1.2 Inter-process communicationt u ..
22 Relatedwork
2.2.1 In-kernelisolation
222 Userspace drivers o o it e e

3 Alook at the MINIX 3 API

3.1 Summary e e e
3.1.1 Interrupthandling.
3.1.2 Memorymapped /O
3.1.3 Portl/O L
4 Design and Implementation
4.1 ODbJectives o o e e e e e e
42 DeSigNo e e e e e
43 Implementation e e e e
43.1 Netlink
432 Portl/O
433 Interrupthandling.
434 Memory-mapped /O
4.3.5 Mapping Netlink ports to processes
43.6 Cleanup oL e
4377 Accesscontrol

5 Evaluation
5.1 PS/2Keyboard
5.2 Writing to the framebuffer

6 Conclusions
6.1 Future Work e

A User space API

B Generic Netlink Protocol

1

WD o

W

AW

O O O 0 W

10

10
10
10
11
12
13
13
15
15

17
17
18

20
20

25

29

Abbreviations

API Application Programming Interface
IPC Inter-process communication

IRQ Interrupt request

OS Operating System

il

Chapter 1

Introduction

Writing low-level code that interacts with hardware, such as device drivers, is not easy. On typical
operating systems, these kinds of programs run at the kernel level, and faults in this type of code
can affect the rest of the system, and cause it to malfunction or crash. Historically, we’ve observed
that driver code is responsible for a large part of operating system errors [2, 3]. Part of the difficulty
of writing correct driver code could be attributed to the difference in structure and requirements
compared to regular user space code, which require some kernel expertise to get right.

Micro-kernel operating systems let us write these programs in user level code, facilitating
development and making systems more reliable and secure [1]. However, using them implies
moving away from the commonly used OSes, which are well known by most programmers and
have rich software support.

This work proposes a new micro-kernel API for Linux to allow writing programs that interact

with hardware in user space to avoid these issues, while still using a traditional Linux environment.

1.1 Document Structure

Beyond this introduction, this dissertation contains five more chapters. Chapter 2 provides the
background and presents the state of the art. Chapter 3 analyzes the MINIX 3 kernel API to
determine the features required for writing user space drivers. Chapter 4 describes the design
and implementation of our solution. Chapter 5 evaluates our solution. Chapter 6 presents the

conclusion of this work.

Chapter 2

State of the art

2.1 Background

Computer operating systems provide a common programming interface and environment for writ-
ing applications, including features such as process scheduling, virtual memory, disk I/O and
networking. They also manage and provide abstractions over computer hardware, through pieces
of software called device drivers.

One possible way to build an operating system is to implement all these components in kernel
code (or in modules that can be loaded into the kernel as needed). This is called a monolithic
operating system. Most common OSes, such as Windows or Linux, are monolithic.

Alternatively, a micro-kernel operating system has a small kernel with minimal features, pro-
viding support for I/O operations, virtual memory, process scheduling and IPC, with the bulk of
the functionality required to implement these services implemented in user level code. MINIX 3
[1] is an example of such an operating system. In it, features like file access, networking and pro-
cess management are implemented in user level servers, and each driver also runs as an individual
user space process.

Monolithic architectures are conceptually simpler and can have better performance, as, inside
the kernel, there is no need to perform context switches or use IPC mechanisms. Micro-kernels
isolate each component of the OS, so a fault in one component can’t affect the rest of the system,
both in terms of stability and security. This allows MINIX to have a “self-repairing property”:
it monitors the state of all drivers and services, and performs an appropriate recovery procedure
(such as restarting the affected server) in case of failure. Micro-kernels OSes also have much less

kernel code, making them easier to verify and reason about.

2.1.1 Device drivers

Device drivers are pieces of software that implement support for a certain input/output device, so
that it can be used by the operating system and by other programs without the need to deal with

the specifics of that hardware.

2.2 Related work 3

These represent a large portion of operating system code, and are responsible for the majority
of operating system errors [2, 3]. In monolithic kernels, as drivers reside in kernel space, a fault in
the driver can cause issues with the whole system.

Thus, it has long been argued that micro-kernels are a superior design to monolithic kernels
in terms of security and reliability. A study of the critical Linux CVEs [4] concluded that 96%
of critical exploits wouldn’t reach critical severity in a formally verified microkernel (such as
seL4 [5]), and 57% would be reduced to low severity. It also concluded that even without formal

verification, a micro-kernel design would prevent 29% of exploits.

2.1.2 Inter-process communication

Micro-kernels use IPC mechanisms, such as message passing, to communicate between the kernel
and user space. MINIX 3 uses both synchronous message passing and notifications (for when
blocking isn’t an option, such as when dealing with interrupts).

However, some monolithic kernels have similar facilities. Linux has an extensible, socket
based communication system named Netlink [6] [7], allowing communication between Linux
kernel modules and user space processes. It supports both unicast and multicast messages. Netlink

users can define protocol families with custom attributes and commands for use in their programs.

2.2 Related work

2.2.1 In-kernel isolation

There have been many attempts at isolating device drivers.

Nooks [8] is a new kernel subsystem that isolates drivers within lightweight protection do-
mains inside the kernel address space, through the use of software and hardware checks. It works
with conventional hardware and operating systems, and works with existing drivers. However, it
is limited to uniprocessor systems.

XFI [9] provides software-based fault isolation through inline guards to perform runtime
checks, which can be inserted by a binary rewriter, and a verifier that performs static analysis
to check if a program contains the necessary guards.

Byte-Granularity Isolation (BGI) [10] is a fault isolation technique that can run drivers in
separate protection domains in the same address space. It uses a library that intermediates com-
munications between the driver and the kernel and a compiler plugin to generate instrumented
code in order to apply this technique to existing, unmodified drivers.

LXFI [11] improves on XFI and BGI by allowing modules to partition their privileges into
principals (allowing multiple instances of the same module to be isolated from each other) and by
introducing annotations to enforce API integrity for complex kernel interfaces, implemented with

a transpiler and a runtime component.

State of the art 4

2.2.2 User space drivers

The Linux kernel has some mechanisms that can be used to write simple drivers in user space.
Memory-mapped devices can be controlled by mmap () ing /dev/mem. On x86, the I/O ports can
be accessed through the iopermand iopl system calls and the various I/O port functions in glibc
[12]. However, this approach is very limited both in the kind of devices it supports (for example,
interrupt handling isn’t possible) and in the isolation it provides, as it requires that the drivers run
with an elevated permission level (either executed as the root user, or with the CAP_SYS_RAWIO
capability).

To fill the gaps with these existing Linux mechanisms, [13] builds upon them by adding system
calls for accessing PCI devices and setting up direct memory access (DMA), as well as implement-
ing interrupt notifications by mapping IRQs to file descriptors.

The Userspace 1/0 system [14], which is part of the Linux kernel, allows writing user space
drivers for devices that can be controlled completely by writing to mapped memory (or through
mechanisms such as the x86 I/O ports). It still requires using a kernel module to register the
device, and, optionally, to implement an interrupt handler. Compared to the other approaches, it
uses a declarative way to describe device mappings instead of using system calls to set it up, and
it supports devices that require actions to be taken after an interrupt is raised, as it allows writing
custom interrupt handlers.

The Microdrivers architecture [15] splits drivers into a user space part and a kernel part. The
user space part contains management code (such as initialization and configuration), while the
kernel part contains performance-critical code (such as I/O or interrupt handling). This approach
isolates the kernel from bugs in user space code, and it has performance comparable to regular
kernel space drivers. The architecture was evaluated on the Linux kernel, and was implemented
through a tool that splits existing drivers and generates marshalling code to perform communica-
tion between kernel space and user space. Additionally, it requires adding annotations to some
parts of the driver code.

SUD [16] is a system that runs existing, unmodified Linux drivers as user space processes. It
runs each driver in a separate process, with its own user ID, and it uses User-mode Linux [17] to
emulate a Linux kernel environment in user space. To isolate access to the hardware, it uses the
IOMMU and transaction filtering in PCI-E bridges (on x86, access to the 1/O ports is controlled
through the task state segment’s I/O port bitmap).

There also exist some user space driver frameworks specific to certain domains. FUSE [18],
a framework that is part of the Linux kernel, allows implementing file systems in user space.
Importantly, it allows non-privileged mounts, where the file system process runs with the privileges
of the user that mounted the file system. User space block devices [19] and network drivers [20]

also exist, but these are mainly motivated by performance, not isolation.

Chapter 3

A look at the MINIX 3 API

We’ll start by taking a look at the APIs provided by MINIX 3 and determine which ones are
important for writing drivers. With that information, we’ll obtain a target feature set that should
give us parity to a real micro-kernel operating system.

Before that, a small note: most operating systems use the term system call (syscall) for calls
to services provided by the kernel, such as ones defined by POSIX. In MINIX 3, user processes
don’t make direct requests to the kernel; POSIX syscalls made by user processes are translated
into messages to the appropriate server process, and it’s those servers that make requests to the
kernel to implement the needed functionality. To distinguish the user syscalls from the requests
made by server processes and device drivers, MINIX 3 calls the latter “kernel calls”. It should
also be noted that kernel calls cannot be used by regular user processes, only privileged processes
(servers and device drivers) have access to them [22, p. 193].

Table 3.1 lists the process management kernel calls. Of these, SYS_FORK, SYS_EXEC, SYS_CLEAR,
SYS_EXIT, SYS_UPDATE, SYS_TRACE and SYS_RUNCTL are used solely by the process man-
ager [21] [22, pp. 194-197]. SYS_SCHEDULE and SYS_SCHEDCTL are related to scheduling,
and are thus uninteresting. SYS_PRIVCTL is used by the reincarnation server (which is tasked
with starting device drivers and other servers, and restarting them if they fail [22, pp. 114, 118])
to set the privileges of system processes [22, p. 195]; while we may want a mechanism to grant
privileges to applications, we don’t need to replicate this one exactly. SYS_SETGRANT is used to
set up memory grants, which are an IPC mechanism for sharing large amounts of data between
processes [23]; while it has some advantages over similar mechanisms present in Linux, such as
POSIX shared memory [24], it is not very important for our purposes. Looking at the MINIX 3
source code, we find that SYS_GETMCONTEXT and SYS_SETMCONTEXT is used for getting and
setting a process’s machine context, which includes items such as CPU register values; we aren’t
interested in manipulating processes, so these kernel calls aren’t relevant.

Table 3.2 lists the signal handling kernel calls. SYS_KILL has a direct Linux equivalent, the
ki11 syscall. The other kernel calls are used by the process manager to implement signal handling
[22, p. 196], while Linux handles this internally.

Table 3.3 lists the memory management kernel calls. SYS_MEMSET exists due to performance

A look at the MINIX 3 API

Table 3.1: Process management kernel calls in MINIX 3 [21]

Kernel Call Purpose

SYS_FORK Fork a process; copy parent process

SYS_EXEC Execute a process; initialize registers
SYS_CLEAR Exit a user process; clear process slot

SYS_EXIT Exit a system process
SYS_UPDATE Update state of a system process

SYS_SCHEDULE

Scheduler

SYS_SCHEDCTL

Change scheduler control

SYS_PRIVCTL

Change system process privileges

SYS_TRACE Trace or control process execution
SYS_SETGRANT Tell kernel about grant table
SYS_RUNCTL Set/clear stop flag of a process

SYS_GETMCONTEXT

Get context of a process

SYS_SETMCONTEXT

Get context of a process

Table 3.2: Signal handling kernel calls in MINIX 3 [21]

Kernel Call

Purpose

SYS_KILL

Send a signal to a process

SYS_GETKSIG

Check for pending kernel signals

SYS_ENDKSIG

Tell kernel signal has been processed

SYS_SIGSEND

Start POSIX-style signal handler

SYS_SIGRETURN

Return POSIX-style signal

Table 3.3: Memory management kernel calls in MINIX 3 [21]

Kernel Call Purpose
SYS_NEWMAP Install new or updated memory map
SYS_MEMSET | Fill a physical memory area with a constant pattern byte
SYS _VMCTL (undocumented)
SYS_PADCONF (undocumented)

Table 3.4: Memory copy kernel calls in MINIX 3 [21]

Kernel Call Purpose
SYS_UMAP Map virtual to physical address
SYS_UMAP_REMOTE Map virtual to physical address
SYS_VUMAP Batch map virtual to physical addresses

SYS_VIRCOPY
SYS_PHYSCOPY
SYS_SAFECOPYFROM
SYS_SAFECOPYTO
SYS_VSAFECOPY
SYS_SAFEMEMSET

Copy data using virtual addressing
Copy data using physical addressing
Copy from a grant into own address space
Copy from own address space into a grant
Handle vector with safe copy requests
Fill a grant with a constant pattern byte

A look at the MINIX 3 API

Table 3.5: Device I/O kernel calls in MINIX 3 [21]

Kernel Call

Purpose

SYS_DEVIO Read or write a single device register

SYS_SDEVIO Input or output an entire data buffer

SYS_VDEVIO Process vector with multiple requests

SYS_IRQCTL Set or reset an interrupt policy
SYS_IOPENABLE Give process 1/O privilege
SYS_READBIOS Copy from the BIOS area

Table 3.6: System control kernel calls in MINIX 3 [21]

Kernel Call

Purpose

SYS_ABORT Abort MINIX: shutdown the system

SYS_GETINFO | Get a copy of system info or kernel data

SYS_DIAGCTL

(undocumented)

Table 3.7: Clock kernel calls in MINIX 3 [21]

Kernel Call

Purpose

SYS_SETALARM | Set or reset a synchronous alarm timer

SYS_TIMES Get process times, boot time and uptime

SYS_STIME Set boot time
SYS_SETTIME Update time
SYS_VTIMER Set or retrieve a process virtual timer

Table 3.8: Profiling kernel calls in MINIX 3 [21]

Kernel Call Purpose
SYS_SPROF (undocumented)
SYS_CPROF (undocumented)

SYS_PROFBUF | (undocumented)

A look at the MINIX 3 API 8

reasons [21] and can thus be ignored. SYS_NEWMAP is obsolete and no longer used [21]. Looking
at the source code, SYS_VMCTL seems to be used for performing operations on virtual memory
areas, which is also uninteresting; SYS_PADCONF is ARM-only, and is used to implement support
for a couple specific devices. Due to this latter kernel call being very specific, we’ll choose to
ignore it.

Table 3.4 lists kernel calls for copying memory around, and is where we find the first interest-
ing kernel calls. SYS_UMAP and SYS_UMAP_REMOTE are used to map physical addresses into a
process’s virtual memory. This is an important capability for device drivers, as many devices are
controlled by reading and writing to physical memory that’s been mapped to that device. As such,
this is an interface we should provide as well. SYS_VUMAP does the same thing but in bulk, which
could be helpful in some cases, but it’s not vital. SYS_VIRCOPY and SYS_PHYSCOPY are used to
copy memory, but they shouldn’t be necessary on Linux. The SYS_SAFE~* kernel calls relate to
memory grants [23], so we have no use for them (see the reasoning for SYS_SETGRANT).

Table 3.5 lists kernel calls for handling I/O devices, and, as such, is also of interest. SYS_DEVIO
is for reading and writing to I/O ports [22, p. 196], which are used by many (older) x86 hardware
devices. Thus, it would be good to implement this as well. SYS_SDEVIO and SYS_VDEVIO
do the same thing, but in bulk, with slightly different interfaces [22, p. 196]. These are help-
ful in some cases, but they aren’t vital. SYS_TIRQCTL allows installing an interrupt handler
and enabling/disabling interrupts [22, p. 196], allowing the process to receive interrupt notifi-
cations, which is another essential operation for device drivers, so we need to provide it as well.
SYS_IOPENABLE gives a process the privilege to perform I/O operations directly; this is proba-
bly unnecessary if we have a SYS_DEVIO equivalent. SYS_READBIOS is used to read data from
the BIOS area. This is x86 only, not available in newer systems, and is of limited usefulness, so
implementing this isn’t a priority.

Table 3.6 lists system control kernel calls. SYS_ABORT shuts down the system, not very use-
ful. SYS_GETINFO can be used to obtain various kinds of information about the system; as this
information is MINIX specific, and Linux already provides various ways to obtain system infor-
mation, providing an interface like this one doesn’t make much sense. SYS_DIAGCTL, by looking
at the source code, seems to be a debugging tool, for obtaining information such as stacktraces.
As such, it’s not relevant for our purposes.

Table 3.7 lists clock related kernel calls. As Linux already provides interfaces to control the
system clock, and to use timers, none of these kernel calls need to be replicated.

Table 3.8 lists profiling kernel calls. As Linux already provides profiling tools, these kernel

calls can be ignored.

3.1 Summary

In short, MINIX 3 provides the following functionality for driver authors:

3.1 Summary 9

3.1.1 Interrupt handling

One of the ways devices can communicate with the operating system is through interrupts. Typi-
cally, they’re used to notify that an event happened. When triggered, the CPU suspends the task it
was performing to execute the interrupt handler, a function registered for a specific IRQ line, that

has the task of performing the appropriate action for the event that just occurred.

3.1.2 Memory mapped I/0

Many devices can be controlled by reading and writing data to sections of memory that are mapped

to those devices.

3.1.3 Port1/O

In some architectures, such as x86, some devices are controlled by reading and writing to I/O ports

assigned to them. This is done through special CPU instructions.

Chapter 4

Design and Implementation

4.1 Objectives

We want to design a system that meets the following requirements:

* It must provide the functionality selected in section 3.1.
* It must allow the user to use this functionality from a user space process.

* It should minimize the ability of a program to disrupt the stability and security of the oper-
ating system and of other programs, both intentionally and unintentionally. This includes,
for example, giving clients access to only the resources they need to operate (principle of

least privilege).

4.2 Design

To add this functionality to Linux, we’ll need to write kernel level code. As such, our system,
which we named Usermode Driver Platform, or umdp for short, will be composed of a kernel
module, which will provide the functionality, and a user space library, which will handle the

communication with the kernel module, and will provide a nicer interface for the user.

4.3 Implementation

4.3.1 Netlink

We need a way for the kernel module and the user space to communicate, and to allow a user
space program to send requests to the kernel module. Normally, Linux programs mainly talk to
the kernel through syscalls, but that’s not an option for us, since kernel modules can’t add syscalls
(the kernel itself would need to be patched), and it wouldn’t be compatible with future kernel

releases (where a new syscall is added). There is, however, another option.

10

4.3 Implementation 11

Figure 4.1: Overview of Netlink communication

umdp

Route J [Generic Netlink
INET J Netlink
A\
Kernel space
Socket API
User space

i

Application 1 Application 2

Netlink [6, 7] is a message passing protocol that allows communicating between kernel and

user space over a socket connection. It provides a mechanism called Generic Netlink, which allows
registering new protocols (Generic Netlink families) on top of Netlink dynamically.

Our kernel module registers its own Netlink family, through which it provides its functionality.
A description of this protocol can be found in appendix B.

On the library side, we use the 1ibn1 library to handle the Netlink protocol and communicate

with the kernel module.

4.3.2 Portl/O

To read and write to I/O ports, Linux provides the in* and out » family of functions, respectively.
These are mainly for use in the kernel, but user space programs can use them, if they have the
appropriate permissions [25].

To grant a user space program the ability to use these functions, one needs to call ioperm
while having the CAP_SYS_RAWIO capability (or while being a privileged process [26]) [27].
Ideally, we’d like to avoid this, since a process with this capability can read and write to any I/O
port, so we added an interface to delegate this to the kernel module, as shown in listing 1.

Internally, the kernel module simply calls the corresponding inx or out+ function.

There is, still, another part to this, as the kernel module also needs to request access to a
specific port (or, rather, a region of ports) before being able to read and write to it, through the use
of the request_region kernel function. Thus, a couple of functions were added (the last two in
listing 1) to allow the user to request (and later release) access to the ports they want to use, after

which they’ll be able to use the other functions.

Design and Implementation 12

int umdp_devio_read_u8 (umdp_connection* conn, uint64_t port, uint8_t»* out);
int umdp_devio_read_ul6 (umdp_connection* conn, uint64_t port, uintlé_t~+ out);

int umdp_devio_read_u32 (umdp_connectionx conn, uinté64_t port, uint32_tx out);

int umdp_devio_write_u8 (umdp_connection* conn, uint64_t port, uint8_t value);
int umdp_devio_write_ul6 (umdp_connection* conn, uint64_t port, uintlé_t wvalue);

int umdp_devio_write_u32 (umdp_connection* conn, uint64_t port, uint32_t value);

int umdp_devio_request (umdp_connection* conn, uint64_t start, uint64_t size);

int umdp_devio_release (umdp_connection* conn, uint64_t start, uint64_t size);

Listing 1: The port I/O API

4.3.3 Interrupt handling

Dealing with hardware interrupts is slightly more challenging. Our kernel module has to receive
interrupts on the behalf of the user, then send a notification to the program that an interrupt oc-
curred.

Upon receiving a request to subscribe for interrupt notifications of a certain IRQ, we need to
install an interrupt handler. The interrupt handler is a function that’s executed whenever an inter-
rupt occurs in the corresponding IRQ line, and it should perform any necessary tasks in response
to that event. For our purposes, we just need to send a notification to user space.

However, we cannot do this from the interrupt handler itself, as “a handler runs at interrupt
time and, therefore, suffers some restrictions on what it can do. [...] A handler can’t transfer data
to or from user space, because it doesn’t execute in the context of a process. Handlers also cannot
do anything that would sleep, such as calling wait_event, allocating memory with anything
other than GFP_ATOMIC, or locking a semaphore. Finally, handlers cannot call schedule.” [28,
p- 269] There are no guarantees that the Netlink implementation obeys these restrictions. Sending
a message to user space directly is, thus, out of reach.

What we can do is have the handler store the IRQ number and hand the task of sending a
notification to a workqueue. A workqueue is a mechanism of the Linux kernel for performing
work asynchronously [29].

To deliver the interrupt notification to the user space program, it is multicasted to a dedicated
multicast group of our Netlink family, sending it to every program using our interface. In the user
space side, our library subscribes to this multicast group, then processes the received interrupt
notifications and filters out the ones that have IRQ numbers that that program didn’t subscribe to.

Multicast was chosen because it was simpler to implement, as it doesn’t require keeping track
of the port IDs of the clients, and it only requires sending a single message. With the work done
in section 4.3.5, this could be revisited and changed to send unicast notifications to only the right

clients.

4.3 Implementation 13

int umdp_interrupt_subscribe (umdp_connection* conn, uint32_t irq);
int umdp_interrupt_unsubscribe (umdp_connection* conn, uint32_t irqg);

int umdp_receive_interrupt (umdp_connectionx conn, uint32_tx out);

Listing 2: The interrupt handling API

4.3.4 Memory-mapped I/0

Finally, we want to allow processes to map physical memory regions (where a hardware device is
mapped to) to their own address space.

Linux already allows processes to access (and thus map) physical memory through /dev/mem
[30]. However, it’s only available to privileged processes [26], and some kernel configuration
options, such as CONFIG_TO_STRICT_DEVMEM, further restrict this. Providing our own interface
to map physical memory would let us avoid these restrictions, avoid requiring privileged processes,
and allow better control over physical memory accesses.

With access to process information, we can get to the corresponding virtual memory structures,
and, then, we could possibly edit them to add the physical memory mapping we want. Setting up
the memory map ourselves, though, isn’t feasible. “When a user-space process calls mmap to map
device memory into its address space, the system responds by creating a new VMA to represent
that mapping. [...] Note that the kernel maintains lists and trees of VMASs to optimize area lookup,
and several fields of vim_area_struct are used to maintain this organization. Therefore, VMAs
can’t be created at will by a driver, or the structures break.” [28, p. 420]

If we must go through the mmap syscall to set up a memory map, we need to provide our
own character device that the user process can use mmap with. Thus, the character device needs to
implement mmap, and in its implementation, it should interpret byte addresses as physical memory
addresses like /dev/mem does [30].

With this done, we added an interface to our library that opens our device and calls mmap, thus

allowing users to map physical memory.
int umdp_mmap_physical (umdp_connection* conn, off_ t start, size_t size, wvoidx* out);

Listing 3: The mmap API

4.3.5 Mapping Netlink ports to processes

When the kernel module receives a Netlink request, it has no easy way to determine the process
that sent it. The main information available to it about the sender is the port ID of the used Netlink
socket. This port ID is specific to Netlink, and there is no available interface to obtain anything

given the port ID number.

Design and Implementation 14

struct partial netlink_sock ({
struct sock sk;
unsigned long flags;
u32 portid;
IV ooc
}i

struct sockx socket = ...;
struct partial _netlink_sockx nl_socket =
container_of (socket, struct partial_ netlink_ sock, sk);

u32 port_id = nl_socket->portid;

Listing 4: Hack to obtain the port ID out of a struct sockx

It would be nice to know keep track of the process associated to each port ID, as it would allow,
for example, releasing its held resources if the process exits without doing so, or for implementing
restrictions on the uses of the various interfaces.

One approach to accomplish this, as we can’t get the process given its port ID, would be to go
through the running processes and figure out which one has an open Netlink socket with that port
ID.

To figure out if a process has a Netlink socket with a certain port ID, we need to look at its
open file descriptors, find out which of those are sockets, and which of those are Netlink sockets.
Once we get to this point, though, we face a similar issue: the port ID of the Netlink socket is
stored in a private part of the socket structure (the full st ruct definition is in a private header of
the Netlink implementation).

It’s possible to hack our way around this (unless struct layout randomization is enabled,
and _ randomize_layout is set for struct netlink_sock, which is not the case on the
current version of Linux) by replicating the st ruct definition on the side of our kernel module,
then using the container_of macro to obtain the full structure.

The last piece of the puzzle is knowing which process’s file descriptors to look through. Going
through every running process isn’t exactly ideal in terms of performance. We can have the user
space library help the kernel module with this, by making it fell the kernel module what process
ID (PID) its process has. The kernel module can then check, as described above, if the indicated
process owns the socket that sent the request.

This is done by introducing a “connect” request (containing the PID) to our Generic Netlink
protocol, which is sent automatically by the user space library when a connection is created. The
kernel module keeps a list of the connected clients, associating Netlink port IDs with process IDs
and other information.

A limitation of mapping Netlink sockets to processes is, in case a process with an open socket

forks without closing the socket afterwards, we’ll end up with two processes sharing a socket,

4.3 Implementation 15

which could cause our system to behave in an unexpected way from the perspective of said pro-

grams. We can detect this on the library side and handle it gracefully there.

4.3.6 Cleanup

By keeping a record of the client processes, we can release their resources if they exit without
releasing them themselves (for example, in case of a crash or a poorly-coded client).

The Linux kernel doesn’t provide a specific interface that can notify kernel modules when a
process exits. It is, however, possible to accomplish this by using a Kprobe. Kprobes (Kernel
Probes) are a mechanism that allow the user to register a function to be executed at a specific point
(such as the start or end) of almost every kernel routine and collect information, primarily used for
debugging and performance analysis [31].

We can set up a Kprobe on the do_exit kernel function (implemented in kernel/exit.c
in the Linux source code) to run code whenever a process exits. do_exit, and thus our handler
function, runs in the context of the process that’s exiting, so we can identify the process by look-
ing at global item current, which is effectively a pointer to the struct task_struct that
contains information about the process [28, pp. 21-22]. We can, then, look for the record that

matches this process, and if there is one, we remove it and release the associated resources.

4.3.7 Access control

With the functionality to write device drivers in place, we can shift our focus to a different topic.
One of our main goals is to improve system reliability and security by minimizing the resources
accessible to programs to only what they require to function. Our system doesn’t impose any
restrictions yet, so the next step will be to fix that.

Before that, though, let’s take a quick look at how MINIX 3 handles this. It makes use of
a global configuration file, /etc/system. conf, which contains configuration for the primary
system services, and can control parameters such as allowed IRQs, I/O port ranges, PCI devices
and kernel calls (additionally, similar config files can be used to control specific services) [32].

Now, add restrictions to our interfaces is the easy part, as it’s just a matter of placing a check in
the right position and refusing the request if the check fails. The interesting parts are the methods

used to implement the checks, and the interface used to configure them.

4.3.7.1 Path-based permissions

There are many valid options that could be used for modeling permissions. To keep things simple,
we chose a global table where the system administrator can specify the permissions of a program
given its (canonical) file path.

The downside is that a poor configuration, such as granting permissions to a file in a globally
accessible directory, could compromise the security of the system, requiring the system adminis-

trator to use caution in configuring it. Still, we consider this trade-off worth it for our purposes.

Design and Implementation 16

cat /proc/umdp/permtab

Executable path IRQ lines mmap regions I/0 port regions
/home/vbox/timer 0 none 0x40-0x41, 0x43-0x44
/home/vbox/framebuffer none 0xA0000-0xC0000 none

echo '/home/vbox/keyboard 1 none 0x60-0x61,0x64-0x65' > /proc/umdp/permtab
cat /proc/umdp/permtab

Executable path IRQ lines mmap regions I/0 port regions
/home /vbox/keyboard 1 none 0x60-0x61, 0x64-0x65

Listing 5: Reading and writing to permtab (formatted for readability)

4.3.7.2 Exposing the configuration

As we saw earlier, MINIX 3 makes use of a config file. Such an approach is, however, frowned
upon in Linux kernel programming [33]. We’ll instead use procfs to control our permission set-
tings.

procfs is a pseudo-filesystem containing data structures exposed by various kernel modules
and parts of the kernel. While most of it is read-only, some parts are writable, allowing users to
change some kernel settings [34].

We implemented a file, /proc/umdp/permtab, using the seq_file interface [35], which
displays the current rules in table form when read, and replaces the existing rules with new ones

when written to, as shown in listing 5.

4.3.7.3 Applying the rules

Lastly, we need to be able to map these executable paths to our client processes in order to enforce
the rules. Fortunately, the hard work has already been done (in section 4.3.5), so we can always
identify the process and access its st ruct task_struct, from which we can extract a pointer
to the corresponding executable file, which we can then resolve into a file path.

With this, we are able to implement the proposed restrictions, as demonstrated in listing 6.

The documentation for the full user space API can be found in appendix A.

$./interrupts 12

umdp_receive_interrupt: failed to receive reply: Operation not permitted
umdp_receive_interrupt returned -28

dmesg —-W

umdp: /home/vbox/interrupts not allowed to access IRQ 12, refusing request

Listing 6: Example of running a program without the necessary permissions

Chapter 5

Evaluation

To test the functionality described in section 3.1, we wrote two test programs: a PS/2 keyboard
driver, which makes use of port I/O and interrupts; and a framebuffer program, which makes use
of memory mapped 1I/O.

The tests were run in a VirtualBox virtual machine running Arch Linux (updated on 2024-07-
08), under the 6.9.8 and 6.6.37 kernels.

5.1 PS/2 Keyboard

First, a simple PS/2 keyboard driver. It uses port I/O to set up the PS/2 controller and keyboard, as
well as to read data coming from the keyboard, and it uses interrupt notifications to detect when
the keyboard has sent data. A sample of the code is shown in listing 7, and a small demo is shown

in figure 5.1.

static int handle_ps2_interrupts (umdp_connection* conn) {
while (!should_exit) {
uint32_t irg;

TRY_UMDP (umdp_receive_interrupt (conn, &irqg), "error receiving interrupt");
if (irg != PORT1_IRQ) {
continue;

uint8_t data;
TRY_UMDP (umdp_devio_read_u8 (conn, DATA_PORT, &data),
"failed to read from the data port");
display_scan_code (data) ;
}

return 0;

Listing 7: The main loop of the keyboard driver

17

Evaluation 18

5.2 Writing to the framebuffer

Second, a small program that writes to the VGA framebuffer. It opens the framebuffer device and
uses ioctl to obtain information about it, such as the resolution and number of bits per pixel and,
most importantly, its physical address. It then closes the device, and uses the mmap interface to
map the framebuffer into memory directly.

After that, it writes a pattern into the framebuffer using memset, and exits.

Listing 8 shows some of the code used, and figure 5.2 shows the result.

int main (void) {

size_t screensize = variable_info.xres x variable_info.yres

x variable_info.bits_per_pixel / 8;

char* fb;
int ret = umdp_mmap_physical (connection, (off_t) fixed_info.smem_start,

screensize, (voidxx) &fb);

int colors([6] = {36, 38, 54, 16, 25, 40};
unsigned int chunk = (variable_info.yres / 6) * fixed_info.line_length;
for (int 1 = 0; i < 6; i++) {

memset (fb + chunk %= i, colors[i], chunk);

Listing 8: Some parts of the framebuffer program

5.2 Writing to the framebuffer 19

Figure 5.1: Screenshot of the keyboard driver being executed through SSH on a virtual machine,
where the text “test” is inputted

A ArchLinux (2024-06-27 - Cus

File Machine View Input Devices Help

ArchLinux-VBox:~

Released T

Figure 5.2: Screenshot of a virtual machine after writing a rainbow pattern to the framebuffer

Ax ‘: 27 Custom kerne) [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

BOwSsME D ¥ G0 rRght cul

Chapter 6
Conclusions

The programs presented in the last section show that umdp provides enough functionality to
demonstrate that writing programs like device drivers in user space, with strong security and re-
liability guarantees, is possible under the Linux kernel. As such, it illustrates the possibility of
moving current operating systems to architectures similar to this one, in order to gain these ben-
efits. We also consider that this project can be, as-is, a useful tool for educational purposes and

some real-world use cases.

6.1 Future Work

This system can be expanded to handle more kinds of software devices, as well as to integrate
better with existing drivers and other subsystems of the kernel (by, for example, adding DMA-
BUF functionality).

Another area that can be further explored is security and access controls. While the current
system allows fine control over allowed resources, there’s room for improvement, and other dif-

ferent approaches could be explored as well.

20

Bibliography

(1]

(2]

(3]

[4]

(5]

Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S. Tanenbaum.
“MINIX 3: A Highly Reliable, Self-Repairing Operating System”. In: SIGOPS Oper. Syst.
Rev. 40.3 (July 2006). Place: New York, NY, USA Publisher: Association for Comput-
ing Machinery, pp. 80—89. 1SSN: 0163-5980. DOI: 10.1145/1151374.1151391. URL:
https://doi.org/10.1145/1151374.1151391.

Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler. “An Em-
pirical Study of Operating Systems Errors”. In: Proceedings of the Eighteenth ACM Sym-
posium on Operating Systems Principles. SOSP °01. event-place: Banff, Alberta, Canada.
New York, NY, USA: Association for Computing Machinery, 2001, pp. 73-88. ISBN: 1-
58113-389-8. DOI: 10.1145/502034.502042. URL: https://doi.org/10.1145/
502034.502042.

Nicolas Palix, Gaél Thomas, Suman Saha, Christophe Calves, Julia Lawall, and Gilles
Muller. “Faults in Linux: Ten Years Later”. In: Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operating Systems.
ASPLOS XVI. event-place: Newport Beach, California, USA. New York, NY, USA: As-
sociation for Computing Machinery, 2011, pp. 305-318. 1SBN: 978-1-4503-0266-1. DOTI:
10.1145/1950365.1950401. URL: https://doi.org/10.1145/1950365.
1950401.

Simon Biggs, Damon Lee, and Gernot Heiser. “The Jury Is In: Monolithic OS Design Is
Flawed: Microkernel-Based Designs Improve Security”. In: Proceedings of the 9th Asia-
Pacific Workshop on Systems. APSys *18. event-place: Jeju Island, Republic of Korea. New
York, NY, USA: Association for Computing Machinery, 2018. 1SBN: 978-1-4503-6006-7.
DOI: 10.1145/3265723.3265733. URL: https://doi.org/10.1145/3265723.
3265733.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. “SelL.4: Formal Verification of an OS Kernel”.
In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles.
SOSP ’09. event-place: Big Sky, Montana, USA. New York, NY, USA: Association for

21

https://doi.org/10.1145/1151374.1151391
https://doi.org/10.1145/1151374.1151391
https://doi.org/10.1145/502034.502042
https://doi.org/10.1145/502034.502042
https://doi.org/10.1145/502034.502042
https://doi.org/10.1145/1950365.1950401
https://doi.org/10.1145/1950365.1950401
https://doi.org/10.1145/1950365.1950401
https://doi.org/10.1145/3265723.3265733
https://doi.org/10.1145/3265723.3265733
https://doi.org/10.1145/3265723.3265733

BIBLIOGRAPHY 22

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Computing Machinery, 2009, pp. 207-220. 1SBN: 978-1-60558-752-3. DOI: 10 . 1145/
1629575.1629596. URL: https://doi.org/10.1145/1629575.1629596.

Introduction to Netlink. The Linux Kernel documentation. URL: https://docs.kernel.
org/6.9/userspace-api/netlink/intro.html (visited on 07/01/2024).

Pablo Neira-Ayuso, Rafael M. Gasca, and Laurent Lefevre. “Communicating between the

kernel and user-space in Linux using Netlink sockets”. In: Software: Practice and Experi-

ence 40.9 (2010). _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.981, pp. 797—
810.DOI: https://doi.org/10.1002/spe.981. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1002/spe.981.

Michael M. Swift, Brian N. Bershad, and Henry M. Levy. “Improving the Reliability of
Commodity Operating Systems”. In: Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles. SOSP ’03. event-place: Bolton Landing, NY, USA. New
York, NY, USA: Association for Computing Machinery, 2003, pp. 207-222. 1SBN: 1-58113-
757-5. DOI: 10 .1145/ 945445 .945466. URL: https://doi.org/10.1145/
945445.9454¢6¢6.

Ulfar Erlingsson, Martin Abadi, Michael Vrable, Mihai Budiu, and George C. Necula.
“XFI: Software Guards for System Address Spaces”. In: Proceedings of the 7th Sympo-

sium on Operating Systems Design and Implementation. OSDI *06. event-place: Seattle,
Washington. USA: USENIX Association, 2006, pp. 75-88. ISBN: 1-931971-47-1.

Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado, Periklis Akritidis,
Austin Donnelly, Paul Barham, and Richard Black. “Fast Byte-Granularity Software Fault
Isolation”. In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles. SOSP ’09. event-place: Big Sky, Montana, USA. New York, NY, USA: Associ-
ation for Computing Machinery, 2009, pp. 45-58. ISBN: 978-1-60558-752-3. DOI: 10 .
1145 /1629575 .1629581. URL: https : / /doi .org/10.1145/ 1629575 .
1629581.

Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang, Nickolai Zeldovich, and M. Frans
Kaashoek. “Software Fault Isolation with API Integrity and Multi-Principal Modules”.
In: Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles.
SOSP ’11. event-place: Cascais, Portugal. New York, NY, USA: Association for Comput-
ing Machinery, 2011, pp. 115-128. 1SBN: 978-1-4503-0977-6. DOI: 10.1145/2043556.
2043568. URL: https://doi.org/10.1145/2043556.2043568.

Bryce Nakatani. ELJOnline: User Mode Drivers. 2002. URL: https://web.archive.
org/web/20090107040456/http://www. linuxdevices.com/articles/
AT5731658926.html (visited on 01/05/2024).

Peter Chubb. “Get More Device Drivers out of the Kernel!” In: Proceedings of the Linux
Symposium. Linux Symposium. Vol. 1. Ottawa, Canada, 2004, pp. 149-162. URL: https:
//www.kernel.org/doc/0ls/2004/01s2004v1-pages—-149-162.pdf.

https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://docs.kernel.org/6.9/userspace-api/netlink/intro.html
https://docs.kernel.org/6.9/userspace-api/netlink/intro.html
https://doi.org/https://doi.org/10.1002/spe.981
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.981
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.981
https://doi.org/10.1145/945445.945466
https://doi.org/10.1145/945445.945466
https://doi.org/10.1145/945445.945466
https://doi.org/10.1145/1629575.1629581
https://doi.org/10.1145/1629575.1629581
https://doi.org/10.1145/1629575.1629581
https://doi.org/10.1145/1629575.1629581
https://doi.org/10.1145/2043556.2043568
https://doi.org/10.1145/2043556.2043568
https://doi.org/10.1145/2043556.2043568
https://web.archive.org/web/20090107040456/http://www.linuxdevices.com/articles/AT5731658926.html
https://web.archive.org/web/20090107040456/http://www.linuxdevices.com/articles/AT5731658926.html
https://web.archive.org/web/20090107040456/http://www.linuxdevices.com/articles/AT5731658926.html
https://www.kernel.org/doc/ols/2004/ols2004v1-pages-149-162.pdf
https://www.kernel.org/doc/ols/2004/ols2004v1-pages-149-162.pdf

BIBLIOGRAPHY 23

[14] Hans-Jiirgen Koch. The Userspace I/O HOWTO. The Linux Kernel documentation. Dec. 11,
2006. URL: https://www.kernel.org/doc/html/v6.6/driver—api/uio-
howto.html (visited on 01/04/2024).

[15] Vinod Ganapathy, Matthew J. Renzelmann, Arini Balakrishnan, Michael M. Swift, and
Somesh Jha. “The Design and Implementation of Microdrivers”. In: Proceedings of the
13th International Conference on Architectural Support for Programming Languages and
Operating Systems. ASPLOS XIII. event-place: Seattle, WA, USA. New York, NY, USA:
Association for Computing Machinery, 2008, pp. 168—178. 1SBN: 978-1-59593-958-6. DOLI:
10.1145/1346281.1346303. URL: https://doi.org/10.1145/1346281.
1346303.

[16] Silas Boyd-Wickizer and Nickolai Zeldovich. “Tolerating Malicious Device Drivers in Linux”.
In: Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Conference.
USENIXATC’10. event-place: Boston, MA. USA: USENIX Association, 2010, p. 9.

[17] Jeff Dike. The User-mode Linux Kernel Home Page. URL: https : / /user — mode —
linux.sourceforge.net/ (visited on 01/05/2024).

[18] FUSE. The Linux Kernel documentation. 2022. URL: https : //www . kernel . org/
doc/html/v6.6/filesystems/fuse.html (visited on 01/05/2024).

[19] Alberto Faria, Ricardo Macedo, José Pereira, and Jodo Paulo. “BDUS: Implementing Block
Devices in User Space”. In: Proceedings of the 14th ACM International Conference on
Systems and Storage. SYSTOR ’21. event-place: Haifa, Israel. New York, NY, USA: As-
sociation for Computing Machinery, 2021. 1SBN: 978-1-4503-8398-1. DOI: 10 . 1145/
3456727.3463768. URL: https://doi.org/10.1145/3456727.3463768.

[20] Paul Emmerich, Maximilian Pudelko, Simon Bauer, and Georg Carle. “User Space Net-
work Drivers”. In: Proceedings of the Applied Networking Research Workshop. ANRW
’18. event-place: Montreal, QC, Canada. New York, NY, USA: Association for Comput-
ing Machinery, 2018, pp. 91-93. I1SBN: 978-1-4503-5585-8. DOI: 10.1145/3232755.
3232767.URL: https://doi.org/10.1145/3232755.3232767.

[21] MINIX 3 Kernel API. MINIX 3 Wiki. July 8,2016. URL: https://wiki.minix3.org/
doku.php?id=developersguide:kernelapi (visited on 06/28/2024).

[22] Andrew S. Tanenbaum and Albert S. Woodhull. Operating Systems: Design and Implemen-
tation. Third Edition. Upper Saddle River, NJ: Pearson Prentice Hall, 2006. 1054 pp. ISBN:
0-13-142938-8.

[23] Memory grants. MINIX 3 Wiki. Jan. 25, 2016. URL: https://wiki.minix3.org/
doku.php?id=developersguide:memorygrants (visited on 06/28/2024).

[24] Jorrit N. Herder, Herbert Bos, Arun Thomas, Ben Gras, and Andrew S. Tanenbaum. “Mem-
ory Sharing Revisited (Work in Progress)”. 4th EuroSys Conference. Nuremberg, Germany,

2009. URL: https://www.minix3.org/docs/ jorrit—herder/eurosys09-
wip-poster.pdf (visited on 06/28/2024).

https://www.kernel.org/doc/html/v6.6/driver-api/uio-howto.html
https://www.kernel.org/doc/html/v6.6/driver-api/uio-howto.html
https://doi.org/10.1145/1346281.1346303
https://doi.org/10.1145/1346281.1346303
https://doi.org/10.1145/1346281.1346303
https://user-mode-linux.sourceforge.net/
https://user-mode-linux.sourceforge.net/
https://www.kernel.org/doc/html/v6.6/filesystems/fuse.html
https://www.kernel.org/doc/html/v6.6/filesystems/fuse.html
https://doi.org/10.1145/3456727.3463768
https://doi.org/10.1145/3456727.3463768
https://doi.org/10.1145/3456727.3463768
https://doi.org/10.1145/3232755.3232767
https://doi.org/10.1145/3232755.3232767
https://doi.org/10.1145/3232755.3232767
https://wiki.minix3.org/doku.php?id=developersguide:kernelapi
https://wiki.minix3.org/doku.php?id=developersguide:kernelapi
https://wiki.minix3.org/doku.php?id=developersguide:memorygrants
https://wiki.minix3.org/doku.php?id=developersguide:memorygrants
https://www.minix3.org/docs/jorrit-herder/eurosys09-wip-poster.pdf
https://www.minix3.org/docs/jorrit-herder/eurosys09-wip-poster.pdf

BIBLIOGRAPHY 24

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

Alejandro Colomar, Michael Kerrisk, Andries Brouwer, and Rik Faith. “outb(2) - System
Calls Manual”. In: Linux man-pages. 6.9.1. May 2, 2024, URL: https://www.kernel.

org/doc/man—-pages/.

Alejandro Colomar, Michael Kerrisk, Andries Brouwer, and Rik Faith. “Capabilities(7)
- Miscellaneous Information Manual”. In: Linux man-pages. 6.9.1. May 2, 2024. URL:
https://www.kernel.org/doc/man—-pages/.

Alejandro Colomar, Michael Kerrisk, Andries Brouwer, and Rik Faith. “ioperm(2) - System
Calls Manual”. In: Linux man-pages. 6.9.1. May 2, 2024. URL: https://www.kernel.

org/doc/man-pages/.

Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux Device Drivers. Third
Edition. Sebastopol, CA: O’Reilly Media, Inc., 2005. 615 pp. ISBN: 0-596-00590-3. URL:
https://lwn.net/Kernel/LDD3/.

Tejun Heo and Florian Mickler. Workqueue. The Linux Kernel documentation. Sept. 2010.
URL: https://www.kernel .org/doc/html/v6.9/core-api/workqueue.
html (visited on 07/01/2024).

Alejandro Colomar, Michael Kerrisk, Andries Brouwer, and Rik Faith. “mem(4) - Kernel
Interfaces Manual”. In: Linux man-pages. 6.9.1. May 2, 2024. URL: https : / / www .

kernel.org/doc/man-pages/.

Jim Keniston, Prasanna S Panchamukhi, and Masami Hiramatsu. Kernel Probes (Kprobes).
The Linux Kernel documentation. URL: https://www.kernel.org/doc/html/v6.
9/trace/kprobes.html (visited on 07/01/2024).

Cristiano Giuffrida. system.conf(5) - File Formats Manual. Minix Man Pages. URL: https:
//man.minix3.org/cgi—-bin/man.cgi?query=system.conf &apropos=
0 & sektion=5&manpath=Minix & arch=default & format =html (visited on
06/29/2024).

Greg Kroah-Hartman. Driving Me Nuts - Things You Never Should Do in the Kernel. Linux
Journal. Apr. 6, 2005. URL: https://www.linuxjournal.com/article/8110.

Alejandro Colomar, Michael Kerrisk, Andries Brouwer, and Rik Faith. “proc(5) - File For-
mats Manual”. In: Linux man-pages. 6.9.1. May 2, 2024. URL: https://www.kernel.
org/doc/man—-pages/.

Jonathan Corbet. The seq_file Interface. The Linux Kernel documentation. 2003. URL:

https://www.kernel.org/doc/html/v6.9/filesystems/seq_file.html
(visited on 07/01/2024).

https://www.kernel.org/doc/man-pages/
https://www.kernel.org/doc/man-pages/
https://www.kernel.org/doc/man-pages/
https://www.kernel.org/doc/man-pages/
https://www.kernel.org/doc/man-pages/
https://lwn.net/Kernel/LDD3/
https://www.kernel.org/doc/html/v6.9/core-api/workqueue.html
https://www.kernel.org/doc/html/v6.9/core-api/workqueue.html
https://www.kernel.org/doc/man-pages/
https://www.kernel.org/doc/man-pages/
https://www.kernel.org/doc/html/v6.9/trace/kprobes.html
https://www.kernel.org/doc/html/v6.9/trace/kprobes.html
https://man.minix3.org/cgi-bin/man.cgi?query=system.conf&apropos=0&sektion=5&manpath=Minix&arch=default&format=html
https://man.minix3.org/cgi-bin/man.cgi?query=system.conf&apropos=0&sektion=5&manpath=Minix&arch=default&format=html
https://man.minix3.org/cgi-bin/man.cgi?query=system.conf&apropos=0&sektion=5&manpath=Minix&arch=default&format=html
https://www.linuxjournal.com/article/8110
https://www.kernel.org/doc/man-pages/
https://www.kernel.org/doc/man-pages/
https://www.kernel.org/doc/html/v6.9/filesystems/seq_file.html

Appendix A

User space API

typedef struct umdp_connection umdp_connection;

/// Establish a connection to the kernel.

/)

/// The ‘umdp’ kernel module needs to be loaded before this function is called.
/// The returned “umdp_connection’ should be destroyed after its last use using
/// “umdp_disconnect () .

/)

/// \return Pointer to ‘umdp_connection’ or 'NULL in case of failure

umdp_connection* umdp_connect (void) ;

/// Disconnect the specified UMDP connection, freeing all associated resources.
/)

/// This function also frees the ‘umdp_connection’ struct.

/7

/// \param connection Pointer to ‘umdp_connection’

void umdp_disconnect (umdp_connection* connection);

/// Request access to an I/O port region.

/)

/// If the I/0 port region is already in use by another driver,
/// it will be released beforehand.

/// Linux requires that I/0 regions be released as a whole,

/// so if the I/O region you want is already in use,

/// you must specify it in its entirety, even if you don't intend
/// to use all of it.

/)

/// Make sure to release it when it's not necessary anymore

/// using “umdp_devio_release() .

/)

/// \param connection ‘umdp_connection’ to use

/// \param start The first I/0O port of the desired region

/// \param size The size of the region (must be greater than 0)
/// \return 0 in case of success, a non-zero value in case of failure

int umdp_devio_request (umdp_connection* connection, uint64_t start, uint64_t size);

25

User space API 26

/// Release an I/O port region.

///

/// It must have been previously requested using ‘umdp_devio_request () .
///

/// \param connection ‘umdp_connection’ to use

/// \param start The first I/0 port of the desired region

/// \param size The size of the region (must be greater than 0)

/// \return 0 in case of success, a non—-zero value 1in case of failure

int umdp_devio_release (umdp_connection* connection, uint64_t start, uinté64_t size);

/// Read a byte from the specified port.

///

/// \param connection ‘umdp_connection’ to use

/// \param port Port to read from

/// \param out Pointer to where the read value should be stored

/// \return 0 in case of success, a non-zero value in case of failure

int umdp_devio_read_u8 (umdp_connection* connection, uint64_t port, uint8_t* out);

/// Read a 2 byte value from the specified port.

/)

/// \param connection ‘umdp_connection’ to use

/// \param port Port to read from

/// \param out Pointer to where the read value should be stored

/// \return 0 in case of success, a non-zero value in case of failure

int umdp_devio_read_ul6 (umdp_connectionx connection, uint64_t port, uintlé_t* out);

/// Read a 4 byte value from the specified port.

/7

/// \param connection ‘umdp_connection’ to use

/// \param port Port to read from

/// \param out Pointer to where the read value should be stored

/// \return 0 in case of success, a non—-zero value in case of failure

int umdp_devio_read_u32 (umdp_connection* connection, uint64_t port, uint32_t* out);

/// Write a byte to the specified port.

/)

/// \param connection ‘umdp_connection’ to use

/// \param port Port to write to

/// \param value Value to write

/// \return 0 in case of success, a non-zero value in case of failure

int umdp_devio_write_u8 (umdp_connection* connection, uint64_t port, uint8_t value);

/// Write a 2 byte value to the specified port.

/)

/// \param connection ‘umdp_connection’ to use

/// \param port Port to write to

/// \param value Value to write

/// \return 0 in case of success, a non-zero value in case of failure

int umdp_devio_write_ulé (umdp_connection* connection, uinté64_t port, uintlé6_t wvalue);

User space API 27

/// Write a 4 byte value to the specified port.

///

/// \param connection ‘umdp_connection’ to use

/// \param port Port to write to

/// \param value Value to write

/// \return 0 in case of success, a non-zero value in case of failure

int umdp_devio_write_u32 (umdp_connection* connection, uint64_t port, uint32_t value);

/// Subscribe to interrupts from the specified IRQ line.

///

/// The IRQ line must either be free, or in shared mode.

/7

/// \param connection ‘umdp_connection’ to use

/// \param irq IRQ line to subscribe to

/// \return 0 in case of success, a non-zero value in case of failure

int umdp_interrupt_subscribe (umdp_connection* connection, uint32_t irq);

/// Unsubscribe from interrupts from the specified IRQ line.

4

/// \param connection ‘umdp_connection’ to use

/// \param irqg IRQ line to subscribe to

/// \return 0 in case of success, a non—-zero value in case of failure

int umdp_interrupt_unsubscribe (umdp_connection* connection, uint32_t irq);

/// Receive an interrupt notification from any of the subscribed IRQ lines.
///

/// \param connection ‘umdp_connection’ to use

/// \param out Pointer to where the IRQ number should be stored

/// \return 0 in case of success, a non-zero value in case of failure

int umdp_receive_interrupt (umdp_connection* connection, uint32_t* out);

/// Establish a mapping between a physical memory region and the process's

/// address space.

/)

/// \param connection ‘umdp_connection’ to use

/// \param start Address of the start of the physical memory region to map

/// \param size Size of the region to be mapped

/// \param out Pointer to location to store the address of the mapped region in
/// (will be set to a valid pointer on success, or NULL in case of failure)

/// \return 0 in case of success, a non-zero value in case of failure

int umdp_mmap_physical (umdp_connection* connection, off t start, size_t size,

voidx+* out);

User space API 28

/77
/77
/S
v
s
/77
/77
/S
s

Get description of error number.

The returned pointer should not be “free() 'd by the caller.

This function can use ‘strerror () internally, so the returned pointer
could be invalidated by a subsequent call to this function,

or to ‘strerror ()’ or related functions. As such, i1f the caller needs

to use the string after the immediate moment when this function is called,

it should make a copy of the returned string.

const charx umdp_strerror (int error);

Appendix B

Generic Netlink Protocol

Table B.1: Attributes used by each command request and reply

Command Sent by Contains Reply Reply contains
CONNECT User PID Value | CONNECT_REPLY
READ_REPLY_US
or
DEVIO_READ User READ_PORT Value | READ_REPLY_U16
READ_TYPE or
READ_REPLY_U32
WRITE_PORT
(WRITE_VALUE_US
DEVIO_WRITE User or ACK n/a
WRITE_VALUE_U16
or
WRITE_VALUE_U32)
DEVIO_REQUEST User START ACK n/a
SIZE
DEVIO_RELEASE User START ACK n/a
SIZE
INTERRUPT_NOTIFICATION | Kernel IRQ None n/a
INTERRUPT_SUBSCRIBE User IRQ ACK n/a
INTERRUPT_UNSUBSCRIBE | User IRQ ACK n/a

29

Generic Netlink Protocol

Table B.2: Attributes accepted by each command, as well as their type

Command Attributes Type
CONNECT PID s32
CONNECT_REPLY u8
READ_PORT u6t4
READ_TYPE u8
DEVIO_READ READ_REPLY_US ud

READ_REPLY_U16 | ul6
READ_REPLY_U32 | u32
WRITE_PORT u64
DEVIO_WRITE WRITE_VALUE_US ug
WRITE_VALUE_U16 | ul6
WRITE_VALUE_U32 | u32

DEVIO_REQUEST START u6t4

DEVIO_RELEASE SIZE u6t4
INTERRUPT_NOTIFICATION

INTERRUPT_SUBSCRIBE IRQ u32

INTERRUPT_UNSUBSCRIBE

	Front Page
	Table of Contents
	1 Introduction
	1.1 Document Structure

	2 State of the art
	2.1 Background
	2.1.1 Device drivers
	2.1.2 Inter-process communication

	2.2 Related work
	2.2.1 In-kernel isolation
	2.2.2 User space drivers

	3 A look at the MINIX 3 API
	3.1 Summary
	3.1.1 Interrupt handling
	3.1.2 Memory mapped I/O
	3.1.3 Port I/O

	4 Design and Implementation
	4.1 Objectives
	4.2 Design
	4.3 Implementation
	4.3.1 Netlink
	4.3.2 Port I/O
	4.3.3 Interrupt handling
	4.3.4 Memory-mapped I/O
	4.3.5 Mapping Netlink ports to processes
	4.3.6 Cleanup
	4.3.7 Access control

	5 Evaluation
	5.1 PS/2 Keyboard
	5.2 Writing to the framebuffer

	6 Conclusions
	6.1 Future Work

	A User space API
	B Generic Netlink Protocol

